
Citation: Zhang, W.; Li, F.; Li, J.;

Cheng, Q. Review of On-Orbit

Robotic Arm Active Debris Capture

Removal Methods. Aerospace 2023, 10,

13. https://doi.org/10.3390/

aerospace10010013

Academic Editors: Shunan Wu,

Jiafu Liu and Xiaobin Lian

Received: 19 October 2022

Revised: 20 December 2022

Accepted: 20 December 2022

Published: 23 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

aerospace

Review

Review of On-Orbit Robotic Arm Active Debris Capture
Removal Methods
Wei Zhang 1,2 , Feng Li 1,2,3 , Junlin Li 1,2,* and Qinkun Cheng 1,2,3

1 State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences,
Shenyang 110016, China

2 Institutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang 110169, China
3 University of Chinese Academy of Sciences, Beijing 100049, China
* Correspondence: lijunlin@sia.cn

Abstract: Space is the driving force of the world’s sustainable development, and ensuring the
sustainability of human activity in space is also necessary. Robotic arm active debris capture removal
(RA-ADCR) is a noteworthy technology for containing the dramatic increase in space debris and
maintaining orbital safety. This review divides the RA-ADCR technology progress history into three
periods and presents the status of related research. Two major development trends are summarized
and subdivided through the analysis and collation of research achievements over the past three years.
Taking the treatment of parameter uncertainties as the entry point, researchers would like to improve
the discrimination accuracy and scope to reduce uncertainties. On the other hand, researchers accept
such uncertainties and would like to offset and avoid the impact of uncertainties by extending
the error margins. Subsequently, the challenges of RA-ADCR are analyzed in line with the task
execution flow, which mainly focuses on the conflict between on-satellite computing power and the
performance of task execution. In addition, feasible solutions for the current phase are discussed.
Finally, future outlooks are evaluated and discussed.
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1. Introduction

The United Nations identified the Earth’s orbital space environment as a finite resource
in its Guidelines for the Long-term Sustainability of Outer Space Activities [1,2]. However,
such a limited resource will likely become scarce in recent years with the deployment of
constellations such as StarLink, OneWeb, LeoSat, and TeleSat. Space is the driver of the
world’s sustainable development [3], and ensuring the sustainability of human activity
in space is also necessary. Along with the need for continued economic progress, the
balance between the increasingly scarce Earth orbit resources and increasingly frequent
space missions has become an important topic. As of May 2022, an estimated 5800 satellites
were orbiting the Earth, compared to only 2290 in 2019. Although launch technological
innovations such as one-rocket-launch multi-satellites have led to an increased share of
payloads in orbit, the increase only covers between 10.4% and 15.9%. Those objects, other
than payloads, are defined as space debris. Such high-velocity and uncontrolled space
debris can severely affect spacecraft and the space environment. For example, debris of
approximately 10 cm can destroy any operational satellite in the event of a collision and
create thousands of pieces of space debris in orbit, which will remain in orbit for years or
even decades [4].

Sixteen years ago, Liou [5,6] noted that even if there were no more satellite launches,
the amount of space debris would remain relatively stable for only approximately 50 years.
Nevertheless, as of May 2022, the ESA has detected and tracked 36,500 pieces of space
debris larger than 10 cm, weighing nearly 10,000 tons, which is already four times the
number 16 years ago [7]. Fortunately, we have not yet triggered Kessler syndrome [8], a
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phenomenon in which debris from collisions explodes when it hits other objects, creating
new debris that hits other objects. However, 11.7 unintentional fragmentation events per
year imply that we are most likely approaching the Kessler limit [7,9].

In response to the continuing severe space debris crisis, many international organiza-
tions have made efforts toward sustainable space development. International conferences
such as the COSPAR, IAC, and IAASS conferences have been exploring solutions to the
space debris problem since 1984. In 1993, the establishment of IADC, an international
organization, marked the completion of a communication platform dedicated to space
debris mitigation. The United Nations Committee on the Peaceful Uses of Outer Space took
long-term outer space sustainability as an agenda item in 2010 and adopted the relevant
guidelines in 2019 [10]. ESA, the agency most concerned with space debris and its removal
methods, has even established a space debris office to coordinate related research.

There are two main approaches to mitigating the dramatic increase in space debris [11].
One is the rational design of space systems, ensuring that they do not become space debris
in the future. The above design must avoid in-orbit disintegration and collision scenarios
during mission execution and active disposal efforts after mission execution. The other
is using active debris removal techniques to dispose of space debris that is not capable of
autonomous destruction. NASA and the ESA have stated that at least five large space debris
targets must be removed yearly to maintain the orbital environment [12]. The RA-ADCR
method is an important branch in developing active debris removal technology. Compared
with non-capture techniques, such as using an ion beam to “push” debris, which will
consume 40 W/mN of electrical power over a long period of time, the RA-ADCR method
requires low power consumption and is compatible with microsatellites [13]. In addition,
grasping by arms has been considered the more mature technology. Compared with other
capture techniques, such as tethered net systems, it has a high fault tolerance rate, which
provides higher controllability and safety for implementation [14].

There are also previous reviews related to the field of active debris [15,16]. Compared
with previous work, this review focuses on the robotic arm active debris capture direction
in the above field. In addition, this paper has the following advantages: a clearer overview
of development in the field, a new perspective on the field development trends, and more
cutting-edge research publications.

This review presents the RA-ADCR technology in seven parts. The first section
introduces the background, significance, and urgency of the research. The following section
gives statistics on the relevant literature in the mentioned field and analyses the literature
partnerships and research hotspots. With 2019 as the dividing year, this review discusses
the historical development process from 1983 to 2018 in three periods. Sections 3 and 4
provide an overview of the last three years of research in response to the two different
trends in dealing with uncertainties. The fifth section analyzes the challenge of the RA-
ADCR field that balances computing power limitations with task execution effectiveness.
The sixth section provides an outlook on the advanced direction of the RA-ADCR field.
The final section concludes the entire work.

2. Research Progress Analysis

This section presents an analysis of the historical research aspects of RA-ADCR technol-
ogy based on previous publications. The literature data were collected using the WOS core
library by searching for the themes of ‘space manipulator’, ‘capture’, and ‘non-cooperative’.
The search was conducted for the period 1983–2022, with the dataset collected on 15 July
2022. A total of 539 valid documents were obtained by screening for non-relevant content
and a histogram of the temporal distribution of documents for the period 1992–2022, as
shown in Figure 1.

The orange part is the actual annual number of papers in the RA-ADCR field, while
the gray part is the forecast based on the current papers until the end of 2022. The trend
line for the number of publications was obtained using a four-period average method. The
graph visualizes that the number of papers in the field increased significantly since 2006
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and peaked in 2019. Regarding the trend line, there has been an exponential increase in the
number of RA-ADCR technology research results, which indicates that researchers have
shown great interest and enthusiasm in the field of RA-ADCR.

Figure 1. Statistical chart of related literature in 1992–2022.

2.1. Related Literature Analysis

Citespace software is selected for this section to analyze the above 539 pieces of
literature for co-citation and co-keyword analysis. The analysis parameters are as follows:
Nodetype for keywords and references, g-hex for 20, Pruning module with the options of
‘Pathfinder’, ‘Pruning sliced network’, and ‘Pruning the merged network’. The analysis
results area is shown in Figure 2.

Figure 2. Citespace analysis results with parts: (a) co-word of title; (b) co-cited author; (c) keyword
clustering.



Aerospace 2023, 10, 13 4 of 27

According to the title co-word analysis results in Figure 2a, research objects in the
RA-ADCR field are generally space manipulators with free-floating (#1, #5), dual-arm (#7),
or redundant (#10) configurations. The captured target is typically a non-cooperative object
(#8). Meanwhile, solving the parameter uncertainty problem (#6) in the base-robot arm
parallel control (#13) has become a hotspot of research. Based on the co-referred authors’
analysis results in Figure 2b, Flores, Xu, Huang, Wang, Shi, and others have achieved
outstanding results. In addition, the field includes path planning (#0), adaptive control (#2),
capture strategy (#8, #19), nonlinear numerical analysis (#9, #13), robot vision (#12), and
many other subdivisions based on the keyword co-word clustering analysis in Figure 2c.

2.2. Historical Progres Periods

With 2019 as the dividing year, this section divides the research results in the field of
RA-ADCR from 1983 to 2018 into three phases: the exploratory period, supplementary pe-
riod, and developmental period. A detailed description of developmental transformations
will follow in phases. The conventional RA-ADCR physical configuration consists of a base
and one or more robotic arms. The base usually involves thrusters, reaction/momentum
wheels, momentum control gyroscopes, or variable speed control moment gyroscopes
for attitude control. During the mission execution, there is a dynamic coupling between
the robot arm and the base of the microsatellite. The robot arm’s movement will affect
the satellite’s attitude and position. In this case, the rotational inertia of the robot arm
cannot be ignored. Moreover, the alteration in the satellite’s attitude will seriously affect
the communication effect and the working efficiency of the solar sail.

During the theoretical exploration period, researchers mainly discussed the control
methods of the spacecraft, constructed kinematic/dynamical models based on different
control methods, and carried out trajectory planning studies during the pre-capture process.
Then, researchers complemented the mission’s whole process during the theoretical supple-
ment period. The advantages and weaknesses of different space robotic arm configurations
are discussed and analyzed. The focus of the research began to diverge during the theory
development period. Some researchers investigated methods for capturing targets with
uncertain parameters or excessive rotation speed. However, other researchers focused on
control methods that minimize the robotic arm’s forces transmitted to the spacecraft.

2.2.1. 1983–1998 Theoretical Exploration Period

Initially, researchers transformed the RA-ADCR problem into a precision docking
problem for rotating targets. They considered the spacecraft and the robotic arm as the
two systems. In this case, the robotic arm executes the mission, and the base maintains
the position and attitude of the spacecraft by counteracting the disturbances through the
propulsion jets generated by thrusters [17]. The above was also an initial idea for the
spacecraft free-flying model. The operation of such spacecraft is complex and requires high
control accuracy of the robotic arm. Therefore, research during the theoretical exploration
period focused on teleoperation, sensor design, and trajectory planning [18].

For the free-flying control model, the base consumes a tremendous amount of fuel
to maintain its position and attitude, significantly reducing the service satellite’s lifetime.
Vafa [19] proposed a virtual manipulator method to construct an equivalent model of the
space robotic arm. In addition, he also proposed a partial free-floating control model that
converts the spherical hinge into a revolute pair to simplify the operation. This partial
free-floating model only needs to maintain the spacecraft attitude, which reduces fuel
consumption. To further reduce the energy loss, researchers presented a free-floating model
in which the base does not provide external forces. This method follows the conservation
of linear and angular momentum and considers the initial momentum to be zero [20–22].
However, the momentum of such free-floating spacecraft tends to accumulate and needs
to be offset by fuel consumption due to the small environmental collisional perturbations
or the deviation of attitude control [23]. Therefore, some researchers have also named the
partial free-floating model combined with the free-floating model [24]. Such free-floating
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models have become the dominant control model for spacecraft given that they incur little
or no extra fuel consumption.

Subsequently, researchers have focused on the construction of kinematic/dynamical
models and trajectory planning for capture. Papadopoulos and Moosavian proposed the
barycentric vectors method [25–27] and the direct path method [28] to construct kinematic
and dynamical models for free-floating spacecraft. The direct path method uses the gen-
eralized Jacobi matrix, which is easier to implement than the center vector method [29].
Liang [30] proposed the dynamically equivalent manipulator method to preserve the dy-
namics of a free-floating robotic arm when mapped to a fixed-base robotic arm. Luo [31]
first investigated the capture of cooperatively tumbling target objects. He designed a
sensing feedback control law to ensure that the manipulator’s position and orientation are
asymptotically consistent with the tumbling object. Dubowsky [32] developed the concept
of a disturbance map (DM) [19] and proposed the concept of an enhanced disturbance
map (EDM) to reduce spacecraft disturbances. Compared to the prior trajectory planning
methods, EDM breaks away from the DM method, which is only applicable to two-link
planar robotic arm systems.

2.2.2. 1992–2007 Theoretical Supplement Period

During the theoretical supplement period, researchers explored the mission’s whole
process. Related research included motion estimation, kinetic model identification, velocity
analysis at the moment of capture, and de-tumbling after capture. In 1992, Yoshida [33] took
the captured moment as the node and divided the RA-ADCR task into three phases: pursuit,
catch–grasp, and relieve–suppress. He initially applied the momentum conservation
principle of point masses to the contact moment, which investigated the relationship
between spacecraft and target motion. Matunaga [34] researched rapidly tumbling targets.
At this point, direct capture was impossible. Therefore, he proposed a scheme using a
buffered damper to absorb the rotational motion of the target satellite. Research on post-
capture de-tumbling methods is relatively recent. In 2004, Dimitrov [35] introduced two
post-capture control laws and named them distributed momentum control (DMC) and
reaction null space control (RNSC). The DMC utilizes the conservation of the angular
momentum of the system and aims to compensate for the remaining angular momentum
of the system after the target is captured utilizing the reaction wheel. RNSC is mainly used
in the post-capture stabilization phase to minimize the joint velocity based on keeping the
base attitude constant. In 2007, Rekleitis [36] completed a simulation of target capture by
dual-arm under transatlantic communication conditions based on prior knowledge and
experience. However, all the targets of the studies above are cooperative. The targets’
motion form and the kinematic and dynamic parameters are assumed to be known.

In 2004–2005, Lichter [37,38] implemented the motion estimation and kinetic model
parameter identification method for unknown targets via in-orbit cameras. This approach
complemented the limitation of RA-ADCR in the field of parameter identification and
motivated researchers to explore the uncertainties of the target during the theoretical
development period.

2.2.3. 2004–2018 Theoretical Development Period

In the theoretical development period, the uncertainties of the target and the mini-
mization force on the base became the new research hotspots. The research also extended
from a single rigid arm to different robot arm configurations, such as rigid–flexible coupled,
redundancy, and dual-arm configurations [39]. Among them, the rigid–flexible coupled
configuration helps to reduce the impact of capture on the target and spacecraft [40]. The
redundant robotic arm configuration can reduce the torque transferred to the base while
tracking the intended trajectory [41–43]. Moreover, the dual-arm configuration could
counteract the positional interference by setting the balance arm [44]. In addition, it can
also form an effective envelope area during capture to prevent the escape of a tumbling
target [45].
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Rapidly tumbling targets have been the subject of numerous research articles in terms
of targets. The capture of rapidly tumbling targets is the intersection direction of the fields
of space proximity operations and visual navigation and image processing techniques.
Aiming at the recognition and determination of a target’s position and shape, researchers
have proposed two observation methods: active vision [46,47] and passive vision [48].

Responding to the excessive velocities and parameter uncertainties of tumbling targets,
JAXA [49,50] first proposed using a flexible brush contactor for target pre-processing.
Ma [51] divided the pre-capture into two stages: maintaining the spacecraft at the same
rotation and linear velocity as the target and subsequently capturing the target with relative
stationery. Aghili [52] used a Kalman filter to obtain target dynamics parameters from
the on-orbit camera and initially applied them in the pre-capture and post-capture phases.
Afterward, Aghili investigated the non-cooperative object minimum time de-tumbling [53]
and the multi-arm cooperative trajectory planning [54]. Reiter [55] completed the minimum
time implementation of joint space trajectory tracking based on the above.

Aiming to minimize the force on the base during the mission execution, Yoshida [56]
introduced the combined inertia and Jacobian matrix to realize his concept of reaction null
space in 1992. Notably, the zero reaction maneuver (ZRM) method has been validated on
the ETS-VII satellite [57]. The above implementation uses a motion control strategy called
sequential control. This method first achieves the target approach through base movement
and then deploys the manipulator using the ZRM. Xu [58] proposed a new adaptive
ZRM method that extends into the case of uncertainties in kinematic and dynamical
parameters. Abiiko [59] applied impedance control theory to target de-tumbling and
treated parameter uncertainty as a disturbance in control. Giordano [60] proposed a
method of moment feedback to counteract the Coriolis and centrifugal forces generated by
the robotic arm’s motion.

Different from the above sequential motion control strategy, Sabatini [61] proposed a
coordinated control method and verified the advantages of the combination of the base’s
attitude and the motion of arms through the air-bearing free-floating platform.

2.3. Recent Research Trends

In recent research, uncertainties have become the focus of extensive discussion among
researchers in the field of RA-ADCR. The uncertainties referred to here hold the same
interpretable range as the parameter uncertainties (Figure 2a, #6) mentioned in Citespace.
Uncertainties include three aspects: unknown, dynamic change, and error. Among them,
the unknown mainly refers to the non-structural orbital environment. The dynamic varia-
tion is reflected in both the target’s kinematic parameters and the robot arm’s structural
parameters. The kinematic parameters of the target will change dramatically during the
de-turning phase. In addition, the robotic arm’s structural parameters keep changing
dynamically during the task execution due to fuel consumption and joint movements. The
last part of the uncertainty concentrates on the feedback and output errors triggered by the
observers and actuators.

For the solution of parameter uncertainty problems, two different ways to address
them are summarized based on recent studies. On the one hand, researchers would like
to improve the discrimination accuracy and scope by constructing more accurate models
to reduce the impact of systematic uncertainties. On the other hand, researchers have
accepted the existence of such uncertainties. They attempted free/weak model approaches,
end-effector designs, and robust controllers to improve error margins. As a result, the
effects caused by uncertainties can be offset or circumvented.

The following two sections will focus on the research trends above, as shown in
Figure 3. Both of them summarized the relevant research progress in the task execution
flow. Based on different uncertainty handling methods, research results with different
convergences will have significant discrepancies in the system modeling, mission planning
and design, and implementation of RA-ADCR tasks.
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Figure 3. Research trends of RA-ADCR in 2019–2022.

3. Trend I: Uncertainty Identify and Reduce

Parameter uncertainties of the target and spacecraft are the primary source of sys-
tematic uncertainties and the main problem solved by RA-ADCR technology. Researchers
have carried out extensive parameter identification work to improve the modeling accu-
racy. Then, model-based trajectory planning and tracking methods can be used to achieve
capture. This section summarizes the research outcomes based on the identification and
reduction trend of such parameter uncertainties.

The structure is sequenced with the task execution flow. In the system modeling phase,
researchers first tried to stabilize the target in complex motion within an acceptable rotation
range by pre-processing. Subsequently, parameter identification methods under both the
pre-capture and post-capture phases are discussed, which will ensure more accurate system
model construction.

In the mission planning stage, based on the research results in recent years, Section 3.2
summarizes the constraints and optimization conditions for the space robotic arm in trajec-
tory planning after accurate model construction. In addition, trajectory planning methods
are classified into offline trajectory planning and online trajectory planning according
to the real-time effect. In general, offline trajectory planning methods are static and not
particularly robust. Online trajectory planning methods are highly positively correlated
with the ability of environment perception, which requires considerable computing power
on satellites.

In fact, after reducing uncertainty and establishing an accurate system model, task
execution will still be affected by other factors. Section 3.3 analyzes these influencing factors
and summarizes ways to avoid these effects. Among the above, the first part expands
on the accurate construction of the model, while the rest provides an overview of the
model-based methods. It is worth noting that the trajectory planning and implementation
methods discussed in Sections 3.2 and 3.3 are based on modeling methods with uncertainty
identification and reduction tendencies.

3.1. Pre-Process and Identify Parameters

The target in a capture mission typically tumbles due to residual angular momentum.
In addition, debris motion becomes more complicated by gravity, vortex damping, and
flexible attachments [62,63] and generally includes both rotation and nutation [64]. When
the capture target tumbles too quickly or is overly complex, direct capture using the
robotic arm is extremely difficult. Therefore, it is necessary to stabilize the target within an
acceptable rotation range during the pre-capture phase. The flexible pre-processing method
using flexible rods and brushes is the most efficient [65], as shown in Figure 4.
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Figure 4. Pre-processing of tumbling target with parts: (a) flexible rod [63]; (b) flexible brush [66].

Flexible rods have five degrees of freedom for control, making it easier to obtain
precise contact points. However, the control accuracy requirement of flexible rods needs to
be increased. Researchers continuously refined a two-stage tumbling target pre-processing
scheme based on flexible rods [65]. The first stage used a flexible impact to synchronize
the angular velocity reduction method of the target in all three axes [62,63]. In the second
stage, researchers used a collision recognition method to determine all inertial parameters
using visual and moment sensors by using a force of less than 10 N [67]. Research on
flexible brushes has focused on the control of the contact strategy [68], position [66], and
force [69]. The dual-arm configuration is likely to be a popular configuration for flexible
brush de-tumbling. The dual-arm robotic arm has a counterbalance arm to offset the base’s
disturbance caused by the friction between the flexible brush and the target. In addition,
such a robotic arm can develop an effective envelope region for relatively stationary target
objects, which improves the capture success rate and enables direct capture. Table 1
compares the differences and effectiveness of the flexible rod and flexible brush.

Table 1. Pro-processing of flexible rod and brush.

- Mode of Action Contact Mode

Flexible rod (a) Impact Two-stage instantaneous
Flexible brush (b) Friction Multiple persistent

When the rotation of the target is in an acceptable range, using parameter identification
methods to reduce uncertainty becomes a critical element of the study. In the RA-ADCR
mission procedures, there are three objects for parameter identification: spacecraft, tum-
bling targets, and combinations. In the pre-capture phase, researchers need to carry out
the identification of the first two parameters. As physical models of spacecraft and capture
targets are known to different degrees, their parameters differ in obtaining methods. The
physical model of the spacecraft is known. Its parameters change mainly due to motion
operations and fuel consumption. Therefore, model-based algorithms are suitable for
this case. Researchers have proposed methods based on equations of motion [70] and
momentum conservation [71,72] for parameter identification of spacecraft. Momentum-
conservation-based methods have become a hot research topic because the observation of
acceleration is avoidable compared with motion equation-based methods.

The characteristics of objects in long-term orbit are inherently difficult to assess, es-
pecially for space debris that has suffered an explosion [73]. Model-based parameter
identification methods are not applicable. In addition, parameters such as the rotational
inertia of a rotating target depend on factors such as the exact location of the capture point.
Therefore, target parameters will only be able to be obtained by estimation [73]. Currently,
there are two kinds of solutions. One is filtering and smoothing algorithms. Researchers
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have extensively discussed filtering methods such as the extended Kalman filter [74,75],
unscented Kalman filter [76], particle filter [77], and minimum energy filter [78]. The other
uses SLAM algorithms to solve the non-cooperative target’s state estimation [79,80]. After
the manipulator captures the tumbling target, the parameter identification of the combina-
tion can help achieve the target’s de-tumbling. However, it is worth noting that there is
relative sliding between the target and the spacecraft, which becomes the main difficulty in
modeling. Researchers used learning algorithms to achieve parameter discrimination by
parallelizing past motion data points with transient motion data points [81]. Subsequent
studies have improved the scaling factor, which improved the convergence [82]. On the
other hand, researchers have improved the method by constructing an extended observer
for the parametric explicit linear time-varying model [83]. This method effectively estimates
the inertial parameters in dynamic variation.

In recent years, research development trends have varied for different parameters. In
the pre-capture phase, the research focuses on reducing the need for computing power
and result improvements. In terms of reducing on-satellite computing power, relaxing
the persistent excitation (PE) condition and using the interval excitation (IE) condition
for parameter identification has become a hot topic [72,74,84]. In addition, task priority-
based filtering estimation strategies are also helpful for reducing the arithmetic power on
satellites [75]. To improve the results, researchers have attempted to fuse different filtering
methods, including a hybrid Kalman filter [76] and a two-stage filter [85]. Those filters help
to improve the accuracy and stability of the outputs. On the other hand, for the cumulative
error that occurs after filtering, the researchers used a closed-loop detection method for
reduction [86]. After the robotic arm completes the capture, the PE condition is necessary
to avoid collisions between the spacecraft and the target. Therefore, model construction
and the real-time improvement of identification are the focus of this research. On the one
hand, researchers proposed momentum-based and force-based identification equations
based on the combination [87,88]. Compared to conventional methods, momentum-based
equations can estimate all inertial parameters simultaneously in one step, and force-based
equations have no requirement on the joint moments. On the other hand, researchers
continued Na’s work [89] to obtain estimation error expressions using multiple filtering
operations. In addition, the application of the terminal sliding mode achieves convergence
of the parameter identification in finite time [90].

3.2. Constraints and Trajectory Planning

In addition to obstacle avoidance, output limits, singularity, maximum joint torque,
maximum joint acceleration, and maximum base force are also constraints of trajectory
planning [91,92]. The output limitation represents that the actuators must be kept within
the pre-defined constraints to avoid unexpected collisions. Moreover, the minimum base
perturbation, time, and fuel consumption are the direction of trajectory planning opti-
mization, which helps to increase the system’s service life [93–95]. As shown in Figure 5,
there are two ideas to handle the trajectory planning problem. One is the offline trajectory
planning method, which only focuses on the initial and final attitude of the base. The
other is the online trajectory planning method, which needs to keep the base attitude stable
during the whole motion.

Offline trajectory planning includes both heuristic algorithms and nonlinear optimiza-
tion methods. Heuristic offline trajectory planning methods include the rapid-exploring
random trees algorithm (RRT) [96], enhanced bidirectional approach (EBA) [97], multi-
objective particle swarm optimization algorithm (MOPSO) [98,99], and improved genetic
algorithm [100]. On the other hand, researchers transform planning problems into non-
linear optimization problems and solve them by variational methods [101] and active
sets [102,103]. Among them, the RRT algorithm is intuitive for trajectory planning [96].
The EBA method solves trajectory planning by modeling as a kind of error convergence
problem by presetting the initial and final configurations of the robot arm. This method
is computationally efficient and easy to implement on satellites. However, the MOPSO
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algorithm requires the establishment of a cost function. This method transforms the tra-
jectory planning problem into a multi-objective optimization problem [104]. Compared
with heuristic algorithms, the method of nonlinear optimization is reproducible and easy
to falsify in implementation.

Figure 5. Conditions and methods of trajectory planning.

However, it is worth noting that the offline trajectory planning method is static and not
particularly robust. This implies that the trajectory has to be recomputed and regenerated
when the target or obstacle changes. Xie [105] fused RRT with forward and backward
reaching inverse kinematics to avoid inverse kinematics solutions. This method improves
the efficiency of trajectory planning by reducing the need for on-satellite computing power.
Zhang [106] proposed a two-level local planner based on the RRT algorithm, the former
ensuring efficient exploration of the configuration and the latter ensuring fast algorithm
convergence with singularity avoidance. This approach accomplishes task planning with-
out solving the inverse kinematic problem and preserves the attitude constraint. In addition,
researchers attempted to improve the MOPSO algorithm performance with chaotic parti-
cles [107] and penalty factors [108]. The former improves the precision phenomenon, while
the latter balances the penalty and search ability under multiple constraints. There is also
research that integrates the MOPSO algorithm with collision detection techniques. This
method guides obstacle avoidance trajectory planning by calculating the distance between
the obstacle and each joint in real time [109].

Online trajectory planning is mainly realized by field methods such as artificial poten-
tial field (APF), obstacle vector field (OVF), and acceleration potential field (AccPF), which
can dynamically adjust according to conditional changes. In the pre-capture phase, Rybus
compared RRT, APF, and OVF trajectory planning algorithms. The results show that the
OVF is superior to APF, and the time required to solve is shorter than APF and RRT [110].
In the post-capture phase, Zhan [111,112] used the AccPF method to construct attractive
and repulsive potential fields to achieve trajectory planning. The former field is used for
momentum removal, and the latter is used for obstacle avoidance. In addition, some studies
innovatively integrated the APF with reinforcement learning (RL) to realize the trajectory
planning of a dual-arm or redundant manipulator. This method is applicable to the case of
relative motion between the target and satellite [113,114]. However, planning effectiveness
within field methods is highly positively correlated with environmental perception ability.
This implies that excellent planning results require that the service satellites consume more
on-satellite computing power for accurate field construction.

3.3. Trajectory Tracking and Target Capture

In addition to uncertainty, external perturbations, input nonlinearities, and elastic
vibrations also exist in trajectory tracking. There exist two types of input nonlinearity.
One is input saturation, mainly caused by the actuator’s physical limitations. The other
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is input dead zones, primarily driven by actuator defects, such as backlash, hysteresis,
and friction [115]. Two methods exist for addressing the above effects. One is the model
prediction method, in which the system dynamics model [116,117] or error dynamics
model [118] is built by feedback. The main approaches include the visual servo [119–121],
probabilistic ensemble neural network [116,117], and long-short-term memory network
method [122,123]. The above-mentioned studies emphasize the performance of long-term
predictions and sensitivity to hyperparameters. Another approach introduces an unknown
integration term, which can be observed by constructing an adaptive interference observer
based on a neural network [124–126] or a kind of sliding mode [127,128].

Force estimation and control become primary research when space robotic arms
use impedance control to achieve the target’s de-tumbling. Flexible configurations have
received much attention because of the minor impact of collisions. Flexible components will
suffer from deformation and increased joint friction during task execution. Establishing
the dynamics equations for flexible rods and joints is necessary [129,130]. In the post-
capture phase, the friction between the end of the manipulator and the target needs
precise impedance control. The constant damping impedance controller based on force [69],
position [40,131], or hybrid [69,132] makes the end of the robot arm behave as a mass-spring-
damping system to absorb the impact energy. In addition, reducing the contact force during
the collision by setting a proper force constraint function can decrease the motion overshoot
and stabilization time [133]. However, the high stiffness required by the robotic arm for
pre-capture motion control and the flexibility required for soft target capture is antagonistic
and contradictory. The active compliance controller has the advantage of balancing such
a contradictory relationship [134]. Nevertheless, the parameters of the active compliance
controller need to be optimally tuned to obtain a better control effect. Researchers have
used RL [135], PSO [136], and other methods to adaptively adjust parameters. The above
methods slow the impact suffered by the target when it comes into contact with the robot
arm and prolong the collision time to avoid sudden velocity changes [137,138].

4. Trend II: Uncertainty Offset and Avoid

Apart from reducing uncertainties through parameter identification, researchers ac-
cept the existence of such uncertainties and shift their focus from reducing uncertainties
to offsetting and avoiding the effects of uncertainties. This means that in this research
tendency, improvement of the error margin will replace accurate model construction as the
research priority.

Corresponding to the structure of the previous section, this section will also be ordered
by task execution flow. In the system modeling phase, researchers have tried using a
free/weak model approach to avoid precise model construction. Different from model
control based on kinematics and dynamics, researchers choose data-based or reinforcement
learning methods to achieve the same control effect.

In the mission planning and design phase, a proper strategy will help to improve
the error margin, which will greatly benefit the capture of the target. When the target
is reserved for capture location, the target point used in trajectory planning (Section 3.2)
can be expanded into multiple or single regions, which will result in an appreciable error
margin. The target exists in the case of no feature capture point. At this time, the capturing
strategy will shift to the design of actuators. Section 4.2 classifies these specially designed
actuators: reciprocally bonded, internally caged, and externally folded actuators.

In the implementation phase, the researchers endow the controller with sufficient
robustness to enable the robotic arm to track the trajectory despite uncertainty, external
disturbances, input saturation, etc. The use of strong robustness controllers will also
effectively reduce the chattering at the end of the robot arm. The current research hotspot
is the modification of the sliding mode controller to improve the control accuracy based on
achieving the above task requirements.
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4.1. Free/Weak Model Control Approaches

Aiming to avoid complicated parameter identification, researchers proposed a series of
model-free/weak-model solutions. There are two kinds of implementation schemes. One
used a data-based control scheme for robotic arms, which is based on the free/weak model
and can directly control manipulators based on the obtained data [139]. The other used RL
to train the system to ensure stable operation under such model-free conditions [140].

Researchers classified manipulator control methods into three categories: dynamics-
based, kinematics-based, and data-based [141]. Among them, the first two are model
control methods. Parameter identification work is required to construct accurate kinematic
and dynamic models. Data-based control methods are generally free/weak model-based.
Typical schemes include iterative learning control (ILC) [142], virtual reference feedback
tuning (VRFT) [143], and forecasting-based data-driven model-free adaptive sliding mode
attitude control [144]. Among them, ILC proposes a robust control allocation strategy to
compensate for the possible observation errors of iterative observers in real time. VRFT
ensures that controllers learn from few input–output data and collect more input–state data
during dynamic compensation. In addition, Liu [145] transformed the trajectory tracking
problem into a regulation problem with an argument system and iterated the measurement
data using the Q-learning algorithm. Subsequently, model-free control is performed by
solving the bellman optimal equation.

The hierarchical decoupling optimization-reinforcement learning strategy has become
a recent research hotspot in implementing model-free control. At present, there are two
approaches to spacecraft system division. Based on the system’s physical configuration,
the spacecraft system was divided into two subsystems: fast and slow. The slow subsystem
consists of a base, rigid joint motion, and flexible rod vibration, which uses model-free
control methods such as reinforcement learning and virtual reference feedback coordina-
tion [146,147]. The other was task-based and divided the system into two layers: high and
low. The high-level strategy is trajectory planning, while the low-level strategy decomposes
the trajectory tracking task into position and orientation reinforcement learning subsys-
tems. The stable convergence of the system was ensured by introducing the event-based
alternating optimization method [148].

4.2. High Error Margin Capture Strategy

When the mission target of RA-ADCR is the defunct satellite or rocket launch stage,
the capture point is generally non-unique. Dynamic closest point capture [149] and area-
oriented capture [150] can improve capture efficiency for such cases. The former expands
the previously fixed capture points to DCPs, which provides more points for capture. The
latter expands the tracked capture object from a single point to a region to obtain a more
considerable positional error margin for dual-arm spacecraft. In addition, the method
with clamping at both ends can also stabilize and de-tumble the target object [151,152].
Except for specific targets, the RA-ADCR mission probably contains targets without feature
capture points. In this case, it is difficult for the end-effector with two-finger or three-finger
configurations to meet the mission requirements. Therefore, the researchers embarked
on structural design work for the end-effector. The designed end-effector improves the
capture error margin and reduces the accuracy requirements. On the other hand, the end-
effector with a passive compliance design also has the effect of preventing escape, relieving
shock, and reducing chattering. There are three types of end-effectors for RA-ADCR tasks:
reciprocally bonded, internally caged, and externally folded.

In the design of reciprocally bonded structures, researchers imitated geckos and
proposed using the Lorentz force to capture the target [153], as shown in Figure 6a [154].
Zhang [155] proposed a new bonding capture mechanism as shown in Figure 6b. Moreover,
a contact detection algorithm considering bonding failure was proposed. Such bonded
end-effectors have no bearing on the size of the space debris and are the simplest to capture.
However, it is worth noting that after bonding the spacecraft to the target, the impact
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force and moment will transmit instantaneously. Such actuators require a high structural
strength to avoid fracture due to impact.

Figure 6. Reciprocally bonded/internally caged end-effector with parts: (a) gecko-like reciprocally
bonded end-effector [154]; (b) bonding capture mechanism [155]; (c) multi-closed-loop flexible
actuators [156]; (d) sea-anemone-like multi-flexible arm [157]; (e) flycatcher-like internally caged
end-effector [158].

The internally caged structures construct a closed deformable cage for capturing
and de-tumbling targets by changing the shape. To avoid undesired rigid shocks, the
actuators of spacecraft are generally flexible, as shown in Figure 6c–e. There are two
forms of structural design, multi-closed-loop and bionic. As shown in Figure 6c, the
design of multi-closed-loop flexible actuators provides complete locking with the target
by revolute pairs [156]. For the design of bionic structures, researchers designed several
end-effectors inspired by the sea anemone (Figure 6d) [157] and flycatcher (Figure 6e) [158].
This method of capturing has low error accuracy requirements for position and orientation,
and space debris is less likely to escape after the completion of capture. However, there
are limitations on the size of space debris and a high probability of space debris escaping
during the pre-capture phase. In addition, internally caged structures will inevitably
encounter unforeseen collisions with space debris. Extensive ground experiments to verify
the feasibility are necessary.

The externally folded end effectors are the primary field for the design of capture
actuators. Both closed and enveloped configurations exist. The typical capture flow of
the closed configuration is shown in Figure 7a [159]. The primary purpose of the closed
configuration is similar to that of the internally caged actuators, which transport the space
debris into the enclosed cage to achieve target capture and de-tumbling. However, the
difference is that such externally folded end effectors have a more extensive capture range
at the expense of variability in the enclosed caged one. Sun [160] proposed an externally
folded capture device based on the origami principle, which received wide attention, as
shown in Figure 7b. The numbers in subfigure (b) imply the relationships among the
components of such capture device. On the other hand, the envelope-based externally
folded actuators emulate the capture form of the dual-arm. Researchers proposed the
deployable grasping mechanism, a deployable robotic arm device based on a tandem of
metamorphic mechanism modules (MMMs), as shown in Figure 7c [161]. However, the
above MMMs are dynamically coupled. The capture operation cannot be executed until it is
fully expanded. Therefore, the research focused on motion decoupling [162] and envelope
reliability [163]. In response to the asymmetry that occurred in MMMs, Li [164] proposed
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basic deployable modules. Basic deployable modules consist of both a scissor mechanism
and two parallelogram mechanisms, as shown in Figure 7d.

Figure 7. Externally folded end-effector: (a) the typical capture flow of closed configuration [159];
(b) externally folded capture device based on the origami principle [160]; (c) deployable grasping
mechanism [161]; (d) basic deployable modules [164].

The externally folded configuration has many advantages in terms of implementation
compared to the other two configurations. First, it has a larger capture range and more
cushioned structures. In addition, it allows the target to rotate on a specific axis during cap-
turing. However, the noteworthy point is that the target’s prior physical model information
is necessary for designing such actuators. Conversely, the space debris volume does not
affect the externally bonded actuator. Moreover, the internally caged actuator is bounded
by the maximum volume only.

Currently, the externally gathered end-effector has been demonstrated in several
projects under development. In 2018, the Japan Aerospace Exploration Agency [11,165]
combined the method of manipulator capture and tether capture and developed a space
debris micro-remover (SDMR), as shown in Figure 8a. It consists of an extensible folder
flexible arm and an electrodynamic tether [165]. The flexible robotic arm forms a broad
externally folded actuator for space debris capture. The electrodynamic tether generates
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Lorentz forces with the geomagnetic field to de-orbit space debris in low Earth orbit. ESA
also researched the Clearspace-One mission, which loads four DEMES arms, as shown
in Figure 8b. The real-life “Pac-Man” provides a greater maneuvering margin and high
fault tolerance for multiple capture operations [166] and is expected to be launched in 2026.
The mission target is the Vespa upper stage with a mass of 112 kg and an orbital altitude
of 664–801 km. However, there are two significant challenges. The first is that the Vespa
may have disintegrated with more than one piece of debris. The other is that the data
must be analyzed on the satellite to meet navigation needs [54,167]. In 2020, Singh and
Moojj [168,169] continued the research based on the ESA’ e. Deorbit mission, which aims
to de-orbit the Envisat. Then, a combined vehicle including a robotic arm and tentacles
was designed as shown in Figure 8c. The purpose of the tentacles is to capture the body of
Envisat, and the role of the robotic arm is to capture the boom of the solar panel.

Figure 8. Project scheme: (a) space debris micro-remover, JAXA [165]; (b) “Pac-Man”, Clearspace-1,
ESA [167]; (c) e. Deorbit’s follow-up research [168,169].

4.3. Strong Robustness Controllers

On the other hand, researchers have taken the perspective of controller design to
assign sufficient robustness in controllers for solving the systems’ problems of uncertainty,
external disturbances, and input saturation. Such highly robust controllers enable the
spacecraft to track the desired trajectory and effectively reduce chattering even when sub-
jected to continuous disturbances. Due to its high adaptability, the sliding mode controller
has become a hot research topic. In recent years, researchers have carried out numerous
modifications and optimizations for the sliding mode controller. The research mainly
focused on gradually improving the tracking accuracy based on solving the chattering and
convergence problems. Two directions exist for sliding mode control optimization. One
is the optimization of the structure of sliding mode control. Ensuring that the trajectory
tracking task converges in finite time, researchers improved the sliding mode control by
adding time-delay estimation [170–172] or non-singular terminal [173–175] to reduce chat-
tering and improve transient performance. The other integrated different computational
intelligence approaches to endow the sliding mode controller with higher adaptiveness.
Researchers incorporated the fuzzy logic system [176], RL [177], adaptive dynamic pro-
gramming [174,178], super-twisting algorithm [173], and other techniques with sliding
mode control to improve the adaptivity and transient performance. In addition, positional
feedback [175] and partial power feedback techniques [179] can also improve tracking accuracy.

In addition to the sliding mode controller, researchers have also conducted related
studies on others. Seddaoui [180] designed an H∞ controller in which the base has no
need to maintain a particular attitude but tracks the desired trajectory. Gangapersaud [181]
proposed a de-tumbling controller based on an uncertainty model for directly controlling
the end-effector contact forces and moments. To reduce low-frequency chattering and
improve tracking accuracy, Liu [182] proposed a minimum disturbance controller based on
synchronous adaptive acceleration planning. Shi [183] proposed an optimized adaptive
variable structure controller. This controller uses a modified Gaussian barebones differential
evolution to shorten the stabilization time and improve the control accuracy, which is
targeted for motion error.
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5. Challenges and Reflections

Compared with other space missions, space debris removal missions suffer from high
uncertainty, high mission difficulty, and multiple time-varying factors, which implies the
need for both safety and real-time in RA-ADCR. In addition, it is worth noting that space
debris removal missions themselves do not provide direct economic benefits. Constrained
by the cost of revenue, the small satellite platform equipped with a robotic arm will be
bounded by the on-satellite computing power, which will directly impact the effectiveness
of mission execution.

The following are examples to support the above argument. Model-based control
methods require accurate environmental, robotic arm, and target models. These methods
generally have heavy on-satellite computing power requirements and thus need to operate
offline. Space robotic systems are in a dynamically changing environment. The large time
delay due to insufficient satellite arithmetic power will greatly increase the modeling error,
which in turn will affect the system’s security. Similarly, the space free/weak model control
system needs additional on-satellite computing power to verify the feasibility of motion
before execution. When the on-satellite arithmetic power is insufficient, the system will
reduce the dimensions of verifying parameters to maintain its data-based control strategy,
which will have a direct impact on the system’s security. If safety cannot be guaranteed, it
will be followed by collision and disintegration. The consequences will be irreversible.

This section analyzes such challenges as balancing on-satellite computing power
limitations with task execution effectiveness based on the RA-ADCR task execution flow.
In addition, feasible solutions for the current phase are discussed.

5.1. Observation and Model Building

The observation and parameter identification of a target is unavoidable in the RA-ADCR
task mission. Researchers have proposed two observation methods for non-cooperative
targets, the filter smoothing algorithm and the SLAM algorithm. However, it is worth
noting that the former is subject to error accumulation and deviation from the actual
value. The latter requires excessive on-satellite computing power and is thus not easy to
implement in orbit. Researchers considered a closed-loop detection approach to reduce the
errors of the former estimation method. However, this would sacrifice a large amount of
computing power and affect real-time performance. The primary approach is to sacrifice
the recognition accuracy in the pre-capture stage to improve the computational efficiency
or reduce the computing power requirement. However, it is notable that the reduction in
target recognition accuracy will affect the model construction, which requires the relaxation
of the optimization conditions in trajectory planning. It is challenging for the RA-ADCR
task to reduce the on-satellite computing power and improve the computational efficiency
without sacrificing the accuracy of target identification.

Inspired by the model-free hierarchical decoupled reinforcement learning method,
stratifying the target observations according to the degree of importance or the rate of
dynamic change might be feasible. In this case, the high-level ones are essential and
dynamically significant observations, which use the PE condition for continuous track-
ing. In contrast, the lower-level observations use the IE condition for result validation
and correction.

5.2. Transformation and Trajectory Planning

Obstacle avoidance in trajectory planning often requires an accurate environment
model. In general, trajectory planning includes both constraint conditions and optimization
conditions. The constraint conditions mainly include environmental obstacle avoidance,
output limitation, singularity avoidance, maximum torque, and maximum joint acceleration.
The purpose of the above is to ensure controllability and safety. Optimization conditions
consist of minimum base disturbance and minimum time. The purpose is to reduce the
system's fuel consumption and improve the service life. When the constraints increase,
heuristic algorithms such as RRT and PSO will accelerate the convergence. However,



Aerospace 2023, 10, 13 17 of 27

according to the discussion of offline trajectory planning methods in Section 3.2, this
method cannot adapt to the dynamic environment. The trajectory generation speed requires
an increase to reduce the impact. Therefore, adding optimization conditions reduces the
trajectory generation rate, which is unsuitable for heuristic algorithms. The spacecraft
system needs to sacrifice the satellite’s lifetime for operational security. The field methods
can dynamically adjust according to environmental changes, making it easier to achieve real-
time trajectory planning than heuristic algorithms. However, unlike the heuristic algorithm,
increasing constraints and optimization conditions will reduce the real-time capability of
the field methods. In addition, the planning effectiveness of the above methods highly
positively correlates with the ability of environmental perception. Superior planning results
require the service satellites to consume more computing power for accurate construction
of the field.

Online trajectory planning is more valuable in terms of implementation than offline
trajectory planning. The following will focus on the optimization of field methods. The
potential field-based trajectory planning method mainly guides the motion tendency of the
manipulator. A semi-blind field planning method is proposed to reduce the on-satellite
computing power. The spacecraft constructs the field model of the environment around
the manipulator and considers the target as the only known point in the blind area. Subse-
quently, the initial tendency of the arms’ motion is the line between the target point and the
end-effector. The mission of obstacle avoidance turns into a topology-based joint motion
planning mission by constructing the field from the base to the end-effector. Finally, the
trajectory planning task is completed once the target point overlaps with the end-effector.

5.3. Tracking and Target Capture

Currently, there are two development trends for trajectory tracking and target capture.
On the one hand, researchers improved model-controlled trajectory tracking accuracy by
developing parameter identification and increasing observation feedback. The feasibility
of this approach can be easily verified at the expense of onboard computing power. On
the other hand, researchers expanded the capture points and designed end-effectors to
offset the trajectory tracking errors. This approach avoids sacrificing a large amount of on-
satellite computing power and is suitable for in-orbit implementation. However, neglecting
the tracking error may lead to undesired failures, which leads to difficulty in feasibility
verification. In cases of using end-effectors with unique configurations, the capture process
is no longer relatively stationary. Additional design of the maneuvering process for capture
is needed. In addition, the effect of the interaction of the end-effector with the target
requires further theoretical exploration and validation.

Based on ensuring lightness and foldability, the design of the externally gathered
end-effector becomes the central promise for achieving target capture. Such actuators are
expected to hold vibration damping, friction de-tumbling, and target anti-escape strategies.
However, using flexible rods and brushes for target pre-processing is the most feasible
option based on the current state of the technology and mission feasibility requirements.
This approach converts the non-cooperative target into a cooperative target, which helps to
convert the RA-ADCR mission into a rendezvous and docking mission.

6. Future Outlook

This section provides a future outlook of the RA-ADCR field based on the research
content. At the level of theoretical exploration, the use of simpler model construction
methods will fundamentally solve the issue of on-satellite computing power. Regarding
task implementation, identification reduction and offset avoidance are one and two sides
to uncertainty treatment. The trend toward convergence may lead to the keynote in the
future. Once the RA-ADCR task fails, the consequence is destructive. Therefore, building a
feasibility validation platform for different schemes is necessary.
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6.1. Convergence of Tendencies

There is no doubt that the processing of systematic uncertainty will be a significant
research component in the RA-ADCR field for a long time. However, it is worth noting that
the uncertainties will not be fully identified and eliminated in task realization. Similarly, the
avoidance of uncertainties is never indefinite. Identification reduction and impact avoid-
ance are two sides of the same coin, and the convergence tendency may be the mainstream
for mission realization. At present, there is an initial indication of such a convergence
tendency. In the pre-capture stage, trajectory planning and tracking require high accuracy
of the target’s position, state, and other information. Therefore, RA-ADCR technology
with uncertainty identification and reduction tendency mainly concentrates on this phase.
In contrast, research on uncertainty offset avoidance tendencies has mainly focused on
capturing instant and post-capture phases. In the future, the reasonable characterization of
the uncertainties in each process phase and the research integrating such two tendencies
will become research hotspots.

6.2. Fundamental Modeling Theory

Recently, several studies have emerged to advance fundamental modeling theory. In
the pre-capture phase, He et al. [184] proposed the Takagi-Sugeno (T-S) fuzzy descriptor
approach to construct the model for kinematic and dynamic models. On the other hand,
Zong et al. [185] flipped the space robotic arm system and considered the end-effector
as a virtual base for kinematic modeling. Shao et al. [186] proposed an adaptive Radau
Pseudospectral method to discretize the system dynamics. At the instant of capture, Zhang
et al. [187] transformed the complex contact process into a virtual monolithic energy change
and established a more general continuous contact model. In the post-capture phase, She
et al. [188,189] proposed a method with additional degrees of freedom to efficiently describe
the relative motion between the target and spacecraft. In addition, methods for computing
generic contact dynamics were given. Stolfi et al. [190] developed a closed-loop multibody
dynamics model consisting of a dual-arm manipulator with a non-cooperative target. As
a prerequisite element of model control, the underlying modeling theory will be further
developed to reduce arithmetic power and improve generality based on continuously
increasing modeling accuracy.

6.3. Feasibility Verification Platform

Since the consequences of a failed space debris capture mission are unacceptable,
guaranteeing a high success rate is the only way to apply the technology in practice.
Currently, there is no relevant organization applying the RA-ADCR method to actual space
debris capture due to its complexity and difficulty. However, robotic arm capture has the
characteristics of high fault tolerance and multi-capturable compared with other forms.
After the RA-ADCR methods become mature, the cost will be significantly lower than that
of other forms. Low cost is undoubtedly the most attractive point for active debris removal
missions in which the potential benefits are much greater than the direct benefits.

Considering the complexity of the space environment, it is unrealistic to identify
all the systematic uncertainties to carry out fully confident model control. Therefore, the
simulation platform for validation is essential. The ground test platforms focus on modeling
the microgravity environment, which includes submerged neutrally buoyant simulators,
drop towers, hardware-in-the-loop systems and parabolic flights. However, these systems
are limited by joint friction, the spatial extent of the test, the duration of the test, and the
recreation of microgravity [191].

Another possible approach is an air-bearing microgravity testbed. Both the base and
the manipulators are air-bearing lifted to eliminate the gravity effect. Papadopoulos [192]
designed the NTUA software simulator and the hardware emulator for space robots.
Sabatini [193] created the PINOCCHIO simulator using a two-stage sequential control
strategy. The U.S. Naval Postgraduate School [194,195] has developed a floating spacecraft
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simulator with a four-link serial manipulator that enables target approach, capture and
de-tumbling based on different control strategies.

It is worth nothing that all of the above-mentioned test platforms use external vision,
while the absolute position and attitude of the spacecraft are unknown in a real mission.
Moreover, the description of the effects of other gravitational fields and tiny particle
collisions in space on the system is not sufficient. In the future, researchers need to shift
their research mindset from solving problems to validating methods.

7. Conclusions

In this paper, an in-depth investigation was conducted, and the RA-ADRC methods
in recent years were discussed with the aim to promote their development. With 2019 as
the time point, in this review, the research on prior years was gathered in three phases:
theoretical exploration, complementarity, and development. In addition, the research in
later years was discussed in terms of two trends: uncertainty identification reduction
and offset avoidance. Subsequently, the challenges and feasible solutions for balancing
on-satellite computing power limitations with task execution effectiveness were discussed.
Finally, an outlook on the development direction toward convergence of uncertainty identi-
fication reduction and offset avoidance in the RA-ADCR field was presented. Moreover,
the important role of fundamental modeling theories and feasibility verification platforms
for the development of the field was emphasized.
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Nomenclature

AccPF Acceleration potential field
APF Artificial potential field
DM Disturbance map
DMC Distributed momentum control
EBA Enhanced bidirectional approach
EDM Enhanced disturbance map
IE Interval excitation
ILC Iterative learning control
MMMs Metamorphic mechanism modules
MOPSO Multi-objective particle swarm optimization algorithm
OVF Obstacle vector field
PE Persistent excitation
RA-ADCR Robotic arm active debris capture removal
RL Reinforcement learning
RNSC Reaction null space control
RRT Rapid-exploring random trees algorithm
SLAM Simultaneous localization and mapping
VRFT Virtual reference feedback tuning
ZRM Zero reaction maneuver
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