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Abstract: Recent climatic trends of two nearby stations in Sydney were examined in terms of hourly
ambient air temperature and wind direction for the time period 1999–2019. A reference was set for
the monthly number of cooling (CDH) and heating (HDH) degree hours and the number of monthly
hours that temperatures exceeded 24 ◦C (T24) or were below 14 ◦C (T14), parameters affecting not
only the energy demands but also the quality of life. The degree hours were linked to the dominant
synoptic conditions and the local phenomena: sea breeze and inland winds. The results indicated
that both areas had higher mean monthly number of HDH (980–1421) than CDH (397–748), thus
higher heating demands. The results also showed a higher mean monthly number of T14 (34–471)
than T24 (40–320). A complete spatiotemporal profile of the climatic variations was given through
the analysis of their dynamic progress and correlation. In order to estimate the daily values of CDH
and HDH, T24 and T14 empirical models were calculated per month based on the maximum and
minimum daily air temperatures. The use of forecasted weather conditions and the created empirical
models may later be used in the energy planning scenarios.

Keywords: regression analysis; empirical models; forecasting; energy demands; sea breeze

1. Introduction

Cities are the core settlements humans live, consume and develop. They expand up to
hundreds of kilometers and future projections show that by 2050 at least 65% of the earth’s
population will live in cities. Cities include all the necessities for living a comfortable life
and people move to urban areas to have more opportunities and to live a “better” life
with all the amenities [1]. The urban expansion has resulted in a number of climatic and
environmental fallouts such as air pollution, noise, temperature increase and thermal stress.
Higher urban temperatures are observed and are attributed to the increased sensible heat
release by buildings and pavements, the higher anthropogenic heat, the increased heat
storage by the urban structures and the lower evaporative cooling.

High urban temperatures and extreme events in Europe, the USA and in Australia
have resulted in an increase in electricity demand, particularly for cooling purposes, raising
CO2 emissions and the urban ecological footprint [1–3]. Previous studies have shown that
an increase in air temperature by 1 ◦C may result in an increase in electricity demand up
to 0.45%–4.6%. The significant increase of energy demand to maintain thermal comfort in
large cities has been explored, forecasting a 275–750% rise in energy demand by the year
2050 [4]. Even though higher temperatures with climate change could decrease the demand
for heating in the winter, they could increase demand for cooling in the summer [5] and
amplify peak loads leading to outages.
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A measure of the changing climate in a region, and consequently the needs of electrical
energy, can be obtained with the use of heating and cooling degree days or hours that
characterize how energy demand depends on temperature. Heating degree hours (HDH)
are calculated as the number of degrees that an hour is below a base temperature and
cooling degree hours (CDH) are calculated as the number of degrees that an hour is above
a base temperature. Electricity demand is assumed to increase linearly as the temperature
increases above or decreases below the base temperature for CDHs and HDHs, respectively.
Therefore, the degree hours’ approach could be used to project energy demand and load in
forecast studies. Moreover, HDH and CDH are used for forecasting temperature extremes
to inform, in particular, the vulnerable population for whom these could result in heat/cold
stress and mortality [6–12].

The forecasting degree hours’ approach may be limited in forecasting energy load due
to the hourly lags of the response of electricity load to temperature, the effect of relative
humidity resulting in more or less comfortable conditions and the effect of wind speed [5].
Wang and Bielicki (2018) found evidence that electricity load varies at both decreasing and
increasing relative humidity at a threshold temperature, but generally it depends more on
the temperature variations.

The aim of the present paper is to present the trend of temperatures in the urban area
of Sydney and particularly observe the variations in HDH and CDH over the course of
twenty years, 1999–2018. The first part of the article presents a critical review of existing
weather conditions in Sydney in terms of ambient air temperature and wind direction.
The second part of the article presents the calculated HDH and CDH for the investigated
years, as well as the number of hours per month the air temperatures were over 24 ◦C
(T24) or below 14 ◦C (T14) in order to study the duration of heating and cooling conditions.
Recent studies on building simulations directly calculate the energy needs of the buildings
by using weather files’ external weather conditions [13–16] and the user modifies the
efficiency of heating and cooling systems and the desired comfort levels [17–20]. The
concept of HDHs and CDHs has been well established over the years, usually using
14 ◦C and 24 ◦C as threshold temperatures, respectively, to determine upon them the
requirements in heating and cooling. With greater application of building simulation
programs, the subjective comfort levels and the different coefficient of performance (COP)
and seasonal energy efficiency ratio (SEER) of the heating and cooling systems make recent
studies harder to compare. This study uses the degree hours’ concept to obtain a complete
spatiotemporal profile of the climatic variations through the analysis of their dynamic
progress and correlation. This is also the first study that evaluates degree hours in the city
of Sydney using temperature values for this century. Furthermore, empirical equations are
created based on regression models of the HDH, CDH, T24 and T14 and then validated
using the temperature conditions in 2019. These empirical equations could forecast the next
days’ energy requirements. Finally, in the discussion we criticize the advantages of using
such equations to estimate the increased or decreased energy demands for the following
days’ energy planning and to prevent energy waste at energy plants.

2. Materials and Methods
2.1. Study Area and Dataset

The investigated area was the city of Sydney with a population of 5.25 million, located
at the southeastern coast of Australia extending up to 70 km to the West. Sydney has a
humid, subtropical climate (Koppen-Geiger: Cfa) [21,22], changing from mild and cool
winters to warm summers with average annual temperature around 18.0 ◦C and annual
precipitation about 912 mm.

Hourly ambient air temperature values of years 1999–2019 were examined from two
meteorological stations: the Observatory Hill station (33.8590◦ S, 151.2048◦ E, altitude 39 m)
and the Sydney airport station (33.5677◦ S, 151.1063◦ E, altitude 6 m), which is located
about 10 km south of the Central Business District of the city of Sydney (Figure 1).
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Figure 1. Map of two meteorological stations at the city of Sydney.

2.2. Local Climatic Trends

In order to investigate the energy demands for heating and cooling it is essential to
investigate the current trend of the local climate during the past 21 years, years 1999–2019.
The mean average, maximum and minimum ambient air temperatures were found, as well
as the absolute maximum and minimum ambient air temperatures.

Then, using the average monthly values of the past 21 years, we decomposed the time
series to observe the seasonality, the random effect and whether there was an increasing or
decreasing trend using the decompose function of R Studio software [23].

2.3. Calculation of Degree Hours and Their Duration

The hourly ambient air temperatures of years 1999–2018 were used for the calculation
of the cooling degree hours (CDH) and heating degree hours (HDH). Heating and cooling
degree hours are defined as the sum of the differences between hourly average temperature
and the base temperature. Monthly degree hours are the sum of daily degree hours over
the number of days in the month. The number of cooling degree hours (CDH) in a day
were defined as

CDH =
N

∑
i=1

Ti − Tb (1)

Similarly, daily heating degree hours (HDH) were defined as

HDH =
N

∑
i=1

Tb − Ti (2)

where N is the number of hours in the day (N = 24), Tb is the base temperature to which
the degree hours are calculated, Tb = 24 ◦C for CDH and Tb = 14 ◦C for HDH, and Ti is
the hourly air temperature. The base temperature was chosen considering the range of the
mean monthly temperatures for the investigated years, 13.1–23.4 ◦C for the Sydney airport
station and 13.3–23.2 ◦C for the Observatory Hill station. The number of hours within the
day with high (over 24 ◦C) or low (below 14 ◦C) determined the duration of the required
heating or cooling.

A new concept of the study was the use of T24 and T14 which are defined as the
number of hours exceeding 24 ◦C (T24) or are below 14 ◦C (T14), thus revealing the number
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of hours required for cooling and heating, respectively. The daily values of T24 and T14
were limited within the range of 0 to 24, while monthly values ranged between 0 to 744
(31 days × 24 h).

2.4. Empirical Models

The daily calculated heating and cooling degree hour values for the base of 14 ◦C
and 24 ◦C, respectively, and the number of hours showing the duration of heating and
cooling (T14 and T24) were further utilized for the creation of empirical models/equations
that could forecast them. The daily empirical models were determined using regression
analyses of the 1999–2018 time series where the independent variables were the daily
Tmax and Tmin, and then the best correlations were proposed. The same method was also
employed to estimate daily number of hours with T < 14 ◦C and T > 24 ◦C. Later, the
proposed empirical models were validated using the hourly ambient air temperatures of
year 2019.

3. Results
3.1. Local Climatic Trends
3.1.1. Ambient Air Temperature

Figure 2 and Table 1 show the mean temperatures, absolute and average minimum
temperatures and absolute and average maximum temperatures at the two investigated
stations per month. The average monthly mean air temperatures recorded at the Observa-
tory Hill and Sydney airport stations (Figure 2) ranged from 12.8 ◦C to 23.1 ◦C and 13.1 ◦C
to 23.4 ◦C, respectively.
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Figure 2. Monthly values of absolute maximum and absolute minimum temperatures, average
maximum and minimum temperatures and mean temperatures at the Observatory Hill station (solid
lines) and the Sydney airport station (dotted lines).

At the Sydney airport station, the monthly mean maximum and minimum air temper-
atures varied between 26.9 ◦C in January (with absolute maximum value of 45.2 ◦C) and
9.1 ◦C in July (with absolute minimum value of 3.4 ◦C). For the Observatory Hill station,
the monthly mean maximum and minimum air temperatures varied between 26.5 ◦C
in January (with absolute maximum value of 45.0 ◦C) and 9.2 ◦C in July (with absolute
minimum value of 4.0 ◦C). Based on the average monthly temperatures and the monthly
values of HDH and CDH the year was divided into a warm period (October–April) and a
cold period (April–October).
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Table 1. Average monthly maximum (Tmax), minimum (Tmin) and mean (Tmean) air temperatures [absolute minimum–
maximum monthly temperatures] for years 2000–2019 for the Observatory Hill and Sydney airport stations.

Tmax (◦C) Tmin (◦C) Tmean (◦C)
Observatory

Hill
Sydney
Airport

Observatory
Hill

Sydney
Airport

Observatory
Hill

Sydney
Airport

January 26.8 [18.8–44.6] 27.0 [18.5–45.3] 20.2 [13.9–25.1] 20.3 [14.1–24.6] 23.2 [17.4–32.5] 23.4 [17.6–33.3]
February 26.7 [19.3–41.2] 26.5 [18.8–41.3] 20.1 [13.8–26.9] 20.2 [7.0–27.2] 23.1 [16.8–32.3] 23.1 [14.6–33.0]

March 25.7 [18.7–39.0] 25.2 [19.2–39.9] 18.8 [12.2–23.7] 19.0 [8.5–23.8] 21.9 [16.2–29.1] 22.0 [16.3–30.0]
April 23.6 [15.9–34.9] 22.9 [16.3–35.4] 15.8 [8.4–23.3] 15.8 [7.8–23.9] 19.3 [12.9–27.2] 19.3 [12.6–28.6]
May 21.0 [14.1–28.5] 20.2 [12.8–28.5] 12.5 [7.3–19.7] 12.3 [6.7–19.9] 16.2 [11.3–22.6] 16.1 [9.5–22.1]
June 18.3 [11.5–26.4] 17.7 [11.2–24.8] 10.7 [4.6–16.5] 10.2 [3.5–16.0] 14.0 [8.9–21.7] 13.8 [8.9–19.3]
July 18.1 [11.9–25.9] 17.4 [10.7–26.3] 9.5 [4.0–16.0] 9.1 [3.5–15.2] 13.3 [8.6–20.8] 13.1 [9.0–19.7]

August 19.1 [11.9–28.9] 18.4 [10.5–29.5] 10.1 [5.3–17.6] 9.9 [5.2–24.0] 14.3 [9.6–21.5] 14.1 [9.7–24.0]
September 21.5 [13.2–34.2] 21.1 [11.7–35.3] 12.5 [5.6–22.6] 12.6 [5.6–27.3] 16.8 [11.0–26.3] 16.8 [11.0–27.6]

October 22.9 [14.8–38.0] 22.9 [13.6–38.4] 14.8 [8.0–23.0] 14.9 [7.5–23.5] 18.6 [11.8–30.1] 18.8 [11.7–30.3]
November 23.9 [15.2–40.7] 24.1 [15.3–42.2] 16.9 [8.4–23.1] 17.1 [8.6–24.9] 20.2 [12.4–29.7] 20.4 [12.4–29.5]
December 25.5 [18.0–38.8] 26.0 [16.4–41.0] 18.6 [12.0–24.5] 18.8 [12.1–23.8] 21.8 [15.0–29.4] 22.1 [14.8–30.1]

According to the Australian Bureau of Meteorology for years 1859–2016, the monthly
mean maximum and minimum air temperatures varied between 25.9 ◦C in January (with
an absolute maximum value of 45.8 ◦C) and 8.1 ◦C in July (with an absolute minimum
value of 2.2 ◦C), revealing an increase in mean, mean maximum and mean minimum air
temperature values in recent years [24]. The seasonality, trend and random factors were
investigated for the 21 years using the decompose function of R Studio software [23] and
we verified a small increasing trend of the moving average of about 0.5–1.0 ◦C at both
stations (Figure 3c,d). A seasonal yearly trend was also observed with roughly similar
peaks of temperature per year. This decomposition provided a clean way to understand
the yearly patterns of the data sets, and that there was a small but important increasing
trend of the moving average.
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3.1.2. Wind Direction

This study focused on temperatures below 14 ◦C and over 24 ◦C so the wind direction
was examined for temperatures below 14 ◦C, between 14 ◦C and 24 ◦C and over 24 ◦C.
The results (Figure 4a,b) showed that temperatures below 14 ◦C were associated with
western wind direction at both stations (blue color), whereas temperatures over 24 ◦C
were associated with north-eastern (Sydney airport) and eastern (Observatory Hill) wind
direction (brown color). Several studies have shown that the sea breeze in Sydney is greatly
influenced by the local temperature difference between the sea and land surfaces [25–27].
However, sea breeze, based on the location of the two investigated stations, did not affect
the diurnal variation of the examined temperatures.
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3.2. Calculating Heating and Cooling Degree Hours, T14 and T24 Hours

Figure 5 shows the mean, mean maximum and mean minimum number of hours
(T14 and T24) for years 1999–2018 for the two investigated stations. The mean monthly
number of T24 ranged from 40 in April to 244 in January at the Observatory Hill station,
whereas for the Sydney airport station this ranged from 54 in April to 320 in January. The
mean monthly number of T14 ranged from 38 in April to 471 in July at the Observatory
Hill station, whereas for the Sydney airport station this ranged from 34 in April to 449 in
July. The Observatory Hill station had a slightly higher mean monthly number of T14 and
slightly lower mean monthly number of T24 compared to the Sydney airport station. The
absolute maximum monthly number of hours appeared for the Observatory Hill station
with 356 of T24 in January and 546 of T14 in July. A paired t-test analysis indicated that
the differences between the two meteorological stations were non-statistically significant
(t = 0.591 < tα = 2.20 for α = 0.05).

Figure 6 shows the monthly heating and cooling degree hour (mean, maximum and
minimum) values for the years 1999–2018 at the Observatory Hill and Sydney airport
stations. The mean values of HDH reached a maximum in July, 1501 and 1411 for the
Observatory Hill and Sydney airport stations, respectively, and was also significantly high
for June (1010 and 980) and August (1099 and 1052). The mean values of HDH were 49 in
April and 109 in October for the Observatory Hill station, while the mean values of HDH
were 46 in April and 98 in October for the Sydney airport station.

During the warm period, the mean values of CDH reached a maximum in January,
597 and 750 for the Observatory Hill and Sydney airport stations, respectively, and were
also significantly high for December and February. The mean values of CDH were 84 in
April and 190 in October for the Observatory Hill station. The mean values of CDH were
114 in April and 257 in October for the Sydney airport station. Overall, the results showed
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relatively higher values of HDH in the cool period, compared to the values of CDH in the
warm period.
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Figure 6. Mean, maximum and minimum monthly values of CDH and HDH at the Observatory Hill
and Sydney airport stations for the period 1999–2018.

The time series of cooling degree hours (CDH), with a base temperature of 24 ◦C, and
the number of hours exceeding 24 ◦C (T24) for the period 1999–2018 appeared to have a
statistically significant increasing trend (α = 0.05) using linear regression, whereas the time
series of heating degree hours (HDH), with a base temperature of 14 ◦C, and the number of
hours below 14 ◦C (T14) appeared to have decreasing trends, statistically significant only
for the HDH time series.

Figure 7 illustrates the mean monthly values of CDH, with a base temperature of
24 ◦C, with T24, and HDH, with a base temperature of 14 ◦C, with T14 for the period
1999–2018 and for the year 2019 at the Observatory Hill station (Figure 7a) and the Sydney
airport station (Figure 7b). The mean annual values of 1999–2018 appeared similar to the
2019 data, with higher HDH and T14 in the cool period and lower CDH and T24 in the
cold period, especially for the monthly CDH values.

The probability of the cooling and heating degree hours exceeding the 85th percentile
for years 2000–2019 was calculated using the distribution of exceedances, which revealed
a sample size I = 54.75~55 for each year. Table 2 shows the results of the goodness of fit
(Kolmogorov–Smirnov test) for the observed and estimated frequencies, with maximum
D = sup(cFobs(i−1) − cFest(i)). There was an acceptable null-hypothesis for all years.
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Table 2. D values (Kolmogorov–Smirnov test) for testing the goodness of fit between observed and
estimated cumulative frequencies of the exceedances.

Year 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

CDH 0.010 0.010 0.006 0.004 0.003 0.007 0.004 0.009 0.001 0.012
HDH 0.120 0.107 0.117 0.117 0.074 0.121 0.155 0.147 0.139 0.091

Year 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019

CDH 0.009 0.010 0.012 0.004 0.001 0.016 0.008 0.004 0.017 0.015
HDH 0.080 0.189 0.123 0.219 0.175 0.163 0.168 0.117 0.079 0.171

The estimated frequencies were analyzed for a repetition period of T = 10 days in
order to show a continuous variation for the investigated years. The estimated frequency of
heating degree hour values at least once in every 10 days was statistically significant with
t-test tb = 2.90 (>t(α = 0.05) = 2.11) signifying a statistically significant increase in the hourly
ambient air temperatures during the cool period. For the cooling degree hour values the
estimated frequency was not statistically significant, with t-test tb = 0.834 (<t(α = 0.05) = 2.11).

3.3. Empirical Models of Daily CDH, HDH, T14 and T24

For the determination of the daily values of degree hours (CDH and HDH) empirical
equations at both stations we utilised the daily maximum temperature (Tmax) and/or the
daily minimum temperature (Tmin). The empirical equations had the form (Table 3)

(a) y = a + b·Tmax (or Tmin) or
(b) y = a + b·Tmax + c·Tmin
The empirical heating and cooling degree hours’ equations were found for both

transiting months (April and October), with correlation coefficients for CDH ranging from
0.922–0.933 (statistically significant at α = 0.05) and for HDH ranging from 0.926–0.952
(statistically significant at α = 0.05). For the months November to March and May to
October, for both CDH and HDH values, the 2nd degree polynomial equations were found
with correlation coefficients ranging from 0.925 to 0.959 (statistically significant at α = 0.05).
The hourly HDH and CDH data for year 2019 were later used for the verification of the
created empirical equations. Monthly empirical equations were preferred rather than daily
as previous studies showed the dependency on past days’ temperatures in the prediction
of electricity loads [5,28].

Table 3. Monthly empirical equations for estimations of daily values of CDH and HDH, the corresponding correlation
coefficients and the paired t-test values of goodness of fit with the observed daily values of 2019.

Observatory Hill Station Sydney Airport Station
Month Empirical Model R t-Test Empirical Model R t-Test
October (CDH) CDH = −192.4 + 7.68·Tmax 0.933 0.483 CDH = −196.3 + 7.83·Tmax 0.931 0.771
November CDH = −219.5 + 8.10·Tmax + 1.04·Tmin 0.952 0.230 CDH = −227.1 + 8.59·Tmax + 0.68·Tmin 0.959 0.178
December CDH = −203.7 + 8.23·Tmax 0.944 0.809 CDH = −214.7 + 8.62·Tmax 0.938 0.06
January CDH = −206.2 + 8.37·Tmax 0.939 0.807 CDH = −212.4 + 8.61·Tmax 0.943 0.403
February CDH = −229.3 + 9.22·Tmax 0.925 0.213 CDH = −225.3 + 9.07·Tmax 0.934 0.030
March CDH = −182.8 + 6.88·Tmax + 0.71·Tmin 0.932 0.883 CDH = −204.8 + 7.45·Tmax + 1.10·Tmin 0.949 0.442
April (CDH) CDH = −148.1 + 6.01·Tmax 0.933 0.611 CDH = −178.1 + 7.19·Tmax 0.922 0.410
April (HDH) HDH = 100.2 − 7.4·Tmin 0.950 0.344 HDH = 93.9 − 6.95·Tmin 0.952 0.391
May HDH = 152.2 − 1.21·Tmax − 9.56·Tmin 0.944 0.712 HDH = 131.0 − 0.68·Tmax − 8.84·Tmin 0.940 0.334
June HDH = 198.1 − 2.43·Tmax − 11.62·Tmin 0.958 0.980 HDH = 176.4 − 2.29·Tmax − 10.18·Tmin 0.954 0.202
July HDH = 208.3 − 3.06·Tmax − 11.52·Tmin 0.954 0.214 HDH = 185.8 − 2.67·Tmax − 10.36·Tmin 0.947 0.450
August HDH = 179.0 − 2.32·Tmax − 10.21·Tmin 0.943 0.463 HDH = 162.6 − 1.98·Tmax − 9.48·Tmin 0.940 0.420
September HDH = 122.1 − 0.70·Tmax − 8.06·Tmin 0.946 0.266 HDH = 116.4 − 0.61·Tmax − 7.87·Tmin 0.946 0.165
October (HDH) HDH = 102.2 − 7.61·Tmin 0.942 0.119 HDH = 93.0 − 6.91·Tmin 0.926 0.428
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The CDH and HDH values defined the intensity of the high or low temperatures. The
number of hours within the day with high (over 24 ◦C) or low (below 14 ◦C) determined
the duration of the required heating or cooling. As expected, the number of hours over
24 ◦C (T24) and the number of hours below 14 ◦C (T14) was directly correlated with the
corresponding CDH and HDH values. Table 4 shows the empirical models of T24 and T14
hours, in the form y = a·HDHb (or CDHb), with their correlation coefficients ranging from
0.863–0.950 and with a statistical significance level of α = 0.05. The parameters a and b were
relatively similar, ranging from a = 2.16–3.24 and b = 0.40–0.46. An effort to create seasonal
empirical models did not give satisfactory results so monthly models were preferred.

Table 4. Daily number of hours with temperature over 24 ◦C (T24) or below 14 ◦C (T14) empirical models using cooling and
heating degree hours (CDH and HDH), with their equivalent regression coefficients and paired t-test of goodness of fit with
the observed daily values of 2019.

Observatory Hill Station Sydney Airport Station
Month Empirical Model R t-Test Empirical Model R t-Test
January T24 = 2.99·CDH0.42 0.928 0.441 T24 = 2.61·CDH0.45 0.931 0.940
February T24 = 2.73·CDH0.45 0.934 0.484 T24 = 2.70·CDH0.45 0.938 0.335
March T24 = 2.59·CDH0.45 0.928 0.463 T24 = 2.72·CDH0.43 0.941 0.087
April (24) T24 = 2.20·CDH0.44 0.913 0.181 T24 = 2.35·CDH0.43 0.940 0.209
April (14) T14 = 2.80·HDH0.46 0.940 0.807 T14 = 2.59·HDH0.45 0.934 0.190
May T14 = 2.75·HDH0.46 0.950 0.330 T14 = 2.83·HDH0.42 0.941 0.117
June T14 = 3.24·HDH0.42 0.925 0.093 T14 = 3.07·HDH0.42 0.907 0.056
July T14 = 3.15·HDH0.42 0.905 0.090 T14 = 3.08·HDH0.42 0.874 0.673
August T14 = 2.59·HDH0.42 0.897 0.034 T14 = 2.81·HDH0.43 0.863 0.609
September T14 = 2.70·HDH0.44 0.928 0.481 T14 = 2.56·HDH0.45 0.924 0.907
October (14) T14 = 2.69·HDH0.45 0.930 0.818 T14 = 2.53·HDH0.45 0.939 0.555
October (24) T24 = 2.00·CDH0.46 0.933 0.982 T24 = 2.16·CDH0.43 0.930 0.407
November T24 = 2.50·CDH0.43 0.936 0.109 T24 = 2.63·CDH0.40 0.924 0.223
December T24 = 2.78·CDH0.41 0.922 0.450 T24 = 2.62·CDH0.42 0.931 0.140

The proposed empirical models for HDH, CDH, T14 and T24 were verified using the
observed hourly data of 2019. The results are shown in Figures 8 and 9, suggesting in most
days a goodness of fit of the empirical models on the observed data of 2019. Applying
the paired t-test analysis on observed and estimated values, the calculated results of the
goodness of fit are shown in Tables 3 and 4.

Two cases with underestimations of the estimated values were further investigated in
terms of temperature and wind direction and speed:

A. 12 February 2019 for cooling degree hour values (Figure 9a), and
B. 29 August 2019 for daily number of hours below 14 ◦C values (Figure 9b,d).

In case A (12/2/2019), the reason that the estimated values of CDH were found to
be smaller than the observed values was the extreme high temperature conditions with
16 consecutive hours when the temperature exceeded 24 ◦C, reaching a maximum of
36 ◦C and 36.8 ◦C at the Observatory Hill and Sydney airport stations, respectively. The
wind direction during this day remained steady and westerly affecting the CDH values.
However, the wind is not a reliable parameter to be used easily in empirical models.

In case B (29/8/2019) the air temperatures below 14 ◦C lasted for 23 hours so the
empirical models could not be applied successfully. The temperature on that day remained
low because of the south and south-western cold winds that kept the temperature low.
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4. Discussion and Conclusions

This study observed the air temperatures in the greater area of Sydney for the years
1999–2018, and calculated the cooling and heating degree hours, as well as the temperatures
exceeding 24 ◦C or below 14 ◦C to show the intensity and duration of energy demands.
Degree hours are a simplified representation of outside air temperature data usually using
two threshold temperatures, 14 ◦C for heating degree hours and 24 ◦C for cooling degree
hours. The degree hours were widely used in the preceding decades in the energy industry
for calculation of the building energy consumption with regards to the effect of the outside
air temperature. New building simulation software directly calculate the energy needs by
defining just the indoor comfort temperature and by applying the coefficient of performance
(COP) of a heat pump or the seasonal energy efficiency ratio (SEER) of an air-conditioning
unit. However, the variating COP and SEER of the heating and cooling systems, as well
as the subjective indoor thermal comfort air temperature, may provide inconclusive and
incomparable values with other studies. Our research provided a spatiotemporal climatic
profile using recent HDH and CDH values for the city of Sydney in order to understand
the climatic changes over the years.

Empirical equations were proposed that could give an approximate of expected
daily heating and cooling degree hours (HDH/CDH) per month and the daily number
of temperatures exceeding 24 ◦C (T24) or below 14 ◦C (T14) per month. The empirical
equations could use 24-hours of forecasting data of air temperature in order to estimate the
energy demand of the following day.

We found that the need for heating (HDH) was almost double the need for cooling for
the investigated period. The mean yearly values of CDH and HDH were 2250 and 4579,
respectively, at the Observatory Hill station, and 2814 and 4467, respectively, at the Sydney
airport station. The Sydney airport station was warmer in the warm period and colder in
the cool period despite the fact that both stations had similar mean temperatures. The need
for cooling and heating depends on daily maximum and minimum temperatures, but to
accurately predict energy demands, a monthly variation of empirical models exists.

The mean and maximum monthly air temperature values for year 2019 were higher
than the preceding years due to the increasing temperature trends in the area. However, by
applying the empirical models, a goodness of fit was shown with only small deviations
due to extreme and prolonged heat or cold weather conditions. The 24-hours forecasting
of weather, for maximum and minimum temperatures, may also be used to estimate the
heating and cooling degree hours of the next day, as well as the number of temperatures
exceeding 24 ◦C (T24) or below 14 ◦C (T14), in order to forecast the energy demand of
the next day for heating or cooling purposes. Moreover, the monthly cooling and heating
degree hours of the selected weather station in the great area of Sydney showed that most
of the energy in a building is consumed by heating systems rather than cooling systems
due to the cool winters.

The developed models in this study may be used to predict annual degree hours in
approximate areas within a region in case of the absence of temperature data in such areas.
However, the relationship connecting the air temperatures in this approximate region with
those at the Observatory Hill or Sydney airport stations needs to be defined in advance.

Extensions of this work could focus on estimating more thorough relationships be-
tween electricity loads and degree days or T14/T24. Such extensions could include the
use of normalized electricity loads (e.g., per capita or for residential buildings only) or to
consider other socioeconomic factors (e.g., population growth, electricity price, unemploy-
ment rate). With climate change posing a challenge in the electricity planning industry, our
results could be further incorporated into the accuracy of prediction of electricity demands
and loads.
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