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Abstract: Recent decades have registered the hottest temperature variation in instrumentally recorded
data history. The registered temperature rise is particularly significant in the so-called hot spot or
sentinel regions, characterized by higher temperature increases in respect to the planet average
value and by more marked connected effects. In this framework, in the present work, following
the climate stochastic resonance model, the effects, due to a temperature increase independently
from a specific trend, connected to the 105 year Milankovitch cycle were tested. As a result, a
breaking scenario induced by global warming is forecasted. More specifically, a wavelet analysis,
innovatively performed with different sampling times, allowed us, besides to fully characterize the
cycles periodicities, to quantitatively determine the stochastic resonance conditions by optimizing the
noise level. Starting from these system resonance conditions, numerical simulations for increasing
planet temperatures have been performed. The obtained results show that an increase of the Earth
temperature boosts a transition towards a chaotic regime where the Milankovitch cycle effects
disappear. These results put into evidence the so-called threshold effect, namely the fact that also a
small temperature increase can give rise to great effects above a given threshold, furnish a perspective
point of view of a possible future climate scenario, and provide an account of the ongoing registered
intensity increase of extreme meteorological events.

Keywords: Milankovitch cycles; climate change effects; stochastic resonance; numerical simulation;
Fourier and Wavelet Transforms

1. Introduction

The history of climate science is quite old. The Greek term “klima” designated the
inclination of the Sun’s rays in respect to the Earth’s surface, so testifying the understanding,
already in those ancient times, of the correlation between the solar energy flux and the daily
and seasonal temperature variations. Starting from the end of the 1800s, the progress in
physics sciences has allowed researchers to interpret the fundamental processes involved in
the air and ocean movements, as well as to evaluate the planet radiative balance controlled
by the energy exchanges between the Earth and the external space. This latter depends
in part on the Earth’s surface temperature and in part on the greenhouse effect, firstly
formulated by Joseph Fourier in 1824. The greenhouse effect has inspired investigations into
the role of the CO2 emitted by human activities on the planet climate and has led to a rough
estimation of the planet temperature evolution by the Sweden chemist Svante Arrhenius.

In parallel, the work of naturalists, geologists, and glaciologists showed that the
Earth’s climate has deeply changed during this time. At the beginning of the twentieth
century, the Serb mathematician Milutin Milankovitch formulated the hypothesis that
the slow modifications in the Earth’s orbit around the Sun were the cause of the great
glaciations. This theory was confirmed at the end of the twentieth century, thanks to the
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development of paleoclimatology, and to the formulation of an amplifying process, later
called stochastic resonance effect.

More specifically, the energy coming from the Sun to a given point on the Earth’s
surface changes according to cycles that depend on the planet movements within the solar
system, such as, for example, temperature increase in summer and decrease in winter [1–4].
The Pleistocene glacial cycles are among the most spectacular recorded climatic variations.
In the geological time scale, the Pleistocene, also known as the Quaternary Ice Age, is
the first of the two epochs in which the Quaternary period is divided. It ranges between
2.58 million years ago (Ma) and 11,700 years ago.

A glacial cycle starts with a gradual temperature decrease, which brings about an
increase of sea ice, and of the polar caps’ area and volume, together with a decrease of
the ocean water volume with the emergence of continental portions. These occurrences
determine an increase of the energy reflected by the Earth (i.e., albedo), and in turn a
further temperature decrease, i.e., a positive feedback. Glacial ages end with a temperature
increase, which, inversely, provokes a water transfer from the cryosphere [5–8].

It is common knowledge that, at the Vostok scientific station, a group of Russian and
French scientists investigated the East Antarctic ice extracting ice cores, which present
layers produced by annual cycles of snow transformation into ice. In particular, in air
bubbles trapped in layers of ice, isotopic oxygen ratios and gas composition measurements
have allowed scientists to get information on the past planet temperature values [9–13]. In
this framework, the Serbian astrophysicist Milutin Milankovitch studied the correlation
between the Earth’s ice ages and the Earth’s movements. Milankovitch’s calculations,
published in the 1920s, led him to conclude that there are three different cycles influencing
the Earth’s climate. These are connected with the oscillations of the Earth’s orbit eccentricity,
of the Earth’s axis and of the Earth’s axis wobble. The most recent Earth’s glacial age, within
the Pleistocene, covered the time window from 2.6 million to 11,700 years before present
(BP). The Vostok’s findings, which were later confirmed by other ice caps measurements,
both in Antarctica and in Greenland, support the thesis that Milankovitch cycles pilot
the glacial and interglacial temperature variations and that the latter are also connected
to atmospheric greenhouse gas concentrations [14–17]. In particular, the Vostok station,
located in the central part of East Antarctica, at an altitude of about 3500 m, shows an
average annual temperature of T = −55 ◦C, with a lowest registered value in 1983 of
T = −89.2 ◦C. Great care is necessary to not provoke ice coring fusion or contamination
during the sample transport and to exclude misleading results arising from CO2 reactions
with ice impurities [18–20]. More in details, the water molecules (H2O) containing O16, the
most common O isotope, evaporate more than water molecules containing O18. Therefore,
during the glacial age the ocean, water O18/O16 ratio rises, whereas in ice layers decreases,
because O16-rich water evaporates from sea and is trapped in the glacier ice, whereas
O18-rich water remains preferentially in the oceans [21–25]. By measuring the O18/O16

ratio, it is possible to obtain information on the past planet temperatures [26]. Figure 1
shows the geological scale and the scheme of life evolution on the planet during the last
630 M years BP (on the left) with a zoom on the last 5.5 M years BP that reports time
behavior of the δ18O concentration as a function of time (on the right).
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In the literature, different methods to investigate signal periodicities exist, with 
specific reference to the Fourier (FT) and to the wavelet (WT) transforms. 

The calculated Fourier power spectrum of the not equispaced data record, performed 
by means of the Lomb–Scargle method [27–30], is shown in Figure 2. Such an analysis 
method allows researchers to detect periodic features in a series characterized by a not 
constant sampling. 

Figure 1. Geological scale and scheme of life evolution on the planet during the last 630 M years before present (BP) (on the
left) with a zoom on the last 5.5 M years BP that reports the time behavior of the δ18O concentration (on the right) [26].

In the literature, different methods to investigate signal periodicities exist, with specific
reference to the Fourier (FT) and to the wavelet (WT) transforms.

The calculated Fourier power spectrum of the not equispaced data record, performed
by means of the Lomb–Scargle method [27–30], is shown in Figure 2. Such an analysis
method allows researchers to detect periodic features in a series characterized by a not
constant sampling.
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Milankovitch cycle); 

Figure 2. Fourier power spectrum as a function of frequency, expressed in inverse kyears, of the whole not equispaced
record. The Lomb–Scargle approach has been employed.

In order to extract more information on the frequency components of the temperature
variation as a function of time during the last 5.5 M years, in the following, we applied
the wavelet analysis. It is well known that, when it is important to single out the signal
frequency localizations, one can take a huge advantage from WT analysis [31–36]. In fact,
differently from FT, which shows all the signal frequencies without a time localization, WT
shows the component frequencies and at what time they occur [37–39].

In Figure 3, the obtained WT scalogram of the temperature data, obtained by using an
analytical Morlet wavelet with parameter 6 [40–42] is shown.
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Figure 3. Wavelet transform (WT) scalogram of temperature data of Figure 1 obtained by using an
analytical Morlet WT mother function with parameter 6.

The performed WT analysis allowed us to draw the following conclusions:

i. Variance increases, characterized by high ice volumes and by low temperature
values, are present with a period of 100 K years; these maxima find a correspondence
with the Earth’s orbit eccentricity period (first Milankovitch cycle);

ii. Variance increases are present in the temperature sequence with a period of 41 K
years; these maxima correspond to the period of the Earth’s axis inclination (second
Milankovitch cycle);

iii. Lower intensity variance increases with a period of about 23 K years, corresponding
to the variation of the Earth’s axis during a double-conic motion, i.e., to solar
precession, are present.
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Furthermore, the obtained WT scalogram features are in good agreement with the
prominent features reported by Crucifix [43]. Figure 4 shows a sketch of the three Mi-
lankovitch cycles. In particular, Figure 4a shows the Earth’s eccentricity variation character-
ized by a period of 100 K years. More specifically, the Earth’s orbit eccentricity has varied
from nearly 0 to 0.07, and today its value is about 0.017. The Earth receives 20–30% more
radiation when it is in the perihelion than when it is at aphelion. In particular, the average
distance Sun–Earth is 1.49 × 1011 m, while the Sun’s average diameter is about 110 times
that of the Earth (12.750× 103 m). Figure 4b displays the cycle of the Earth’s axis inclination,
ranging from a minimum of 21◦55′ to a maximum of 24◦20′, with a period of 41 K years. The
inclination of the Earth’s axis relative to the orbit plane generates seasons. Slight changes
in the tilt changes the amount of solar radiation falling on certain planet locations. The
Earth’s axis is nowadays tilted of ~23.5 degrees, with a decreasing trend. Finally, Figure 4c
shows the variation of the Earth’s axis following a double-cone motion, i.e., a precession
motion, with a 23 K years period. This precession motion does not change the tilt of Earth’s
axis, but its orientation. During the past millennia, the Earth’s axis pointed more or less
north, towards Polaris, known as the Pole Star. However, about 5000 years ago the Earth
was more turned towards another star, called Thubin. Moreover, in about 12,000 years, the
axis will point to Vega. After a cycle of precession, the orientation of the planet is changed
with respect to the aphelion and the perihelion: if a hemisphere is pointed towards the sun
during the perihelion, it will be opposite during the aphelion, the vice versa being true for
the other hemisphere. As a result, the hemisphere that is pointed towards the sun during
perihelion and away during aphelion experiences more extreme seasonal contrasts than the
other hemisphere. At present, winter in the southern hemisphere occurs near the aphelion
and summer near the perihelion, which means that the southern hemisphere experiences
more extreme seasons than the northern hemisphere [44–49].

As matter of fact, as shown by the cornerstone work of Benzi et al. [50], the variations
in the distribution of solar radiation during Milankovitch cycles, alone, cannot explain the
wide decrease in temperature that marks the transition from an interglacial age to a glacial
age. Therefore, it clearly emerges that to enhance the effect of these causes, which foretell a
temperature variation of only 0.3 K, a positive feedback should be taken into account. On
that score, to figure out this puzzle, a stochastic resonance effect has been postulated. This
effect concerns with nonlinear systems energetically characterized by a threshold (i.e., by
an activation barrier), and consists of a system output (response) to a weak input signal
(cause), which undergoes a resonance-like behavior, i.e., to a performance maximum, as a
function of the noise level, differently to what occurs in linear systems where the output is
maximized in the absence of noise [51–53]. In fact, the complex climate system contains
several interacting components that give rise to a highly nonlinear behavior through its
many feedback mechanisms.
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Climatic driving mechanisms acting on human evolution constitute an open problem
of interdisciplinary scientific interest that triggers an intense debate concerning possible
evolutionary scenarios. The concentration increase of CO2 and other greenhouse gases in
atmosphere influences the climate system significantly. The major role in determining the
warming rate and its spatial distribution is played by ocean water, due to its heat capacity.
On one hand, the climate response to temperature variation is delayed by the ocean; on the
other hand, ocean water delays the warming effect on climate. Global surface temperatures
show short and long time scales in the atmosphere–ocean general circulation, although fast
and slow responses in the ocean are different from those in the atmosphere.

In this paper we addressed the issue of climate variability caused by internal processes,
by external forcing, and by their interaction, and discuss mechanisms of a global Earth
temperature increase. In particular, we explore the stochastic resonance scenario under
the condition of a temperature increase, independently from peculiar, specific temperature
trends. The results of the performed numerical simulations show that, starting from
a resonance condition, an increase in temperature gives rise to a transition towards a
chaotic regime.

2. Methods Section

It is well known that the Fourier approach is based on a definite set of sinusoidal
functions, which provides a unique representation in terms of a standard orthogonal basis.
Its weaknesses include the assumptions of linearity and stationarity and the a priori choice
of basis functions, which do not change in time. This means that the projection of the basis
results in a ‘global’ frequency analysis that may not provide a good match with the time
scales of the underlying processes.

Some techniques have been designed to address the issue of nonstationarity, so as to
provide a simultaneous time–frequency analysis. Two of such techniques are windowed
Fourier analysis and wavelets. In windowed Fourier analysis, a Fourier analysis is applied
to a sliding window, whose length is shorter than the given record; then, a projection is
applied to each windowed subset of the data.

Wavelet analysis is based on a set of orthogonal functions with compact support
or approximately compact support, vanishing outside a finite interval. The interval is
rescaled to highlight different time scales and the center of interval can be shifted to
address nonstationarity. The algorithm determining the decomposition coefficients is still a
projection, but the resulting coefficients depend on the shape, the width, and location of
interval of support. A set of orthonormal functions can be constructed from a “mother”
wavelet via dilation and translation.
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More specifically, from a formal point of view, a Fourier series decomposes a function
f (t) defined for 0 ≤ t ≤ 2π and having a period T = 2π into a sum of sinusoidal functions,
i.e., of cosine and/or sine functions:

f (t) ∼ a0

2
+

∞

∑
k=1

[
ajcos (ωt) + bj sin (ωt)

]
(1)

a0, aj, and bj being the so-called Fourier coefficients, evaluated through the integrals:

a0 =
1

2π

∫ 2π

0
f (t)dt (2)

aj =
1
π

∫ 2π

0
f (t)dt cos (ωt) (3)

bj =
1
π

∫ 2π

0
f (t)dt sin (ωt) (4)

where a0 furnishes the average value of the function f (t) over a period T = 2π and where the
Fourier coefficients, aj and bj, furnish the weight of each cosine and sine contributions; for
odd functions all the aj coefficients are zero whereas for even functions all the bj coefficients
are zero.

Fourier transform (FT) constitutes an extension of the Fourier series, which furnishes
huge advantages for functions f (t) that are nonperiodic, and therefore when T → ∞ , FT
decomposes the function f (t) into sets of sine and/or cosine functions, or of exponential
functions e2πiωt, each of them with weight f̂ (ω), with continuously variable frequencies ω:

f (t) =
∫ +∞

−∞
f̂ (ω)e2πiωtdt. (5)

As a matter of fact, FT suffers from the limitation that it does not allow a connec-
tion between the frequency spectrum and the signal evolution in time and, therefore, to
overcome this difficulty, wavelet (WT) analysis has been formulated [54–56].

WT results are more advantageous in respect to Fourier transform; in fact, the WT
approach allows users to decompose a signal into its wavelets components, by means of
mother wavelet ψ:

fψ(a, τ) =
1√
a

∫ +∞

−∞
f (t)ψ∗

(
t− τ

a

)
dt (6)

where the parameter a > 0 denotes the scale and its value corresponds to the inverse of the
frequency, the parameter τ represents the shift of the scaled wavelet along the time axis, ψ∗

represents the complex conjugation of the mother wavelet, while the scaled and shifted
mother wavelet ψa,τ(t) can be expressed by:

ψa,τ(t) =
1√
a

ψ

(
t− τ

a

)
. (7)

Differently from FT, which shows only which signal frequencies are present, WT, in
addition, also shows where, or at what scale, they are. Furthermore, while FT allows
researchers to decompose the signal only in cosine and sine component functions, the WT
takes into account several wavelet mother functions.

More precisely, different types of mother wavelet can be used to perform a wavelet
analysis. As a rule, mother wavelets are characterized by properties such as orthogonality,
compact support, and symmetry. Although different mother wavelet functions satisfy the
previous conditions, when applied to the same signal produce different results. For these
reasons, the choice of the best mother wavelet is crucial. In the present study, a comparison
among the different correlation degree between the signal and different mother wavelet
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functions has been performed [57]. As a result, in this work the wavelet Morlet has been
chosen as mother wavelet:

ψ(t) = e(iω0− t2

2σ2 ) (8)

where ω0 represents the center pseudo-frequency and σ provides the wavelet band-
width [58,59]. It should be noticed that in the special case in which the wavelet mother is
ψ(t) = e−2πit, the WT transform reduces to the FT. For this study, Matlab environment has
been used.

3. The Physical Approach to Climate Change through the Stochastic Resonance
Modelization

The stochastic resonance phenomenon takes place when the introduction of a noise in a
nonlinear system characterized by a form of threshold amplifies a weak signal. In particular,
it occurs that, by increasing the noise amplitude, the system performance parameters, e.g.,
the output signal-to-noise ratio (SNR), show a resonance. Therefore, such a behavior is
different in respect to linear systems, where the SNR is maximized in the absence of noise.

The time evolution of the climate system configuration can be described by means
of a configuration variable x(t), by means of a potential U(x) and of a random force fr(t)
through the Langevin equation:

.
x = −

.
U + fr + ε sin (ω0t) (9)

where ε sin (ω0t) is a weak forcing term corresponding, within the climate model, to the
100,000-year Milankovitch cycle; fr is a white noise, of intensity I, which corresponds to
the fast dynamics and whose autocorrelation function is < fr(t) fr(0) ≥ 2Iδ(t). In the
following, we will assume that this latter hypothesis holds for the climate system. A simple
example of potential U(x) is furnished by the symmetric bistable potential introduced by
McNamara et al. [60]:

U(x) = − a
2

x2 +
b
4

x4 (10)

which has two stable equilibrium configurations at x± = ±c = ±
√

a
b , and an unstable

equilibrium configuration at x = 0; the two stable minima correspond to the glacial and
interglacial temperature states. In the absence of the forcing term, i.e., for ε = 0, for
assigned system parameters, the configuration variable x(t) fluctuates in time between
the two minima with a variance that is proportional to I, whereas in the presence of a
periodic forcing term and of specific noise values, the transition probability of escaping
from each well varies regularly in time. In particular, what emerges from the stochastic
resonance modelling is that, for specific noise values, jumps between the two minima occur
in synchrony with the frequency of the weak periodic signal.

4. Numerical Simulation of Climate Changes and Results

The climate system has a chaotic nature, where a very small perturbation can be
amplified. This chaotic character is taken into account both explicitly, by introducing a
noise term, or indirectly, by introducing small variations in the initial conditions or in some
physical parameters; in this latter case, one usually copes with a huge number of runs for
the same prevision and performs a probabilistic analysis [61–66]. In order to modelize the
climate cycle behavior and the effects connected with the global temperature trend, in this
section, we adapted the stochastic differential Langevin’s equation, which originally took
into account only a systematic and a random contribution, to a dynamic case in which,
besides a friction and a stochastic term, an external contribution and a double well potential
were present [67–71]:

m
d2x(t)

dt2 = −dV1(x)
dx

− ζ
dx(t)

dt
+ ξ0(t). (11)
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In other terms, the climate system is modelled as a particle of mass m, with a given
average energy and configuration coordinate x(t), which experiences a force potential V1(x),
and on which both a friction force, f f riction = −ζ

dx(t)
dt , i.e., a Stokes force, and a random

force, frandom = ξ(t), connected with the system “heat bath”, are exerted [72–79].
In the “high friction limit”, i.e., when the system’s acceleration is negligible, by

including the constant ζ into the potential function V2(x) = V1(x)
ζ and into the random

force ξ(t) = ξ0(t)
ζ , Equation (11) becomes:

dx(t)
dt

= −dV2(x)
dx

+ ξ(t). (12)

Let us now introduce an explicit form for a generalized potential V(x, t), conceived in
order to include a simple double-well potential and a periodic contribution:

V(x, t) = x4 − x2 + ax cos (ωt). (13)

Under this hypothesis, Equation (12) can be written as:

dx = −∂V
∂x

dt +
√

αdη(t) (14)

where the quantities α and η(t) allow researchers to describe with a greater detail the
stochastic noise ξ(t). Such a mathematical model allows users to describe the planet
temperature behaviour when one identifies x(t) the Earth’s temperature T(t) [80,81].
V(x, t) is the Earth’s climate potential, which takes into account the energy balance between
the incoming Rin and outcoming Rout radiation and the two system levels describing
the glacial (T1 ∼= 278.6 K) and interglacial (T2 ∼= 283.3 K) states [82–84]. In particular, it
is: Rin = Q(1 + Acos(ωt)), where Q is the solar constant and A is the amplitude of the
modulation, estimated, by Milankovitch, to be equal to 5× 10−4, with ω = 2π

T = 2π
100000 years .

Furthermore, Rout = µ(T)Rin + E(T), where µ(T) is the albedo, i.e., the reflected solar
radiation which, for simplicity, has a linear decreasing trend with temperature, and E(T) =
4πR2σT4 is the energy radiated by the Earth according to its temperature T. Then, it
is c dT

dt = − ∂V
∂T = Rin − Rout = Q(1 + A cos(ωt))(1− µ(T)) − E(T) (c being the Earth’s

thermal capacity). Finally, the stochastic noise represents the short time scale processes
connected with atmospheric dynamics and circulation. In short, in terms of temperatures
value, we have:

dT = −1
c

∂V
∂T

dt +
√

αdη(t). (15)

As shown by Benzi et al. [85], depending on the α values, in spite of the weakness
of the periodic contribution ax cos (ωt), which in our modelization corresponded to the
first Milankovitch cycle, it is possible to get an amplification of the signal, so justifying the
remarkable gap of almost 10 ◦C between glacial and interglacial periods.

In the present work, with the aim to single out the effects of temperature increase on
the above described SR scenario, at first we performed numerical simulations on a system
characterized by a double-well potential, V = T4 − T2, which allowed us to describe the
glacial and interglacial states. In the model drawing up, we have taken into account a small
periodic disturbance, ax cos(ωt), which allowed us to describe the Earth’s orbit eccentricity
cycle, and a noise level of amplitude

√
α fixed on the SR condition.

In this framework, starting from the obtained resonance conditions, we have per-
formed new numerical simulations, taking into account increasing global Earth temper-
ature values. This temperature increase has been taken into account by downshifting
the double-well potential of a constant term V0 with respect to the fixed total energy of
the system, i.e., V = T4 − T2 − V0 ; in such a case, in fact, although the driving force
keeps constant, see Equation (15), the downshift of the potential well, keeping constant
the total energy, corresponds to an increase of the system kinetic energy, and hence of
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temperature. In other words, the simulations have been performed at first by varying
the intensity of the noise while keeping the periodic signal constant in order to single out
the noise amplitude value, for which the jump of the system from one hole to the other
one is synchronized with the external system periodic disturbance; in such a way, the
resonance condition was obtained [86,87]. Successively, starting from this SR condition,
we have simulated the modelled system answer for different values of the global planet
temperature. Figure 5 reports the solution of Equation (14), i.e., the x(t) = T(t), by using
the following parameters: a = 0.46 and α = 0.23. As it can be seen, under such a situation,
the system jumped from the left well to the right well, giving rise to a periodic oscillation
between the two wells corresponding to the glacial (at temperature T1) and interglacial (at
temperature T2) states [88–90].
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Figure 5. Solution x(t) = T(t) of the generalized Langevin’s equation for the following parameters:
a = 0.46 and α = 0.23. As it can be seen, under such conditions, the system jumped from the left well
to the right well, giving rise to a periodic oscillation between the two wells, with the same period
of the external disturbance, which correspond to the glacial, at temperature T1, and interglacial, at
temperature T2, states.

To spotlight the SR condition and to quantitatively determine the signal-to-noise ratio,
SNR, a WT scalogram of the obtained solution, i.e., x(t) = T(t), has been evaluated for the
fixed value of a = 0.46 and for different values of α, i.e., α = 0.05 (left side), 0.23 (center),
and 0.70 (right side), as reported in Figure 6.
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Such a WT approach allowed us to evaluate the SNR value, for different noise lev-
els [91–95]. The result of such a calculation for 12 values of noise, in the range 0.00∼0.83, is
shown in Figure 7. These results put in the foreground that, starting from low noise levels,
at first, the SNR value surged, attaining a maximum of a = 0.46 and α = 0.23 and then it
dropped for higher noise values. Therefore, for a = 0.46, the value of α = 0.23 established a
cutting-edge between increasing and decreasing SNR conditions [96–101].
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During the last few decades, there has been considerable progress in understanding
climate variability by large observational efforts, model simulations, and theory develop-
ment. In the next section, following the proposed SR climate model, we present the results
of new numerical simulations that will show how, starting from a resonance condition, an
increase of temperature gives rise to transition to a chaotic regime.

5. Effects of the Global Climate Warming on the Basis of the SR Climate Model

A climate change is considered anomalous when it is not compatible with only its
internal variability within a period of time longer than about 30 years. The evidence of
a global climate change is based on the analysis of the long-term variability that affects
the different components of the climate system, which are the atmosphere (i.e., the shell
of gases and vapors around the Earth), the hydrosphere (i.e., seas, rivers, water basins),
the cryosphere (i.e., sea ices, snows, glaciers, iced soils), the biosphere (i.e., the living
organisms), and the lithosphere (i.e., Earth’s crust). These elements continuously exchange
energy and matter (i.e., water, mineral and/or organic substances) between each other;
furthermore, their interactions are modulated by planet radiative balance fluctuations,
which can be amplified or stabilized by positive or negative feedback physical processes
(positive and negative retroactions). Atmosphere constitutes the rapid component of the
climate system, since the air masses mix, at the planetary level, within some months,
whereas the seas interact with the atmosphere from both short time scales (i.e., daily)
through to several decades. Sea currents are due to the Earth’s rotation, winds, and
seas density, which in turn depends on sea temperature and salinity. Climate changes
depend on external forcing, i.e., perturbations external to the climate systems (e.g., orbital
parameters, variations of Sun’s activity), or by internal forcing (e.g., El Nino). Furthermore,
anthropic activities produce greenhouse gases, such as carbon dioxide (CO2), methane
(CH4), nitrogen protoxyde (N2O), etc.; aerosols (small solid or liquid particles); and changes
in the soil usage (e.g., deforestation, agriculture).

The climate trend can be inferred from the analysis of long-term datasets, which
are essentially based on paleoclimate archives of different climate-dependent chemical–
physical quantities, often integrated through numerical and interpretative models. In
fact, climate changes leave indirect information in the physical, chemical, and biological
compositions of natural materials, i.e., in proxy data. In particular, the observations and
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the available measurements of the atmosphere, of the oceans, and of the Earth’s surface
parameters indicate unequivocally that since the nineteenth century, the planet has started
to undergo to a warming process. In recent decades, soil and ocean temperatures, on
average, have increased, even if not homogeneously, but with greater warming near polar
latitudes, especially in the Arctic region.

In the meantime, the ice and snow coverage has decreased in different areas of the
planet. The atmospheric water vapor content has increased everywhere due to the higher
temperature of the atmosphere, while sea level has also risen. Furthermore, changes in sev-
eral other climatic indicators have also been detected; these include the seasonal extension
in many places of the planet; an increase in the tendency of extreme meteorological events,
such as heat waves or heavy rainfall; and a general decrease in extreme cold events. As
far as the cause of the registered warming is concerned, if one takes into account only the
natural forcing, it is not possible to justify these climatic changes. Most of the warming
effects observed globally over the last 50 years can only be explained if one takes into
account the effects produced by human activities, and in particular both the emissions
from fossil fuels and the deforestation processes [102–105].

The series of global temperatures registered over the period 1840–2017 show a warm-
ing trend interrupted only for short periods. In particular, the decade between 1900 and
1910 and that between 1942 and 1950 represent the only time intervals in which global
temperatures have undergone a reversal trend. Moreover, starting from the late 1970s, the
slope of the regression line has undergone a substantial increase, which has brought the
heating values between 1970 and 2017 to about 0.17 ◦C/decade [106–111].

In this framework, with the aim to single out the effects of temperature increase on
the above described SR scenario, starting from the resonance condition obtained at a = 0.46
for α = 0.23, we next focused our attention on the SR model outcomes for increasing
values of the Earth’s temperature. More specifically, to cope with the effects of global
warming within the SR scenario, we performed new numerical simulations for a sequence
of downshifted double-well potentials (see Figure 8).

Climate 2021, 9, x FOR PEER REVIEW 13 of 17 
 

 

 
Figure 8. Downshifting of the double well potential, which, starting from the resonance condition, 
keeping constant the total energy, corresponded to an increase of the system kinetic energy and 
hence of temperature. 

In fact, a temperature increase corresponded to a downshift of the system potential 
energy, furnishing a dummy run of the system behaviour. As an example, Figure 9 shows 
three WT scalograms of the generalized Langevin’s equation solution for 𝑉 = 0, 𝑉 = 1, 
and 𝑉 = 2.5. As it can be seen, the Earth’s temperature increase gave rise to a breaking 
of the stochastic resonance condition. 

 
Figure 9. WT scalograms of the generalized Langevin’s equation solution for 𝑉 = 0, 𝑉 = 1, and 𝑉 = 2.5. As it can be seen, the temperature increase gave rise to a breaking of the stochastic reso-
nance condition. 

In summary, in this study we have tested the climate stochastic resonance model un-
der the condition of a temperature increase. More specifically, within this framework 
model, we have determined the resonance stochastic condition by varying at first the noise 
level and by applying the wavelet analysis; then, once the resonance condition has been 
reached, by keeping constant the noise level, new simulations were performed by varying 
the thermal potential. As a result, the simulation results indicate a transition towards a 
chaotic regime, where the Milankovitch cycle effects disappear. 

6. Conclusions 
The last few decades have registered the hottest temperature variation in recorded 

history. In this framework, the effects provided by a global temperature increase on cli-
mate behavior, as inferred by both applying the stochastic resonance interpretative model 
for climate and WT data analysis, are discussed. 

In particular, a Milankovitch-cycle-breaking scenario induced by a triggering tem-
perature increase, independently from a peculiar temperature trend, is forecasted by the 
climate stochastic resonance model. Numerical simulations for increasing planet temper-
atures have been performed. The simulations’ outcomes beget the following scenario: 

Figure 8. Downshifting of the double well potential, which, starting from the resonance condition,
keeping constant the total energy, corresponded to an increase of the system kinetic energy and hence
of temperature.

In fact, a temperature increase corresponded to a downshift of the system potential
energy, furnishing a dummy run of the system behaviour. As an example, Figure 9 shows
three WT scalograms of the generalized Langevin’s equation solution for V0 = 0, V0 = 1,
and V0 = 2.5. As it can be seen, the Earth’s temperature increase gave rise to a breaking of
the stochastic resonance condition.
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Figure 9. WT scalograms of the generalized Langevin’s equation solution for V0 = 0, V0 = 1, and V0 = 2.5. As it can be
seen, the temperature increase gave rise to a breaking of the stochastic resonance condition.

In summary, in this study we have tested the climate stochastic resonance model
under the condition of a temperature increase. More specifically, within this framework
model, we have determined the resonance stochastic condition by varying at first the noise
level and by applying the wavelet analysis; then, once the resonance condition has been
reached, by keeping constant the noise level, new simulations were performed by varying
the thermal potential. As a result, the simulation results indicate a transition towards a
chaotic regime, where the Milankovitch cycle effects disappear.

6. Conclusions

The last few decades have registered the hottest temperature variation in recorded
history. In this framework, the effects provided by a global temperature increase on climate
behavior, as inferred by both applying the stochastic resonance interpretative model for
climate and WT data analysis, are discussed.

In particular, a Milankovitch-cycle-breaking scenario induced by a triggering tem-
perature increase, independently from a peculiar temperature trend, is forecasted by the
climate stochastic resonance model. Numerical simulations for increasing planet temper-
atures have been performed. The simulations’ outcomes beget the following scenario:
starting from the resonance condition, the Earth’s temperature increase boosts a transition
towards a chaotic regime, where the Milankovitch cycles disappear. It should be noticed
that, although meteorology and climate drastically differ for the involved time scales, they
constitute the two faces of the same coin. In this framework, the obtained results justify, on
short time scales, the registered intensity increase of extreme meteorological events. If the
greenhouse gas emissions continue to increase at the present rate during the XXI century,
a temperature increase of 5 ± 1 ◦C is expected by the year 2100 in respect to the value
corresponding to the beginning of the industrial era; this would also imply a rise of the sea
level of 75 ± 20 cm. For these reasons, as well as in consideration of the climate system
high inertia connected to the residence time of CO2 in the atmosphere, it is important to
stabilize the global temperature within +2 ◦C by 2100 compared to the preindustrial value,
in agreement to the international treatises.
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