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Abstract: Climate variability can influence the dynamics of aquatic invasive alien plants (AIAPs) that
exert tremendous pressure on aquatic systems, leading to loss of biodiversity, agricultural wealth,
and ecosystem services. However, the magnitude of these impacts remains poorly known. The
current study aims to analyse the long-term changes in the spatio-temporal distribution of AIAPs
under the influence of climate variability in a heavily infested tank cascade system (TCS) in Sri Lanka.
The changes in coverage of various features in the TCS were analysed using the supervised maximum
likelihood classification of ten Landsat images over a 27-year period, from 1992 to 2019 using ENVI
remote sensing software. The non-parametric Mann–Kendall trend test and Sen’s slope estimate
were used to analyse the trend of annual rainfall and temperature. We observed a positive trend of
temperature that was statistically significant (p value < 0.05) and a positive trend of rainfall that was
not statistically significant (p values > 0.05) over the time period. Our results showed fluctuations in
the distribution of AIAPs in the short term; however, the coverage of AIAPs showed an increasing
trend in the study area over the longer term. Thus, this study suggests that the AIAPs are likely to
increase under climate variability in the study area.

Keywords: climate change; climate variability; land use change; Mann–Kendall statistical test; Sen’s
slope estimator; supervised maximum likelihood classification

1. Introduction

Freshwater ecosystems are characterised by high levels of biodiversity, and they
also provide vital ecosystem services to sustain life on earth [1]. These important ecosys-
tems account for merely 0.8% of the land surface on earth, but a vast number of species
(100,000 species or 6% of total species) that live on the planet depend on this vital ecosys-
tem [2]. Moreover, these aquatic systems contain the highest number of species threatened
with extinction along with more imperiled habitats; thus, they are considered as severely
endangered ecosystems on earth [3,4]. Negative influences on this ecosystem have been
attributed to a variety of causes i.e., land use changes, nutrient and chemical pollution,
climate change, and invasive plants [5]. The ecological impacts caused by aquatic invasive
alien plants (AIAPs) on freshwater habitats is widely acknowledged. It is one of the key
drivers of biodiversity depletion in fresh water systems. Aquatic invasive alien plants
cause a significant impact on the richness of native plants and animals across many aquatic
habitats [6–8]. They change structure and function of aquatic systems and rapidly change
habitats [1]. Ecosystem services are disrupted resulting in direct economic losses [9]. Cer-
tain AIAPs (i.e., Salvinia molesta and Eichhornia crassipes) proliferate rapidly and produce
a mat on the water surface, which eventually impedes light and oxygen supply to the
lower level plants and animals, leading to destruction of the entire ecosystem [10,11]. In
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addition, increased rates of sedimentation and evapotranspiration of these plants result in
negative impacts on water quality [12]. Freshwater ecosystems are highly susceptible to
the invasion of AIAPs, which are generally pervasive due to high propagule pressure [2,6].
As climate-based species distribution models predict, the threats from invasive species to
freshwater aquatic ecosystems is likely to be aggravated in the future [1]. Generally, weak
barriers in such systems facilitate the rapid movement of IAPS [13]. Moreover, various
anthropogenic activities support the spread of AIAPs through relaxing natural barriers for
the vectors to spread [14]. Agriculture is highly affected by AIAPs, as they make negative
impacts on agricultural operations. Further, they interfere with the irrigation water supply
as they reduce the water-holding capacity of water bodies [15]. In addition, they are a
key challenge to the irrigation, fisheries, water use, human health, livelihoods, and the
environment [16,17].

Scientific literature has confirmed that the global climate is changing, due to anthro-
pogenic activities (i.e., fossil fuel use, land use change, and agriculture) and natural climatic
variability [18]. The results of climate change, such as changes in water temperatures,
salinisation, sea level rise, and streamflow patterns, can influence the spread of AIAPs in
freshwater systems [19]. This highlights that climate change has a close relationship with
the temporal and spatial distribution of AIAPs, which significantly make alterations in bio-
diversity patterns in aquatic systems [8,20,21]. The understanding on range dynamics (i.e.,
geographic range shifts) of AIAPs in response to climate change is rather limited compared
with terrestrial or marine species [19]. This can be perhaps due to aquatic ecosystems hav-
ing received rather less research attention compared with the other ecosystems [1]. Climate
change, along with other global change stressors, can have profound impacts on invasive
species composition and spread dynamics [22,23]. Thus, the influence of climate change
on AIAPs distribution is undeniable; however, it is perhaps overlooked by the scientific
community due to the complex nature of their interactions with the environment [1,24,25].

Understanding the invasion risk in aquatic systems is imperative for developing
effective planning and management efforts [26,27]. At present, there is anecdotal evidence
on the spatial and temporal distribution of AIAPs in the freshwater systems, particularly
in developing tropical countries, as they have received the least research attention [28].
For instance, the use of species distribution models to predict the potential distribution
of AIAPs in developing countries is affected by data limitations [29,30]. Examining land
use and land cover changes using satellite images is a reliable tool for monitoring the
changes in ecosystems on earth [31]. However, its potential is yet to be exploited to protect
global biodiversity, as anticipated by the Convention on Biological Diversity (i.e., Aichi
biodiversity targets) [32]. Freely available Landsat satellite imageries collected since the
early 1980s can be used to map land use areas and monitor changes over a certain period
of time [33,34]. The pivotal role of Landsat images has been useful in many ecological
applications of remote sensing, i.e., ecological monitoring, land use land cover changes,
and biodiversity conservation [35]. Spatial distribution changes of land use can be obtained
through analysing classified images at different time periods. Such an analysis in aquatic
systems provides important information to obtain an understanding of the long-term range
dynamics and potential risks of aquatic invaders.

Biological invasions potentially exert increased risks on aquatic systems rather than
terrestrial systems [36,37]. In Sri Lanka too, the issues posed by AIAPs are seemingly
more serious than the terrestrial plant invaders in terms of the magnitude of the problem.
Thousands of major and minor tanks (man-made reservoirs) located particularly in the
dry zone of the country are infested with world’s worst AIAPs, such as S. molesta and E.
crassipes. The dry zone tank cascade system (TCS), a sensitive yet self-sustaining freshwater
ecosystem habitat, provides irrigation water for agriculture (i.e., paddy) in the area [38]. At
present, this system is infested with aquatic weeds, which is mostly dominated by AIAPs
(i.e., S. molesta and E. crassipes) and representation of other native weeds is comparatively
less. Thus, to better understand how AIAPs are influenced by climate change in this TCS,
we conducted a research study that examined the long-term trend analysis of climate data
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and its relation to the distribution of AIAPs. The specific aims of this study were to (i)
evaluate the long-term spatial and temporal spread dynamics of AIAPs, (ii) analyse the long-
term trends of rainfall and temperature, (iii) examine how IAPS distribution may change
in response to climate change and investigate potential impacts on agriculture. To the best
of our knowledge, no systematic study has been undertaken to understand the influence of
climate variations on the range dynamics of AIAPs in Sri Lanka. Identifying changes in
surface cover of AIAPs is vital to fully understand how they respond to climate change
and further to provide implications and impetus towards evidence-based decision making.

2. Materials and Methods
2.1. Study Area

The present study was conducted in the Nachchaduwa tank and three cascade sys-
tems, located in the Anuradhapura district encompassing five divisional secretariats of
Thirappane, Nachchaduwa, Nuwaraam Palatha East, Ipalogama, and Kekirawa on latitude
8◦6′–8◦18′ N and 80◦27′–80◦36′ E, Sri Lanka (Figure 1). A tank cascade system consists
of small man-made reservoirs that are connected by canals and spillways and drain into
a large water reservoir [39,40]. The Nachchaduwa tank cascade system (here after TCS)
comprises of 67 tanks of different sizes with a total area of approximately 26 km2 (blue
colour area in Figure 1) that spreads over an area located along a generally flat, undulating
to rolling terrain. This area receives runoff water mainly from the northeast monsoon
rains in the months of September to February. This unique agricultural system provides an
outstanding service by conserving biodiversity and ecosystem services in the landscape.
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The TCS, which has been sustained for centuries, is presently confronted with chal-
lenges from aquatic plant invasion, which is particularly linked to impacts of climate
change. At present, a majority of the cascade tanks are covered with some of the world’s
worst invasive plants: S. molesta and E. crassipes. Salvinia molesta and E. crassipes were
introduced to Sri Lanka as early as 1930 and 1905 respectively and soon dispersed to the
water bodies across the country [11,41]. By the early 1980s, S. molesta and E. crassipes had
infested the tanks system in the dry zone, where the majority of the tanks were entirely
covered with a thick growth [11,42].
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2.2. Analysis of Satellite Images to Assess AIAPs Distribution
2.2.1. Landsat Data

Landsat 4-5, 7, and 8 remote sensing data were employed in this study. Multi-spectral
Landsat images were downloaded in GeoTIFF format for the years 1992, 1996, 2000,
2003, 2007, 2010, 2013, 2016, 2017, and 2019 from USGS Earth explorer Website (https:
//earthexplorer.usgs.gov/). Thus, the gap between data acquisitions was approximately
similar to make a comparative analysis of the changes. The images were of good quality
with relatively few clouds over the area of interest. Clouds and cloud shadows influence
image classifications, and it was challenging to find cloud-free Landsat images, which
is a frequent problem in tropical countries [33,43,44]. Thus, accessibility to good quality
Landsat images was an issue in this study region, which restricted the number of images
that can be used in the analysis. The selected Landsat images were only good quality
images during the first quarter (JFM) that were not affected (or minimally affected) by
clouds and cloud shadows during the study period 1992–2019. The details of the imageries
used in this study are presented in Table 1. The northeast monsoon brings rain to the
dry zone from September to February, and water bodies in this area become full by the
first few months of the year. Thus, images acquired during the first quarter of the year
(wet season) were selected to avoid possible influences attributed to seasonal changes (i.e.,
water level fluctuations) of AIAPs distribution over the period of time and to examine
long-term changes.

Table 1. Description of satellite imageries used in the study.

Date of
Acquisition Mission WRS

Path/Row Landsat Sensor Band
Descriptions

Spatial
Resolution

(meters)

25-01-1992 Landsat 4-5 141/54 TM Bands 1~7 30
08-03-1996 Landsat 4-5 141/54 TM Bands 1~7 30
23-01-2000 Landsat 7 141/54 ETM+ Bands 1~8 30
31-01-2003 Landsat 7 141/54 ETM+ Bands 1~8 30
07-03-2007 Landsat 4-5 141/54 TM Bands 1~7 30
27-02-2010 Landsat 4-5 141/54 TM Bands 1~7 30
21-03-2013 Landsat 8 142/54 OLI, TIRS Bands 1~9/10~11 30
27-01-2016 Landsat 8 141/54 OLI, TIRS Bands 1~9/10~11 30
13-01-2017 Landsat 8 141/54 OLI, TIRS Bands 1~9/10~11 30
03-01-2019 Landsat 8 141/54 OLI, TIRS Bands 1~9/10~11 30

We received the updated geospatial boundary demarcation vector data (shapefile) of
TCS from the Department of Agriculture Sri Lanka, which was used to mask the study area.

2.2.2. Image Processing

Image processing, which involves the conversion of digital number values of pixels
to useful information, is undertaken in three consecutive steps: pre-processing, image
enhancement, and classification [45]. We used ENVI version 5.5 (Exelis Visual Informa-
tion Solutions, Boulder, CO, USA) for satellite image processing and further analyses.
ArcMap version 10.4.1 was employed for producing maps. Image pre-processing is vital
to improving image quality and performance, which is done by suppressing unnecessary
distortions while enhancing some image features [46]. Digital image processing techniques,
radiometric calibration, and dark object subtraction were used to enhance Landsat images
before classification. Radiometric correction was undertaken as the study compared multi-
ple images across a long period of time [47]. This technique corrects for errors in digital
number values of image pixels and improves the interpretability and quality of remotely
sensed data [33,48]. Furthermore, we used dark-object subtraction to remove atmospheric
scattering effects before analysis for efficient extraction of land cover information [49]. It is
a simple but widely used and accepted atmospheric correction approach [34].

https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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Image classification assigns pixels of the image into groups of similar land use
classes/clusters on the earth’s surface [45,50]. Landsat satellite remote sensing data contain
different spectral variations for different feature types [51]. Thus, features in the study area
were classified using the supervised classification technique. This technique assigns specific
pixel value ranges for land use classes [45]. Therefore, for each of the pre-processed images,
local knowledge of the study area and visual interpretation by referring to historical Google
Earth images were used to identify the major land cover types that were common in all
the time series images. Through this process, the four features identified and delineated
as classification classes were water, AIAPs, non-aquatic plants, and open areas (Table 2).
Aquatic plants found on the water surface of the TCS generally represent E. crassipes and
S. molesta; however, other native and non-native aquatic plants could be find occasionally.

Table 2. Description of the four land use classes used in the image classification.

Land Use Type Description

Non-aquatic plants Areas covered by non-aquatic plants (i.e., dense forests, sparse
forests, agricultural plants, plantations) inside tank cascade system

AIAPs Aquatic plants covering the water surface in the tank system

Open areas Sedimented areas/barren lands, paddy cultivations and built up
areas (i.e., footpaths)

Water Deep and shallow water in tanks and streams, which includes both
pure and sedimented water

For each of the training class, regions of interest (ROIs) were defined using a specified
colour code. Visualisation of the various features during the creation of ROIs was enhanced
through false colour composite by variation of the Red–Green–Blue (RGB) bands. ROIs
were randomly selected as much as possible for better capturing pixel variability. For
image classification, maximum likelihood supervised classification was used. This method
assigns pixels to the nearest classification class (highest probability of belonging to a class)
while running the classification.

2.2.3. Accuracy Assessment

In maximum likelihood classification, some pixels can be classified incorrectly due
to an inconsistent distribution of data [52]. In order to provide reliable results, image
classification studies should produce a high degree of overall accuracy, which provides
a quantitative measure of how effectively pixels are categorised into respective feature
classes [53]. Thus, accuracy assessment of the classified images plays an important role
in order to assess the reliability of remote sensing-derived information contained in the
maps and to provide reliable input data for subsequent scientific investigations and policy
decisions [43,54]. In the study, ground truth ROIs were randomly acquired for accuracy
assessment by making reference to historical Google Earth imagery of the same year, as
field-based data collection is not possible for accuracy assessment of historical images. The
number of ground reference pixels that were developed by drawing polygons around the
features of interest varied temporarily for different land cover classes, and this was based
on ease of identification and variabilities within the classes. Therefore, the assessment was
carried out using 117, 163, 144, 173, 206, 155, 229, 280, 125, and 187 pixels for the 1992, 1996,
2000, 2003, 2007, 2010, 2013, 2016, 2017, and 2019 images, respectively. Statistical analysis
of the classified images and the ground reference pixels for the various years was done
using confusion matrix (error matrix) in ENVI. Accuracy of the classification was assessed
in terms of overall accuracy, kappa coefficient, producer’s accuracy, and user’s accuracy.
The kappa statistic, that ranges from 0 (no agreement) to 1 (complete agreement), is highly
recommended for assessing classification accuracy as it provides interclass discrimination
specifically than overall accuracy [55]. Using ArcMap software, the areas covered by each
land cover type were extracted from the classified images.
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2.3. Long-Term Trend Analysis of Climate Variables

To understand and describe the variations in climate parameters in the study area, we
analysed temporal climate data of the Anuradhapura district over the period 1990–2019,
obtained from the Department of Meteorology, Sri Lanka. These climate data are from
one weather station (Anuradhapura) that covers the TCS and surrounding areas. We
analysed time-series data of climate parameters, annual average mean temperature, and
total annual rainfall ranging from 1990 to 2019 to understand the variability and trends that
could influence AIAPs distribution in the long term. We tested the statistical significance
of the trend (i.e., α = 0.10, 0.05) using the widely used non-parametric Mann–Kendall
trend analysis statistical test [56,57] and Sen’s slope estimator [58] using XLSTAT software
(Addinsoft 2020; https://www.xlstat.com). The Mann–Kendall test determines whether
there is a significant positive or negative trend of the variables over time. The Sen’s slope
estimator assesses the magnitude and direction of the detected trend in the sample of N
pairs of data, which results in a positive value (>0) indicating an increasing trend and a
negative value (<0) indicating a decreasing trend [59,60]. The relationship between the
climate variability and AIAPs distribution in the study area over the period was examined.

3. Results
3.1. Accuracy Assessment and Land Use

The results of the accuracy assessment of the classified images for the ten-time periods
are displayed in Table 3. We obtained good accuracy estimates for all ten images, with >87%
for overall accuracy and >0.8 for the Kappa coefficient for each of the images. According
to Lea and Curtis [61], these accuracy levels are satisfactory for the calculation of land
use/cover areas. Thus, our classification results are robust with good performance.

Table 3. Results of accuracy assessment (confusion matrix of land use/cover maps of 1992, 1996, 2000, 2003, 2007, 2010,
2013, 2016, 2017, and 2019.

• Error matrix for 1992 Landsat 4-5 TM classified image

Ground Truth (Pixels)

Class Non-Aquatic
plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic
plants 26 0 0 0 26 95.8% 100%

AIAPs 1 29 0 0 30 100.0% 96%
Open areas 0 0 31 0 31 100.0% 100%

Water 0 0 0 30 30 100.0% 100%
Total 27 29 31 30 117 - -

Overall Accuracy = 99.04%; Kappa Coefficient = 0.9872

• Error matrix for 1996 Landsat 4-5 TM classified image.

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic
plants 26 0 0 0 26 96.0% 100%

AIAPs 0 27 0 4 31 79.4% 87%
Open areas 1 0 28 0 29 77.8% 96%

Water 0 7 8 62 77 93.9% 81%
Total 27 34 36 66 163 - -

Overall Accuracy = 87.68%; Kappa Coefficient = 0.8248

(a) Error matrix for 2000 Landsat 7 ETM+ classified image

https://www.xlstat.com
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Table 3. Cont.

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 34 0 2 0 36 87.50% 94.79%
AIAP 0 27 2 4 33 100.00% 81.82%

Open areas 5 0 27 0 32 77.14% 84.38%
Water 0 0 4 39 43 90.70% 90.70%
Total 39 27 35 43 144 - -

Overall Accuracy = 88.28%; Kappa Coefficient = 0.8429

(b) Error matrix for 2003 Landsat 7 ETM+ classified image

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 34 0 5 0 39 94.1% 87%
AIAPs 0 36 0 0 36 100.0% 100%

Open areas 0 0 33 4 37 86.8% 89%
Water 2 0 0 59 61 93.7% 97%
Total 36 36 38 63 173 - -

Overall Accuracy = 93.57%; Kappa Coefficient = 0.9125

(c) Error matrix for 2007 Landsat 4-5 TM classified image

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 59 0 1 0 60 92.0% 98%
AIAPs 0 48 0 0 48 85.7% 100%

Open areas 4 0 32 0 36 97.0% 89%
Water 1 8 0 53 62 100.0% 85%
Total 64 56 33 53 206 - -

Overall Accuracy = 93.15%; Kappa Coefficient = 0.9075

(d)–(f) Error matrix for 2010 Landsat 4-5 TM classified image

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 30 4 2 0 36 100.0% 83%
AIAPs 0 41 0 0 41 80.4% 100%

Open areas 0 2 39 0 41 95.1% 95%
Water 0 4 0 33 37 100.0% 89%
Total 30 51 41 33 155 - -

Overall Accuracy = 92.26%; Kappa Coefficient = 0.8964

(g) Error matrix for 2013 Landsat 8 OLI, TIRS classified image

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 29 0 0 0 29 86.7% 100%
AIAPs 1 62 0 0 63 92.4% 98%

Open areas 3 5 44 0 52 100% 84%
Water 0 0 0 85 85 100% 100%
Total 33 67 44 85 229 - -

Overall Accuracy = 95.86%; Kappa Coefficient = 0.9425

(h) Error matrix for 2016 Landsat 8 OLI, TIRS classified image
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Table 3. Cont.

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 81 4 1 0 86 95.5% 94%
AIAPs 3 50 7 0 60 83.3% 84%

Open areas 0 0 64 0 64 82.1% 100%
Water 1 6 6 57 70 100.0% 81%
Total 85 60 78 57 280 - -

Overall Accuracy = 90.05%; Kappa Coefficient = 0.8666

(i) Error matrix for 2017 Landsat 8 OLI, TIRS classified image

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 27 0 0 0 27 95.0% 100%
AIAPs 0 32 0 0 32 86.5% 100%

Open areas 1 0 21 0 22 100.0% 94%
Water 0 5 0 39 44 100.0% 89%
Total 28 37 21 39 125 - -

Overall Accuracy = 94.88%; Kappa Coefficient = 0.9305

(j) Error matrix for 2019 Landsat 8 OLI, TIRS classified image

Ground Truth (Pixels)

Class Non-Aquatic
Plants AIAPs Open Areas Water Total Producer’s

Accuracy
User’s

Accuracy

Non-aquatic plants 68 0 0 0 68 94.5% 100%
AIAPs 1 32 7 0 40 100.0% 79%

Open areas 3 0 24 0 27 77.4% 90%
Water 0 0 0 52 52 100.0% 100%
Total 72 32 31 52 187 - -

Overall Accuracy = 94.16%; Kappa Coefficient = 0.9191

The distribution of land uses in the study area over the period 1992–2019 is presented
in Figure 2, whereas the temporal changes in coverage of various land uses during the
study period are presented in Table 4. According to the figures, the coverages of AIAPs
vary during the study period. The range dynamics of AIAPs is illustrated graphically
in Figure 3, which shows a positive trend during the study period. The trends were
statistically significant with p values of 0.01 at 95% confidence level. Additional details
relevant to area changes are provided in Table 5. Accordingly, we observed an overall
increase of 28.6% of the coverage of AIAPs over the period from 1992 to 2019.

Table 4. Representation of areas of four land use classes of the classified images from 1992 to 2019.

Land Use Class
Area km2

1992 1996 2000 2003 2007 2010 2013 2016 2017 2019

Non-aquatic
plants 1.060 2.388 1.277 2.522 2.995 1.379 3.387 3.279 2.477 5.575

AIAPs 2.762 2.023 2.339 2.561 2.887 3.429 3.687 3.258 3.670 3.551
Open areas 5.340 6.303 4.812 8.100 7.351 10.323 4.190 4.967 8.571 4.751

Water 17.190 15.639 17.925 13.170 13.119 11.223 15.089 14.850 11.635 12.476
Total 26.353 26.353 26.353 26.353 26.352 26.353 26.353 26.354 26.353 26.353
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Table 5. Area changes of aquatic invasive alien plants in the study area from 1992 to 2019.

Period Change in AIAPs Area (km2)
Rate of Change

(% change per year)

1992–1996 −0.74 −0.18
1996–2000 0.32 0.08
2000–2003 0.22 0.07
2003–2007 0.33 0.08
2007–2010 0.54 0.18
2010–2013 0.26 0.09
2013–2016 −0.43 −0.14
2016–2017 0.41 0.41
2017–2019 −0.12 −0.06

1992–2019 (overall) 0.79
(28.6% increase) 0.03

3.2. Long-Term Trend Analysis of Climate Variables

The results of climate data analysis showing the magnitude of temporal variability of
rainfall and temperature are presented in Figure 4. The annual average temperature and
total annual rainfall show upward or increasing trends during the study period (Figure 4a).
Figure 4b shows that the highest amount of average monthly rainfall is recorded in the
months of October to December, and the lowest is in the months of June to September. The
average monthly temperature ranges from 26.1 to 29.6 ◦C. During the first quarter of the
study years, the total rainfall showed an increasing trend, whereas average temperature
shows a decreasing trend (Figure 4c).

The summary results on long-term trend analysis based on Mann–Kendall and Sen’s
slope statistical tests for total annual rainfall and annual average temperature for the period
of 1990–2019 in the TCS are presented in Table 6. At a significance level of 0.05, the p-value
shows that the null hypothesis is rejected for annual average temperature, suggesting
a significant trend in the time series; however, there is no trend for total rainfall at this
significance level. We observed a significant trend for rainfall at a lower significance level
of 0.1. According to Mahmood et al. [62], trends at α = 0.05 signify a strong signal of trend
whereas trends at α = 0.1 signify a weak signal of trend. Thus, the analysis of climate data
over the past three decades indicates a strong increasing signal for average temperature
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and weak increasing signal for total rainfall in the study area. We did not consider the
seasonal changes of climate variables, as all images downloaded belonged to the same
season of the year over the study period.
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Table 6. The summary test results of Mann–Kendall and Sen’s slope test for annual average tempera-
ture and total annual rainfall time series.

Series/Test Kendall’s Tau p-Value Sen’s Slope

Annual Average
Temperature 0.253 0.050 0.012

Total Annual Rainfall 0.246 0.056 14.725

4. Discussion

There have been very few published studies in the literature relevant to the range
dynamics of AIAPs in freshwater aquatic systems. Although it is challenging, we ex-
plored the potential of medium-resolution satellite remote sensing data for assessing the
longer-term changes of AIAPs spread in the freshwater aquatic system. In this study, we
considered all species of AIAPs as one class, and individual species were not considered
due to insufficient resolution of Landsat data. Thus, we did not undertake the accuracy
assessment for individual species. As such, the high level of overall accuracy and Kappa
coefficient we received for the images are explained. According to the findings, all four-
land use classes (i.e., non-aquatic plants, AIAPs, open areas, water) display variations
in area coverage. An analysis of the spread of AIAPs in the TCS show variable trend in
coverage over the period 1992 to 2019. The changes fluctuate over short-term periods but
increase over the 27-year period. We observed declines in the distribution of AIAPs in
1996 (0.18% per year), in 2016 (0.14% per year), and in 2019 (0.06% per year) relevant to
the previous assessment year. However, the overall distribution of AIAPs from 1992 to
2019 showed a positive response with the increasing temporal variability of total annual
rainfall and annual average temperature. The spread of AIAPS in the TCS has become a
challenging issue for ecosystem functions in the study area and thus, the land managers
should consider the negative consequences, particularly to agriculture. Distribution of land
uses over the past two decades also signifies a general decline in water cover and increased
distribution of non-aquatic plants in the study area. The siltation and sedimentation of
tanks due to soil erosion because of intensive agriculture in the area is a major impediment
for sustenance of the dry zone TCS [38]. Consequently, various native and non-native
plants acquire these silted areas in the tank. Illegal cultivations on the tank bunds is another
issue when water level fluctuates during the year. The distribution of open land area seems
to be quite varying over the time period due to water level fluctuations.

Global warming is manifested by rising temperatures in air, water, and the earth’s
surface; and increased frequency of temperature extremes (i.e., hot days, heat waves) [63].
The rising temperature has implications on the distribution of non-native species under
climate change [64,65]. The projected effects can make changes in aquatic systems by
altering their pathways of introduction, establishment, spread, and distribution [19,64].
Under changing climate, ranges of non-native species are likely to expand into higher
altitudes and latitudes. Experimental studies have confirmed that the CO2 enrichment
and growth enhancement of AIAPs is strongly influenced by warmer temperatures [66,67].
Elevated temperature intensifies biomass production of aquatic macrophytes and influences
the rapid development of shoots [68]. Thus, water temperature can be a crucial driver
that influences the establishment, distribution, and impact of AIAPs [64]. The results of
climate data analysis using regression analysis for the study period, Mann–Kendall test,
and Sen’s slope estimator showed strong significant positive trends for annual average
temperature and a weaker significant positive trend for total annual rainfall in the study
area at a significance level of 0.05. The temperature increase in the study area can be due
to various reasons, such as global warming, urbanisation, or atmospheric circulation, and
such changes can lead to increased evapotranspiration and unusually dry spells [60].

The increasing spread of AIAPs that was observed in this study area can be attributed
to several factors. Nitrogen deposition increases the abundance of exotics in an ecosystem
while depleting its species richness [69]. Due to the increased usage of nitrogen fertiliser
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in agriculture, the excessive runoffs are added to the water bodies, resulting in increased
growth of AIAPs [17]. Nitrogen-rich sediment deposits in the TCS might have resulted in
the steady increase in non-aquatic plants cover in the study area. In TCS, the excess water of
a tank upstream is diverted to the tank downstream through the paddy fields. Although this
process enables an efficient use of water resources, it may ultimately cause increased nutrient
content deposition in water bodies, resulting in a luxuriant growth of AIAPs [70]. The study
revealed that small tanks are heavily infested by AIAPs, and the major tank is relatively free
from invasions (Figure 2). This could be due to the continuous maintenance and cleaning
of the major tank. The statistics given in Table 4 for AIAPs is mainly contributed by the
infestations occurring in the small tanks. The distribution of AIAPs in the small tank system
is significant relevant to the size of the tanks and thus, the effective management of AIAPs
should be an important concern in the sustenance of the TCS. AIAPs coverage in the water
tanks increased by around 28.6% over the 1992–2019 period.

In its 5th assessment report, the IPCC announced that the projected surface tempera-
ture change of the earth is expected to exceed 1.5 ◦C by 2100 relative to 1850–1900, and more
intense and more frequent extreme precipitation events are predicted [71]. Climate plays a
vital role in the geographic distribution of plant species [72]. Climate change makes alter-
ations in the freshwater habitats, and such affected habitats have the potential to be highly
vulnerable and adversely impacted by biological invaders [7,73,74]. We have observed
positive relationships between climate variables and range dynamics of AIAPs in the study
area during this period. Experimental studies have illustrated that the spatiotemporal
distribution of plants is affected by variations in temperature and rainfall [75,76]. Through
the bioclimatic modeling of three invasive plants, Egeria densa, Myriophyllum aquaticum, and
Ludwigia spp., Gillard, et al. [77] highlighted that long-term changes occurring in the climate
may have a substantial impact on the potential distribution of AIAPs in freshwater systems.

The results of this study imply a long-term decreasing trend of the area of surface
water in the TCS. In addition, the findings suggest that the AIAPs have already expanded
their coverage over the last few decades. We are not aware of the relative contribution of
each variable to the AIAPs spread; however, in view of the relation of climate variability
with the area of spread of AIAPs in the TCS, this expansion will continue in the future.
Therefore, managing the potential negative consequences of AIAPs would be an increasing
challenge to the land managers. The vegetative growth rate of AIAPs, such as Water
hyacinth and Salvinia, is substantially high, and they constantly decay and produce a
considerable amount of debris (biomass), which can cause the conversion of AIAPs areas to
open areas over time [17]. The change in the land use pattern of the surrounding areas (for
example, conversion from forest areas to agriculture) may also contribute to a high level of
surface runoff, leading to increased soil erosion and silt deposition in the water bodies; the
result of this is a reduction in the water-holding capacity of the tank system. AIAPs (such
as water hyacinth) cause high levels of evapotranspiration, leading to significant water
losses in water bodies [78]. In addition, they block irrigation canals and interfere with
water supply to agriculture. Thus, the expansion of AIAPS would have severe negative
consequences for agricultural production, as TCS serve as the main source of water for
irrigated agriculture in this area.

Therefore, the continuous monitoring and evaluation of potential impacts of climate
changes on freshwater aquatic systems is of great importance. Remote sensing image
analysis, based on the supervised maximum likelihood classification method, provides
important information for land managers, such as spatiotemporal spread patterns, range
changes, and potential distributions of AIAPs. Such information is reliable and can be
included in the formulation of policies and management actions for better land use man-
agement. In the TCS, propagules can disperse from one tank to the other easily, especially
during rainy periods, as tanks are interconnected. Thus, this should be considered while
formulating necessary management actions. The findings of the present study may be
important for conservation planners and water resource managers to be vigilant on AIAPs
issue as a potential impact of climate variability and climate change. The results of this
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study also provide implications for the use of Landsat data for similar ecological studies in
the region.

5. Limitations and Challenges of the Study

The information provided by the moderate resolution Landsat data is not sufficient
to fully differentiate AIAPs to the species level. Aquatic invaders may share the same
habitat niche with other non-AIAPs; thus, perhaps our results may overestimate the
spread of AIAPs. However, the primary occupants in the tank system are AIAPs (personal
observations by 1st and 4th authors), and non-AIAPs have always been a minor component.
Thus, we presume that the interference by non-AIAPs would be minimal for the analysis.
Further, we have taken all possible steps to correct and enhance the quality and improve the
appearance of Landsat images. Practically, classification is sometimes challenging for some
pixels, as the classification algorithm may not identify land uses correctly due to certain
reasons (i.e., when water bodies are turbid or depending on the level of chlorophyll-a
contents in water), and such situations may interfere with the classifications [51]. Heavy
rainfall can inundate shallow open areas, and thus, such areas can be classified as water.
While classifying the images, there was a challenge with the weeds (non-aquatic or non-
native plants) growing on the silted areas because of the similar spectral reflectance with
AIAPs. We minimised this error by using the Google Earth image of the same year, as the
AIAPs could be identified through their distinct growing pattern and coloration, which was
unique and different from other plants. Although Google Earth is a useful image analysis
tool, such historical images are also not sharp enough, particularly those before 2011.

In this study, we did not intend to look at seasonal variations in the spread of the
AIAPs; our key aim was to look at long-term changes. That is the reason why we chose all
the images of the same season. Hence, even if there were seasonal variations, by keeping
all the images to one season, we would still be able to pick the long-term trends. Seasonal
changes and effects are removed by selecting images of the same time period. This is an
appropriate and accepted methodology for looking at long-term changes. Our results of
post-classification represent only one land use in one pixel, and it may overlook small
sub-pixel level conversions [79]. However, in reality, some pixels represent several land
uses. The pixel size we used in these Landsat images (30 m × 30 m) is not at fine enough
resolution to overcome these issues. As such, a thorough knowledge of the study area
is needed to minimise such issues. Furthermore, freshwater ecosystems are invaded by
multiple plant invaders [80]. However, AIAPs observed in this study area (S. molesta,
E. crassipes) generally form monocultures, and thus, the possibility to assign erroneous
classification is relatively low. In addition to climate variability, several other factors, such
as nutrient level, waves and water currents, and human influences, may contribute to the
AIAPs distribution at various scales [81,82]. However, in this study, we did not consider
other potential causes, as climate variability is considered as the most influential factor for
plant invasions [72].

6. Conclusions

Freshwater aquatic systems are vulnerable to biological invaders under changing cli-
mate conditions. We conducted this research to examine how AIAPs’ distribution responds
to changes in climate variability in a selected TCS in Sri Lanka using ten historical time
periods from 1992 to 2019. The findings revealed that the AIAPs infestation is increasing in
the water systems over the long term, though there are shorter-term fluctuations. Based
on the results of the Mann–Kendall test, Sen’s slope estimator, and linear regression, we
demonstrated positive trends in the annual average temperature and total rainfall in the
study area. The output of the study shows a potential relationship between AIAPs and
the changes in temperature, which could be highly important in understanding the future
spatial and temporal distribution of AIAPs under climate change.
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