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Abstract: Meteorological observations play a major role in land management; thus, it is vital to
properly plan the monitoring network of weather stations (WS). This study, therefore, selected ‘highly
suitable’ sites with the objective of replanning the WS network in Amazonas, NW Peru. A set of
11 selection criteria for WS sites were identified and mapped in a Geographic Information System,
as well as their importance weights were determined using Analytic Hierarchy Process and experts.
A map of the suitability of the territory for WS sites was constructed by weighted superimposition of
the criteria maps. On this map, the suitability status of the 20 existing WS sites was then assessed
and, if necessary, relocated. New ‘highly suitable’ sites were determined by the Near Analysis
method using existing WS (some relocated). The territory suitability map for WS showed that 0.3%
(108.55 km2) of Amazonas has ‘highly suitable’ characteristics to establish WS. This ‘highly suitable’
territory corresponds to 26,683 polygons (of ≥30 × 30 m each), from which 100 polygons were
selected in 11 possible distributions of new WS networks in Amazonas, with different number and
distance of new WS in each distribution. The implementation of this methodology will be a useful
support tool for WS network planning.

Keywords: analytical hierarchy process; meteorological station; near analysis; suitability mapping

1. Introduction

Meteorological observations are used for real-time weather analysis, severe weather
forecasts and warnings, for weather-sensitive local operations (e.g., airfield flights or con-
struction work at land and sea facilities), for hydrology and agricultural meteorology,
and for meteorological and climatological research purposes [1–3]. However, previous
studies around the world [4–7], including in Peru [8–10], warn that there is (i) lack of
weather stations (WS) in certain important areas, (ii) a non-uniform spatial distribution
of existing WS, and (iii) variable precision of measurements because current WS sites are
often inadequate. Therefore, planning an adequate network of WS constitutes the basic
and necessary infrastructure for land management [7]. Adequate distribution of WS in-
creases the effectiveness of observations and provides more accurate analysis results [2,11].
In addition, it is essential to restructure the WS network and increase the number of WS in
countries with a high frequency of natural disasters [2], such as Peru.

Peru is located in the intertropical zone of South America, on the Pacific Coast, and,
unlike other equatorial countries, it does not have an exclusively tropical climate [12].
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In 2020, the Servicio Nacional de Meteorología e Hidrología del Perú (SENAMHI) defined
38 climate types, 11 more than the previous map, and among other factors, the updated
map included a greater number of WS [13]. Additionally, due to its geographical location,
topography, land cover, and high, non-uniform rainfall, Peru suffers from a variety of
natural disasters, including earthquakes, floods, landslides, frost, and forest fires [14,15].
In this regard, in the Amazonas region (NW Peru), the Universidad Nacional Toribio
Rodríguez de Mendoza de Amazonas (UNTRM) operates a network of 12 automatic
WS [16]. This network, as in other meteorological networks around the world [2,3], aims to
support not only research needs (climate monitoring and analysis, weather and natural
disaster forecasting capabilities, etc.) but also the needs of various communities in the
production sector (agriculture, construction, leisure activities and tourism, etc.). Currently,
UNTRM aims to expand its number of WS in suitable locations.

Determining the most suitable locations is, therefore, of utmost importance for the
sustainability and success of the WS network [2,17]. The selection of locations for a WS
involves various spatial analyses, including the distances between different land use zones,
slopes, roads, populations, and proximity to natural hazard boundaries, such as landslide
areas [2,3]. In this sense, geographic information systems (GIS), integrated with remote
sensing (RS) data and multi-criteria analysis (MCA) techniques, is an important decision-
support tool that is able to operate and analyze a wide range of spatial data and criteria [18].
GIS–RS–MCA has been used in the selection of suitable sites for hydro/agro-meteorological
stations in Turkey [2], Greece [7], the Philippines [19,20], and Colombia [21]. Two important
questions emerge from these studies. First, in Turkey [2], after MCA, a near analysis (NA)
was proposed and implemented between suitable sites determined by MCA and existing
WS, such that highly suitable sites for WS were selected. Second, these studies did not
consider the relative importance of the criteria in theie MCAs, the incorporation of which
is important in improving MCA [22]. For this, the analytical hierarchy process (AHP) is
the most widely used MCA technique, and it consists of weighing the importance of each
criterion using expert opinions [23].

In Peru, the “Protocol for the installation and operation of meteorological and hydro-
logical stations” (Section 7.2) of SENAMHI [24], establishes several criteria and guidelines
for the selection of a WS site, but it does not provide a methodological framework for WS
network planning. Accordingly, this study aims to select highly suitable sites for a WS
network by integrating AHP and NA, using the Amazonas Department (NW Peru) as the
study area. It is expected that existing WS locations are not highly suitable and need to be
relocated. In summary, (i) WS site-selection criteria were identified and mapped in a GIS,
and the weighting of their importance was determined by AHP; (ii) a map of the suitability
of the territory for WS sites was constructed; (iii) the suitability of the conditions of existing
WS sites were assessed and, if necessary, the sites were relocated; (iv) the most suitable new
sites for monitoring networks with different number of WS were determined by the NA
method, using existing WS. Finally, an integrated methodological framework of AHP and
NA in a GIS environment is proposed as a useful support tool for WS network planning,
which can be replicable in other regions with the necessary complements.

2. Materials and Methods
2.1. Study Area

In the northeastern Peruvian Andes, the Amazonas Department covers approximately
42,050.37 km2 of rugged territory, covered mainly by the Amazon rainforest, along an
elevational gradient from 120 m a.s.l., in the north, to 4900 m a.s.l., in the south (Figure 1,
3◦0′–7◦2′ S and 77◦0′–78◦42′ W) [25]. It has contrasting climates (“warm and humid”,
“dry warm”, and “warm and slightly humid temperate”), ranging from a maximum
temperature of 40 ◦C, in the lowland forest of the north, to a minimum temperature of
2 ◦C, in the mountain ranges at the southern boundary; some areas have a water deficit
of 924 mm/year and others have a surplus of up to 3000 mm/year [26]. As part of
their high biophysical diversity, four ecosystems can be distinguished [27]: (i) lowland
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forest, (ii) high forest or yunga, (iii) Andean forests and grasslands, and (iv) tropical dry
forest. Amazonas is characterized by its agricultural activity, which occupies 24.9% of the
territory and generates 51.22% of the departmental gross domestic product [27]. Currently,
there are 20 WS in Amazonas, varying by type between automatic and conventional,
administered by UNTRM (12) and SENAMHI (8) (Figure 1). In the current network there
is no uniform spatial distribution of the WS, because each institution installed WS for
its purpose, at different times, without considering a departmental distribution network
plan and the only criteria used were for convenience. Thus, currently there are elevation
ranges that are well represented, but other ranges are not, and often two WSs from both
institutions are too close to each other.
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South America (c).

2.2. Methodological Design

Figure 2 shows the methodological process developed for the selection of WS sites by
integrating the analytic hierarchy process (AHP) and near analysis (NA). This study is the
first integration of both methodologies.
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stations in Amazonas, NW Peru.

2.3. Criteria and Criteria Thresholds for Selecting a Suitable Site

The AHP structures problems into levels of sub-problems/objectives and criteria,
where each level can be analyzed independently and is more easily understood [28–30].
A hierarchy was constructed, consisting of the study sub-goal (land suitability for WS),
two criteria (biophysical and administrative), eleven sub criteria and four alternatives
(Figure 2). The criteria were established considering technical documents from World Mete-
orological Organization (WMO) [1,17,31] and Environmental Protection Agency (EPA) [32],
the Peruvian national protocol of SENAMHI [24] and studies concerning the selection of
hydro/agro-meteorological station sites [2,7,19,21]. To develop the third hierarchy, shown
in Figure 2 (the alternatives), the sub-criteria were scored on a scale of four levels of land
suitability for meteorological station sites (Table 1): (4) ‘Highly suitable’, (3) ‘Moderate
Suitable’, (2) ‘Marginally suitable’ and (1) ‘Not suitable’. These suitability levels are derived
from the five suitability levels of the FAO’s “A Framework for Land Evaluation” [33];
where, as in other studies [22,34,35], with a more restrictive approach, the last two lev-
els (Currently Not Suitable and Permanently Not Suitable) were combined to form (1)
‘Not suitable’. The ‘Highly suitable’ level (including ‘Moderately Suitable’ for some sub-
criteria) aims to meet the most stringent requirements for Class 1 sites (and therefore the
other classes) established by WMO [1] and the requirements for synoptic, climatologi-
cal, and agrometeorological station sites established in the Peruvian national protocol of
SENAMHI [24].

The site should be on flat terrain, with no steep slopes nearby, and should not be
in a hollow; otherwise, the equipment will receive considerable daily shading and WS
observations will have only locally significant peculiarities [1,17]. Reflective surfaces or
artificial heat sources (e.g., buildings, concrete surfaces or car parks), and bodies of water
or moisture (e.g., large rivers, ponds, lakes or irrigated areas), distort measurements of
temperature, humidity, radiation, wind, and other variables [1]. For both cases above,
the maximum distances recommended by WMO [1] and SENAMHI [24] are >100 m and
>30 m, respectively. Several areas of Amazonas are susceptible to landslides [15], conse-
quently, areas of high susceptibility were considered unsuitable for WS sites [2]. In addition,
a buffer zone of 500 m from the geological faults was established [2]. Agriculture is the
main economic activity in Amazonas [37]; therefore, the agricultural zone was considered
very suitable for WS sites.
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Table 1. Sub criteria scoring for selecting weather station sites in Amazonas, NW Peru.

Criteria/Sub-Criteria Highly
Suitable (4 1)

Moderately
Suitable (3 1)

Marginally
Suitable (2 1)

Not Suitable
(1 1)

Adapted
from

Biophysical

Elevation (120–4900) 2200–4900 m a.s.l. 1090–2200 m a.s.l. 120–1090 m a.s.l. – [7]
Terrain slope ≤5% 5–15% 15–25% ≥25% [17]

Terrain hillshade 0–4 h 5–7 h 8–10 h 11–13 h [2]
Land Use/Land Cover–LU/LC 2 40 20, 30, 60 >100 0, 50, 80, 90 [19]

Distance to water bodies
Main ≥1 km 0.5–1 km 0.25–0.5 km ≤0.25 [1,2,24]

Secondary ≥0.5 km 0.25–5 km 0.1–0.25 km ≤0.1 [1,2,24]
Distance to geological faults ≥1.5 km 1–1.5 km 0.5–1 km ≤0.5 km [2]

Landslide susceptibility Very low; Low Medium High Very high [2]

Administrative

Distance to roads
National 0.3–0.7 km 0.7–1.2 km 1.2–2.2 km ≤0.3/≥2.2 km [1,2,24]

Departmental 0.2–0.6 km 0.6–1.1 km 1.1–2.1 km ≤0.2/≥2.1 km [1,2,24]
Local 0.1–0.5 km 0.5–1 km 1–2 km ≤0.1/≥2 km [1,2,24]

Distance to populations Urban areas 0.2–0.6 km 0.6–1.1 km 1.1–2.1 km ≤0.2/≥2.1 km
Villages 0.1–0.5 km 0.5–1 km 1–2 km ≤0.1/≥2 km

Distance to the host institution ≤10 km 10–50 km 50–100 km ≥100 km [19]
Protected natural areas—PNA Inside Outside – – [24]

1 Pixel value of the map reclassified according to the four levels of land suitability. 2 CGLS-LC100 [36]: 0—NoData, 20—Shrubs,
30—Herbaceous vegetation, 40—Cropland, 50—Urban/built up, 60—Bare/sparse vegetation, 80—water bodies, 90—Herbaceous wetland,
and >100–all the forests.

In fact, roads and vehicular traffic do affect the measurements of WS but accessibility
is necessary for WS’ sustained operation and they must be taken into account [2,7]. Simi-
larly, although urban constructions affect measurements, proximity to them is important
to ensure power supply and surveillance of the instruments from theft and/or vandal-
ism [1,17]. In addition, the worldwide trend towards urbanization should be considered by
avoiding areas planned for urban sprawl (or with a buffer to the current urban area) [2,24].
The lack of host institutions where WS can be installed is a real barrier to achieving an
optimal number of WS in most developing countries [19]; ergo, they should be identified
and considered. Moreover, Amazonas is the third department in Peru with the highest
number of Protected Natural Areas (PNA) [38], and given the ecological importance of
these territories, they are a priority for having WS.

2.4. Mapping of Sub-Criteria for Selecting a Suitable Site

Elevation, terrain slope, and terrain shadow were derived from the ASTER Global
Digital Elevation Model V3 (spatial resolution: 30 m) downloaded from the Japan Space
Systems platform [39]. A terrain-shadow map was generated for each hour between 1200
and 0000 UTC [2] (0700 and 1900 UTC–5, Peru). For this, the sun’s elevation and azimuth,
averaged for each hour in 2020 and obtained from SunEarthTools [40] was used. In each
map, pixels fully shaded by another pixel were given a value of 0 and all other pixels were
given integer values between 1 and 255. All values greater than 1 were re-classified to 0,
and pixels with 0 or 1 and the 13 maps were summed to count the hours of shade per day
for each pixel.

The land-use/land-cover (LU/LC) base map was obtained from the Copernicus Global
Land Service-Land Cover (CGLS-LC100)-Collection 3-2019 of 100-m spatial resolution [36].
On this map, LU polygons (urban, agricultural and livestock areas) were updated from the
National Ecosystems Map of Peru [41,42], the National Map of Agricultural Surface [43],
the Amazon Economic Ecological Zoning (ZEE-A) [27], and the province of Rodriguez
de Mendoza [44]. Water bodies (rivers and lakes) were obtained from the ZEE-A [27].
Lakes and rivers of order ≥3 (Strahler method [45]) are listed as principal in Table 1 and
the remaining ones were considered secondary and without significant influence on WS
observations. The susceptibility maps for landslides [15] and geological faults [46] were
obtained from the Instituto Geológico Minero y Metalúrgico in Peru.
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The road network (national, departmental and local categories) was obtained from
the portal of the Ministerio de Transportes y Comunicaciones (MTC) [47]. The urban
polygons were extracted from the final LU/LC map and the population centres (points)
were obtained from the (MINEDU) [48]. The host institutions were the headquarters,
experimental stations and branches of the UNTRM (geo-referenced with GPS receiver) and
the public educational institutions of higher technical and university level (obtained from
MINEDU [49]). The PNA were obtained from the Servicio Nacional de Áreas Naturales
Protegidas por el Estado (SERNANP) [38].

The distances to water bodies, roads, geological faults, possible administration centres
and population centres from anywhere in the Amazonas Department were mapped using
the Euclidean distance tool. In sum, 11 thematic maps were prepared in raster models,
one map for each sub-criterion. These maps were standardized in the WGS 1984 UTM
18 South coordinate system and spatial boundaries restricted to Amazonas and a spatial
resolution of 30 m. This resolution was based on the maximum dimensions recommended
for meteorological stations by the WMO (25 × 25 m) [1] and the SENAMHI national
protocol (15 × 25 m) [24]. Then, the thematic maps for each sub-criterion were reclassified
according to the thresholds established in Table 1, assigning scores (between 1 and 4) to
each pixel.

2.5. Determination of Importance Weights of Criteria and Sub-Criteria

The development of the second and first hierarchy in Figure 2 involves constructing
pairwise comparison matrices (PCM), which compare one criterion with respect to the
others (pairwise) and establishes the degree of importance between them [50]. The applied
AHP is a variation of the traditional Saaty method, because the paired comparison was
not applied to the third hierarchy (alternatives) [28]. The comparison was based on
Saaty’s nine-level scale (Table 2) [29], and each member of a group of experts assigned
a value judgement, from the least important to the most important criterion, based on
their experience. The questionnaire with the PCM was sent by email to professionals
from SENAMHI, the Autoridad Nacional del Agua (ANA), meteorological instrument
companies and meteorological professors/researchers. Each expert completed two PCMs
at the sub-criterion level and one PCM at the criterion level (hierarchical groups in Figure 2).
The experts’ PCMs were processed (for examples of matrix processing of PCM, see [34,51])
and weighted importance was obtained for each sub-criterion and criterion. The subjective
preferences between experts can lead to inconsistencies in the importance weights, because
their matrices do not comply with the two simultaneous properties of consistency, which are
the transitivity of the preferences and the proportionality of the preferences [52]. Therefore,
the consistency ratio (CR) of each PCM was calculated to compare with an acceptable
inconsistency (CR < 0.1) [28]. CR was calculated by dividing the PCM’s consistency index
(CI) with a random consistency index (RI) [30]. This RI is defined according to the number
of criteria (n) (Table 3) [53] and CI depends on the largest or principal eigenvalue of the
matrix (λmax) and n (Equation (1)).

CI = (λmax − n)/(n − 1), (1)

Table 2. Scale established for the allocation of value judgments between two criteria in peer comparison matrices (PCM).

1/9 1/8 1/7 1/6 1/5 1/4 1/3 1/2 1 2 3 4 5 6 7 8 9

Extreme Strong Moderate
Equal

Moderate Strong Extreme

less important more important

Table 3. Random index (RI) to determine the consistency ratio (CR) of peer comparison matrices (PCM).

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

RI 0 0 0.525 0.882 1.115 1.252 1.341 1.404 1.452 1.484 1.513 1.535 1.555 1.570 1.583 1.595
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2.6. Sub-Model Generation and Suitability Modelling

The final development of the second and first hierarchy consisted of integrating the
reclassified thematic maps (based on Table 1), according to hierarchical group (Figure 2),
by weighted linear overlay (Equation (2)) [22,34,35]. The resulting suitability (GRI-Dresult)
depended on the reclassified map pixel score (GRIDi) and the sub-criterion importance
weight (WEIGHTi). The integration of sub-criteria generated the biophysical and admin-
istrative suitability sub-models, and the integration of these sub-models generated the
territory suitability model for WS. Water bodies and urban areas (polygons) were restricted
to the suitability maps, and the area (in km2) was counted within the ‘Not suitable’ level.
This process was performed with the ArcGIS 10.5 Weighted Overlay (Spatial Analyst) tool.

GRIDresult = Σ [(GRIDi) (WEIGHTi)], (2)

2.7. Near Analysis (NA) to Select WS Sites

The 20 existing WS (Figure 1) were overlaid with the WS land-suitability model to de-
termine the current condition of the land on which they are located. In addition, the ‘highly
suitable’ terrain (according to the decision rule in Figure 3a) closest to each WS was deter-
mined in order to relocate the currently misplaced WS. This step was based on the near
analysis (NA) method. NA calculated the distances between two input spatial features
(input feature = 20 existing WS; near feature = only ‘highly suitable’ polygons from the WS
land-suitability model) (Figure 3b,c) [2,54]. This process was performed with the ArcGIS
10.5 Near (Analysis) tool.
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Then, the selection of ‘highly suitable’ sites for installing new WS was also based
on the NA method, but by swapping the function of the two spatial input features
(input feature = only ‘highly suitable’ polygons of the WS land suitability model; near
feature = 20 relocated existing WS). From the first iteration, the furthest ‘highly suitable’
polygon was chosen as the first new site (WS number 21). In the second iteration, the second
new site (WS number 22) was determined as the furthest ‘highly suitable’ polygon in re-
lation to the 21 WS. Successive iterations were performed, considering new sites at each
iteration, until the furthest distance was less than 9 km [19].

3. Results
3.1. Importance of Criteria and Sub-Criteria

The weighted scores for each sub-criterion (Table 4) were calculated from the mean of
the evaluations of five (5) meteorological experts. This group of experts that responded
and approved with CR < 0.1 was made up of an expert from SENAMHI, one from ANA
one from Peru Davis Instruments E.I.R.L., and two professors/researchers in meteorology.
The sub-criteria terrain slope (22.8%) and distance to water sources (21.4%), followed by
terrain hill shade (16.2%) and land use/land cover (15.3%), obtained the highest weight-
ing with respect to their biophysical criteria group. In the administrative criteria group,
distance to roads (36.2%) and distance to populations (32.8%) were the most important
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sub-criteria. Regarding the group of criteria, biophysical (68.3%) was more important than
administrative (31.8%).

Table 4. Importance weights (%) for the second and third hierarchies of criteria for selecting sites for weather stations in
Amazonas, NE Peru.

Criteria Weight (%) Rank Sub-Criteria Weight (%) Rank Standardized
Weight (%)

Standardized
Rank

Biophysical 68.3 1

elevation 9.1 5 6.2 7
terrain slope 22.8 1 15.6 1

terrain hill shade 16.2 3 11.1 4
land use/land cover–LU/LC 15.3 4 10.4 5

distance to water sources 21.4 2 14.6 2
distance to geological faults 8.8 6 6.0 9

landslide susceptibility 6.4 7 4.4 10

Administrative 31.8 2

distance to roads 36.2 1 11.5 3
distance to populations 32.8 2 10.4 6

distance to host institution 19.1 3 6.1 8
protected natural areas–PNA 11.9 4 3.8 11

3.2. Maps of Sub-Criteria Based on Levels of Land Suitability

Figure 4 shows the reclassified maps, based on suitability thresholds (Table 1), of
the biophysical and administrative sub-criteria. The sub-criteria with the largest ‘highly
suitable’ area, regarding their criteria group, were: distance to geological faults (56.1%) and
protected natural areas (14.6%), while those with the largest ‘not suitable’ area were terrain
slope (61.0%) and distance to roads (81.2%) (Table 5). Hence, distance to geological faults is
the sub-criterion that most favours the selection of sites for weather stations in Amazonas,
while distance to roads is the most restrictive.

Table 5. Suitability area for sub-criteria to select weather station sites in Amazonas, NW Peru.

Criteria Sub-Criteria
Highly Suitable Moderately Suitable Marginally Suitable Not Suitable

km2 % km2 % km2 % km2 %

Biophysical

elevation 9074.79 21.6 12,653.08 30.1 20,322.50 48.3 0.00 0.0
terrain slope 1401.33 3.3 6746.96 16.0 8253.54 19.6 25,648.55 61.0

terrain hill shade 1273.10 3.0 38,736.11 92.1 1457.69 3.5 583.47 1.4
land use/land cover 6370.39 15.1 3338.05 7.9 31,968.04 76.0 373.89 0.9

distance to water sources 22,745.08 54.1 8202.42 19.5 5512.17 13.1 5590.70 13.3
distance to geological faults 23,594.53 56.1 5077.33 12.1 6106.74 14.5 7271.78 17.3

landslide susceptibility 9825.67 23.4 13,935.97 33.1 13,380.99 31.8 4907.74 11.7

Administrative

distance to roads (km) 2466.98 5.9 2276.15 5.4 3167.66 7.5 34,139.59 81.2
distance to populations (km) 1090.42 2.6 2156.41 5.1 4953.48 11.8 33,850.07 80.5

distance to the host institution 3821.34 9.1 26,049.86 61.9 7972.20 19.0 4206.97 10.0
protected natural areas 6157.50 14.6 35,892.87 85.4 0.00 0.0 0.00 0.0
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3.3. Suitability Sub-Model Maps

With the weighted overlap of sub-criteria, suitability sub-models were generated for
each hierarchical group (Figure 5a,b). The administrative sub-model had the largest ‘highly
suitable’ area (663.45 km2) and ‘not suitable’ area (10,253.37 km2) for selecting locations
for WS in Amazonas (Table 6). The land-suitability model for WS (Figure 5c) indicated
that 0.3% (108.55 km2) of the Amazon region has characteristics that are highly suitable
for installing WS. This ‘highly suitable’ territory corresponded to 115,706 30 × 30 m pixels,
which formed 26,683 ‘highly suitable’ polygons for installing WS.
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Table 6. Areas of suitability of sub-models for selecting sites for weather stations in Amazonas, NW Peru.

Criteria/Sub Goal
Highly Suitable Moderately Suitable Marginally Suitable Not Suitable

km2 % km2 % km2 % km2 %

Biophysical 228.01 0.5 25,070.59 59.6 16,646.35 39.6 105.42 0.3

Administrative 663.45 1.6 4135.80 9.8 26,997.76 64.2 10,253.37 24.4

Land suitability for weather stations 108.55 0.3 20,562.52 48.9 21,274.89 50.6 104.41 0.2

3.4. Relocation of WS and the Selection of Sites for New WS

Of the 20 existing WS, 5% (1 WS, WS Chachapoyas-SENAMHI), 70% (14 WS), and 20%
(5 WS) are located in ‘highly suitable’, ‘moderately suitable’ and ‘marginally suitable’
terrain, respectively (Table 7). The closest ‘highly suitable’ terrain to the 19 WS that are
not in ‘highly suitable’ terrain is between 0.9 m (WS Bagua-SENAMHI) and 2387.0 m
(WS Congon-UNTRM). One hundred iterations were performed, taking into account the
relative distances of the 20 existing WS (19 WS relocated to the nearest ‘highly suitable’
terrain). Figure 6 shows 11 possible distributions of the WS network in Amazonas, with
varying numbers of new WS and distances between them depending on each distribu-
tion. The northernmost point of Amazonas, in Figure 6, is the furthest (70.79 km) from
the existing WS and it was identified as the location of WS number 21. WS numbers
22–27 (Figure 6a) were identified at 52.07 km, 48.72 km, 47.38 km, 42.74 km, 42.06 km,
and 40.35 km relative to the WSs that were used for iteration. At iteration 100, the ‘highly
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suitable’ polygon that was furthest away from the preceding 99 WS (Figure 6k) was 8.73 km
(<9 km) distant, thus halting the iterations for the purpose of this study.

Table 7. Suitability of the existing WS sites and very suitable locations closer to them in Amazonas, NE Peru.

WS ID WS Name Current Suitability
Nearest Highly Suitable Territory

Distance (m) Coordinates (◦)
1 Agua Dulce moderate 243.9 −77.8791 −5.6906
2 Chachapoyas moderate 171.0 −77.8515 −6.2339
3 Bagua moderate 58.1 −78.5113 −5.6448
4 Cocachimba moderate 2153.8 −77.8943 −6.0773
5 Huambo moderate 117.1 −77.5237 −6.4373
6 Olleros moderate 838.4 −77.6574 −6.0667
7 Leimebamba moderate 81.4 −77.7987 −6.7234
8 Luya Viejo moderate 83.6 −78.0285 −6.1384
9 Molinopampa moderate 704.9 −77.6718 −6.2206

10 Pomacochas moderate 254.2 −77.9632 −5.8228
11 Suyubamba marginal 1124.0 −77.9546 −5.9259
12 Congon marginal 2387.0 −78.1210 −6.3128
13 Jazan marginal 1783.9 −77.9696 −5.9598
14 Bagua moderate 0.9 −78.5340 −5.6614
15 Jamalca moderate 177.1 −78.2335 −5.8912
16 El Palto moderate 196.6 −78.4726 −5.9998
17 Aramango marginal 1828.3 −78.4443 −5.4339
18 Chiriaco marginal 956.8 −78.2965 −5.1631

19 Santa María de
Nieva moderate 270.8 −77.9390 −4.8328

20 Chachapoyas high – – –
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4. Discussion

Unlike previous studies that used GIS–MCA as a tool to support site selection for
hydro/agro/urban/road weather stations [2,7,19–21,55–57], this study included a larger
number of criteria. However, in this type of study, the number of sub-criteria depends on
the focus of the study and the availability of spatial data [22]. In Peru, and specifically in
the Amazonas Department, these spatial resources are scarce, even more so for specific
studies of biological, environmental, and socioeconomic criteria at detailed, local scales [34].
Therefore, this study tried to use readily available spatial data so that the study could
be replicated in other places that have the same difficulties. However, for studies in
regions with data availability, for example, proximity to the flow of electricity or cell-phone
coverage (or telecommunications in general), such can be incorporated [17], as could the
requirements of potential investors.

In this study, terrain slope (15.6%), followed by distance to water sources (14.6%)
and Distance to roads (11.5%) were the most important sub-criteria fin selecting WS
sites. These sub-criteria were consistent with those established as priorities in previous
studies [2,7,19–21]. In fact, terrain slope is the criterion most evaluated and highlighted by
the WMO [1,17,31], EPA [32], and SENAMHI [24] in different technical documents. This
is due to the various effects that slopes and their directions (and, in general, the type of
relief or morphological environment) have on radiation, wind flow, and the amount of
shadow that the WS instruments receive. These documents also highlight the importance
of considering proximity to reflective surfaces (e.g., roads) and water sources, because they
distort instrument measurements.

Furthermore, of all previous studies [2,7,19–21,55–57], only four [21,55–57] integrated
AHP to hierarchize and weight the importance of their criteria, but these are very local
studios (e.g., urban or road WS); and only one [2] did not integrate AHP but used NA to
select optimal sites after GIS–MCA. This study represents the first integration of the AHP
technique and the NA method in site selection for WS. Among its advantages, the easy
applicability a both regional and national scales stands out, however, the main limitation
would be that it does not incorporate the historical spatial behaviour of climatological
criteria [17]. In this sense, the precipitation and/or temperature data from SENAMHI [58]
(for Peru) and/or WorldClim [59] (for any area of the world) can be incorporated during
or after the MCA to improve the distribution of WS. In addition, to improve the NA,
complex network analysis can be incorporated, whose application to the optimal design of
hydrometric station networks is recent [60].

For future studies, it is possible to run a single iteration of the NA method and choose
all locations further away than the number of WS to be installed or based on the distance
threshold between WS, however, it is not recommended to do so. Instead, it should be done
iteration by iteration, as each new location can be moved at the judgement of the researcher.
Two sites may be the same distance apart, but one may be prioritized or relocated to
another site, due to the proximity to a community, or by other, more local expert criteria.
This increases the efficacy of the WS network. In addition, in mountainous areas, such as
the south of the Amazonas region, it is necessary to increase the density of the stations,
since they present greater climatic variability as compared with flat areas [61].

Eleven possible distributions of new WS networks in Amazonas are presented, with
different numbers and distances of new WS in each redistribution. The purpose of this is
to prioritize the implementation of each distribution according to the budgets and scope of
the project. As not all of them will be installed in a single project, it is recommended to
prioritize points in the order from which they resulted from the iteration. Namely, if an
institution other than the UNTRM intends to install a WS, it is recommended to install it at
the most highly suitable point determined by this study that is of convenient proximity
for administration. It is suggested that the projects intending to install WS in Amazonas
should follow the order in which the positions of the new sites were identified, until the
desired distance/density is reached or the budget is spent. In this way, all institutions can
start contributing to the restructuring of the WS network. In addition, amateurs can access
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this map and install WS; Bell et al. [62] demonstrated that data from amateur observation
stations can be useful for several applications.

5. Conclusions

Eleven key sub-criteria, grouped into two criteria, were identified for selecting WS
sites. For Amazonas, biophysical criteria were more important than administrative criteria.
Of the biophysical criteria, terrain slope (22.8%) and distance to water sources (21.4%) were
the most important, while of the administrative criteria, distance to roads (36.2%) and
distance to populations (32.8%) were the most important. The territory suitability map for
WS indicated that 0.3% (108.55 km2) of Amazonas presents ‘highly suitable’ characteris-
tics for installing WS. This ‘highly suitable’ territory corresponds to 26,683 polygons (of
≥30 × 30 m each), from which 100 polygons were selected in 11 possible distributions of
new WS networks in Amazonas, with varying numbers of and distances to the new WS in
each distribution.

In Peru, no references to this type of study have been found, therefore, a methodolog-
ical framework is presented for Amazonas, which can be replicated, with the necessary
complements, throughout Peru. The implementation of this methodology will be a useful
support tool for the planning of WS networks.
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