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Abstract: Risk analysis of water resources systems can use statistical weather generators coupled with
hydrologic models to examine scenarios of extreme events caused by climate change. These require
multivariate, multi-site models that mimic the spatial, temporal, and cross correlations of observed
data. This study developed a statistical weather generator to facilitate bottom-up approaches to assess
the impact of climate change on water resources systems for cases of limited data. While existing
weather generator models have impressive features, this study suggested a simple weather generator
which is straightforward to implement and can employ any distribution function for variables such
as precipitation or temperature. It is based on (1) a first-order, two-state Markov chain to simulate
precipitation occurrences; (2) the use of Wilks’ technique to produce correlated weather variables at
multiple sites with the conservation of spatial, temporal, and cross correlations; (3) the capability
to vary the statistical parameters of the weather variables. The model was applied to studies of
the Diyala River basin in Iraq, which is a case with limited observed records. Results show that it
exhibits high values (e.g., over 0.95) for the Nash–Sutcliffe and Kling–Gupta metric tests, preserves
the statistical properties of the observed variables, and conserves the spatial, temporal, and cross
correlations among the weather variables in the meteorological stations.
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1. Introduction

Climate change impacts are of increasing concern to hydrologists who assess risks in the
management of water resources systems. Their models of climate scenarios for extreme events can
be derived from global climate models (GCMs), stochastic-statistical weather generators (SWGs),
or a combination. Although they have their own advantages, some argue that the GCM scenarios
are inadequate and limit decision-making options because they represent only specific scenarios for
climatic variability and have large uncertainties [1–6]. On the other hand, others think that SWGs can
produce a wide range of scenarios to study system responses and provide more insights about the
system performance under climate change [7–10]. The drawbacks of the SWGs are that they have a
stochastic-basis and cannot provide future change insights. Therefore, the SWGs and GCMs have
been linked to generate forecasting scenarios and to assign a probability of each SWG scenario by
fitting a distribution to the GCM outcomes [11–13]. In this way, SWGs can then be used to generate
probabilistic synthetic scenarios with the aid of the GCM information and which are statistically similar
to observed data and used to investigate which climate states cause system failure [4,14–23]. Where
historic records are limited, synthetic weather sequences based on SWGs are especially suitable [24].
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Given the previous work, the main objective of this paper is to develop a SWG that can be used in a
bottom-up approach to generate daily synthetic scenarios to evaluate the impacts of long-term climate
change on system performance and suggest robust adaptations to cope with anticipated negative
impacts that will be examined in a follow up study. Emphasis is placed on areas with low data
availability, and the model is demonstrated for Diyala River basin in Iraq for the four historic weather
variables (e.g., precipitation, maximum and minimum temperatures, and wind speed magnitude) with
daily time steps from 1948 to 2006.

2. Literature Review

Generally, SWGs can be grouped into parametric, non-parametric, and semi-parametric methods.
In the parametric method, the weather variables are assumed to fit one continuous probability
distribution or two combined distributions. The parameters are usually estimated from historic
observations [24–28]. In the non-parametric method, the weather variables are resampled from
historic observations using techniques such as empirical distributions, neural networks, and maximum
entropy bootstrap [29–32]. The semi-parametric method is a mixture between parametric and
non-parametric methods.

Albeit other approaches have their advantages, the parametric SWG in the bottom-up approach is
preferable because the parameters can be altered to simulate different weather scenarios and facilitate
climate change studies [16]. Verdin et al., [15], Furrer and Katz [18], Buishand and Brandsma [33],
Seneviratne et al., [34] noted that the non-parametric method has limitations in generating extreme
events because values can only be in the range of the observations. Using only the observed sequences
ignores climate change’s impacts on altering the intensities of the variables and is insufficient in assessing
the future response of water resources systems because it leads to single results corresponding only to
these observed sequences [22,23,25,34–36].

Most existing SWGs are for single sites and cannot capture the spatial and cross correlations
between the variables, which are essential for generating realistic climate change scenarios. Schaake
et al., [37] stated that “relationships between physically dependent variables like precipitation and
temperature should be respected”. Single site SWGs can fail to capture the extreme events of the
generated runoff, which are essential to develop realistic adaptation strategies to cope with flood and
drought events, especially where a high runoff in one sub-basin can be offset by the low runoff in
adjacent sub-basins [26,35,38].

Moreover, the misrepresentation of spatial and cross correlations (e.g., correlations between the
precipitation and temperature) leads to biased generated streamflows as this correlation determines the
water availability for evapotranspiration and snowmelt [32,39,40]. Therefore, SWGs should capture
the characteristics of each site and the spatial dependence among them.

Recently, multi-site and multi-variable SWGs have been developed using different approaches.
Steinschneider and Brown, [4] developed a semi-parametric model using a k-nearest-neighbor
resampling scheme to simulate multiple spatially distributed variables using wavelet decomposition
and autoregressive model to account for low-frequency oscillations. They used a Markov chain
of first-order with three states to identify the precipitation states (e.g., dry, wet, and extremely
wet). This model had difficulty in preserving the weather statistics besides the cross correlation.
Additionally, it is not clear how to diagnose the differences between the precipitation states (e.g., wet
and extremely wet).

Srivastav and Simonovic, [32] developed a non-parametric model using the maximum entropy
bootstrap technique to capture the time-dependent structure and statistical characteristics. They used
an orthogonal transformation to capture the spatial correlations. Even though the model preserves the
historical characteristics, Verdin et al., [15] and Chen et al., [40] showed that the maximum entropy
bootstrap technique is limited to the historical data range leading to inadequacy in climate change
studies. It is difficult to employ this model to create different climate scenarios through variations
of parameters.
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Li and Babovic, [41] proposed a two-stage parametric model using an empirical copula to generate
spatial distribution templates. Then, they developed a rank ordering technique that depended on
historic data ranks with an empirical copula technique to preserve the correlations between the
variables. The model preserves correlations between the variables and sites but is limited to the historic
record length. For example, the model cannot generate more than 30 years of simulation if the historic
observations are 30 years. Therefore, the model is not useful in areas with limited data length as an
insufficient projection length may lead to wrong conclusions in risk assessment studies [42,43].

Verdin et al., [15] presented a model using a Bayesian hierarchical technique. The precipitation
amounts are modeled using gamma distributions and maximum and minimum temperatures are
modeled using a normal distribution. The statistical coefficients within them are modeled as spatial
Gaussian processes to account for the correlations. Besides the complexity of model structure, the model
has difficulty in preserving the statistical properties of the variables (especially the standard deviation
of the minimum temperature is extremely underestimated by the model). Additionally, the model
underestimates the spatial correlation between the variables. Furthermore, their results do not
demonstrate the model’s ability to preserve the cross correlation between the variables as well as the
temporal correlation.

3. Model Description

The goal here is to develop a parametric regional weather generator (PR-WG) to generate daily
stochastic weather variables that preserve their statistical parameters, such as the mean and standard
deviations, as well as the spatial, temporal, and cross correlations among them. It should be easy
to implement and adapt by altering the statistical parameters to generate synthetic future climate
scenarios. The generated scenario must exceed the historic record length and observation range.

The novel contribution is to use a parametric approach to create a flexible model that can adapt to
any continuous probability distribution. This will enable the use of the most accurate distribution for
each weather variable, and the user can employ other distributions according to the data availability
and scope of the study.

3.1. Precipitation States

The first step in developing the PR-WG is to establish the precipitation states. They are defined
here as: wet days if the daily amounts equal or exceed 0.1 mm and dry days otherwise. This is
similar to the approach by Verdin et al., [15] and Li and V. Babovic [41]. The approach is to use the
first-order two-state Markov chain (FTMC), which is the most popular method to produce dry and
wet precipitation occurrences. It works well in different climate types and performs as well as higher
Markov chain orders [21,22].

Let S(k,t,m) denote the precipitation state (S = 0 is a dry day and S = 1 is a wet day) at spatial location
k ∈ N, time index t ∈ N in days, and month index m = {1,2, . . . 12}. The dry or wet day occurrence is
obtained from the following conditional probabilities:

Pr (S(k,t,m) = 0 |Sk,t−1,m = 0) = κ0 ; Pr (S(k,t,m) = 1 |Sk,t−1,m = 0) = 1− κ0 (1)

Pr (S(k,t,m) = 1 |Sk,t−1,m = 1) = κ1 ; Pr (S(k,t,m) = 0 |Sk,t−1,m = 1
)
= 1− κ1 (2)

where, κ0 is the probability of a dry day following a dry day, and κ1 is the probability of a wet
day following a wet day. These probabilities were estimated from the daily historical precipitation
observations for each month.

3.2. Precipitation Amount

Precipitation amounts were calculated by using the joint probability distribution between the
occurrence and amount. For example, once a wet day is predicted from the FTMC, the precipitation
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amount is calculated. A skewed normal distribution (SN) was selected because it was recommended
by other researchers and estimates the daily precipitation amount better than other distributions such
as exponential, gamma, Weibull, mixed-exponential, and generalized Pareto in capturing the mean,
standard deviation, and extreme values [20,21,36,44,45].

Let P denote the precipitation amount in mm/day and
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Ψ denote the indicator of precipitation
state condition ψ. P returns to a value obtained implicitly from Equation (4) [46] if the condition ψ
holds (
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is Weibull with three and two parameters, respectively, followed by gamma. Given the condition that 
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[S(k,t,m)=0]
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θ(k,t,m) =
6

γp(k,m)


[
γp(k,m)

2

(P(k,t,m) − µp(k,m)

σp(k,m)

)
+ 1

] 1
3

− 1

+
γp(k,m)

6
(4)

where θ is the matrix of the standard normal deviates θ ~ N(0,1) ε R, and µp, σp, and γp, are the mean,
standard deviation, and skew coefficient of the precipitation for month m. The values of the parameters
µp, σp, and γp were estimated from the daily historical observations using the method of maximum
likelihood estimation (MLE).

3.3. Maximum and Minimum Air Temperature

The maximum and minimum daily air temperatures are usually modeled by the normal distribution
(N) [47,48]. Let TX and TN denote the maximum and minimum daily air temperature in ◦C, respectively.
In which, TX is (and TN) is:

TX(k) ∼ N
(
µX(k), σX(k)

)
(5)

where µX and σX are the mean and standard deviation of TX, respectively. Solving Equation (5) for each
month m according to
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Ψ (to account for precipitation state effects), Tx and TN can be computed as:

TX(k,t,m) = µx0(k,m) + σX0(k,m) ×
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[S(k,t,m)=1] (9)

where, µX0, µX1, µN0, µN1, σX0, σX1, σN0, and σN1 are the monthly mean and standard deviation for
the maximum and minimum air temperature (◦C/day) for S = 0 and 1, respectively, and υ and δ are
the matrices of standard normal deviates, such that υ and δ ~ N (0,1) ε R. The parameter values of
Equations (6)–(9) were estimated from the historic observations using MLEs.

3.4. Wind Speed Magnitude

Ref. [49] showed that the most accurate function to simulate the daily wind speed magnitude
(WS) is Weibull with three and two parameters, respectively, followed by gamma. Given the condition
that wind speed is affected by precipitation states and amounts [50], the selected distribution must
be decomposed into the same distribution type. As the Weibull distribution cannot be decomposed
into two Weibulls (although gamma can be [51]), wind speed magnitude was modeled by the gamma
distribution (GM) in this study. Let WS denote the daily wind speed magnitude (m/s) for k locations,
as follows:

WS(k) ∼ GM
(
α(k), β(k)

)
(10)
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where α and β are the shape and scale parameters, respectively. Similarly for the temperature, the WS
for each month m, according to
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Ψ, was estimated implicitly from the following equations:

λ(k,t,m) =
β0(k,m)

−α0(k,m)

Γ
(
α0(k,m)

) ∫ WS(k,t,m)

0
hα0(k,m)−1 exp−h/β0(k,m) dh f or
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[S(k,t,m)=0] (11)

λ(k,t,m) =
β1(k,m)

−α0(k,m)

Γ
(
α1(k,m)

) ∫ WS(k,t,m)

0
hα1(k,m)−1 exp−h/β1(k,m) dh f or
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[S(k,t,m)=1] (12)

where α0, α1, β0, and β1 are the shape and scale parameters for S = 0 and 1, respectively, for each
month m, h is an independent parameter, and λ is the cumulative probability, which is distributed
uniformly—λ~ U [0, 1], ε R. The shape and scale parameters were estimated from the historic
observations using MLEs.

4. Model Implementation

The parametric SWG should conserve the spatial, temporal, and cross correlations of the historic
observations of the four weather variables. The concept is to study the behavior of the variates θ,
υ, δ, and λ, hereafter referred to as anomalies. The correlations between those anomalies should be
identified so the generated weather values are statistically similar to the observed values and conserve
spatial, temporal, and cross correlations. The implementation of the PR-WG consists of two stages,
namely preprocessing and postprocessing, as shown in Figure 1.

4.1. Preprocessing: Parameter Estimation and Matrix Preparation

In order to specify the wet and dry occurrences, a random uniform variate y ~U(0, 1) must be drawn
and compared with the transition probabilities obtained from Equations (1) and (2). For multi-site
precipitation, the anomalies (referred to as Y ε R) that identify the states in k locations must be
correlated so that the generated states S are correlated to the historic observations. Wilks’ method was
selected to generate correlated anomalies Y~ N(0,1) at multiple sites. It is simple and more efficient
than hidden Markov and k-nearest neighbor methods [52], accurate in generating the correlations of
monthly interstations [53], and the most cited method compared to other approaches [54].

Assume S (1,m) and S (2,m) are the precipitation states on month m at sites k = 1 and k = 2.
To generate realistic sequences of the precipitation states at these two sites, the correlation (ω) between
their corresponding anomalies Y, ω(1,2) = corr (Y(1,m), Y(2,m)) must be computed. The parameter ω
was determined by generating different sets of Ý at the two sites with different arbitrary correlation
values {ώ1, ώ2, . . . }, ώ1 =corr (Ý (1,m), Ý (2,m)), identifying the precipitation states at the two locations
Ś1 and Ś2, and calculating the corresponding correlation {έ1, έ2, . . . }, έ1(1,2) = corr (Ś(1,m), Ś (2,m)). Then,
a regression line between έ and ώ sets was fitted to identify the relationship between them. Using this
regression equation with the observed precipitation state correlation ξ, the parameter ω can then be
found. A synthetic example is shown in Figure 2a, in which selecting a 0.858 correlation between the
pair anomalies (ω) will produce 0.785 correlation between the pair states (ξ) at the two locations.

The process should be repeated for each station pair and lead to the number of realizations of k
(k-1)/2 and be repeated for each month m to create the anomalies matrix ωs ∈ R. The ωs matrix is then
used to develop Y that produces correlated precipitation states in k locations for month m, using the
multivariate normal distribution as follows,

Y = f
(
µy, Σ

)
=

1√
Σ (2π)d

exp
(
−

1
2

(
y− µy

)
Σ−1

(
y− µy

))
(13)
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The variable µy denotes the 1-D mean vector for the anomalies Y, Σ denotes the covariance matrix,
and d is an independent parameter. In this case, µ = [0, 0, . . . , 0]k×1 and the variance is 1, so the
covariance matrix Σs becomes the correlation matrix ωs.

The matrix ωs must be a positive-definite matrix (e.g., the matrix is symmetric and all its
eigenvalues are positive) to be implemented in Equation (13). Since the elements of ωs were calculated
empirically, ωs is usually a non-positive matrix. Comparing to the work of others, the most precise
method to obtain a positive-definite matrix is the iterative spectral with Dykstra’s correction (ISDC) [55],
as follows:

1) Assume ωi = ω, ∆Ωi = 0, and i = 1, in which ω is a non-positive-definite correlation matrix.
2) Let Ri = ωi − ∆Ωi.
3) Find Li, and Ωi, such that Ri = Ωi Li ΩT

i .

4) Replace the negative eigenvalues of Li by a small positive value to construct L+
i .

5) Set ωi+1 = Ωi L+
i ΩT

i and ∆Ωi+1 = ωi+1 − Ri. Then, replace all ωi+1 diagonal elements with 1.

6) Test whether ωi+1 is a positive-defined matrix or not. If not, repeat the steps from two to six by
making i = i + 1 and ωi = ωi−1.

After generating the matrix S at k and m, the next step is to simulate the weather variables
(e.g., P, TX, TN and WS). The idea here is to examine the anomalies of these variables and generate
the weather variables with the same observation properties. To account for all the spatial and cross
correlation between the variables, their anomalies (θ, υ, δ, and λ) must be correlated. The temporal
correlation, identified by the Lag-1 day auto-correlations, for the TX, TN and WS must also be considered.
Since the precipitation amount is an intermittent variable, the auto-correlation is not considered. The
following procedure was suggested to achieve this purpose. First, arrange the weather variable matrix
V as follows, 

V1
1,1

V1
2,1

V1
1,2

V1
2,2

· · ·
Vn

1,k
Vn

2,k
...

... . . .
...

V1
t,1 V1

t,2 · · · Vn
t,k

 (14)

where, V represents the observed weather variable value and n denotes the weather variable rank
(P, TX, TN and WS), n = {1, 2, 3, 4}. The total number of the rows will be T = month days × year numbers,
the columns will be K × N, and the aisle will be M. This matrix arrangement enables us to consider all
the spatial and cross correlations between the weather variables. Next, extract the anomalies matrix Z
∈ R from V using Equations (3) and (4) for P; Equations (6)–(9) for Tx and TN; Equations (11) and (12)
for the WS, after estimating their parameters (e.g., µp, σp, γp for P, µX0, µX1, σX0, σX1 for Tx, µN0, µN1,
σN0, σN1 for TN, and α0, α1 β0, β1 for the WS).

The Z matrix represents the anomalies of the weather variables and their elements have spatial,
cross-, and auto-correlation magnitudes. To generate the Z matrix with the same observation properties,
these correlations must be preserved. The first step done here was to estimate autoregressive model of
order 1, AR(1), coefficients for the anomalies (ϕz) so that the generated variables have the observed
AR(1) value (ϕv) applying Wilks’ technique. For illustration, synthetically assume that the values of
µX0, µX1, σX0, σX1 are 11.72, 9.12, 3.71, 2.21 (Co/day), respectively, and ϕv is 0.82 at station k of month
m. The adopted procedure for obtaining the ϕz is as follows:

1) Generate the standard normal random deviate set y; y ~ N (0,1).
2) Use y with Equations (1) and (2) to identify the dry and wet days.
3) Generate a standard normal random deviate set x; x ~ N (0,1).
4) Apply the AR(1) of arbitrary values between –1 and 1 (e.g., ϕ’z).
5) Obtain the anomalies z by standardizing x of Step 4.
6) Apply Equations (6) and (7) to obtain T’X.
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7) Calculate the AR (1) of TX (e.g., ϕ’v) and plot versus the ϕ’z, then regress them.
8) Use the regression equation obtained in Step 7 with the observed valueϕv (e.g., 0.82) to determine

ϕz. In this case, 0.88 (as shown in Figure 2b).

This procedure must be done for all Tx and TN of each k and m. For the WS, the procedure is
the same except for Step 5, converting x so it is uniformly distributed to get the WS anomalies. For
example, let us assume that α0, α1, β0, and β1 are 4.04, 3.22, 0.62, 0.71, respectively, and the ϕv is 0.54.
The corresponding ϕz will be 0.56, as shown in Figure 2c. This procedure allows us to preserve the
auto-correlation of Tx, TN, and the WS.

The final step of the preprocessing stage is to construct the positive-definite correlation matrix of
the variable anomalies ωV, as done for precipitation states using ISDC. Building the ωV allows us to
preserve all the spatial, temporal, and cross correlations between the variables.

4.2. Postprocessing Stage: Variable Generation

After building all matrices and estimating the parameters in the preprocessing stage, the four
weather variables can be generated for any time length of interest, as follows:

1) Use Equation (13) with ωs to generate Y anomalies that denote S. The length of Y denotes
the day number of the generated time series. In this case, the user can generate any length
(independently of the historic observation length).

2) Use Equations (1) and (2) with the estimated FTMC parameters (κ0 and κ1) to identify the dry
and wet day occurrences.

3) Apply Equation (13) with ωv to generate Z anomalies that denote the variable values. Of course,
the length of Z must be the same of Y.

4) Obtain P for the wet days using Equations (3) and (4) with the estimated parameters µp, σp,
and ιp. This will make sure the generated P have similar observed statistics.

5) Apply the AR (1) with coefficients φz for Tx, TN and the WS anomalies to consider the
auto-correlation magnitude for the variables.

6) Re-standardize the anomalies for TX and TN, as follows:

Zstd(k) =
Z(k) − µ

(
Z(k)

)
σ
(
Z(k)

) (15)

where Zstd represents the standardized anomalies Z of Step 5, and µ(Z) and σ(Z) are the mean
and standard deviation of Z, respectively.

7) Apply Zstd in Equations (6)–(9) with the estimated parameters µX0, µX1, µN0, µN1, σX0, σX1, σN0,
and σN1 to calculate Tx and TN.

8) Convert the anomalies Z of the WS to be uniformly distributed between 0 and 1 ZU, as follows:

ZU(k) = 0.5× er f

Z(k) − µ
(

Z(k)

)
√

2 σ
(

Z(k)

) + 0.5 (16)

9) Apply ZU in Equations (11) and (12) with the estimated parameters α0, α1, β0, and β1 to calculate
the WS. Steps 3 to 9 enable us to preserve the observation statistics of Tx, TN and the WS and
the spatial, temporal, and cross correlations with consideration of the precipitation states effects
through decomposing their distribution functions.

10) Repeat Steps 1 to 9 for all months m.
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5. Case Study and Data

The developed PR-WG was tested in the Diyala River basin, which is a transboundary basin
between Iran and Iraq with a total stream length of 217 km and basin area of 16,760 km2 above
Derbendikhan Dam, as shown in Figure 3. In previous work, Waheed et al., [5] implemented the
daily weather data (e.g., precipitation, maximum and minimum temperature, and wind speed) in
this basin at a 0.5◦ spatial resolution from 1948 to 2006 and explained the implementation procedure.
In this follow up study, the historic forcing data were used to validate the proposed PR-WG and
test its performance. The reader should refer to the original paper for more details about the data
implementation and their validation in the basin.
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6. Results and Discussion

6.1. Model Performance Evaluation

The PR-WG was tested for its daily performance with historic observations for the period between
1948 and 2006, e.g., 58 years, in a grid composed of 24 grid-cells. The Nash–Sutcliffe coefficient
efficiency (NSCE; [56]) and the Kling–Gupta efficiency (KGE; [5]) were used to evaluate the PR-WG’s
ability to produce spatially correlated precipitation states S similar to the observed values, as follows:

NSCE = 1−
∑
( Simi −Obsi )

2∑
( µsim − Simi )

2 (17)

KGE = 1−

√(
µsim

µobs
− 1

)2

+

(
σsim
σobs
− 1

)2

+ (ρ− 1)2 (18)

where Sim and Obs are the simulations (e.g., the PR-WG outcomes) and the observations of the time
index t, respectively; µobs, σobs, µsim, and σsim are the mean and standard deviation of the observations
and simulations (e.g., the PR-WG outcomes), respectively, and ρ is the correlation coefficient between
the observations and simulations.
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Figure 4 shows the comparison of 10 separate daily simulations each of the same observation
length (e.g., 58 years) of PR-WG monthly dry and wet occurrences in gray color dots. The average
of these 10 simulations is calculated and plotted in blue dots. The A 1-1 line is also plotted to ease
the comparison. It is evident that the model works well to produce the number of dry and wet days,
with KGE and NSCE values of 0.97. This result demonstrates the ability of the FTMC to produce the
precipitation states well [21,22]. Figure 5 shows a comparison of pairwise correlations of the daily
precipitation states calculated for each calendar month. It can be seen that the correlations are captured
well by the PR-WG. The overall KGE and NSCE values are 0.98 and 0.99, respectively.Climate 2020, 8, x FOR PEER REVIEW 10 of 18 
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Figure 5. Comparison of the daily precipitation state correlation between the observations and
simulations for each month for all grid-cells.

Figure 6 demonstrates the PR-WG performance to produce the statistical parameters (e.g., mean,
standard deviation and skewness) of the four weather variables. The comparisons were done on a daily
basis at each month for the 24 grid-cells. A daily time step series of 1000 years was generated to reduce
the sampling bias and uncertainty in the simulations. However, the daily means of all variables and
the standard deviations for Tx, TN and WS were perfectly produced by the model (KGE ≈1), while σp,
and γp are reasonably preserved (KGE = 0.96 and 0.86; NSCE = 0.98 and 0.93). The slight discrepancies
are due to the stochastic nature of the process [57].
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Figure 6. Comparisons of the daily statistic parameters of the observations and simulations. (a–c) are
the mean, standard deviation, and skewness of P. (d–g) are the mean and standard deviation of Tx and
TN. (h,i) are the mean and standard deviation of the WS.

Figure 7 shows the daily median values with 0.05 and 0.95 quantiles of the daily values in
the bounded areas, and the inverse cumulative distribution function (CDF−1) of the observed and
simulated weather variables for grid-cell number 9, which is located in the basin heart (see Figure 3).
It is seen that PR-WG well preserves the daily medians for all months. Moreover, the quantile daily
estimates show good agreement with the observation quantiles, proving the model’s ability to capture
the maximum and minimum daily weather values. It is also noticeable from the inverse CDF the
observed and simulated weather values are very close, evincing the validity of the selected distribution
types. Furthermore, the simulated daily values of quantile 1 exceed the observation values which
demonstrates the model’s ability to produce values beyond the observation ranges.
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Figure 8 shows the spatial and cross correlation coefficient matrices of the observations and
simulations for one month (e.g., m=1), while Figure 9 shows the spatial and cross correlation comparison
for all variables for each m calculated at daily time steps. The number of columns of the V matrix
(see Section 4.1) are 4 × 24 = 96. Therefore, the V dimensions are 96 × 96, in which the values are
from 1 to 24 for P, 25 to 48 for Tx, 49 to 72 for TN, and 73 to 96 for the WS. It can be observed from
Figure 8 that the observed correlation among the variables varies greatly across them. P and the WS
are slightly less spatially correlated as compared with Tx and TN. These facts are in line with Srivastav
and Simonovic [32] and Verdin et al. [15]. It is also noticeable from Figures 8 and 9 that the model
preserves the spatial and cross correlation well among the variables. The overall KGE and NSCE
values are 0.96 and 0.97, respectively.Climate 2020, 8, x FOR PEER REVIEW 12 of 18 
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Figure 10 demonstrates the PR-WG capability to preserve the Lag-1 day auto-correlations of Tx,
TN and the WS. It is noticeable that the values differ from month to month, they are less for the WS
comparing to Tx and TN. However, the PR-WG captures these monthly variations very well regardless
of their magnitudes with the overall KGE and NSCE values of 0.97 and 0.98, respectively.

The results presented here glimpse the model capability to preserve the statistical properties of
the observations to synthesize the future scenarios. The proposed model demonstrated the Wilks
technique ability to generate anomalies similarly to the observations. It is also seen that the hybrid
structure of the AR and Wilks technique leads to generate data that preserve the temporal correlation
beside the spatial and cross correlations.
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The key advantage of PR-WG is that it is built to be a general model through studying the
observation anomalies and mimicking them. Therefore, the model is anticipated to work well in
different climate zones and topographies regardless of the data spatial and temporal scale. The model
framework is flexible enough for locations observe short-term and long-term variations. Moreover,
the user can reduce the cycle data length to meet their scope. e.g., they can use a data window of two
weeks (or a week) instead of the monthly window that was used in this study. The computational
expensive of implemented the pre-processing stage has to carefully examined.

6.2. Model Validation

In some cases, the proposed SWG produces negative daily values for precipitation. [58] indicated
that the SN is not suitable when the skewness is greater than 4.5. However, in the study area, values of
the skewness have not exceeded 4.5 (see Figure 6c), therefore the SN is applicable. The negatives of
the daily values were checked and found to be less than 3% of the whole 1000-year time series in the
24 grid-cells. The suggestion of [32] to round the negative values to zero was considered, but it would
affect the number of wet and dry calculations and the statistical parameters of precipitation. Instead,
the negatives were rounded to 0.1 mm/day, which is assumed to be the minimum precipitation amount
(see Section 3.1). This correction approach for negative values illustrates the slight differences in the
simulated σp and γp (see Figure 5b,c). The user could apply another distribution function in cases
where the SN is not applicable such as mixed-exponential [59,60], log-normal, gamma, etc. The key
advantage of PR-WG is its flexibility in adopting any distribution of interest, such as these.

The second validation was done by checking if TN is greater than Tx and was found to be less
than 1% of the whole 1000-year time series in the 24 grid-cells. [41] suggested to force Tx to be greater
than TN through setting TN equal to Tx minus 1. This procedure will affect the auto-correlation of the
TN. Instead, the Chen et al., [57] approach was applied as follows, if Tx < TN,

TX(k,t,m) = TN(k,t,m) + (µµx(k,m) − µµN(k,m)) +
√
σ2

X(k,m)
− σ2

N(k,m)
× zstd(k,t,m) f or
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𝜆( , , ) =  𝛽 ( , ) ( , )
Γ 𝛼 ( , )   ℎ ( , )  𝑒𝑥𝑝 / ( , )  𝑑ℎ( , , )          𝑓𝑜𝑟    𝕝[ ( , , ) ] (12) 

where α0, α1, β0, and β1 are the shape and scale parameters for S=0 and 1, respectively, for each month 
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[σX (k,t,m)≥σN (k,t,m) ]
(19)

TX(k,t,m) = TN(k,t,m) + (µµx(k,m) − µµN(k,m)) +
√
σ2

X(k,m)
− σ2

N(k,m)
× zstd(k,t,m) f or
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[σX (k,t,m)<σN (k,t,m) ]
(20)

Equations (19) and (20) are conditioned on the precipitation states. For example, the σ and µ will
turn to condition 0 if S = 0. In this case, the TX is guaranteed to be greater than TN and the auto, spatial,
and cross correlations are preserved since they are multiplied by the anomalies zstd.

6.3. Model Comparison

For comparison purposes, two SWG models were selected to compare their performances with
the PR-WG to further demonstrate the model applicability. The first model is the single site weather
generator (WG) developed by Chen et al., [57] and Chen et al., [61]. The second is the two stages weather
generator using an empirical copula (EC) approach developed by Li and Babovic [41]. To highlight
the unique contribution of the PR-WG model, we focused on the model performances to maintain
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the spatial, cross, and temporal correlations. Figure 11 shows the daily performances of the WG and
EC to for the spatial and cross correlations, while Figure 12 shows the temporal correlations for the
sites and month. It is seen that the EC model works well in preserving the spatial, cross, and temporal
correlation; the PR-WG is slightly superior to it. However, the KGE and NSCE for the spatial and
cross correlations are 0.92 and 0.93, and for the temporal 0.95, and 0.96. It also notable that the WG
model poorly preserves the spatial and cross correlations but has good ability to preserve the temporal
correlation. This is because the model accounts for the temporal correlation only, where the simulated
data were generated independently for all variables and sites which leads to poor spatial and cross
correlation accuracy. The KGE and NSCE for the spatial and cross correlations are −0.29 and −8.3, and
for the temporal 0.88, and 0.89. Although the EC approach works well in general, the only drawback
is that its simulation time period must be identical to the historic observation, which prevents its
usage in areas with limited data availability. This is because the post processing stage of the EC
model employs a re-ranking technique that extracts the ranked variables directly from the historic
observations. Therefore, the model length can only be the same as the historic observations, leading to
less flexibility for future scenarios, especially in data scarce regions. The PR-WG has the advantage of
producing the simulation length of interest, making it useful in areas with limited data availability
besides maintaining the statistical characteristics.
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The goal of the PR-WG is to be used later for climate variation assessments. The advantage of
the model, besides the ability to preserve the statistical characteristics, is its flexibility to alter them to
produce a wide range of different scenarios. However, defining the future scenario ranges to test a
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water resources system’s performance in terms of the climate stress is a difficult task and dependent on
many factors, including expert opinions [4].

These future scenarios will be applied in the Diyala River basin to discover the vulnerability of
the Derbendikhan Dam and its reservoir. Moreover, different adaptation strategies will be suggested
in order to test their capabilities to improve the system performance. Since the model is implemented
on a stochastic basis, the future trend insights will be obtained from analyzing the GCM models.
Then, this can be fed into the PR-WR to mimic the future trend as well as the statistical properties.
For instance, multiplicative factors for the precipitation mean will be applied starting from a 0% change
in the historical precipitation and annual linearly increasing (or decreasing) up to the specified value in
the final period (e.g., +30% of the historical value). Forms other than the linear change can also be
applied to synthesize the future forecast data.

7. Conclusions

It was shown that a PR-WG accurately preserves the statistical properties (mean, standard
deviation, and skewness coefficient) of the weather variables (overall KGE and NSCE test values were
0.98). The PR-WG also preserves the spatial, temporal, and cross correlations among the weather
variables. While other SWGs may have more features, the one developed in this study enables a
bottom-up vulnerability assessment study to be implemented in areas with limited data availability.

The PR-WG effectively estimates the dry and wet day occurrences using a FTMC with overall
KGE and NSCE values of 0.97, a result that is in line with those in [21,22]. The results also demonstrate
the effectiveness of Wilks’ technique to produce spatially correlated precipitation states (KGE of 0.98;
NSCE of 0.99) and spatially and cross correlated weather variables (KGE of 0.96; NSCE of 0.97), as well
as temporally correlated variables (KGE of 0.97; NSCE of 0.98). The model is also capable of preserving
the maximum and minimum daily weather values as well as producing values beyond the observed
ranges. Furthermore, the PR-WG outperforms the EC and WG models in preserving the spatial, cross,
and temporal correlations in the meteorological stations.

While the PR-WG was validated in the Diyala River basin, it should be effective and applicable in
other places and with other weather variables, such as solar radiation. The advantages of PR-WG are its
flexibility to select any distribution function for each weather variable, ability to simulate any number
of years within or beyond the historic observation length, capability to generate values outside the
observation range, and its ability to produce synthetic scenarios through the alteration of the weather
variable parameters for the study of climate change’s impacts. The PR-WG is easy to construct and
understand with little computational intensity to build the spatial and cross correlation matrices of the
anomalies. Increasing computational power will facilitate the work.
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