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Abstract: Air pollution continues to be a serious issue for plant health and terrestrial ecosystems.
In this issue of climate, some papers relevant to air pollution and its potential impacts on plant
health and terrestrial ecosystems are collated. The papers provide some new insights and offer the
opportunity to further advance the current understandings of air pollution and its linked impacts at
different levels.
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1. Introduction

Air pollution, and especially ground-level ozone (O3) pollution, is a major issue for vegetation,
challenging scientific and regulatory communities in a continuing effort to better understand air
pollution and its impacts on vegetation [1–3]. Notable research progress has been observed over recent
decades, highly advancing our understandings of air pollution spatiotemporal characteristics and
trends [4–6] as well as air pollution effects on plants, from the molecular level to communities and
ecosystems [1–3,7–9]. While air pollution spatiotemporal patterns and trends became clearer and air
pollution impacts better understood, a vast array of these research programs suggests that there is still
much to accomplish. Recognizing the need for more research in these topics, a Special Issue on “Air
Pollution and Plant Ecosystems” is published in Climate. This Editorial presents the collective findings
in the papers published in the Climate Special Issue “Air Pollution and Plant Ecosystems”.

2. Special Issue Content

A total of 11 papers were submitted for potential publication within the Special Issue. Finally, six papers
have been accepted for publication [10–15], translating to an acceptance rate of about 55%.

Fumagalli et al. [10] exposed grapevine (Vitis vinifera) to different O3 levels over two growing
seasons and revealed that high O3 levels affected grapevine weight and yields. Their study suggests
that wine quality can be affected by reduced polyphenols that can decrease the nutritional value of the
agricultural product and induce a more aggressive taste to wine. This project provides evidence of
potential O3 impacts on the quality of grapes and wine, encouraging the implementation of further
studies to examine the potential effects on animals consuming such products altered by O3.

Tobita et al. [11] exposed Fagus crenata plants to ambient air, elevated CO2 (550 µmol mol−1 CO2),
elevated O3 (2 × ambient O3), and elevated CO2 combined with elevated O3 during two growing
seasons. They found that the total plant biomass and elongation of second-flush shoots were increased
more by elevated CO2 combined with elevated O3, and less by elevated CO2 alone. Both elevated O3

and elevated CO2, as single stresses, decreased biomass allocation to the roots. This research suggests
that elevated concentrations of CO2 mitigate the negative impacts of O3 on net CO2 assimilation.
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Kitao et al. [12] analyzed the fate of absorbed light energy, including photosynthesis, photorespiration,
and regulated and nonregulated nonphotochemical quenching, by using data from experiments studying
the effects of nitrogen limitation and drought on Japanese white birch (Betula platyphylla var. japonica),
as well as the effect of elevated O3 on Japanese oak (Quercus mongolica var. crispula) and Konara oak
(Q. serrata) under elevated CO2 concentrations. The rate of regulated nonphotochemical quenching
(JNPQ) could compensate for decreases in the photosynthetic electron transport rate (JPSII) under the
different stresses. It was also found that even decreases in nonregulated nonphotochemical quenching
(JNO) occurred under limited nitrogen and elevated O3, irrespective of CO2 conditions. These may
indicate a preconditioning adaptive response preparing plants to cope with predicted environmental
challenges. The results of this study can be used as a platform upon which to base new studies directed at
revealing whether elevated CO2 may not affect the plant responses to environmental stresses in terms of
susceptibility to photodamage occurring in different experimental systems.

Proietti et al. [13], considering the importance of soil water availability as a driver of vegetation
productivity, analyzed the spatiotemporal variation of a proposed temperature vegetation wetness index
as a proxy of soil moisture and evaluated its effect on gross primary production using 19 representative
tree species in Europe over the time period 2000–2010. The Modified Temperature Vegetation Wetness
Index (mTVWI) displayed minimum soil water availability in Southern Europe and maximum soil
water availability in Northeastern Europe. Furthermore, gross primary productivity decreased from
20% to 80% by mTVWI, depending on the site, tree species, and meteorological conditions. This wetness
index adds a new dimension in understanding the impacts of water deficit stress which often occurs in
tandem with air pollution.

Pandey et al. [14] treated 11 Indian wheat (Triticum aestivum) cultivars grown in high ambient O3

(twice the critical threshold for wheat yield) with the antiozonant chemical ethylenediurea (300 mg L-1),
and found a high variation in resource allocation strategies among cultivars. They found that plants
treated with ethylenediurea (EDU) produced more grain yields and had a higher photosynthetic rate
and stomatal conductance as well as lower lipid peroxidation. They also observed varied responses
of superoxide dismutase activity, catalase activity, and oxidized and reduced glutathione content.
Responses to EDU (or O3 assuming the differences were due to ambient O3) varied across cultivars and
plant developmental stages and sites. Authors grouped cultivars into four groups according to their
response strategies. This research provides useful information to better understand the determinants
of tolerance/susceptibility of Indian wheat to ambient O3.

El-Tahan [15] used data of the Total Ozone Column (TOC), yielded from the Atmospheric Infrared
Sounder (AIRS) and the model Modern-Era Retrospective analysis for Research and Applications (MERRA).
The long-term trend and the spatial distribution over Egypt are studied, and a comparison between both
sources of TOC is made. According to the results, the spatial maps from AIRS could identify the location
of both high and low concentrations of O3. Conversely, spatial maps from MERRA-2 underestimated
TOC and were not effective in capturing the variability identified by AIRS. The study concludes that
the MERRA-2 dataset also underestimated the temporal TOC over Egypt compared to the AIRS dataset.
Among others, this study indicates the need to construct TOC from numerical models, such as, for example,
numerical weather research and forecasting models coupled with chemistry.

3. Conclusions

A total of six papers on a variety of topics related to air pollution and its impacts were published in
this special issue, constituting an orchestrated collection for researchers, environmentalists, educators,
and local or regional regulators interested in air pollution and its impacts on plant ecosystems. We wish
you an enjoyable and informative reading.
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