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Abstract: Future global warming may result in extreme precipitation events leading to crop, 

environment and infrastructure damage. Rainfall is a major input for the livelihood of peasant 

farmers in the Aswa catchment where the future rainfall variability, onset and cessation are also 

likely to be affected. The Aswa catchment has limited rainfall data; therefore, use of secondary 

datasets from Tropical Rainfall Measuring Mission (TRMM) is considered in this study, based on 

the close correlation of the recorded and TRMM rainfall. The latter was used to calibrate the 

statistical downscaling model for downscaling of two general circulation models to simulate future 

changes in rainfall. These data were analyzed for trends, wet and dry conditions/variability; onset 

and cessations of rain using the Mann–Kendall test, Standardized Precipitation Index (SPI) and the 

cumulative percentage mean rainfall method, respectively. Results show future rainfall is likely to 

increase, accompanied by increasing variability reaching as high as 118.5%. The frequency of SPI 

values above 2 (extreme wetness) is to increase above current level during mid and end of the 

century. The highest rainfall variability is expected especially during the onset and cessation 

months, which are generally expected to come earlier and later, by up to four and five weeks, 

respectively. The reliability worsens from the midterm (2036–2065) to long term (2066–2099). These 

likely changes in rainfall quantities, variability, onset and cessation months are some of the key 

rainfall dynamics that have implications for future arable agriculture, environment and water 

resource availability and planning over the Aswa catchment, as is increasingly the case elsewhere. 

Keywords: SDSM; SPI; Mann–Kendall; rainfall variability; rainfall onset and cessation 

 

1. Introduction 

Projected future global warming may result in extreme precipitation events causing drought and 

flooding, which in turn may result in crop yield reduction, increased soil erosion and damage to 

infrastructure [1–5]. The recent report by the Intergovernmental Panel on Climate Change (IPCC) [6] 

indicates that global warming above pre-industrial levels (1900) of 1.5 oC and beyond would have 

adverse impacts on communities that depend on agriculture in the least developed countries. Rainfall 

is key to livelihoods of peasant farmers who depend on rain fed agriculture [7–11]. Declines in 

rainfall, increased variability and/or uncertainty would increase the risk of hunger and poverty 

especially for the peasantry. Fishman [12] argues that an increase in rainfall variability amidst 

increased annual rainfall overrules the benefit expected from the increase on crop yields. Increased 
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future rainfall variability is, therefore, a great concern for the socio-economic wellbeing of the 

communities living in Aswa catchment and other areas with similar climatic conditions. 

Over the country of Uganda as a whole, more than 72 % of the economically active population 

derive their livelihood from agriculture, which contributes about 24.6 % of the Gross Domestic 

Product (GDP) [13]. The study area of Aswa catchment offers a typical Ugandan and African setting 

where the future socio-economic wellbeing of the community who mostly depend on agriculture is 

uncertain due to impacts of climate change. More than two million people, of which more than 70% 

are peasants, live in the Aswa catchment [14,15]. The catchment is characterized by periodic and 

extended drought spells, leading to chronic food insecurity and famine. With an annual population 

growth rate of over 3%, and within the context of climate change, the future is increasingly becoming 

more uncertain. Detailed research on variability in the future rainfall changes and their onset and 

cessation at the catchment and local level is, therefore, required for effective crop, environment and 

water resource planning and management. 

The Aswa catchment also lacks adequate recorded climate data, as is generally the case across 

most of the African continent and other developing countries in the world. This challenge, among 

others, could be addressed by using secondary data, such as the Tropical Rainfall Measuring Mission 

(TRMM) [15,16]. Such data can be used to downscale General Circulation Models (GCMs) to 

appropriate local catchment resolutions. GCMs are used to project changes in climatic parameters, 

such as rainfall under various climate change Representative Concentration Pathway (RCP) 

scenarios, defined by the Intergovernmental Panel for Climate Change (IPCC). However, these 

projections are defined at coarse grid resolutions at which the GCMs are configured and, thus, being 

unable to resolve important sub-grid scale variations. Therefore, the GCMs cannot be used directly 

for climate change impact studies of small catchments such as Aswa; thus, downscaling is required 

to generate corresponding data. In addition to GCMs not providing catchment scale information, 

despite being our major source of knowledge about the future, they can also provide biased 

information [17,18]. 

For downscaling GCMs, two downscaling methods, dynamical and statistical, are available. 

Other nonlinear methods using artificial neural network (ANN) are also being used lately[19,20] for 

generating long-term rainfall patterns. Statistical Downscaling (SD) is usually preferred over 

dynamical downscaling as the former produces local weather and climatic time series, which is 

cheap, readily transferable and computationally less demanding by use of appropriate statistical or 

empirical relationships with predictor variables and, therefore, has been widely used in climate 

change studies [21]. Products of statistical downscaling can be limited when there are some 

systematic errors in input data used to calibrate the downscaling model, however. Systematic biases 

for the current climate are also unavoidable in GCMs [22]. The biases can be propagated through the 

downscaling process with far reaching implications on the simulations and any subsequent 

applications [23,24]. The first step towards reducing the bias and improving the simulations is usually 

to avoid using unrealistic or inaccurate datasets for calibrating the downscaling. In this regard input 

data used for downscaling can either be bias corrected before downscaling or the simulations are bias 

corrected themselves after downscaling [17,24]. Caution is also needed during post processing of the 

simulations to keep minimal chances that the original climate change signal could be affected as this 

alteration can substantially affect impact model results [25]. Depending on the level of biasness of 

downscaled products from observations and the intended use of the products, on a case-by-case 

basis, bias correction may not be critical. 

In Statistical Down Scaling Model (SDSM), a combination of Multiple Linear Regression (MLR) 

and the Stochastic Weather Generator (SWG) is used for generating climate scenarios for assessment 

of various parameters of the data [21,26]. This study therefore, uses secondary rainfall data (TRMM) 

to calibrate SDSM in a downscaling experiment of two General Circulation Models (GCMs)—Hadley 

Centre Coupled Model version 3 (HadCM3) and Canadian Earth System Model (CanESM2))—for 

simulation of future rainfalls for the data-constrained, but socio-economically important Aswa 

catchment located in Uganda, within the context of changing climate, as reported in previous studies 

[15]. The projected future rainfall is analyzed, using various methods, for changes in variability, onset 
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and cessation. These changes are expected to have a profound impact on socio-economic wellbeing 

of the farmers and the environment particularly in Aswa catchment, as well as areas and regions that 

have similar climatic and socio-economic environment.  

2. Materials and Methods  

2.1. Study Site 

The Aswa River catchment, at its confluence with River Nile, lies mainly in the northeastern part 

of Uganda with a small portion extending into South Sudan. The total catchment area spreads over 

31,000 km2 and lies between 31.9 oE-34.25 oE latitude and 2.05oN-4.09 oN longitude. Figure 1 shows 

the location of the catchment area and the points from which TRMM data were downloaded. 

Coordinates of the TRMM data locations are shown in Table 1. The catchment has a wide range of 

annual rainfall amounts and distribution pattern. The northeastern parts have a semi-arid climate 

with annual rainfall varying between 500 and 800 mm, while the western and southern parts have 

semi-humid and humid climate with annual rainfall ranging from 800 to more than 1400 mm in some 

places. 

 

Figure 1. Location of Aswa River catchment and GIS generated average Tropical Rainfall Measuring 

Mission (TRMM) annual rainfall (2000–2015) distribution. 

2.2. Rainfall Data  

Secondary data from TRMM rainfall were used for this study in place of the scares and 

inconsistent recorded rainfall data over the catchment. Gridded satellite based TRMM data are 
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available from 2000 to 2015 (16 years). The TRMM rainfall data grid locations used in this study are 

shown in Table 1. The TRMM grid resolution is 32 by 32 Km, while for the GCM used is within 290 

by 435 km. The TRMM data can therefore be used for downscaling GCM data to a finer resolution. 

Table 1. TRMM rainfall data location points. 

Location Latitude, oN Longitude, oE 

Agoro 3.88 33.13 

Agago 2.88 33.38 

Amuria 2.13 33.63 

Kaabong 3.63 33.88 

Kitgum 3.38 32.88 

Gulu 2.63 32.63 

Lira 2.13 33.38 

Nimule 3.63 32.13 

Source: http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GES-DAAC/.TRMM_L3/.TRMM_3B42/.v7/%20.daily/ (with a 

resolution of 0.25o by 0.25o or 32 by 32 Km). 

2.3. Data Processing 

Limited observed daily rainfall data are available within the vicinity of the Aswa catchment from 

weather stations such as Lira, Gulu and Kitgum. The relation between the station and secondary data 

(TRMM) was investigated through correlation to find out if they were closely related enough to give 

confidence of using TRMM data in calibrating the statistical downscaling model over the catchment. 

Sometimes secondary data may have interventions due to malfunction of satellite equipment or 

change of equipment [27] and, therefore, should be tested before use so that the homogenous section 

is used for the study. Before this validation, TRMM data were put to intervention test analysis to find 

out if the data set was homogeneous using the standard normal homogeneity test (SNHT) [15].  

2.4 Downscaling and Projection of Future Rainfall 

TRMM rainfall data were used to calibrate the SDSM for subsequent downscaling of two GCMs 

(HadCM3 and CanESM2). Many GCMs are in use today, globally, with varying degrees of accuracy. 

CanESM2 and HadCM3 have been successfully used in the region for climate change studies [28,29] 

and have, therefore, been adopted for use in this study. The high emission scenario RPC 8.5 

(CanESM2), A2 (HadCM3) predictor data variables were used for this study to represent the worst-

case scenario. The predictor data for the two GCMs were obtained from two different websites: 

HadCM3 (http://www.cccsn.ec.gc.ca/?page=pred-hadcm3) and CanESM2 

(http://www.cccsn.ec.gc.ca/?page=pred-canesm2).  

The predictor variables were screened in order to choose appropriate predictors. This stage is 

critical because the choice of predictors largely determines the accuracy of the downscaled climate 

scenario data. The procedure for predictor selection has been well laid by Hasan, et al. [30]. A 

correlation matrix between the predictor and predictand (TRMM rainfall) was made. The predictor 

with the highest correlation coefficient was selected and called the super predictor (SP). After 

choosing the super predictor, the remaining predictors were regressed individually, together with 

SP, and the absolute correlation coefficient between the predictor and predictand and between 

individual predictors were obtained together, with their partial correlations and P values. Any 

predictor with P-value > α (0.05) was removed. The percentage by which partial correlation is 

lowered in respect to the correlation coefficient PRP (equation 1) was calculated for each predictor. 

The other predictors where selected by calculating the PRP with respect to the absolute correlation 

using the following equation. 

 𝑷𝑹𝑷 = (
𝑷.𝒓−𝑹𝟏

𝑹𝟏
)          (1) 

http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GES-DAAC/.TRMM_L3/.TRMM_3B42/.v7/%20.daily/
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Where: 

PRP is the percentage by which partial correlation is lowered in respect to the correlation 

coefficient, 

P.r is defined as partial correlation coefficient and  

R1 is the value of correlation coefficient between predictor and predictand. 

The predictor that had the minimum PRP was selected as the second most suitable predictor. 

This same process was done for the third and other following predictors. As a result, the super 

predictor and the other remaining predictors will have almost zero, or insignificant multi-co-

linearity. Five predictors were selected, as can be seen, for example, for the Kitgum location in Table 

2, with mean temperature at 2 m as the super predictor. The correlations are statistically significant 

(P < 0.05). 

Table 2. Predictor selection for Kitgum Rainfall. 

Predictor Description R1 P.r P  PRP

= 

((P.r-

R1) 

/R1) 

P.r P  PRP

= 

((P.r-

R1) 

/R1) 

P.r P  PRP

= 

((P.r-

R1) 

/R1) 

P.r P  PRP

= 

((P.r-

R1) 

/R1) 

Rank 

Mean temperature at 2m 0.5

9 

            

Super 

Predicto

r 

Surface specific humidity 0.5

4 

0.2

9 

0.0

0 

0.46 0.1

9 

0.0

0 

0.64 0.0

7 

0.0

0 

0.87 0.0

3 

0.0

7 

0.94   

850 hPa zonal velocity 0.5

2 

0.3

7 

0.0

0 

0.29 

         

2nd 

Specific humidity at 850 

hPa 

0.5

0 

0.3

1 

0.0

0 

0.39 0.2

2 

0.0

0 

0.55 

      

3rd 

Surface zonal velocity 0.4

9 

0.3

2 

0.0

0 

0.36 0.1

0 

0.0

0 

0.79 0.1

2 

0.0

0 

0.76 0.1

0 

0.0

0 

0.79   

850 hPa airflow strength 0.4

5 

0.3

1 

0.0

0 

0.30 0.0

7 

0.0

0 

0.84 0.0

9 

0.0

0 

0.79 0.0

8 

0.0

0 

0.83   

Surface airflow strength 0.4

4 

0.2

6 

0.0

0 

0.40 0.0

9 

0.0

0 

0.80 0.1

1 

0.0

0 

0.76 0.0

9 

0.0

0 

0.79   

Specific humidity at 500 

hPa 

0.4

3 

0.2

4 

0.0

0 

0.44 0.1

9 

0.0

0 

0.55 0.1

0 

0.0

0 

0.76 0.1

2 

0.0

0 

0.74 5th 

precipitation 0.3

7 

0.1

7 

0.0

0 

0.53 0.0

4 

0.0

1 

0.89 0.1

0 

0.0

0 

0.72       4th 

Key:  PRP is the percentage by which partial correlation is lowered in respect to the correlation coefficient, P.r is partial correlation coefficient, R1 is the value of 

correlation coefficient between predictor and predictand, P is probability value 

Values in bold indicate the highest correlation coefficient for RI column or the lowest PRP value in the PRP column 
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2.4.1. Calibration and Validation of SDSM Model and Generation of Future Rainfall 

SDSM version 4.2.9 was calibrated and validated using the selected appropriate predictors and 

TRMM rainfall data as predictand for various locations within the Aswa catchment. Such results of 

predictor selection are shown for Kitgum station in Table 2. 

Using the developed model, precipitation data were simulated for 1961–2001(HadCM3) and 

1961–2005 (CanESM2). The SDSM was used to generate 20 ensembles. The mean of the ensembles 

and the TRMM and SDSM weather generator monthly rainfall data were compared. The coefficient 

of determination, R2, between the (TRMM) and generated monthly data series, Bias (ratio of sum of 

totals of simulated and TRMM rainfall), F values and the standard error (SE), were used for 

evaluation of the statistical calibration and validation. The calibration and validation results for 

various locations within the catchment can be seen in Table 3. The results show that the statistical 

calibration and validation are good enough to be relied on. The correlation coefficients range from 

0.83 to 0.97. The analysis of variance (ANOVA) F values are much greater than the critical values and 

the standard error for rainfall range from 9.62 to 29.25 mm/month. These values compare well with 

other studies using SDSM and validation studies in the region [28,29,31]. The bias values are low, 

with an average value of 1.018. 

Table 3. Calibration and validation of Statistical Down Scaling Model (SDSM) results for various 

locations within the Aswa catchment. 

Location GCM Parameter Process  Bias Regression Statistics ANOVA 

    Rainfall   Period    R R2 
Standard 

Error 
Observations F Significance of F 

Agago HadCM3   Calibration 1975-1990(16yrs) 1.034 0.87 0.76 29.25 192 612 2.58×10-61 

      Validation  1991-2001(11yrs) 0.988 0.88 0.77 26.93 132 430 4.61×10-43 

  CanESM2   Calibration 1975-1990(16yrs) 1.021 0.97 0.95 13.84 192 3535 1.00×10-124 

      Validation 1991-2005(15yrs) 1.010 0.97 0.95 12.64 180 3167 2.54×10-115 

Agoro HadCM3   Calibration 1975-1990(16yrs) 1.048 0.85 0.72 21.03 192 494 1.01×10-54 

      Validation  1991-2001(11yrs) 0.996 0.93 0.86 14.11 132 783 7.11×10-57 

  CanESM2   Calibration 1975-1990(16yrs) 0.964 0.95 0.90 12.33 192 1797 8.59×10-99 

      Validation 1991-2005(15yrs) 1.011 0.91 0.83 15.43 180 842 2.10×10-69 

Amuria HadCM3   Calibration 1975-1990(16yrs) 1.030 0.87 0.76 26.82 192 608 3.94×10-61 

      Validation  1991-2001(11yrs) 1.055 0.86 0.74 26.43 132 377 2.92×10-40 

  CanESM2   Calibration 1975-1990(16yrs) 1.044 0.94 0.88 19.36 192 1342 4.79×10-88 

      Validation 1991-2005(15yrs) 1.057 0.95 0.90 16.15 180 1644 7.80×10-92 

Kaabong HadCM3   Calibration 1975-1990(16yrs) 0.995 0.90 0.81 15.44 192 812 1.67×10-70 

      Validation  1991-2001(11yrs) 1.136 0.83 0.69 15.75 132 288 9.52×10-35 

  CanESM2   Calibration 1975-1990(16yrs) 0.980 0.95 0.89 11.59 192 1587 3.49×10-94 

      Validation 1991-2005(15yrs) 0.966 0.94 0.89 9.62 180 1372 1.38×10-85 

Gulu HadCM3   Calibration 1975-1990(16yrs) 1.019 0.96 0.92 19.19 192 2248 3.12×10-107 

      Validation  1991-2001(11yrs) 0.982 0.93 0.87 23.21 132 885 7.40×10-60 

  CanESM2   Calibration 1975-1990(16yrs) 1.019 0.97 0.95 15.45 192 3574 
3.73×10-125 

   
Validation 1991-2005(15yrs) 0.998 0.96 0.92 18.18 180 2009 6.77×10-99 

 

The calibrated SDSM was used to downscale HadCM3 and CanESM2 for a generation of future 

rainfall data for the near future (2006–2035), medium term future (2036–2065) and long term future 

(2066–2099). These data were analyzed for trends and variability following the procedure outlined in 

section 2.5. 

2.5. Rainfall Trend Analysis 

The historical (secondary) TRMM (2000–2015) data were subjected to a homogeneity test in 

order to identify any interventions in the data. The homogenous portion of the data was then used 
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for further analysis. The simulated near future (2006–2035), medium term (2036–2065) and the long 

term (2066–2099) future daily and monthly rainfall data were analyzed for trend and variability. The 

Mann–Kendall test was used for trend analysis and is given by equations (2) and (3). 

𝜏 =
𝑆

0.5 ∗ 𝑛 ∗ (𝑛 − 1)
 (2) 

 

𝑆 = ∑   ∑           𝑠𝑖𝑔𝑛(𝑥𝑗 − 𝑥𝑖)

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 (3) 

 

Where; 

  xj = the observation at time j 

xi = the observation at time i 

  n = total number of observations  

Sign (xj – xi) = 1 if computed value > 0 

  = 0 if computed value is 0 

  = -1 if computed value < 0 

Further analysis was carried out using descriptive statistics such as mean, standard error, 

standard deviation and coefficient of variability (CV) for the historical (TRMM) and simulated future 

rainfall data.  

2.6. Onset and Cessation of Rainfall Dates 

The cumulative percentage mean rainfall method was used to determine the onset and cessation 

of the historical, near future (2006–35), medium term (2036–65) and long term (2066–99) future 

simulated rainfall. This method has been used successfully by many researchers [7,32–34] for 

determination of the rainfall onset and cessation dates. The procedure for the method is as follows: 

1. the percentage of mean annual rainfall that happens at every 5-day interval is derived; 

2. the cumulative percentage of the computed percentage at 5-day intervals is derived; 

3. the cumulative percentage at 5-day intervals is plotted for the whole year; and 

4. identification of the time of rainfall onset and cessation during the year or season.  

The point of first maximum positive curvature and last maximum negative curvature on the 

graph of the cumulative percentage indicate the mean periods of rainfall onset and cessation, 

respectively. Another alternative criterion for the onset of the rain is the timing of an accumulated 

7% to 8% of the annual rainfall, and the cessation begins after the accumulation of 90% of the annual 

rainfall.  

The cumulative percentage mean rainfall method for determining onset and cessation of rainfall 

can use either the rainfall amounts or rainy days [7,32,33,35]. Both methods have been applied in this 

study. There are other methods for determination and definitions of onset and cessation of rain 

[36,37]. The criterion used for defining onset and cessation of rain can be based on soil water balance/ 

water stress coefficient, the first wet day with accumulated X mm of rainfall during a period of a 

certain number of days, rainfall–evapotranspiration relation model, and others. The threshold for a 

rainy day also varies: 0.85 mm, 1 mm and other values [36,38]. The method of cumulative percentage 
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mean rainfall is commonly used by many researchers. It is preferred to other methods for 

determination of rainfall onset and cessation dates due to its efficiency and freedom from assumption 

of rainfall threshold values and its reliance on rainfall data alone [39]. The minimum rainfall value 

for a rainy day was set as 1 mm. This value was adopted from Ngetich, Mucheru-Muna, Mugwe, 

Shisanya, Diels and Mugendi [36]. The days with rainfall below 1 mm were considered as non-rainy 

or dry days.  

2.7. Standardized Precipitation Index (SPI) 

There are several drought indices in use but the most commonly used are the Palmer Drought 

Severity Index (PDSI) and the Standardized Precipitation Index (SPI) [40,41]. The PDSI is related to a 

water balance. The input parameters include moisture supply, evaporation, precipitation and runoff. 

However, the SPI is an index with only precipitation as an input variable [42]. The standardized 

Precipitation Index (SPI) was used to determine occurrence of extreme rainfall events for the current 

period and future projections of rainfall in this study. The advantage of SPI over other indices is its 

robustness to detect different types of droughts such as hydrological, meteorological and agricultural 

at different time scales (1, 3, 6, 12, 24 up to 60 months) using only rainfall data set. 

The SPI computation method was developed by McKee, et al. [43] to evaluate the relative 

deviations of precipitation from the average normal values and the Gamma distribution is generally 

used in SPI calculation. It has been used for many studies all over the world [41,44–48] to evaluate 

occurrences or drought and wet conditions. SPI is based on normalized data and, therefore, does not 

vary spatially, and as such, droughts and wet occurrences can be assessed in different regions. The 

SPI is calculated by fitting a certain probability density function to the frequency distribution of 

rainfall series over the period for the analysis. The resulting fitted function is used to generate 

cumulative distribution of the data and consequently transformed into the standardized normal 

distribution used to define SPI.  

The Gamma distribution has two main parameters; the probability density function (PDF) and 

cumulative distribution function (CDF).  

The PDF can be expressed as: 

 

𝑔(𝑋) =
1

𝛽𝛼. 𝛤𝛼
𝑥𝛼−1𝑒−𝑥/𝛽 (4) 

Where, 

α = shape parameter (α>0), 

β = scale parameter (β>0), 

Γα = a gamma function of α and can expressed as; 

 

𝜞(𝜶) = ∫ 𝒚𝜶−𝟏𝒆−𝒚𝒅𝒚
∞

𝟎
  (5) 

 

The PDF of an observed amount of precipitation for a given month and period of time is expressed 

as: 

 

𝐺(𝑥) =
1

�̂��̂�.𝛤(�̂�)
∫ 𝑥𝛼−1𝑒−𝑥/�̂�𝑑𝑥

𝑥

0
  (6) 
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The PDF is transformed to the standard normal variate Z, which is the value of SPI. 

𝑆𝑃𝐼 =
𝑥𝑖 − �̄�

𝜎
 (7) 

Where, xi is the precipitation of the selected period during the year i, �̄� is the long term mean 

precipitation and σ is standard deviation for the selected period. Positive and negative SPI values 

correspond to wet and drought periods respectively. Table 4 gives the classification of SPI values. 

 

Table 4. Classification of SPI values. 

 

SPI value Class 

2.00 or more Extremely wet 

1.50–1.99 Severely wet 

1.00–1.49 Moderately wet 

0–0.99 Mildly wet 

0 to –0.99 Mildly dry 

–1.00 to –1.49 Moderately dry 

–1.50 to –1.99 Severely dry 

–2 or less  Extremely dry 

Source:[44] 

 

In this study, hydrological drought was evaluated for Aswa catchment. A soft wear SPI 

generator developed by the National Drought Mitigation Center of University of Nebraska-Lincoln 

was used to calculate the monthly SPI values for the period 2006–2099.  

3. Results 

3.1. Correlation of Station and TRMM rainfall  

The TRMM and Observed monthly rainfall data for Lira station were correlated as seen in 

(Figure 2). The correlation gives coefficient of determination, R2 value of 0.65 and standard error of 

47.86 mm. This indicates that the observed and TRMM rainfall data are closely correlated and the 

TRMM data can be used to represent observed data in case of unavailability of the latter. 

 

Figure 2. Correlation of TRMM and observed rainfall data for Lira. 
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3.2. Simulated Future Rainfall  

Based on computed test statistics against threshold, homogeneity test results (Table 5) show that 

the TRMM and weather generated rainfall data series 1975–2005 are homogeneous and, therefore, 

the whole data series was used to calibrate the SDSM for the study. Future rainfall scenarios were 

subsequently simulated using the calibrated and validated SDSM for two GCMs (HadCM3 and 

CanESM2) for various locations within the vicinity of the Aswa catchment. All of the results show 

future rise in rainfall amounts. Figure 3 shows the graphical simulation results for five locations based 

on CanESM2 and HadCM3 GCMs. 

 

 
 (a) 

 

 

  (b) 

Figure 3. Simulated future rainfall for Agago, Amuria, Gulu, Agoro and Kaabong locations (a) 

CanESM2-SDSM (2006–2100) (b) HadCM3-SDSM (2006–2097). 

The annual rainfall at current (2015) level for Agoro is about 800 mm and is expected to rise to 

about 1000–1200 mm by 2035, 1200–1300 mm by 2065 and up to 1500 mm by 2099 (Figure 3). The 
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annual rainfall at current level for Amuria is about 1500 mm and is expected to rise to about 1700–

2000 mm by 2035, 2200–2300 mm by 2065 and up to 3500 mm by 2099 (Figure 3).  

The Mann–Kendall test statistics also show that there is going to be positive trend for the 

simulated future annual rainfall over Aswa catchment as can be seen from Table 5. The Kendall tau 

values range from 0.172 to 0.683. The increase in positive trend is stepper for the medium term (2036–

2065) and long term (2066–2099) periods. This increase in rainfall is also associated with increased 

variability as we show in the next sections.  

The increase in annual rainfall is expected to have impact on agricultural production, water 

resources and environment management. Some of the impacts may be positive (increased crop yields, 

water availability) while others may be negative (erosion, flooding, infrastructure damage, increased 

waterborne diseases).  

Table 5. Results of Homogeneity Test and Mann–Kendall Statistics for TRMM and Simulated Rainfall 

Data for Agoro and Amuria Locations in Aswa Catchment. SNHT = standard normal homogeneity 

test. 

 
 

                Homogeneity Test-SNHT                     Mann–Kendall Statistics 

GCM, 

Location 

Data type Period  p-

value 

(Two- 

tailed

) 

alph

a 

Comment Number of 

Observation

s 

Kendall'

s tau 

Sen's 

slop

e 

Commen

t 

CanESM

2 

        

 

        

Agoro TRMM and generated monthly 

Rainfall 

1975–

2005 

0.099 0.05 P > α (0.05), 

homogeneou

s 

372       

  TRMM and simulated annual Rainfall 2006–

2099 

      94 0.683 
 

18.52 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2006–

2065 

      60 0.449 10.42 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2006–

2035 

      30 0.200 6.628 Positive 

trend  

HadCM3             

 

    

Agoro TRMM and simulated annual Rainfall 2006–

2097 

      92 0.669 
 

3.219 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2006–

2065 

      60 0.463 
 

2.339 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2006–

2035 

      30 0.195 
 

1.426 
 

Positive 

trend  

CanESM

2 
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Amuria TRMM and generated monthly 

Rainfall 

1975–

2005 

0.220 0.05 P > α (0.05), 

homogeneou

s 

372       

  TRMM and simulated annual Rainfall 2006–

2100 

      94 0.647 
 

10.52 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2006–

2065 

      60 0.472 
 

9.072 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2006–

2035 

      30 0.172 
 

6.286 
 

Positive 

trend  

HadCM3                   

Amuria TRMM and simulated annual Rainfall 2001–

2097 

      92 0.647 
 

18.54 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2001–

2065 

      60 0.482 
 

13.70 
 

Positive 

trend  

  TRMM and simulated annual Rainfall 2001–

2035 

      30 0.218 
 

9.212 
 

Positive 

trend  

 

3.3. Future Rainfall Onset and Cessation Dates 

The onset and cessation of rainfall is to vary in the future and depart from the present pattern. 

In the mid and long term future, onset of rain is expected earlier by 3–4 weeks and rainfall cessation 

is expected to also commence later than it occurs now, by 1–5 weeks. The rainfall cessation dates are 

more variable than the onset dates. Figures 4–11 show examples of the mean rainfall onset and 

cessation dates for present, near, medium and long term future simulations for Agago and Kaabong 

locations using daily rainfall and rainy days data. These two locations can be seen from figure 1. 

Kaabong represents the semi-arid part of the catchment and Agago the humid part. Results for both 

CanESM2 and HadCM3 predictions are comparably close to each other. However, the future rainfall 

onset and cessation dates are to become more variable. Some studies from Ghana [32] found that the 

use of daily rainfall or rainy days for determination of onset and cessation of rainfall give similar 

results. Odekunle [33] showed that the use of rainy days for determination of onset and cessation of 

rainfall in Nigeria gave more accurate results than the use of rainfall amounts. However, in our work 

for Aswa catchment, there is no evidence that this is the case as the two methods gave similar results. 

In view of the observations above, it is expected that the future shift of the onset and cessation 

of rainfall will have impact on the planning and management of farming activities in Aswa 

catchment. It will also impact crops yields in the catchment. Introduction of new crop varieties, which 

have short growing periods, irrigation, soil and water conservation may be some of the mitigation 

measures to be adopted by farmers in the catchment. 
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Figure 4. Agago Future Mean Rainfall Onset and Cessation (TRMM, weather generated Rainfall 

(1975–2001) and projected (HadCM3) 2006–2035, 2006–2065 and 2006–2099). 

 

Figure 5. Agago Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM Rainfall (1975-

2001) and projected (HadCM3) 2006–2035, 2006–2065 and 2006–2099). 
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Figure 6. Agago Future Mean Rainfall Onset and Cessation (TRMM Rainfall (1975–2005) and 

projected (CanESM2) 2006–2035, 2036–2065 and 2066–2099). 

 

Figure 7. Agago Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM Rainfall (1975–

2005) and projected (CanESM2) 2006–2035, 2036–2065 and 2066–2099). 
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Figure 8. Kaabong Future Mean Rainfall Onset and Cessation Dates (TRMM rainfall (1975–2001) and 

projected (HadCM3) 2006–2035, 2036–2065 and 2066–2099). 

 

Figure 9. Kaabong Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM rainfall (1975–

2001) and projected (HadCM3) 2006–2035, 2036–2065 and 2066–2099). 
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Figure 10. Kaabong Future Mean Rainfall Onset and Cessation Dates (TRMM rainfall (1975–2005) and 

projected (CanESM2) 2006–2035, 2036–2065 and 2066–2099. 

 

Figure 11. Kaabong Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM rainfall (1975–

2005) and projected (CanESM2) 2006–2035, 2036–2065 and 2066–2099. 

3.4. Rainfall Variability Analysis 

The simulated future rainfall data series are highly variable. The monthly coefficients of 

Variation (CV) reach up to 118.5%. Coefficient of variation is a measure of how reliable the rainfall 

pattern is. A higher variability implies a highly unreliable rainfall pattern. Generally, rainfall with a 
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CV value above 30% is considered to be highly variable [49]. Table 6, Table 7 and Table 8 summarize 

the results for Agoro, Kaabong and Gulu locations, respectively. Kaabong represents the semi-arid 

region, Agoro represents the semi-humid region and Gulu represents the humid region of the 

catchment, as can be seen in Figure 1. 

As suggested by the high CV values, the rainfall is expected to be more variable during the onset 

and cessation months of February–April and September–November, respectively. There is a short 

dry spell that occurs around the months of June-July. The rainfall projection based on CanESM2 show 

that the short dry spell of July is to be more severe in the mid and long term future than the current 

period as shown in Figure 12 and Figure 13 for Agoro and Gulu locations. Extreme heavy rainfall 

events are expected to increase during February-May, September and November months. 

Based on CanESM2 rainfall projection, the three months’ time scale SPI values show that the 

long term future rainfall pattern is going to be dominated by wet events (severely wet to extremely 

wet) as compared to the current and near future situation which is dominated by droughts 

(moderately dry to extremely dry). Figure 14, Figure 15 and Figure 16 show the SPI_3 values of 2006–

2099 for Kaabong, Agoro and Gulu locations respectively. Table 9, Table 10 and Table 11 show 

percentage of variation of SPI values for the period 2006-2099 for Kaabong , Agoro and Gulu locations 

respectively. The moderately, severely and extremely wet SPI values increase from mid to end of the 

century compared to the current situation. In Agoro, for example, the percentage of extremely wet 

SPI values (>2) rise from 0 (2006–2035) to 0.8 (2036–2065) and then to 6.4 (2066–2099). This is in 

agreement with the high CV values of Kaabong and Agoro, as it is observed in Table 6 and Table 7. 

These results suggest that the semi-arid and semi-humid section of Aswa catchment will have high 

rainfall variability in the future. Nicholson, et al. [50] also found that semi-arid climate in Africa are 

prone to extreme rainfall variability. Batisani and Yarnal [51] and Byakatonda et al. [52] reported 

increasing rainfall variability in semi-arid Botswana. The expected increased future rainfall 

variability will have profound impact on various sectors such as agricultural production, water 

resources, infrastructure and the general environment in Aswa catchment. Droughts will cause crop 

failure and extreme wet conditions will lead to water logging, flooding and soil erosion, which also 

affect crop yields negatively. Studies from different parts of the world suggest that high rainfall 

events can lead to crop yield reduction. Studies from Ghana revealed negative impact on crop yields 

due to heavy rainfall events [53,54]. 

 

Table 6. Agoro TRMM and Simulated (CanESM2and Had3) Monthly Rainfall Coefficient of Variation. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CanESM2             

1975–2005 TRMM and Weather Generator 

Mean 24.2 28.4 48.2 116.9 74.1 83.2 108.9 117.3 55.9 83.8 65.9 25.0 

Standard Deviation 18.4 23.0 10.6 24.1 18.8 13.7 11.1 23.6 13.4 15.5 28.1 10.0 

CV, % 76.1 80.8 22.0 20.6 25.3 16.5 10.2 20.1 24.0 18.5 42.7 40.1 

2006–2035 TRMM and Simulation 

Mean 21.5 58.0 84.0 164.2 123.6 79.9 56.2 191.4 159.4 56.6 166.3 52.9 

Standard Deviation 7.2 55.8 38.6 52.9 37.4 23.8 16.4 30.0 51.8 27.8 92.7 20.6 

CV 33.4 96.3 46.0 32.2 30.3 29.7 29.1 15.7 32.5 49.0 55.7 38.9 

2006–2065 TRMM and Simulation 

Mean 24.2 96.6 107.2 209.9 145.8 97.2 47.7 195.1 197.9 58.1 160.8 49.8 

Standard Deviation 8.3 110.3 72.5 80.6 40.2 36.1 15.7 33.3 74.0 68.8 91.2 18.5 

CV 34.4 114.1 67.7 38.4 27.6 37.1 32.8 17.1 37.4 118.5 56.7 37.1 

2006–2099 TRMM and Simulation 

Mean 28.7 224.0 150.0 246.5 176.3 128.8 40.4 206.1 271.7 54.4 171.0 47.9 
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Standard Deviation 14.2 255.4 94.9 103.5 59.9 60.9 16.6 34.5 126.7 62.1 101.5 16.6 

CV, % 49.4 114.0 63.3 42.0 34.0 47.3 41.1 16.7 46.6 114.0 59.4 34.7 

HadCM3             

1975–2001 TRMM and Weather Generator 

Mean 46.6 38.6 49.1 62.7 74.1 73.6 101.8 101.0 92.9 86.3 74.7 55.8 

Standard Deviation 26.5 21.5 32.0 44.8 42.4 30.3 34.7 26.6 28.2 23.8 35.3 33.0 

CV, % 56.9 55.7 65.1 71.3 57.2 41.1 34.0 26.3 30.3 27.6 47.2 59.1 

2006–2035 TRMM and Simulation 

Mean 46.6 38.6 49.1 62.7 74.1 73.6 101.8 101.0 92.9 86.3 74.7 55.8 

Standard Deviation 26.5 21.5 32.0 44.8 42.4 30.3 34.7 26.6 28.2 23.8 35.3 33.0 

CV, % 56.9 55.7 65.1 71.3 57.2 41.1 34.0 26.3 30.3 27.6 47.2 59.1 

2006–2065 TRMM ans Simulation 

Mean 66.9 73.7 83.7 83.8 89.2 76.9 78.9 69.6 61.9 67.3 72.0 67.7 

Standard Deviation 39.7 53.3 54.4 49.0 45.6 41.8 44.3 42.9 40.9 42.4 45.3 40.0 

CV, % 59.4 72.3 65.0 58.5 51.1 54.4 56.1 61.6 66.0 63.0 62.9 59.2 

2006–2097 TRMM and Simulation 

Mean 77.7 67.2 67.4 65.6 76.3 74.6 80.5 85.4 89.5 89.8 90.4 83.6 

Standard Deviation 57.9 52.7 53.6 50.7 52.0 47.2 46.0 57.1 66.3 61.5 64.7 55.3 

CV, % 74.5 78.4 79.5 77.3 68.1 63.3 57.1 66.9 74.1 68.5 71.6 66.1 

The red and black items show the high CV values. The red color gives the highest CV values for rainfall onset and cessation periods 

Table 7. Kaabong TRMM and Simulated (CanESM2and HadCM3) Monthly Rainfall Coefficient of 

Variation. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CanESM2             

1975–2005 TRMM and Weather Generator 

Mean 9.9 12.4 47.5 76.2 90.4 51.5 63.9 67.0 28.8 40.5 43.9 24.4 

Standard Deviation 6.4 4.6 16.1 15.5 35.5 14.0 7.5 19.6 9.5 13.7 17.6 16.4 

CV, % 65.1 36.8 33.8 20.3 39.3 27.1 11.8 29.3 33.0 33.7 40.1 67.5 

2006–2035 TRMM and Simulation 

Mean 7.3 21.0 70.3 92.8 172.8 41.7 111.1 61.6 24.8 12.2 58.1 34.2 

Standard Deviation 1.2 9.6 23.5 18.5 41.8 11.7 23.1 19.6 5.5 6.6 15.5 15.9 

CV, % 16.2 45.7 33.4 20.0 24.2 28.2 20.8 31.8 22.2 54.1 26.7 46.5 

2006–2065 TRMM ans Simulation 

Mean 7.3 37.2 77.7 101.0 239.2 39.2 133.5 55.1 24.2 8.3 76.3 38.0 

Standard Deviation 1.2 26.1 32.3 24.0 87.8 10.9 35.0 18.8 5.1 6.7 32.1 17.7 

CV, % 15.7 70.1 41.6 23.7 36.7 27.9 26.2 34.1 21.0 81.2 42.1 46.5 

2006–2099 TRMM and Simulation 

Mean 7.2 64.5 91.2 114.1 322.5 34.5 172.8 51.6 23.6 5.8 107.7 43.2 

Standard Deviation 1.8 48.3 38.5 31.8 139.1 12.1 66.3 18.2 5.1 6.5 67.5 21.2 

CV, % 25.2 74.9 42.3 27.8 43.1 35.1 38.4 35.3 21.6 111.8 62.6 49.1 

HadCM3             

1975–2001 TRMM and Weather Generator 

Mean 11.2 14.6 68.7 85.3 102.6 56.0 52.1 66.4 25.4 51.1 62.8 27.5 

Standard Deviation 3.7 4.3 20.0 9.1 30.5 10.2 5.3 5.4 3.0 6.7 12.6 12.3 

CV, % 32.9 29.2 29.2 10.6 29.7 18.3 10.3 8.1 11.8 13.2 20.0 44.8 
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2006–2035 TRMM and Simulation 

Mean 49.1 51.2 66.0 77.1 87.6 90.7 102.6 96.4 80.4 74.5 73.9 62.4 

Standard Deviation 25.8 39.0 48.6 62.0 60.4 40.3 34.3 41.5 32.4 30.3 23.5 32.8 

CV, % 52.5 76.2 73.7 80.4 69.0 44.4 33.5 43.1 40.4 40.6 31.8 52.6 

2006–2065 TRMM and Simulation 

Mean 88.4 86.6 93.9 88.3 103.1 101.0 97.8 92.2 94.2 95.2 100.9 97.8 

Standard Deviation 58.2 58.4 53.9 52.1 63.1 38.5 35.8 46.0 75.7 71.9 69.1 72.2 

CV, % 65.9 67.5 57.4 59.0 61.3 38.1 36.6 49.9 80.3 75.6 68.5 73.8 

2006–2097 TRMM and Simulation 

Mean 120.8 109.8 127.7 127.5 135.1 135.8 130.1 128.3 120.0 117.3 123.6 132.8 

Standard Deviation 79.1 78.7 100.2 109.6 96.3 115.7 83.7 81.0 80.6 75.3 87.6 89.9 

CV, % 65.5 71.7 78.5 86.0 71.3 85.2 64.3 63.1 67.2 64.2 70.8 67.7 

The red and black items show the high CV values. The red color gives the highest CV values for rainfall onset and cessation periods 

Table 8. Gulu TRMM and Simulated (CanESM2and HadCM3) Monthly Rainfall Coefficient of 

Variation. 

  Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

CanESM2             

2006–2099 TRMM and Simulation 

Mean 82.4 141.7 297.9 314.1 253.4 153.8 220.3 380.4 323.2 278.9 137.4 42.8 

Standard Deviation 86.5 84.6 116.3 63.4 63.0 34.1 117.7 109.2 61.2 88.4 51.6 26.6 

CV, % 105.0 59.7 39.0 20.2 24.9 22.2 53.4 28.7 18.9 31.7 37.6 62.3 

2006–2065 TRMM and Simulation 

Mean 44.2 99.9 237.5 307.3 225.8 154.5 144.9 322.1 334.5 243.2 144.6 36.2 

Standard Deviation 41.9 54.7 74.7 64.0 42.5 34.9 46.0 87.4 65.0 69.2 49.2 14.8 

CV, % 94.7 54.8 31.4 20.8 18.8 22.6 31.7 27.1 19.4 28.5 34.0 41.0 

2006–2035 TRMM and Simulation 

Mean 27.1 75.3 196.6 289.3 211.9 153.7 114.2 263.1 331.2 224.9 146.4 34.3 

Standard Deviation 14.8 42.7 48.5 71.1 47.8 35.6 18.8 67.3 58.3 63.7 48.6 13.1 

CV, % 54.7 56.6 24.7 24.6 22.6 23.1 16.5 25.6 17.6 28.3 33.2 38.3 

1975–2005 TRMM and Weather Generator 

Mean 28.4 32.7 127.7 198.0 200.4 108.6 150.5 172.9 149.1 160.6 79.4 31.8 

Standard Deviation 21.9 20.1 35.3 50.5 35.7 28.1 35.4 38.7 30.5 26.6 29.9 11.8 

CV, % 77.2 61.5 27.7 25.5 17.8 25.9 23.5 22.4 20.4 16.6 37.6 37.1 

HadCM3             

2006–2097 TRMM and Simulation 

Mean 140.5 160.5 227.2 293.8 180.5 114.4 345.7 179.0 332.0 171.1 54.2 105.3 

Standard Deviation 55.1 65.2 73.4 101.6 63.9 29.2 203.7 74.3 119.6 45.0 27.5 42.5 

CV, % 39.2 40.6 32.3 34.6 35.4 25.5 58.9 41.5 36.0 26.3 50.8 40.4 

2006–2065 TRMM and Simulation 

Mean 120.0 148.6 228.0 269.5 195.9 125.0 229.1 186.0 261.4 180.2 56.9 83.3 

Standard Deviation 44.2 63.7 75.0 80.3 49.9 25.8 59.3 86.7 80.8 49.6 32.7 32.8 

CV, % 36.9 42.9 32.9 29.8 25.5 20.6 25.9 46.6 30.9 27.5 57.4 39.4 

2006–2035 TRMM and Simulation 

Mean 106.4 108.1 172.7 220.2 177.7 121.9 218.1 238.8 231.8 213.3 83.3 76.9 

Standard Deviation 50.7 50.5 58.4 79.7 61.3 25.2 27.6 39.9 41.2 27.2 23.4 34.7 

CV, % 47.6 46.7 33.8 36.2 34.5 20.7 12.6 16.7 17.8 12.7 28.1 45.1 
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1975–2005 TRMM and Weather Generator 

Mean 26.4 37.1 132.5 222.1 208.3 112.4 170.7 175.8 158.9 161.3 74.5 33.8 

Standard Deviation 19.6 13.7 27.0 31.1 21.6 19.5 9.8 15.9 19.4 18.4 15.4 7.9 

CV, % 74.3 36.9 20.4 14.0 10.3 17.3 5.8 9.0 12.2 11.4 20.7 23.3 

The red and black items show the high CV values. The red color gives the highest CV values for rainfall onset and cessation periods 

 

 

 
  (a) 

 

  (b)   

Figure 12. Agoro CanESM2 future average monthly rainfall variations for (a) maximum monthly 

rainfall and (b) minimum monthly rainfall. 
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(a) 

 

(b) 

Figure 13. Gulu CanESM2 future average monthly rainfall variations for (a) maximum monthly 

rainfall and (b) minimum monthly rainfall. 

 

Figure 14. CanESM2 3-month period SPI values for Kaabong for the duration 2006–2099. 
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Table 9. Percentage variation of Standardized Precipitation Index (SPI) values for Kaabong over the 

period 2006–2099. 

 

SPI Time Period 

Value  Class 
2006–

2035 

2036–

2065 

2066–

2099 

    Percentage of period 

≥ 2 Extremely Wet 0.3 0.3 5.4 

1.5 to 1.99 Severely Wet 0.8 2.5 11.0 

1.0 to 1.49 Moderately Wet 0.8 2.8 22.8 

0.99 to -0.99 Mildly wet/dry (near normal) 63.4 83.6 55.4 

–1.0 to –1.49 Moderately Dry 19.0 5.8 2.5 

–1.5 to –2.0 Severely Dry 12.8 3.6 2.2 

≤ –2.0 Extremely Dry 2.8 1.4 0.7 

Maximum SPI Value   2.2 2.5 3.0 

Minimum SPI Value   –2.9 –2.5 –2.8 

 

 

Figure 15. CanESM2 3-month period SPI values for Agoro for the duration 2006–2099. 

 

Table 10. Percentage variation of SPI values for Agoro over the period 2006–2099. 

SPI Time Period 

Value  Class 
2006–

2035 

2036–

2065 

2066–

2099 

    Percentage of period 

≥ 2 Extremely Wet 0.0 0.8 6.4 

1.5 to 1.99 Severely Wet 1.1 0.6 9.8 

1.0 to 1.49 Moderately Wet 2.0 4.4 24.8 

0.99 to –0.99 Mildly wet/dry (near normal) 62.0 80.8 56.4 

–1.0 to –1.49 Moderately Dry 22.9 6.9 1.5 

–1.5 to –2.0 Severely Dry 10.1 4.4 0.7 

≤ -2.0 Extremely Dry 2.0 1.9 0.5 
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Maximum SPI Value   1.87 3.48 3.0 

Minimum SPI Value   –2.48 –2.9 –2.28 

Figure 16. CanESM2 3-month period SPI values for Gulu for the duration 2006–2099. 

Table 11. Percentage variation of SPI values for Gulu over the period 2006–2099. 

SPI Time Period 

Value  Class 
2006–

2035 

2036–

2065 

2066–

2099 

    Percentage of period 

≥ 2 Extremely Wet 0.0 0.1 1.9 

1.5 to 1.99 Severely Wet 0.3 0.4 4.6 

1.0 to 1.49 Moderately Wet 0.8 3.1 10.5 

0.99 to –0.99 Mildly wet/dry (near normal) 64.5 73.3 67.3 

–1.0 to –1.49 Moderately Dry 20.4 14.3 9.8 

–1.5 to –2.0 Severely Dry 10.1 6.3 4.3 

≤ –2.0 Extremely Dry 3.9 2.5 1.7 

Maximum SPI Value   1.9 2.5 2.8 

Minimum SPI Value   –3.3 –3.3 –3.3 

4. Discussion 

Due to scarce and inconsistent station rainfall data in Aswa catchment, secondary data from 

TRMM was used to downscale two GCMs (CanEMS2 and HadEM3) for investigating likely future 

rainfall quantities, variability onset and cessation of rainfall months for this study. However, 

secondary data from satellite sometimes present challenges of non-homogeneity [27] and week 

correlation with the actual recorded data. The intervention tests show that the TRMM data is 

homogeneous. The correction between TRMM and the limited recorded rainfall data in Aswa 

catchment show a coefficient of determination, R2 value of 0.65 (R = 0.806), which gives confidence of 

using the TRMM rainfall data as proxy for station data. The biases are generally low with an average 

of 1.018. TRMM rainfall validation studies carried out in Ghana [31] revealed similar bias values 

ranging from 1.047 to 1.479. The good correlation between station and TRMM rainfall and minimal 

bias between downscaled and TRMM rainfall are deemed sufficient to allow for use of TRMM rainfall 

in the absence of station rainfall data for simulation of future scenarios. The downscaled simulated 

future rainfall using SDSM, CanEMS2 and HadEM3 CGM predictors show increased rainfall in the 

future. In reference to the SDSM calibration results, we expect CanESM2 (with higher R2 values) 

based simulated future rainfall data for Aswa catchment to be more accurate than HadCM3 based 

data. The correlation coefficients for CanESM2 are marginally higher and the standard errors are 

lower than for HadCM3 (Table 3). 
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The results of Man Kendal tau values are positive, as can be seen for example, for Agoro and 

Amuria locations ranging from 0.172 to 0.683 (Table 5). This suggests a strong positive trend in the 

future. Agoro represents the semi humid section and Amuria represents the humid section of the 

catchment. This trend is expected to become steeper as we move from mid (2036–2065) to end of the 

century (2066–2099). These results are also supported by the SPI values, which can be seen from 

Figure 14, Figure 15, Figure 16, Table 9, Table 10 and Table 11. The percentage of SPI values greater 

than 1.5 (severely wet and extremely wet) are to increase as we move to mid and end of the century. 

This suggests that the future rainfall is not only expected to increase but also have extremely wet 

patterns, which are likely to affect crop production, infrastructure and the environment negatively. 

The expected increase in rainfall trend could be good for improving crop yields in an area such 

as the Aswa catchment, which has been suffering from droughts and water stress. However, analysis 

of the rainfall patterns show increased and high monthly CV values in the future. CV values above 

30% suggest high variability and poor rainfall distribution. The CV values, as can be seen from Table 

6, Table 7 and Table 8 for Agoro, Kaabong and Gulu locations respectively, are high reaching up to 

118.5%. The onset and cessation months of February–April and October–November respectively 

show the highest rainfall variability. The rainfall patterns during these months are expected to 

become more unreliable as we move to mid centaury to end of the century. The CV values for future 

simulated rainfall data based on CanESM2 are generally higher than for the data sets based on 

HadCM3. However, looking at the higher correlation coefficients for CanESM2 data sets during 

calibration and validation, we consider the corresponding CV values for the data sets to be more 

reliable. 

The analysis of future rainfall onset and cessation dates results also support the indications of 

the CV. Figures 4–11 show the variation of future rainfall onset and cessation dates for Agago (humid) 

and Kaabong (semi-arid) locations for CanESM2and HadCM3 based downscaling using both rainfall 

and rainy days data. The future rainfall onset and cessation dates are expected to come earlier and 

later than the current dates by up to four and five weeks respectively. For Agago the future rainfall 

onset is expected to come in February instead of March and cessation is expected in November 

instead of late October as is currently being experienced. For Kaabong, future rainfall onset is 

expected to come late February/early March instead of late March as is currently happening, while 

the future cessation is expected in November instead of the current late October. The two GCM gave 

similar results for each location. The change in rainfall onset and cessation dates is likely to affect the 

farming activities of the peasant farmers and crop yields. 

5. Conclusions 

In this study, we examined the future changes in rainfall patterns, trends, extreme occurrences, 

onset and cessation of rainfall over Aswa catchment using SPI, Mann–Kendall statistics, descriptive 

statistics (coefficient of variability), and cumulative percentage mean rainfall methods to provide 

insight into near future (2006–2035), midterm (2036–2065) and long term (2066–2100) future periods. 

The results suggest that annual rainfall over Aswa catchment is going to increase especially in 

the mid and long term future by up to 100%, and even more. This could be a good development for 

the farmers if the rainfall turns out to be reliable and well distributed. However, the future presents 

a highly variable and unreliable rainfall pattern. This can be seen from the high CV (up by 118.5%) 

and the rise in percentage of SPI values for extremely wet periods. The study reveals SPI values for 

extremely wet periods increasing from zero in (2006–2035), to 0.8 in (2036–2065) and to 6.4 in (2066–

2099) periods for Agoro which lies in the semi-humid region of the catchment. For Kaabong located 

in the semi-arid region of the catchment, the rise in percentage of SPI values for extremely wet periods 

is 0.3, 0.3 and 5.4 respectively. For Gulu located in the humid region of the catchment, is from 0 to 0.1 

to 1.9 respectively. This suggests that the semi-arid and semi-humid regions of the catchment will 

experienced more extremely wet conditions in the future compared to the humid region. Extremely 

dry periods are, however, expected to reduce although they will continue to be experienced as can 

be seen from Table 9, Table 10 and Table 11. 
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The onset and cessation of rain are also expected to shift backwards and forward by up to four 

and five weeks respectively. This in turn is expected to affect farming activities such as field 

preparation, planting and harvesting. The future scenarios are increased, highly variable and 

unreliable rainfall in Aswa catchment, with the drier semiarid section being the most affected. This 

may result in floods, water logging, severe soil erosion and even droughts with consequent reduction 

in crop yields and negative impact on the livelihood of the farmers. These changes can affect the 

future agricultural production, water availability, environment and socio-economic wellbeing over 

the Aswa catchment. The results of the study can be of use for future catchment water resources 

planning and management, agricultural and socio-economic planning, and introduction of 

appropriate mitigation measures such as provision of supplementary irrigation, introduction of new 

crop varieties/farming system, soil and water conservation measures, drainage and reservoir 

development. 
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