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Abstract: Future global warming may result in extreme precipitation events leading to crop,
environment and infrastructure damage. Rainfall is a major input for the livelihood of peasant
farmers in the Aswa catchment where the future rainfall variability, onset and cessation are also
likely to be affected. The Aswa catchment has limited rainfall data; therefore, use of secondary
datasets from Tropical Rainfall Measuring Mission (TRMM) is considered in this study, based on
the close correlation of the recorded and TRMM rainfall. The latter was used to calibrate the
statistical downscaling model for downscaling of two general circulation models to simulate future
changes in rainfall. These data were analyzed for trends, wet and dry conditions/variability; onset
and cessations of rain using the Mann-Kendall test, Standardized Precipitation Index (SPI) and the
cumulative percentage mean rainfall method, respectively. Results show future rainfall is likely to
increase, accompanied by increasing variability reaching as high as 118.5%. The frequency of SPI
values above 2 (extreme wetness) is to increase above current level during mid and end of the
century. The highest rainfall variability is expected especially during the onset and cessation
months, which are generally expected to come earlier and later, by up to four and five weeks,
respectively. The reliability worsens from the midterm (2036-2065) to long term (2066-2099). These
likely changes in rainfall quantities, variability, onset and cessation months are some of the key
rainfall dynamics that have implications for future arable agriculture, environment and water
resource availability and planning over the Aswa catchment, as is increasingly the case elsewhere.
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1. Introduction

Projected future global warming may result in extreme precipitation events causing drought and
flooding, which in turn may result in crop yield reduction, increased soil erosion and damage to
infrastructure [1-5]. The recent report by the Intergovernmental Panel on Climate Change (IPCC) [6]
indicates that global warming above pre-industrial levels (1900) of 1.5 °C and beyond would have
adverse impacts on communities that depend on agriculture in the least developed countries. Rainfall
is key to livelihoods of peasant farmers who depend on rain fed agriculture [7-11]. Declines in
rainfall, increased variability and/or uncertainty would increase the risk of hunger and poverty
especially for the peasantry. Fishman [12] argues that an increase in rainfall variability amidst
increased annual rainfall overrules the benefit expected from the increase on crop yields. Increased
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future rainfall variability is, therefore, a great concern for the socio-economic wellbeing of the
communities living in Aswa catchment and other areas with similar climatic conditions.

Over the country of Uganda as a whole, more than 72 % of the economically active population
derive their livelihood from agriculture, which contributes about 24.6 % of the Gross Domestic
Product (GDP) [13]. The study area of Aswa catchment offers a typical Ugandan and African setting
where the future socio-economic wellbeing of the community who mostly depend on agriculture is
uncertain due to impacts of climate change. More than two million people, of which more than 70%
are peasants, live in the Aswa catchment [14,15]. The catchment is characterized by periodic and
extended drought spells, leading to chronic food insecurity and famine. With an annual population
growth rate of over 3%, and within the context of climate change, the future is increasingly becoming
more uncertain. Detailed research on variability in the future rainfall changes and their onset and
cessation at the catchment and local level is, therefore, required for effective crop, environment and
water resource planning and management.

The Aswa catchment also lacks adequate recorded climate data, as is generally the case across
most of the African continent and other developing countries in the world. This challenge, among
others, could be addressed by using secondary data, such as the Tropical Rainfall Measuring Mission
(TRMM) [15,16]. Such data can be used to downscale General Circulation Models (GCMs) to
appropriate local catchment resolutions. GCMs are used to project changes in climatic parameters,
such as rainfall under various climate change Representative Concentration Pathway (RCP)
scenarios, defined by the Intergovernmental Panel for Climate Change (IPCC). However, these
projections are defined at coarse grid resolutions at which the GCMs are configured and, thus, being
unable to resolve important sub-grid scale variations. Therefore, the GCMs cannot be used directly
for climate change impact studies of small catchments such as Aswa; thus, downscaling is required
to generate corresponding data. In addition to GCMs not providing catchment scale information,
despite being our major source of knowledge about the future, they can also provide biased
information [17,18].

For downscaling GCMs, two downscaling methods, dynamical and statistical, are available.
Other nonlinear methods using artificial neural network (ANN) are also being used lately[19,20] for
generating long-term rainfall patterns. Statistical Downscaling (SD) is usually preferred over
dynamical downscaling as the former produces local weather and climatic time series, which is
cheap, readily transferable and computationally less demanding by use of appropriate statistical or
empirical relationships with predictor variables and, therefore, has been widely used in climate
change studies [21]. Products of statistical downscaling can be limited when there are some
systematic errors in input data used to calibrate the downscaling model, however. Systematic biases
for the current climate are also unavoidable in GCMs [22]. The biases can be propagated through the
downscaling process with far reaching implications on the simulations and any subsequent
applications [23,24]. The first step towards reducing the bias and improving the simulations is usually
to avoid using unrealistic or inaccurate datasets for calibrating the downscaling. In this regard input
data used for downscaling can either be bias corrected before downscaling or the simulations are bias
corrected themselves after downscaling [17,24]. Caution is also needed during post processing of the
simulations to keep minimal chances that the original climate change signal could be affected as this
alteration can substantially affect impact model results [25]. Depending on the level of biasness of
downscaled products from observations and the intended use of the products, on a case-by-case
basis, bias correction may not be critical.

In Statistical Down Scaling Model (SDSM), a combination of Multiple Linear Regression (MLR)
and the Stochastic Weather Generator (SWG) is used for generating climate scenarios for assessment
of various parameters of the data [21,26]. This study therefore, uses secondary rainfall data (TRMM)
to calibrate SDSM in a downscaling experiment of two General Circulation Models (GCMs) —Hadley
Centre Coupled Model version 3 (HadCM3) and Canadian Earth System Model (CanESM2))—for
simulation of future rainfalls for the data-constrained, but socio-economically important Aswa
catchment located in Uganda, within the context of changing climate, as reported in previous studies
[15]. The projected future rainfall is analyzed, using various methods, for changes in variability, onset
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and cessation. These changes are expected to have a profound impact on socio-economic wellbeing
of the farmers and the environment particularly in Aswa catchment, as well as areas and regions that
have similar climatic and socio-economic environment.

2. Materials and Methods

2.1. Study Site

The Aswa River catchment, at its confluence with River Nile, lies mainly in the northeastern part
of Uganda with a small portion extending into South Sudan. The total catchment area spreads over
31,000 km? and lies between 31.9 °E-34.25 °E latitude and 2.05°N-4.09 °N longitude. Figure 1 shows
the location of the catchment area and the points from which TRMM data were downloaded.
Coordinates of the TRMM data locations are shown in Table 1. The catchment has a wide range of
annual rainfall amounts and distribution pattern. The northeastern parts have a semi-arid climate
with annual rainfall varying between 500 and 800 mm, while the western and southern parts have
semi-humid and humid climate with annual rainfall ranging from 800 to more than 1400 mm in some
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Figure 1. Location of Aswa River catchment and GIS generated average Tropical Rainfall Measuring
Mission (TRMM) annual rainfall (2000-2015) distribution.

2.2. Rainfall Data

Secondary data from TRMM rainfall were used for this study in place of the scares and
inconsistent recorded rainfall data over the catchment. Gridded satellite based TRMM data are
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available from 2000 to 2015 (16 years). The TRMM rainfall data grid locations used in this study are
shown in Table 1. The TRMM grid resolution is 32 by 32 Km, while for the GCM used is within 290
by 435 km. The TRMM data can therefore be used for downscaling GCM data to a finer resolution.

Table 1. TRMM rainfall data location points.

Location Latitude,°N Longitude, °E

Agoro 3.88 33.13
Agago 2.88 33.38
Amuria 2.13 33.63
Kaabong 3.63 33.88
Kitgum 3.38 32.88
Gulu 2.63 32.63
Lira 2.13 33.38
Nimule 3.63 32.13

Source: http://iridl.ldeo.columbia.edu/SOURCES/.NASA/.GES-DAAC/. TRMM_L3/.TRMM_3B42/.v7/%20.daily/ (with a
resolution of 0.25° by 0.25° or 32 by 32 Km).

2.3. Data Processing

Limited observed daily rainfall data are available within the vicinity of the Aswa catchment from
weather stations such as Lira, Gulu and Kitgum. The relation between the station and secondary data
(TRMM) was investigated through correlation to find out if they were closely related enough to give
confidence of using TRMM data in calibrating the statistical downscaling model over the catchment.
Sometimes secondary data may have interventions due to malfunction of satellite equipment or
change of equipment [27] and, therefore, should be tested before use so that the homogenous section
is used for the study. Before this validation, TRMM data were put to intervention test analysis to find
out if the data set was homogeneous using the standard normal homogeneity test (SNHT) [15].

2.4 Downscaling and Projection of Future Rainfall

TRMM rainfall data were used to calibrate the SDSM for subsequent downscaling of two GCMs
(HadCM3 and CanESM2). Many GCMs are in use today, globally, with varying degrees of accuracy.
CanESM2 and HadCM3 have been successfully used in the region for climate change studies [28,29]
and have, therefore, been adopted for use in this study. The high emission scenario RPC 8.5
(CanESM2), A2 (HadCM3) predictor data variables were used for this study to represent the worst-
case scenario. The predictor data for the two GCMs were obtained from two different websites:
HadCM3 (http://www.cccsn.ec.gc.ca/?page=pred-hadcm3) and CanESM2
(http://www.cccsn.ec.gc.ca/?page=pred-canesm?2).

The predictor variables were screened in order to choose appropriate predictors. This stage is
critical because the choice of predictors largely determines the accuracy of the downscaled climate
scenario data. The procedure for predictor selection has been well laid by Hasan, et al. [30]. A
correlation matrix between the predictor and predictand (TRMM rainfall) was made. The predictor
with the highest correlation coefficient was selected and called the super predictor (SP). After
choosing the super predictor, the remaining predictors were regressed individually, together with
SP, and the absolute correlation coefficient between the predictor and predictand and between
individual predictors were obtained together, with their partial correlations and P values. Any
predictor with P-value > « (0.05) was removed. The percentage by which partial correlation is
lowered in respect to the correlation coefficient PRP (equation 1) was calculated for each predictor.
The other predictors where selected by calculating the PRP with respect to the absolute correlation
using the following equation.

D

PRP = (P.r—Rl)

R1
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Where:

PRP is the percentage by which partial correlation is lowered in respect to the correlation

coefficient,

P.r is defined as partial correlation coefficient and

R1 is the value of correlation coefficient between predictor and predictand.

The predictor that had the minimum PRP was selected as the second most suitable predictor.
This same process was done for the third and other following predictors. As a result, the super
predictor and the other remaining predictors will have almost zero, or insignificant multi-co-
linearity. Five predictors were selected, as can be seen, for example, for the Kitgum location in Table
2, with mean temperature at 2 m as the super predictor. The correlations are statistically significant
(P <0.05).

Table 2. Predictor selection for Kitgum Rainfall.

Predictor Description R1 P.r P PRP P.r P PRP P.r P PRP P.x P PRP Rank
((P.r- ((P.r- ((P.r- ((P.r-
R1) R1) R1) R1)
/R1) /R1) /R1) /R1)
Mean temperature at 2m 0.5 Super
9 Predicto

Surface specific humidity 0.5 0.2 0.0 0.46 0.1 0.0 0.64 0.0 0.0 0.87 0.0 0.0 0.94

4 9 0 9 0 7 0 3 7
850 hPa zonal velocity 0.5 0.3 0.0 0.29 2nd
2 7 0
Specific humidity at 850 0.5 0.3 0.0 0.39 0.2 0.0 0.55 3rd
hPa 0 1 0 2 0
Surface zonal velocity 0.4 0.3 0.0 0.36 0.1 0.0 0.79 0.1 0.0 0.76 0.1 0.0 0.79
9 2 0 0 0 2 0 0 0

850 hPa airflow strength 0.4 0.3 0.0 0.30 0.0 0.0 0.84 0.0 0.0 0.79 0.0 0.0 0.83

5 1 0 7 0 9 0 8 0
Surface airflow strength 0.4 0.2 0.0 0.40 0.0 0.0 0.80 0.1 0.0 0.76 0.0 0.0 079
4 6 0 9 0 1 0 9 0
Specific humidity at 500 0.4 0.2 0.0 0.44 0.1 0.0 0.55 0.1 0.0 0.76 0.1 0.0 0.74 5t
hPa 3 4 0 9 0 0 0 2 0
precipitation 0.3 0.1 0.0 0.53 0.0 0.0 0.89 0.1 0.0 0.72 4t
7 7 0 4 1 0 0

Key: PRP is the percentage by which partial correlation is lowered in respect to the correlation coefficient, P.r is partial correlation coefficient, R1 is the value of
correlation coefficient between predictor and predictand, P is probability value

Values in bold indicate the highest correlation coefficient for RI column or the lowest PRP value in the PRP column
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2.4.1. Calibration and Validation of SDSM Model and Generation of Future Rainfall

SDSM version 4.2.9 was calibrated and validated using the selected appropriate predictors and
TRMM rainfall data as predictand for various locations within the Aswa catchment. Such results of
predictor selection are shown for Kitgum station in Table 2.

Using the developed model, precipitation data were simulated for 1961-2001(HadCM3) and
1961-2005 (CanESM?2). The SDSM was used to generate 20 ensembles. The mean of the ensembles
and the TRMM and SDSM weather generator monthly rainfall data were compared. The coefficient
of determination, R?, between the (TRMM) and generated monthly data series, Bias (ratio of sum of
totals of simulated and TRMM rainfall), F values and the standard error (SE), were used for
evaluation of the statistical calibration and validation. The calibration and validation results for
various locations within the catchment can be seen in Table 3. The results show that the statistical
calibration and validation are good enough to be relied on. The correlation coefficients range from
0.83 to 0.97. The analysis of variance (ANOVA) F values are much greater than the critical values and
the standard error for rainfall range from 9.62 to 29.25 mm/month. These values compare well with
other studies using SDSM and validation studies in the region [28,29,31]. The bias values are low,
with an average value of 1.018.

Table 3. Calibration and validation of Statistical Down Scaling Model (SDSM) results for various
locations within the Aswa catchment.

Location ~ GCM Parameter  Process Bias Regression Statistics ANOVA
Rainfall Period R R Eii')fard Observations ~ F Significance of F
Agago HadCM3 Calibration ~ 1975-1990(16yrs) ~ 1.034  0.87 076  29.25 192 612 2.58x10-61
Validation ~ 1991-2001(11yrs) 0988  0.88 0.77  26.93 132 430 461x10w
CanESM2 Calibration ~ 1975-1990(16yrs) 1.021 097  0.95 13.84 192 3535 1.00x10-12¢
Validation 1991-2005(15yrs) ~ 1.010  0.97 095  12.64 180 3167 5 54x10115
Agoro HadCM3 Calibration ~ 1975-1990(16yrs) 1.048 0.85 0.72 21.03 192 494 1.01x105
Validation 1991-2001(11yrs)  0.996 093  0.86  14.11 132 783 7.11x105
CanESM2 Calibration ~ 1975-1990(16yrs) 0.964 0.95  0.90 12.33 192 1797 g.59x10%
Validation 1991-2005(15yrs) ~ 1.011 091 083 1543 180 842 2.10x10
Amuria  HadCM3 Calibration ~ 1975-1990(16yrs) ~ 1.030  0.87 076  26.82 192 608 3.94x10%
Validation 1991-2001(11yrs)  1.055 0.86 074 2643 132 377 2.92x1040
CanESM2 Calibration ~ 1975-1990(16yrs) ~ 1.044 094 0.88  19.36 192 1342 479410
Validation 1991-2005(15yrs) ~ 1.057 095 090 16.15 180 1644 7 g0x10%
Kaabong ~ HadCM3 Calibration ~ 1975-1990(16yrs)  0.995 090 0.81 1544 192 812 1.67x107
Validation 1991-2001(11yrs)  1.136  0.83  0.69  15.75 132 288 9.50x10%
CanESM2 Calibration ~ 1975-1990(16yrs) ~ 0.980  0.95 0.89  11.59 192 1587  349x10%
Validation 1991-2005(15yrs) 0.966 0.94  0.89 9.62 180 1372 1.38x10%
Gulu HadCM3 Calibration ~ 1975-1990(16yrs) ~ 1.019 096 092  19.19 192 2248 31210107
Validation ~ 1991-2001(11yrs) 0982 093 087 2321 132 885 7 40x10%
CanESM2 Calibration ~ 1975-1990(16yrs) 1.019 097 095 15.45 192 3574 3.73x1015
Validation 1991-2005(15yrs) ~ 0.998 096  0.92  18.18 180 2009  6.77x10*

The calibrated SDSM was used to downscale HadCM3 and CanESM2 for a generation of future
rainfall data for the near future (2006-2035), medium term future (2036-2065) and long term future
(2066-2099). These data were analyzed for trends and variability following the procedure outlined in
section 2.5.

2.5. Rainfall Trend Analysis

The historical (secondary) TRMM (2000-2015) data were subjected to a homogeneity test in

order to identify any interventions in the data. The homogenous portion of the data was then used
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for further analysis. The simulated near future (2006-2035), medium term (2036-2065) and the long
term (2066-2099) future daily and monthly rainfall data were analyzed for trend and variability. The

Mann-Kendall test was used for trend analysis and is given by equations (2) and (3).

S
= 2
' 0.5xn*x(n—1) @
n-1 n
S = Z sign(x; — x;) 3)
i=1 j=it+1

Where;
xj = the observation at time j
xi = the observation at time i

n = total number of observations

Sign (xj — xi) = 1 if computed value >0
=0 if computed value is 0

= -1 if computed value <0

Further analysis was carried out using descriptive statistics such as mean, standard error,
standard deviation and coefficient of variability (CV) for the historical (TRMM) and simulated future

rainfall data.

2.6. Onset and Cessation of Rainfall Dates

The cumulative percentage mean rainfall method was used to determine the onset and cessation
of the historical, near future (2006-35), medium term (2036-65) and long term (2066-99) future
simulated rainfall. This method has been used successfully by many researchers [7,32-34] for
determination of the rainfall onset and cessation dates. The procedure for the method is as follows:

1. the percentage of mean annual rainfall that happens at every 5-day interval is derived;
2. the cumulative percentage of the computed percentage at 5-day intervals is derived;

3. the cumulative percentage at 5-day intervals is plotted for the whole year; and

4. identification of the time of rainfall onset and cessation during the year or season.

The point of first maximum positive curvature and last maximum negative curvature on the
graph of the cumulative percentage indicate the mean periods of rainfall onset and cessation,
respectively. Another alternative criterion for the onset of the rain is the timing of an accumulated
7% to 8% of the annual rainfall, and the cessation begins after the accumulation of 90% of the annual
rainfall.

The cumulative percentage mean rainfall method for determining onset and cessation of rainfall
can use either the rainfall amounts or rainy days [7,32,33,35]. Both methods have been applied in this
study. There are other methods for determination and definitions of onset and cessation of rain
[36,37]. The criterion used for defining onset and cessation of rain can be based on soil water balance/
water stress coefficient, the first wet day with accumulated X mm of rainfall during a period of a
certain number of days, rainfall-evapotranspiration relation model, and others. The threshold for a
rainy day also varies: 0.85 mm, 1 mm and other values [36,38]. The method of cumulative percentage
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mean rainfall is commonly used by many researchers. It is preferred to other methods for
determination of rainfall onset and cessation dates due to its efficiency and freedom from assumption
of rainfall threshold values and its reliance on rainfall data alone [39]. The minimum rainfall value
for a rainy day was set as 1 mm. This value was adopted from Ngetich, Mucheru-Muna, Mugwe,
Shisanya, Diels and Mugendi [36]. The days with rainfall below 1 mm were considered as non-rainy
or dry days.

2.7. Standardized Precipitation Index (SPI)

There are several drought indices in use but the most commonly used are the Palmer Drought
Severity Index (PDSI) and the Standardized Precipitation Index (SPI) [40,41]. The PDSI is related to a
water balance. The input parameters include moisture supply, evaporation, precipitation and runoff.
However, the SPI is an index with only precipitation as an input variable [42]. The standardized
Precipitation Index (SPI) was used to determine occurrence of extreme rainfall events for the current
period and future projections of rainfall in this study. The advantage of SPI over other indices is its
robustness to detect different types of droughts such as hydrological, meteorological and agricultural
at different time scales (1, 3, 6, 12, 24 up to 60 months) using only rainfall data set.

The SPI computation method was developed by McKee, et al. [43] to evaluate the relative
deviations of precipitation from the average normal values and the Gamma distribution is generally
used in SPI calculation. It has been used for many studies all over the world [41,44—48] to evaluate
occurrences or drought and wet conditions. SPI is based on normalized data and, therefore, does not
vary spatially, and as such, droughts and wet occurrences can be assessed in different regions. The
SPI is calculated by fitting a certain probability density function to the frequency distribution of
rainfall series over the period for the analysis. The resulting fitted function is used to generate
cumulative distribution of the data and consequently transformed into the standardized normal
distribution used to define SPL

The Gamma distribution has two main parameters; the probability density function (PDF) and
cumulative distribution function (CDEF).

The PDF can be expressed as:

gX) = S ra x@=1p=x/B @)
Where,
o = shape parameter (a>0),
[ = scale parameter (3>0),
I'*=a gamma function of a and can expressed as;
r® = ["y“lerdy )

The PDF of an observed amount of precipitation for a given month and period of time is expressed

as:

1

) =7@rg

fox x@1e=%/B gy (6)
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The PDF is transformed to the standard normal variate Z, which is the value of SPI.

Where, xi is the precipitation of the selected period during the year i, % is the long term mean

Xi

SPI =

9 of 28

@)

precipitation and o is standard deviation for the selected period. Positive and negative SPI values

correspond to wet and drought periods respectively. Table 4 gives the classification of SPI values.

Table 4. Classification of SPI values.

SPI value Class

2.00 or more  Extremely wet
1.50-1.99 Severely wet
1.00-1.49 Moderately wet

0-0.99 Mildly wet
0 to —0.99 Mildly dry
-1.00to -1.49 Moderately dry
-1.50t0-1.99  Severely dry
-2 or less Extremely dry

Source:[44]

In this study, hydrological drought was evaluated for Aswa catchment. A soft wear SPI
generator developed by the National Drought Mitigation Center of University of Nebraska-Lincoln

was used to calculate the monthly SPI values for the period 2006-2099.

3. Results

3.1. Correlation of Station and TRMM rainfall

The TRMM and Observed monthly rainfall data for Lira station were correlated as seen in
(Figure 2). The correlation gives coefficient of determination, R? value of 0.65 and standard error of
47.86 mm. This indicates that the observed and TRMM rainfall data are closely correlated and the

TRMM data can be used to represent observed data in case of unavailability of the latter.

Lira TRMM Monthly Rainfall

400
350
300
250
200
150
100
50
0

0 100 200 300
Lira Monthly Rainfall

400

Figure 2. Correlation of TRMM and observed rainfall data for Lira.



Climate 2020, 8, 67 10 of 28

3.2. Simulated Future Rainfall

Based on computed test statistics against threshold, homogeneity test results (Table 5) show that
the TRMM and weather generated rainfall data series 19752005 are homogeneous and, therefore,
the whole data series was used to calibrate the SDSM for the study. Future rainfall scenarios were
subsequently simulated using the calibrated and validated SDSM for two GCMs (HadCM3 and
CanESM2) for various locations within the vicinity of the Aswa catchment. All of the results show
future rise in rainfall amounts. Figure 3 shows the graphical simulation results for five locations based
on CanESM2 and HadCM3 GCMs.
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Figure 3. Simulated future rainfall for Agago, Amuria, Gulu, Agoro and Kaabong locations (a)
CanESM2-SDSM (2006—2100) (b) HadCM3-SDSM (2006—2097).

The annual rainfall at current (2015) level for Agoro is about 800 mm and is expected to rise to
about 1000-1200 mm by 2035, 1200-1300 mm by 2065 and up to 1500 mm by 2099 (Figure 3). The
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annual rainfall at current level for Amuria is about 1500 mm and is expected to rise to about 1700-
2000 mm by 2035, 2200-2300 mm by 2065 and up to 3500 mm by 2099 (Figure 3).

The Mann-Kendall test statistics also show that there is going to be positive trend for the
simulated future annual rainfall over Aswa catchment as can be seen from Table 5. The Kendall tau
values range from 0.172 to 0.683. The increase in positive trend is stepper for the medium term (2036—
2065) and long term (2066-2099) periods. This increase in rainfall is also associated with increased
variability as we show in the next sections.

The increase in annual rainfall is expected to have impact on agricultural production, water
resources and environment management. Some of the impacts may be positive (increased crop yields,
water availability) while others may be negative (erosion, flooding, infrastructure damage, increased
waterborne diseases).

Table 5. Results of Homogeneity Test and Mann—Kendall Statistics for TRMM and Simulated Rainfall
Data for Agoro and Amuria Locations in Aswa Catchment. SNHT = standard normal homogeneity

test.
Homogeneity Test-SNHT Mann-Kendall Statistics
GCM, Data type Period p-  alph Comment Numberof Kendall' Sen'sCommen
Location value a Observation s tau slop t
(Two- s e
tailed
)
CanESM
2
Agoro TRMM and generated monthly 1975— 0.099 0.05 P>a(0.05), 372
Rainfall 2005 homogeneou
s
TRMM and simulated annual Rainfall 2006— 94 0.683 18.52 Positive
2099 trend
TRMM and simulated annual Rainfall 2006— 60 0.449 10.42 Positive
2065 trend
TRMM and simulated annual Rainfall 2006— 30 0.200 6.628 Positive
2035 trend
HadCM3
Agoro TRMM and simulated annual Rainfall 2006— 92 0.669  3.219 Positive
2097 trend
TRMM and simulated annual Rainfall 2006— 60 0.463 2.339 Positive
2065 trend
TRMM and simulated annual Rainfall 2006— 30 0.195 1.426 Positive
2035 trend
CanESM

2
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Amuria TRMM and generated monthly 1975— 0.220 0.05 P>a (0.05), 372
Rainfall 2005 homogeneou
s
TRMM and simulated annual Rainfall 2006— 94 0.647 10.52 Positive
2100 trend
TRMM and simulated annual Rainfall 2006— 60 0.472 9.072 Positive
2065 trend
TRMM and simulated annual Rainfall 2006— 30 0.172 6.286 Positive
2035 trend
HadCM3
Amuria TRMM and simulated annual Rainfall 2001— 92 0.647 18.54 Positive
2097 trend
TRMM and simulated annual Rainfall 2001— 60 0.482 13.70 Positive
2065 trend
TRMM and simulated annual Rainfall 2001— 30 0.218 9.212 Positive
2035 trend

3.3. Future Rainfall Onset and Cessation Dates

The onset and cessation of rainfall is to vary in the future and depart from the present pattern.
In the mid and long term future, onset of rain is expected earlier by 3-4 weeks and rainfall cessation
is expected to also commence later than it occurs now, by 1-5 weeks. The rainfall cessation dates are
more variable than the onset dates. Figures 4-11 show examples of the mean rainfall onset and
cessation dates for present, near, medium and long term future simulations for Agago and Kaabong
locations using daily rainfall and rainy days data. These two locations can be seen from figure 1.
Kaabong represents the semi-arid part of the catchment and Agago the humid part. Results for both
CanESM2 and HadCM3 predictions are comparably close to each other. However, the future rainfall
onset and cessation dates are to become more variable. Some studies from Ghana [32] found that the
use of daily rainfall or rainy days for determination of onset and cessation of rainfall give similar
results. Odekunle [33] showed that the use of rainy days for determination of onset and cessation of
rainfall in Nigeria gave more accurate results than the use of rainfall amounts. However, in our work
for Aswa catchment, there is no evidence that this is the case as the two methods gave similar results.

In view of the observations above, it is expected that the future shift of the onset and cessation
of rainfall will have impact on the planning and management of farming activities in Aswa
catchment. It will also impact crops yields in the catchment. Introduction of new crop varieties, which
have short growing periods, irrigation, soil and water conservation may be some of the mitigation
measures to be adopted by farmers in the catchment.
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(1975-2001) and projected (HadCM3) 2006-2035, 2006-2065 and 2006-2099).
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Figure 5. Agago Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM Rainfall (1975-

2001) and projected (HadCM3) 20062035, 20062065 and 2006—2099).
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2005) and projected (CanESM2) 2006-2035, 2036-2065 and 2066-2099).
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Figure 9. Kaabong Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM rainfall (1975-

2001) and projected (HadCM3) 20062035, 20362065 and 2066—2099).
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Figure 10. Kaabong Future Mean Rainfall Onset and Cessation Dates (TRMM rainfall (1975-2005) and
projected (CanESM2) 2006-2035, 2036-2065 and 2066—2099.
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Figure 11. Kaabong Future Mean Rainfall Onset and Cessation for Rainy Days (TRMM rainfall (1975-
2005) and projected (CanESM2) 2006-2035, 2036-2065 and 2066-2099.

3.4. Rainfall Variability Analysis

The simulated future rainfall data series are highly variable. The monthly coefficients of
Variation (CV) reach up to 118.5%. Coefficient of variation is a measure of how reliable the rainfall
pattern is. A higher variability implies a highly unreliable rainfall pattern. Generally, rainfall with a
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CV value above 30% is considered to be highly variable [49]. Table 6, Table 7 and Table 8 summarize
the results for Agoro, Kaabong and Gulu locations, respectively. Kaabong represents the semi-arid
region, Agoro represents the semi-humid region and Gulu represents the humid region of the
catchment, as can be seen in Figure 1.

As suggested by the high CV values, the rainfall is expected to be more variable during the onset
and cessation months of February—April and September-November, respectively. There is a short
dry spell that occurs around the months of June-July. The rainfall projection based on CanESM2 show
that the short dry spell of July is to be more severe in the mid and long term future than the current
period as shown in Figure 12 and Figure 13 for Agoro and Gulu locations. Extreme heavy rainfall
events are expected to increase during February-May, September and November months.

Based on CanESM2 rainfall projection, the three months’ time scale SPI values show that the
long term future rainfall pattern is going to be dominated by wet events (severely wet to extremely
wet) as compared to the current and near future situation which is dominated by droughts
(moderately dry to extremely dry). Figure 14, Figure 15 and Figure 16 show the SPI_3 values of 2006—
2099 for Kaabong, Agoro and Gulu locations respectively. Table 9, Table 10 and Table 11 show
percentage of variation of SPI values for the period 2006-2099 for Kaabong , Agoro and Gulu locations
respectively. The moderately, severely and extremely wet SPI values increase from mid to end of the
century compared to the current situation. In Agoro, for example, the percentage of extremely wet
SPI values (>2) rise from 0 (2006-2035) to 0.8 (2036-2065) and then to 6.4 (2066-2099). This is in
agreement with the high CV values of Kaabong and Agoro, as it is observed in Table 6 and Table 7.
These results suggest that the semi-arid and semi-humid section of Aswa catchment will have high
rainfall variability in the future. Nicholson, et al. [50] also found that semi-arid climate in Africa are
prone to extreme rainfall variability. Batisani and Yarnal [51] and Byakatonda et al. [52] reported
increasing rainfall variability in semi-arid Botswana. The expected increased future rainfall
variability will have profound impact on various sectors such as agricultural production, water
resources, infrastructure and the general environment in Aswa catchment. Droughts will cause crop
failure and extreme wet conditions will lead to water logging, flooding and soil erosion, which also
affect crop yields negatively. Studies from different parts of the world suggest that high rainfall
events can lead to crop yield reduction. Studies from Ghana revealed negative impact on crop yields
due to heavy rainfall events [53,54].

Table 6. Agoro TRMM and Simulated (CanESM2and Had3) Monthly Rainfall Coefficient of Variation.

Jan Feb Mar  Apr  May  Jun Jul Aug Sep Oct Nov  Dec

CanESM2

1975-2005 TRMM and Weather Generator

Mean 242 284 482 1169 741 832 1089 1173 559 838 659 250
Standard Deviation 18.4  23.0 10.6  24.1 188 137 111 236 134 155 281 10.0
CV, % 761 808 220 206 253 165 102 201 240 185 427 401
2006—2035 TRMM and Simulation

Mean 215 580 840 1642 1236 799 562 1914 1594 56.6 1663 52.9
Standard Deviation 72 558 386 529 374 238 164 300 518 278 927 206
cv 334 963 460 322 303 297 291 157 325 49.0 557 389
2006—2065 TRMM and Simulation

Mean 242 96.6 1072 2099 1458 972 477 1951 1979 581 160.8 49.8
Standard Deviation 83 1103 725 80.6 402  36.1 157 333 740 688 912 185
Ccv 344 1141 677 384 276 371 328 171 374 1185 56.7 37.1
2006—2099 TRMM and Simulation

Mean 28.7 2240 1500 2465 1763 1288 404 2061 2717 544 1710 479




Climate 2020, 8, 67

Standard Deviation 142 2554 949
CV, % 494 114.0 63.3
HadCM3

1975-2001 TRMM and Weather Generator
Mean 46.6 38.6 49.1
Standard Deviation 26.5  21.5  32.0
CV, % 56.9 55.7 65.1
2006-2035 TRMM and Simulation

Mean 46.6 38.6 49.1
Standard Deviation 26.5  21.5  32.0
CV, % 56.9 55.7 65.1
2006—2065 TRMM ans Simulation

Mean 66.9 73.7 83.7
Standard Deviation 39.7 533 544
CV, % 59.4 72.3 65.0
2006—2097 TRMM and Simulation

Mean 77.7 67.2 67.4
Standard Deviation 579 527  53.6
CV, % 74.5 78.4 79.5

103.5
42.0

62.7
44.8
71.3

62.7
44.8
71.3

83.8
49.0
58.5

65.6
50.7
77.3

59.9
34.0

74.1
42.4
57.2

74.1
42.4
57.2

89.2
45.6
51.1

76.3
52.0
68.1

621 1015 16.6

60.9 16.6 345 126.7

473 411 16.7  46.6 114.0
73.6 101.8 101.0 929  86.3
303 347 266 282 238
41.1 340 263 303 276
73.6 101.8 101.0 929  86.3
303 347 266 282 238
41.1 340 263 303 276
76.9 789 696 619 67.3
418 443 429 409 424
544  56.1 61.6 66.0 63.0
746 805 8.4 895 898
472 460 571 66.3 61.5
63.3 571 66.9 74.1 68.5

59.4 347

747 558
353 33.0
472  59.1

747 558
353 33.0
47.2 59.1

720 677
453 400
629 59.2

904 83.6
64.7 553
71.6 66.1
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The red and black items show the high CV values. The red color gives the highest CV values for rainfall onset and cessation periods

Table 7. Kaabong TRMM and Simulated (CanESM2and HadCM3) Monthly Rainfall Coefficient of

Variation.
Jan Feb Mar  Apr  May  Jun Jul Aug Sep Oct Nov Dec

CanESM2
1975-2005 TRMM and Weather Generator
Mean 99 124 475 762 904 515 639 670 288 405 439 244
Standard Deviation 6.4 46 161 155 355 140 75 19.6 95 137 176 164
CV, % 651 368 338 203 393 271 11.8 293 330 337 401 675
2006-2035 TRMM and Simulation
Mean 73 210 703 928 1728 417 1111 616 248 122 581 342
Standard Deviation 1.2 96 235 185 418 117 231 19.6 5.5 6.6 155 159
CV, % 162 457 334 200 242 282 208 318 222 541 267 465
2006-2065 TRMM ans Simulation
Mean 73 372 777 101.0 2392 392 1335 551 242 83 763 380
Standard Deviation 12 261 323 240 878 109 350 188 51 6.7 321 17.7
CV, % 157 701 416 237 367 279 262 341 210 8L2 421 465
2006-2099 TRMM and Simulation
Mean 72 645 912 1141 3225 345 1728 516 236 58 107.7 432
Standard Deviation 1.8 483 385 318 139.1 121 663 182 51 6.5 675 212
CV, % 252 749 423 278 431 351 384 353 216 1118 626  49.1
HadCM3
1975-2001 TRMM and Weather Generator
Mean 112 146 687 853 1026 560 521 664 254 511 62.8 275
Standard Deviation 3.7 43 200 9.1 305 10.2 5.3 5.4 3.0 6.7 126 12.3
CV, % 329 292 292 106 297 183 103 8.1 11.8 132 200 448
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2006-2035 TRMM and Simulation

Mean 49.1 51.2
Standard Deviation 25.8 39.0
CV, % 52.5 76.2

20062065 TRMM and Simulation

Mean 88.4 86.6
Standard Deviation 58.2 58.4
CV, % 65.9 67.5

20062097 TRMM and Simulation

Mean 120.8 109.8
Standard Deviation 79.1 78.7
CV, % 65.5 71.7

66.0
48.6
73.7

93.9
53.9
57.4

127.7
100.2
78.5

77.1
62.0
80.4

88.3
52.1
59.0

127.5
109.6
86.0

87.6
60.4
69.0

103.1
63.1
61.3

135.1
96.3
71.3

90.7
40.3
44.4

101.0
38.5
38.1

135.8
115.7
85.2

102.6
34.3
33.5

97.8
35.8
36.6

130.1
83.7
64.3

96.4
415
43.1

92.2
46.0
49.9

128.3
81.0
63.1

80.4
324
40.4

94.2
75.7
80.3

120.0
80.6
67.2

74.5
30.3
40.6

95.2
71.9
75.6

117.3
753
64.2

73.9
23.5
31.8

100.9
69.1
68.5

123.6
87.6
70.8
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62.4
32.8
52.6

97.8
72.2
73.8

132.8
89.9
67.7

The red and black items show the high CV values. The red color gives the highest CV values for rainfall onset and cessation periods

Table 8. Gulu TRMM and Simulated (CanESM2and HadCM3) Monthly Rainfall Coefficient of

Variation.

Jan Feb Mar  Apr May  Jun Jul Aug Sep Oct Nov Dec
CanESM2
2006—2099 TRMM and Simulation
Mean 82.4 141.7 2979 3141 2534 1538 2203 3804 3232 2789 1374 4238
Standard Deviation 86.5 846 1163 634 630 341 1177 1092 612 884 516 266
CV, % 105.0 59.7 39.0 20.2 249 22.2 53.4 28.7 18.9 31.7 37.6 62.3
2006—2065 TRMM and Simulation
Mean 44.2 99.9 2375 3073 2258 1545 1449 3221 3345 2432 1446 36.2
Standard Deviation 419 547 747 640 425 349 460 874 650 692 492 148
CV, % 94.7 54.8 31.4 20.8 18.8 22.6 31.7 27.1 194 28.5 34.0 41.0
2006—2035 TRMM and Simulation
Mean 27.1 75.3 196.6 2893 2119 153.7 1142 263.1 3312 2249 1464 343
Standard Deviation 14.8 427 485 711 478 356 188 673 583 637 486 131
CV, % 54.7 56.6 247 24.6 22.6 23.1 16.5 25.6 17.6 28.3 33.2 38.3
1975-2005 TRMM and Weather Generator
Mean 28.4 32.7 127.7 198.0 2004 108.6 150.5 1729 1491 1606 794 31.8
Standard Deviation 219 201 353 505 357 281 354 387 305 266 299 118
CV, % 77.2 61.5 27.7 25.5 17.8 259 23.5 22.4 20.4 16.6 37.6 37.1
HadCM3
2006—2097 TRMM and Simulation
Mean 1405 1605 2272 2938 180.5 1144 3457 1790 3320 171.1 542 1053
Standard Deviation  55.1 65.2 73.4 101.6 63.9 29.2 203.7 743 119.6 45.0 27.5 42.5
CV, % 39.2 40.6 32.3 34.6 354 25.5 58.9 41.5 36.0 26.3 50.8 40.4
2006—2065 TRMM and Simulation
Mean 1200 148.6 2280 2695 1959 1250 229.1 1860 2614 1802 569 833
Standard Deviation 44.2 63.7 75.0 80.3 49.9 25.8 59.3 86.7 80.8 49.6 32.7 32.8
CV, % 369 429 329 298 255 206 259 466 309 275 574 394
2006-2035 TRMM and Simulation
Mean 1064 1081 1727 2202 1777 1219 2181 2388 231.8 2133 833 769
Standard Deviation  50.7 50.5 58.4 79.7 61.3 25.2 27.6 39.9 41.2 27.2 23.4 34.7
CV, % 47.6 46.7 33.8 36.2 34.5 20.7 12.6 16.7 17.8 12.7 28.1 45.1
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1975-2005 TRMM and Weather Generator

Mean 264 371 1325 2221 2083 1124 170.7 1758 1589 1613 74.5
Standard Deviation = 19.6 137 270 311 21.6 195 98 159 19.4 18.4 15.4
CV, % 74.3 369 204 14.0 10.3 173 58 9.0 12.2 114 207
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33.8
7.9
23.3

The red and black items show the high CV values. The red color gives the highest CV values for rainfall onset and cessation periods
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Figure 12. Agoro CanESM2 future average monthly rainfall variations for (a) maximum monthly

rainfall and (b) minimum monthly rainfall.
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Figure 13. Gulu CanESM2 future average monthly rainfall variations for (a) maximum monthly

rainfall and (b) minimum monthly rainfall.
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Figure 14. CanESM2 3-month period SPI values for Kaabong for the duration 2006-2099.




Climate 2020, 8, 67 22 of 28

Table 9. Percentage variation of Standardized Precipitation Index (SPI) values for Kaabong over the
period 2006-2099.

SPI Time Period
2006— 2036— 2066—
Val Cl
ae ass 2035 2065 2099
Percentage of period
22 Extremely Wet 0.3 0.3 5.4
1.5t0 1.99 Severely Wet 0.8 2.5 11.0
1.0 to 1.49 Moderately Wet 0.8 2.8 22.8
0.99 to -0.99 Mildly wet/dry (near normal) 63.4 83.6 554
-1.0to -1.49 Moderately Dry 19.0 5.8 2.5
-1.5t0-2.0 Severely Dry 12.8 3.6 22
<-2.0 Extremely Dry 2.8 1.4 0.7
Maximum SPI Value 22 2.5 3.0
Minimum SPI Value -2.9 -2.5 -2.8
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Figure 15. CanESM2 3-month period SPI values for Agoro for the duration 2006-2099.

Table 10. Percentage variation of SPI values for Agoro over the period 2006-2099.

SPI Time Period
2006— 2036— 2066
Value Class 2035 2065 2099
Percentage of period
>2 Extremely Wet 0.0 0.8 6.4
1.5t01.99 Severely Wet 1.1 0.6 9.8
1.0to 1.49 Moderately Wet 2.0 4.4 24.8
0.99 to -0.99 Mildly wet/dry (near normal) 62.0 80.8 56.4
-1.0to -1.49 Moderately Dry 22.9 6.9 1.5
-1.5t0 2.0 Severely Dry 10.1 44 0.7

<-20 Extremely Dry 2.0 1.9 0.5
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Maximum SPI Value 1.87 3.48 3.0
Minimum SPI Value -2.48 -29 -2.28

O L e L
B T S e e B ettt
B et e et it i e e R
L OO NN ANOMOINNSNOANTOVOMWLNDTEMUOOVONS OO NDITANT OO NLWL N
SeRREERRSR{RERRESRRSR85HRRSRRRSSRSR<88gRggas
5855853858585855853883858558538838585585838838888
88580588580 5885855885383-0588685588585588585888
Date
Figure 16. CanESM2 3-month period SPI values for Gulu for the duration 2006-2099.
Table 11. Percentage variation of SPI values for Gulu over the period 2006—-2099.
SPI Time Period
2006— 2036~ 2066—
Value Class 2035 2065 2099
Percentage of period
22 Extremely Wet 0.0 0.1 1.9
1.5t0 1.99 Severely Wet 0.3 0.4 4.6
1.0 to 1.49 Moderately Wet 0.8 3.1 10.5
0.99 to -0.99 Mildly wet/dry (near normal) 64.5 73.3 67.3
-1.0 to —-1.49 Moderately Dry 20.4 14.3 9.8
-15t0-2.0 Severely Dry 10.1 6.3 4.3
<-2.0 Extremely Dry 3.9 2.5 1.7
Maximum SPI Value 1.9 2.5 2.8
Minimum SPI Value -3.3 -3.3 -3.3

4. Discussion

Due to scarce and inconsistent station rainfall data in Aswa catchment, secondary data from
TRMM was used to downscale two GCMs (CanEMS2 and HadEM3) for investigating likely future
rainfall quantities, variability onset and cessation of rainfall months for this study. However,
secondary data from satellite sometimes present challenges of non-homogeneity [27] and week
correlation with the actual recorded data. The intervention tests show that the TRMM data is
homogeneous. The correction between TRMM and the limited recorded rainfall data in Aswa
catchment show a coefficient of determination, R? value of 0.65 (R = 0.806), which gives confidence of
using the TRMM rainfall data as proxy for station data. The biases are generally low with an average
of 1.018. TRMM rainfall validation studies carried out in Ghana [31] revealed similar bias values
ranging from 1.047 to 1.479. The good correlation between station and TRMM rainfall and minimal
bias between downscaled and TRMM rainfall are deemed sufficient to allow for use of TRMM rainfall
in the absence of station rainfall data for simulation of future scenarios. The downscaled simulated
future rainfall using SDSM, CanEMS2 and HadEM3 CGM predictors show increased rainfall in the
future. In reference to the SDSM calibration results, we expect CanESM2 (with higher R? values)
based simulated future rainfall data for Aswa catchment to be more accurate than HadCM3 based
data. The correlation coefficients for CanESM2 are marginally higher and the standard errors are
lower than for HadCM3 (Table 3).




Climate 2020, 8, 67 24 of 28

The results of Man Kendal tau values are positive, as can be seen for example, for Agoro and
Amuria locations ranging from 0.172 to 0.683 (Table 5). This suggests a strong positive trend in the
future. Agoro represents the semi humid section and Amuria represents the humid section of the
catchment. This trend is expected to become steeper as we move from mid (2036-2065) to end of the
century (2066-2099). These results are also supported by the SPI values, which can be seen from
Figure 14, Figure 15, Figure 16, Table 9, Table 10 and Table 11. The percentage of SPI values greater
than 1.5 (severely wet and extremely wet) are to increase as we move to mid and end of the century.
This suggests that the future rainfall is not only expected to increase but also have extremely wet
patterns, which are likely to affect crop production, infrastructure and the environment negatively.

The expected increase in rainfall trend could be good for improving crop yields in an area such
as the Aswa catchment, which has been suffering from droughts and water stress. However, analysis
of the rainfall patterns show increased and high monthly CV values in the future. CV values above
30% suggest high variability and poor rainfall distribution. The CV values, as can be seen from Table
6, Table 7 and Table 8 for Agoro, Kaabong and Gulu locations respectively, are high reaching up to
118.5%. The onset and cessation months of February-April and October-November respectively
show the highest rainfall variability. The rainfall patterns during these months are expected to
become more unreliable as we move to mid centaury to end of the century. The CV values for future
simulated rainfall data based on CanESM2 are generally higher than for the data sets based on
HadCM3. However, looking at the higher correlation coefficients for CanESM2 data sets during
calibration and validation, we consider the corresponding CV values for the data sets to be more
reliable.

The analysis of future rainfall onset and cessation dates results also support the indications of
the CV. Figures 4-11 show the variation of future rainfall onset and cessation dates for Agago (humid)
and Kaabong (semi-arid) locations for CanESM2and HadCM3 based downscaling using both rainfall
and rainy days data. The future rainfall onset and cessation dates are expected to come earlier and
later than the current dates by up to four and five weeks respectively. For Agago the future rainfall
onset is expected to come in February instead of March and cessation is expected in November
instead of late October as is currently being experienced. For Kaabong, future rainfall onset is
expected to come late February/early March instead of late March as is currently happening, while
the future cessation is expected in November instead of the current late October. The two GCM gave
similar results for each location. The change in rainfall onset and cessation dates is likely to affect the
farming activities of the peasant farmers and crop yields.

5. Conclusions

In this study, we examined the future changes in rainfall patterns, trends, extreme occurrences,
onset and cessation of rainfall over Aswa catchment using SPI, Mann—Kendall statistics, descriptive
statistics (coefficient of variability), and cumulative percentage mean rainfall methods to provide
insight into near future (2006-2035), midterm (2036-2065) and long term (2066-2100) future periods.

The results suggest that annual rainfall over Aswa catchment is going to increase especially in
the mid and long term future by up to 100%, and even more. This could be a good development for
the farmers if the rainfall turns out to be reliable and well distributed. However, the future presents
a highly variable and unreliable rainfall pattern. This can be seen from the high CV (up by 118.5%)
and the rise in percentage of SPI values for extremely wet periods. The study reveals SPI values for
extremely wet periods increasing from zero in (2006-2035), to 0.8 in (2036-2065) and to 6.4 in (2066
2099) periods for Agoro which lies in the semi-humid region of the catchment. For Kaabong located
in the semi-arid region of the catchment, the rise in percentage of SPI values for extremely wet periods
is 0.3, 0.3 and 5.4 respectively. For Gulu located in the humid region of the catchment, is from 0 to 0.1
to 1.9 respectively. This suggests that the semi-arid and semi-humid regions of the catchment will
experienced more extremely wet conditions in the future compared to the humid region. Extremely
dry periods are, however, expected to reduce although they will continue to be experienced as can
be seen from Table 9, Table 10 and Table 11.
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The onset and cessation of rain are also expected to shift backwards and forward by up to four
and five weeks respectively. This in turn is expected to affect farming activities such as field
preparation, planting and harvesting. The future scenarios are increased, highly variable and
unreliable rainfall in Aswa catchment, with the drier semiarid section being the most affected. This
may result in floods, water logging, severe soil erosion and even droughts with consequent reduction
in crop yields and negative impact on the livelihood of the farmers. These changes can affect the
future agricultural production, water availability, environment and socio-economic wellbeing over
the Aswa catchment. The results of the study can be of use for future catchment water resources
planning and management, agricultural and socio-economic planning, and introduction of
appropriate mitigation measures such as provision of supplementary irrigation, introduction of new
crop varieties/farming system, soil and water conservation measures, drainage and reservoir
development.
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