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Abstract: Drought is a recurring phenomenon in North Africa, and extended dry periods can have a
serious impact on economic and social structures, as well as the natural environment. Consequently,
understanding the mechanisms that underlie precipitation variability in the region is a key driver of
sustainable economic growth in activities such as agriculture, manufacturing, energy, and transport.
North Africa’s climate differs significantly between coastal and inland areas. The region has a
Mediterranean climate along the coast, characterized by mild, wet winters and warm, dry summers
with reasonable rainfall of around 400 to 600 mm per year. The link between winter precipitation
variability in this region and atmospheric patterns is assessed here using several gridded datasets of
observations and reanalysis as well as model simulations from the fifth phase of the Coupled Model
Intercomparison Project (CMIP5) and the third phase of the Paleoclimate Modelling Intercomparison
Project (PMIP) covering the last millennium. Results show that the link between the zonal wind
index at 850 hPa (U850) and winter precipitation is stronger and more robust over time than
the link with some well-known modes of variability, such as the North Atlantic Oscillation (NAO),
Mediterranean Oscillation (MO), and Western Mediterranean Oscillation (WeMO). U850 better
explains the interannual changes in winter precipitation variability in North Africa for the past
decades as well as the last millennium. Both winter precipitation and U850 simulated time series
present significant decreasing trends, associated with drier conditions, starting in the 19th century.
This is in agreement with the reconstructed and simulated Palmer Drought Severity Index (PDSI),
which shows a decreasing trend toward drying conditions in North Africa.
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1. Introduction

North Africa is located in a transitional position between a wet European mid-latitude and a dry
subtropical climate [1]. The region is characterized by a Mediterranean climate along a thin strip of
land bordering the coasts of Morocco, Algeria, Tunisia, and parts of Libya and Egypt, with mild, wet
winters, warm, dry summers, and rainfall of approximately 400 to 600 mm per year (Figure 1) [2].
Inland, North African countries have semi-arid and arid desert climates that regularly display extreme
conditions with very hot summers, cold winters, and little rainfall, between 200 and 400 mm per year
or even less in some regions [2]. The precipitation occurs mostly during the winter season (November
to April) [1].
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Figure 1. Climate types over North Africa based on the Köppen–Geiger climate classification system,
1980–2016 (https://commons.wikimedia.org/wiki/File:World_K%C3%B6ppen_Classification.svg).

Rainfall in North Africa is characterized by high spatial and temporal variability [2], making
the region particularly sensitive to water scarcity conditions. In recent decades, increased drought
frequency [3] has been a major concern [4] in this region, where extended dry periods have a major
impact on water availability, agriculture, and vegetation [4].

In winter, North Africa’s hydroclimate is strongly influenced by disturbances coming from
the North Atlantic and controlled mostly by the action of the downward branch of the Hadley cell [1].
Additionally, the cold surface water flow associated with the Canary flow, which is a current flowing
southwestward along the northwest African coast, from 30◦ N to 10◦ N, and from offshore to 20◦ W [5],
affects mainly that coast [6].

Previous works have contributed substantially to the description of the atmospheric patterns
that are related to precipitation variability in the Mediterranean basin on different timescales [7–12].
These studies have shown that a large part of the spatial and temporal variability of rainfall is
closely linked to a few large-scale atmospheric modes of variability, mainly the North Atlantic
Oscillation (NAO), the East Atlantic (EA) pattern, the Mediterranean Oscillation (MO), and the Western
Mediterranean Oscillation (WeMO) [7,8,10]. It is suggested in [13] that the heavy precipitation
events in the east of the Iberian Peninsula are linked to the NAO, MO, and WeMO negative phases.
Furthermore, [14,15] showed that the increased precipitation along the Iberian Peninsula is mainly due to
prevailing negative phases in the NAO and MO. More generally, the western part of the Mediterranean
region is characterized by a strong anti-correlation between winter precipitation and the NAO, which
is related to the transport of moisture by storm tracks [1,7,8,16]. The development of Mediterranean
storminess and precipitation is indeed strongly linked to the atmospheric circulation over the Atlantic
and Europe [11,13–16]. It was shown in [12] that NAO variability in winter explains up to 30% of
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the decadal winter precipitation changes in a region covering parts of Spain, Morocco, Southern France,
Italy, and the Balkans.

Additional studies have underlined the importance of other atmospheric modes of variability,
in particular the Upper-Level Mediterranean Oscillation index (ULMOi) and the East Atlantic (EA),
East Atlantic/West Russia (EATL/WRUS), and Scandinavia (SCAND) patterns [17,18]. They have shown
that these four teleconnection patterns have a substantial impact on the frequency of Euro-Mediterranean
extreme precipitation.

Additionally, variations in zonal wind speed at the 850 hPa level explain a large fraction of
the interannual changes in area-averaged Mediterranean precipitation and storminess, with stronger
westerly winds (positive wind anomalies) associated with positive precipitation anomalies [19].
During the cold season (November–April), the Mediterranean region is subjected to weak atmospheric
depression derived from Europe, which, together with a high-pressure zone over North Africa
and the Sahara, induces a strong westerly flow [19]. The subtropical high-pressure zone over North
Africa might be viewed as a side of the descending branch of the Hadley cell, which, with climate
warming, is expected to enlarge poleward [16]. This phenomenon seems remarkably robust over
the Mediterranean region [19], but for reasons that are still not well understood.

Analyses over the past decades have suggested that the Mediterranean drying in winter over
the period 1960–1990 was due to the multidecadal variability of the NAO, with a much smaller
part related to radiative forcing [12]. In contrast, [20] showed that human-induced greenhouse gas
and aerosol forcing are the principal causes of winter drying in the Mediterranean region. This is
confirmed by a recent study [21], which also pointed out that rainfall is more reactive to black
carbon (BC) than to well-mixed greenhouse gases (WMGHGs). In addition to regional warming,
BC and WMGHGs appear to reduce precipitation by inducing a sea level pressure (SLP) anomaly similar
to the positive phase of NAO, with lower SLP at high latitudes and higher SLP at mid latitudes [21].
This leads to a northward movement of the jet stream and storm tracks, increasing precipitation in
northern Europe while decreasing it in the Mediterranean.

Recent hydroclimate changes can be put into perspective by analyzing drought variability over
the Common Era (CE, year 0–present). This has been done using a variety of proxies, including tree
rings [22–26], sediment cores (e.g., [27,28]), and networks including various proxies [29–31]. Compared
to other Mediterranean regions, little is known about North Africa. In [32] a reconstruction of
precipitation was developed covering the past millennium in the Atlas Mountains of Morocco (a part of
the mountain range in the Maghreb separating the Mediterranean and Atlantic coastlines from the Sahara
Desert, reaching 2500km through Morocco, Algeria, and Tunisia). They showed that in the late 20th
century, drought was exceptional in the context of the prior 500 years. A comparison between general
circulation model (GCM) output and proxy-based precipitation and temperature reconstructions
over the past 500 years showed that while no model accurately simulated the reconstructed changes,
reasonably good agreement was found after 1650, with models taking into account changes in volcanic
forcing, solar irradiance, and greenhouse gases [33].

The Old World Drought Atlas (OWDA) is a gridded (0.5◦ × 0.5◦) reconstruction based on tree-ring
data providing an estimate of the June, July, August (JJA) Palmer Drought Severity Index (PDSI) for
Europe and the Mediterranean region over the past 2000 years [34]. The PDSI provides integrated
information about relative dryness and wetness and is more representative of the conditions impacting
tree growth than, for instance, precipitation. This is why it was chosen as the target for reconstruction
over past centuries. However, in North Africa, there are few tree-ring time series included in the OWDA
database. Only two time series of Cedrus atlantica (cedar) ring width data are used to recreate long-term
changes in the PDSI in Morocco over the past 953 years [32].

The main goal of this study is to provide a better understanding of the variability of precipitation
in the North African region over the past millennium and to compare those long-term changes with
more recent ones observed over the past century. Only a few works have addressed the issue of
long-term rainfall variability in this region, as most were limited to the last 20th century period.
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Additionally, most of that research focused on the whole of the Mediterranean basin or its northern
part (Euro-Mediterranean region), with very little information specific to North Africa. The potentially
different behavior in North Africa compared to the rest of the Mediterranean region justifies our focus
on this important area.

In our manuscript, we divide the region of North Africa into three sub-regions (Figure 2) from
west to east to take into account the potentially decreasing influence of the North Atlantic. The links
between winter precipitation in sub-regions over the past millennium and the atmospheric modes of
variability are separated into three periods (850–1850,1850–1950,1979–2005) to test the robustness of
the correlations over time. We focus here on the NAO, WeMO, and MO indices in addition to the U850
zonal wind index introduced in [19], because a preliminary analysis showed that they are the best
candidates among existing indices to explain the variability in our region of interest.
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Figure 2. Study area. Precipitation is averaged over solid boxes (western, central, and eastern North
Africa) (source: https://www.scribblemaps.com).

The outline of this paper is as follows: Section 2 describes the atmospheric indices, data,
and methods. Section 3 discusses the links between these indices and winter precipitation variability
in the North Africa region and compares model results and reconstructions over the last millennium.
Finally, conclusions are given in Section 4.

2. Data and Methods

The present work is based on an analysis of winter (November to April) precipitation variability
over North Africa (Figure 2) derived from observations, reanalysis, and model simulations over the last
millennium. Several gridded datasets of monthly precipitation, SLP, temperature, and zonal wind
speed at a pressure level of 850 were used (Tables 1 and 2). These data were remapped to the same
grid at 1◦ resolution and the values over the ocean were masked to only consider the land area.

The main study area is the North Africa region. This area is divided into three boxes, because
the literature [13–15] suggests that the link between atmospheric patterns (NAO, WeMO, MO)
and precipitation is highly heterogeneous in the region. The western part (left box) is mainly influenced

https://www.scribblemaps.com
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by the North Atlantic Oscillation (NAO), which is not the case for the central part, which is found
to be a transitional zone between the North Atlantic perturbations and the eastern part (right box),
which is mainly under the impact of perturbations coming from the east, and the Mediterranean
Oscillation (MO).

The three boxes are defined to roughly match the regions with decreasingly direct influence of
perturbations coming from the North Atlantic. For simplicity and to avoid any bias that could come
from a more specific choice, they have the same extent in longitude but differ in latitude to only cover
the North Africa region (only land area, without the ocean in the box).

2.1. Statistical Tests

In addition to standard correlation analysis, we applied the modified Mann–Kendall test [35]
and Pettitt’s test [36], two widely used nonparametric tests to detect trends and change points in time
series of climatic and hydrological parameters, respectively. The modified Mann–Kendall is a variant
of the Mann–Kendall test [37,38], which can be calculated by the equation:

S =
n∑

i=1

i−1∑
j=1

sign(xi− xj) (1)

where n is the total length of data, xi and xj are sequential data values, and the function sign(x i –x j)
gives the following values:

sign(xi− xj) =
1, if(x1−Xi) > 0
0, if(x1−Xi) = 0
−1, if(x1−Xi) < 0

(2)

The statistic S is approximately normally distributed with the mean E(S) and variance Var(S)
computed as follows:

E(s) = 0

Var(S) = 1/n
[
n(n− 1)(2n+5) −

∑
t

t(t− 1)(2t+5)
]

(3)

where Σt means summation over all associated numbers of values.
In this test, the null hypothesis H0 is verified if there is no trend in a dataset of n independent

randomly distributed variables of equally likely ordering. The use of this method comes with two
advantages. First, it is a nonparametric test and does not require the data to be normally distributed.
Second, the test has low sensitivity to abrupt breaks due to inhomogeneous time series [39].

Throughout the time series analysis, it is important to consider autocorrelation, defined
as the correlation of a variable with itself over successive periods of time, before checking for
trends. The modified Mann–Kendall takes account of autocorrelation, another reason to choose this
statistical method.

The magnitude of the trend is estimated using Sen’s slope estimator, also called the Theil–Sen
estimator. The Theil–Sen estimator of a set of two-dimensional points (xi, yi) as defined by [40] is
the median m of the slopes (yjyi)/(xjxi) determined by all sample point pairs.

Pettitt’s test for change detection, developed by Pettitt [36], is a nonparametric method that is
useful for detecting abrupt changes in climate records [36]. According to Pettitt’s test, x1;x2;x3, . . . .,xn
is a set of observed data that has a change point at t if x1;x2;x3, . . . .,xt has a distribution function F1(x)
that is different from the distribution function F2(x) of the second part of the sequence xt+1;xt+2;xt+3,
. . . .;xn. For this test, the nonparametric test statistics Ut can be defined as:

Ut =
t∑

i=1

n∑
j=t+1

sign(xt− xj) (4)
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This test is commonly used because of its sensitivity to breaks in the middle of any time series [41].
Change point detection is also an important method to determine the period over which a significant
trend has occurred in a time series [36].

Table 1. Observations and reanalysis used in this study.

Observations and Reanalysis Data Version and Resolution Description Reference

GPCC V7
0.5◦ latitude × 0.5◦

longitude global grid
(720 × 180)

Monthly gridded land-surface precipitation
from rain gauges built on GTS-based

and historic data from 1901–2013
[42]

Delaware
0.5◦ latitude × 0.5◦

longitude global grid
(720 × 360)

Monthly global gridded high-resolution station
(land) data for air temperature

and precipitation from 1900–2013
[43]

20th century reanalysis
(20cRE)

2.0◦ latitude × 2.0◦

longitude global grid
(180 × 91)

Monthly gridded precipitation
Geopotential height
Zonal wind at 850 hPa (u-wind) from 1901–2013

[44]

In the present study, the modified Mann–Kendall test and Pettitt’s test were used in R packages to
analyze precipitation, wind speed (U850), and PDSI variability in North Africa over the last millennium
(850–2005).

2.2. Observation Datasets and Reanalysis

Several gridded datasets of observations and reanalysis of monthly precipitation were analyzed
(Table 1). The Global Precipitation Climatology Center (GPCC) analysis V7 [42] has a resolution of
0.5◦ latitude by 0.5◦ longitude. It is based on rain-gauge data only and spans the period 1901–2005.
The University of Delaware database, using high-resolution station (land) data [43], has a resolution
of 0.5◦ latitude by 0.5◦ longitude and covers the period 1901–2005. The NOAA-CIRES 20th Century
Reanalysis database is a global reanalysis dataset that contains objectively analyzed four-dimensional
weather maps and their uncertainty from the mid-19th century to the 21st century [44].

2.3. Model Simulations

The simulations used here were performed in the framework of the Palaeoclimate Modeling
Intercomparison Project (PMIP3) [45] and Coupled Model Intercomparison Project (CMIP5) [46], whose
goal is to coordinate climate modelling activities performed in various centers worldwide. As indicated
by their names, PMIP focuses on past periods while CMIP is devoted to the recent past and the future
as well as control and sensitivity experiments. PMIP and CMIP activities are coordinated, in particular
to use the same model version for analyzing past and recent conditions.

The World Climate Research Program (WCRP), which coordinated these projects, has made
available a multimodel dataset intended to improve our knowledge of climate variability. The global
scientific community has examined PMIP3/CMIP5 model outputs to produce results that support the
Intergovernmental Panel on Climate Change (IPCC) Fifth Assessment Report (AR5; IPCC, 2013) [47].

The models used in this study are those for which the variables of interest were available
at the time of analysis for both the past millennium and the past century, covering 850–1850
and 1850–2005, respectively. These models are: CCSM4, MPI-ESM-P, IPSL-CM5A-LR, GISS-E2-R,
CESM1, and BCC-CSM1 (defined in Table 2).
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Table 2. Modelling centers, characteristics, and references of Coupled Model Intercomparison Project
(CMIP5) models used in this study.

Model
name Institution Period Covered Data Availability

During the Study
Atmospheric Resolution

Horizontal Vertical Reference

CCSM4 National Center for Atmospheric Research
(NCAR), USA

Past millennium

Past century

850–2005 280 × 200 27 [48]

MPI-ESM-P Max Planck Institute for Meteorology
(MPI-M), Germany 940–2005 192 × 96 47 [49]

IPSL-CM5A-LR Institut Pierre-Simon Laplace 850–2005 96 × 96 39 [50]

GISS-E2-R NASA Goddard Institute for Space Studies 850–2005 250 × 200 40 [51]

CESM1 NCAR, USA 850–2005 144 × 96 27 [52]

BCC-CSM1 Beijing Climate Center, China Meteorological
Administration 850–2005 128 × 64 26 [53]

Climate simulations covering the last millennium are driven by both anthropogenic (well-mixed
greenhouse gases, ozone, tropospheric aerosols, land use) and natural (solar, volcanic, orbital)
climate forcing. Forcing related to volcanic aerosols is obtained from different sources for GISS-E2-R
and MPI-ESM-P [54] and the other four Global Simulation Models GSMs [55]. The input of volcanic
aerosol in the stratosphere after a major volcanic eruption is known to have a major climate effect on
the annual to decadal time scale, from observed and historical as well as modeling [56] studies. Observed
and reconstructed changes in greenhouse gases (CO2, CH4, and N2O) driving past millennium [57,58]
and historical [59] simulations are the same in all models. Both tropospheric ozone and aerosol variation
are considered in historical experiments in CCSM4, CESM1, GISS-E2-R, MPI-ESM-P, and BCC-CSM1
and are based on the dataset described in [60], except in IPSL-CM5A-LR, which considers a pre-industrial
aerosol concentration. See [61–63] for more details on the climate-forcing reconstructions used for past
millennium experiments and their implementation.

The ability of CMIP5 models to explain the Mediterranean hydrological cycle during the 20th
century has been investigated in detail [1,64]. Their results show that most CMIP5 models can
reasonably represent the observed Mediterranean precipitation, evaporation, and moisture fluxes
in winter.

2.4. Drought Index

The choice of using the PDSI [65] is mainly related to the fact that the hydroclimate related
proxy-based reconstructions (such as OWDA) [34] do not directly reconstruct precipitation but rather
PDSI. The PDSI incorporates precipitation and temperature and uses a provision and supply model to
estimate changes in soil moisture availability over time. The index varies between negative values for
dry conditions and positive values for wet conditions. Values below −4 or above +4 indicate extreme
drought or wet spells, respectively [65].

Droughts in North Africa are induced by both lack of precipitation and high evaporation rates.
Thus, it is important to use an index that considers soil water availability for vegetation, rather than
strictly climatic variables [4,65].

In order to compare the reconstructed hydrological changes in North Africa (Morocco and Algeria,
where reconstructions are available) over the last millennium (850–2005) with CMIP5 model simulations,
we computed the PDSI using the MATLAB tool developed in [66]. This application allows calculation
of the PDSI with the use of four types of input data: temperature, precipitation, available water capacity
(AWC) of the soil [66], also known as field capacity, and the latitude of the location of interest. Note that
this part of the analysis could only be achieved using results from the CCSM4, MPI-ESM-P, and CESM1
models due to data availability (the other models do not have the AWC variable).

For the 20th century, instrumental PDSI (1901–2005) from OWDA is from [34] (online resource,
accessed on 10 September 2018: http://drought.memphis.edu/OWDA/ExtractSingleInst.aspx).

http://drought.memphis.edu/OWDA/ExtractSingleInst.aspx
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In addition, to further investigate precipitation variability in the region over the last millennium,
we calculated Pearson’s correlation coefficients between OWDA and the calculated PDSI from CMIP5
models, then between each CMIP5 calculated PDSI for the whole period of the last millennium,
as shown in Supplementary Table S1.

2.5. Atmospheric Circulation Indices

Atmospheric circulation is characterized in terms of circulation indices generally based on
normalized SLP differences between two distant locations where observations are selected. We used
four circulation indices obtained from station-based observations for the recent period (1979–2005;
online resource accessed on 20 October 2017: https://climatedataguide.ucar.edu/climate-data/hurrell-
north-atlantic-oscillation-nao-index-station-based) and calculated using reanalysis (NOAA-CIRES
20th Century Reanalysis) and PMIP3/CMIP5 model simulations over the last millennium.

These indices are NAO, MO, WeMO, and U850 (Figure 3) and are defined as follows:
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Figure 3. Circulation indices, North Atlantic Oscillation (NAO), Western Mediterranean Oscillation
(WeMO), and Mediterranean Oscillation (MO), and zonal wind speed at 850 hPa (U850, averaged over
black box as in [19]) (map source: https://www.scribblemaps.com).

• The NAO index is calculated as the difference in normalized SLP between Lisbon, Portugal,
and Stykkisholmur/Reykjavik, Iceland (Figure 3). Normalization is obtained by removing
the long-term mean and dividing by the long-term standard deviation of the interval 1864–1983.

https://climatedataguide.ucar.edu/climate-data/hurrell-north-atlantic-oscillation-nao-index-station-based
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This is done to avoid the series being impacted by the greater variability of the northern
station [7,67].

• The MO index was calculated by [68–70] as the normalized pressure difference between
Algiers (36.4◦ N, 3.1◦ E) and Cairo (30.1◦ N, 31.4◦ E) (Figure 3). The MO has been viewed as
the dominant regional low-frequency atmospheric pattern impacting rainfall in the Mediterranean
region [11,71,72].

• The WeMO index is defined as the difference between the standardized surface pressure values
recorded at Padua (45.40◦ N, 11.48◦ E) in northern Italy and San Fernando (Cádiz) (36.28◦ N,
6.12◦ W) in southwestern Spain (Figure 3) [73].

• The zonal wind index (U850) is related to the eddy-driven jet and storm track action over the North
Atlantic [19]. This index is obtained by averaging the monthly zonal wind over 25◦ N–33◦ N
and 10◦ W–23◦ W (Figure 3).

The links between these atmospheric modes of variability (NAO, MO, WeMO, and U850 indices)
and precipitation, averaged over the three study areas (Figure 2), are evaluated for the 6-month
November–April mean using Pearson’s correlation coefficients. This period accounts for the majority
of annual rainfall.

3. Results and Discussions

Overall, the CMIP5 precipitation patterns fit the observed annual climatological rainfall cycle
in North African regions (Figure 4), although some models (in particular GISS-E2-R) overestimate
precipitation, while others (IPSL-CM5A-LR) underestimate it. This gives credence for using the CMIP5
models in our analysis.
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3.1. Link between Winter Precipitation and Atmospheric Modes of Variability in North Africa, 850–2005

The correlations between winter precipitation (observation, reanalysis, and models)
and the atmospheric indices (NAO, MO, WeMO, and U850) over the past millennium are presented in
Figures 5 and 6 (exact numbers are given in Supplementary Tables S2–S5). Figure 5 shows the spatial
distribution for one dataset as an example, while analysis of all datasets for averages over sub-regions
and periods is shown in Figures 6 and 7. For the analyses of different datasets, we determined if
correlations were significant for the sub-regions and provide their ranges.
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(B) WeMO, (C) MO, and (D) U850 for the period 1979–2005. Dotted areas represent significant
correlations at 95% confidence interval.

3.1.1. Recent Period (1979–2005):

The negative correlation coefficients between the NAO and the winter precipitation data in
the western part of North Africa are significant except for MPI-ESM, GISS-E2-R, and CESM1 models
(Figure 6A, Supplementary Table S2). The correlations become less significant going from west to
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east. The range of correlations varies from −0.37 to −0.71 on the west coast of Morocco, −0.45 to −0.64
in the north of Algeria, and −0.38 in Tunisia (only one dataset). These values are in agreement with
previous results [1,7,8,13,20] that found negative correlations between winter NAO and precipitation
in the 20th century in the western region of the Mediterranean. This is also consistent with [7,12],
which argued that the NAO is the main atmospheric circulation pattern explaining the hydroclimate
variability in this region.
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Figure 6. Pearson’s correlation coefficients between winter precipitation (observations, reanalysis,
and CMIP5 simulations) and (A) NAO and (B) MO indices for western, central, and eastern North
Africa during the recent period (1979–2005), the past century (1850–2005), and the past millennium
(850–1850).

The MO and WeMO show similar spatial patterns to the NAO in the western part of North Africa
(Morocco coast) with high significant correlations (except for GISS-E2-R, BCC-CSM1, and CESM1
models). For both indices, the range of correlations varies from −0.31 to −0.65 in the west of
Morocco, −0.42 to −0.58 in northern Algeria, and −0.38 to 0.38 in northern Tunisia (Figures 6B and 7A,
Tables S3 and S4 in Supplementary Materials).
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Figure 7. Pearson’s correlation coefficients between winter precipitation (observations, reanalysis,
and CMIP5 simulations) and (A) WeMO and (B) U850 indices for western, central, and eastern North
Africa during the recent period (1979–2005), the past century (1850–2005), and the past millennium
(850–1850).

In contrast, the correlations between winter precipitation and U850 are positive and highly
significant in more datasets than those found for NAO, WeMO, and MOI. The range of correlations
varies from 0.38 to 0.72 in the western part, 0.50 to 0.65 in the central part, and 0.18 to 0.30 in the eastern
part (Figure 7B, Supplementary Table S5).

3.1.2. Past Century (1850–1950):

The correlation coefficients between NAO and winter precipitation are significant in five datasets,
which range from −0.21 to −0.66 in the western part (Morocco coast), −0.46 in northern Algeria (only
one dataset), and −0.27 to 0.36 in northern Tunisia with more datasets than in the recent period
(6 datasets) (Figure 6A, Supplementary Table S2).

As in the recent period, the MO shows a similar atmospheric pattern to the NAO in the western
part of the study area (Morocco) with significant negative correlations varying from −0.35 to −0.59
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and −0.24 to −0.54 in northern Algeria, becoming positive in northern Tunisia in five datasets (more
than for the recent period), with values ranging from 0.26 to 0.48.

The correlation of the WeMO with precipitation datasets shows a similar atmospheric pattern in
the western part (Morocco coast) as in the recent period, but differs in the central and eastern parts
of North Africa, with more significant correlations alternating between negative and positive values
(discrepancies between datasets) compared to the recent period (Figure 7A, Supplementary Table S3).

Correlation coefficients between U850 and winter precipitation are similar for the recent period in
most of the precipitation datasets, with high positive values ranging from 0.18 to 0.71 on the Morocco
coast, 0.17 to 0.68 in northern Algeria, and 0.11 to 0.27 in northern Tunisia.

3.1.3. Past Millennium (850–1850):

The correlation of the NAO with the precipitation datasets in the western part (coast of Morocco)
are similar to the periods previously mentioned. All correlations are significant except CESM1
model data. They vary from −0.19 to −0.46 on the Morocco coast, −0.10 to 0.13 in northern Algeria,
and 0.16 to 0.31 in Tunisia. The correlations are less significant going from west to east (Figure 6A,
Supplementary Table S2).

For the MO and WeMO, the correlations are significant for most datasets in all parts of North
Africa. MO correlations vary between negative −0.12 and positive 0.36 values going from west to
east. In contrast, the correlation between the WeMO and precipitation presents high variability
between positive and negative values in the three parts of North Africa (Figures 6B and 7A,
Supplementary Tables S3 and S4).

As for the past century and the recent period, the U850 correlations are highly positive
and significant in the majority of datasets and the three parts of North Africa. The correlations
generally range from 0.13 to 0.73 (Figure 7B, Supplementary Table S5).

These results show that the link between winter precipitation variability and the three atmospheric
patterns (NAO, WeMO, and MO) over the past millennium is stronger and more stationary in
the western region of North Africa than in the central and eastern parts, where it is overall weak.
This result appears robust over time with no large changes observed for the three studied periods,
except for the WeMO. Compared to the recent period, the MO index has a quite similar pattern to
that during the past century and past millennium, as seen for NAO. On the contrary, WeMO shows
a different pattern during the past century and the past millennium over the whole region. U850 is
characterized by a stronger positive link with winter precipitation than the other atmospheric patterns
for all study periods considered.

This is consistent with [19], which analyzed CMIP5 climate model projections (2070–2099) to
quantify the role of atmospheric circulation in the Mediterranean precipitation response to climate
change in the cold season (November–April) using the RCP8.5 climate scenario. They found that
the zonal wind U850 is strongly associated with area-averaged Mediterranean precipitation in North
Africa and is a useful diagnostic to explain the precipitation change.

3.2. Precipitation, Wind, and PDSI Analysis over the Last Millennium in the North African Region

According to the modified Mann–Kendall test [35], a significant decreasing trend is found in
the simulated precipitation between 1800 and 2005 in the three North African regions (except for
BCC-CSM1 and CESM1 models in the western part) (Table 3 and Figure 8). No trend was found
in the precipitation model results for the period 850–1800 (Figure 8). In order to detect the change
point corresponding to the year when these significant trends started, we applied Pettitt’s test [36].
The results showed a change point around 1800–1850 for the PMIP3/CMIP5 model simulations in
the three regions. Furthermore, a decreasing trend is found in the observations and reanalysis starting
around 1950 depending on the region (Table 4 and Figure 8). The magnitude of trends in the annual
mean was determined using Sen’s slope estimator. Sen’s slope estimator indicates a higher magnitude
of the decreasing trend in the observations and reanalysis (from −0.001 to −0.008 mm/day/year) than in
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the CMIP5 data (from−0.0002 to−0.001 mm/day/year). This is consistent with the analysis of [74], which
documented a decline in annual precipitation in the Mediterranean region during the 20th century
(1901–2009) in the Coupled Model Intercomparison Project phase 3 (CMIP3) simulations at a rate of
−0.007 mm/day/decade. The range of slope values is higher in the models than in the observations
and reanalysis. Furthermore, for the same CMIP5 model precipitation data, there are differences
in the magnitude of trends between the three parts of North Africa. This confirms the difference
in variability of precipitation over the study period in the three parts (West, Center and East) of
North Africa.

Table 3. Results of modified Mann–Kendall test for precipitation trend detection for six Palaeoclimate
Modeling Intercomparison Project (PMIP3)/CMIP5 models over 1800–2005 in the three parts of North
Africa. Significant test results (p-value ≤0.05) shown in red.

Period 1800–2005

Region Time Series P-Value Slope (mm/day/year)

Western

CCSM4
MPI-ESM-P
IPSL-CM5A-LR
GISS-E2-R
BCC-CSM1
CESM1

0.01
0.003
0.0008
0.04
0.1
0.1

−0.0006
−0.001
−0.0006
−0.0004

Central

CCSM4
MPI-ESM-P
IPSL-CM5A-LR
GISS-E2-R
BCC-CSM1
CESM1

0.02
0.007
0.0002
0.2
0.001
0.003

−0.0002
−0.0006
−0.0004

−0.0004
−0.0005

Eastern

CCSM4
MPI-ESM-P
IPSL-CM5A-LR
GISS-E2-R
BCC-CSM1
CESM1

0.04
0.002
0.02
0.007
0.003
0.01

−0.0002
−0.0008
−0.0005
−0.0009
−0.0006
−0.0004

Note: The red color in the P-value column is to highlight in which dataset the modified Mann-Kendall test for trend
detection is significant.

Table 4. Results of modified Mann–Kendall test for precipitation trend detection for observations
and reanalysis over 1950–2005 in three parts of North Africa. Significant test results (p-value ≤0.05)
shown in red.

1950–2005

Region Time series P-value Slope (mm/day/year)

Western Observation
Reanalysis

0.017
0.003

−0.008
−0.001

Central Observation
Reanalysis

0.015
0.003

−0.003
−0.007

Eastern Observation
Reanalysis

0.02
0.04

−0.001
−0.004

Note: The red color in the P-value column is to highlight in which dataset the modified Mann-Kendall test for trend
detection is significant.
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Figure 8. Loess-smoothed (30-year window) time series of monthly area averaged precipitation
data for (A) western, (B) central, and (C) eastern parts of North Africa over the past millennium for
PMIP3/CMIP5 model simulations and over the 20th century for observations and reanalysis.

Winter U850 wind speed over the last millennium is characterized by a significant decreasing
trend in most PMIP3/CMPI5 simulations (CCSM4, MPI-ESM-P, BCC-CSM1, and CESM1) (Table 5,
Figure 9), as identified by the modified Mann–Kendall test. These decreasing trends start around
1800, which is consistent with the decreasing trend observed in winter precipitation shown in the six
PMIP3/CMIP5 simulations (Table 3, Figure 8).

Table 5. Results of modified Mann–Kendall test of U850 trend detection for six PMIP3/CMIP5
model simulations over 850–1800 and 1800–2005 in North Africa. (Red indicates significance, with a
p-value <0.05.).

Period 1800–2005

Location Model Time Series P-Value Slope (m/s)

North Africa
(25–33◦ N, 10◦ W–23◦ E)

CCSM4
MPI-ESM-P
IPSL-CM5A-LR
GISS-E2-R
BCC-CSM1
CESM1 (ensemble mean)

0.04
0.01
0.8
0.5
0.03
0.01

−0.001
−0.001

−0.001
−0.001

Note: The red color in the P-value column is to highlight in which dataset the modified Mann-Kendall test for trend
detection is significant.
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Figure 9. Loess-smoothed time series (30-year window) of simulated U850 (PMIP3/CMIP5 models) over
850–2005. Red line represents ensemble mean for 10 CESM1 simulations and shaded red corresponds
to standard deviation of the ensemble.

This decrease in precipitation could be explained by a higher pressure gradient across the North
Atlantic channeling strong westerlies to central and northern Europe, with little moisture reaching
the Mediterranean basin and North Africa [1,11]. This atmospheric pattern appears to have been
more predominant during the 20th century, likely due to anthropogenic forcing [75]. However,
this hypothesis is still debated and no formal attribution to human activities has been achieved yet [76].

Both results shown in Figures 8 and 9 are in accordance with [19], which demonstrated that
the departure of precipitation in the Mediterranean wet season in the future (2070–2099) is linearly
related to 850 hPa wind. The findings of [19] for the future also appear to be valid for the 20th century
and the last millennium in the simulations.

It is not possible to compare the decreasing trend with observed precipitation before the 20th
century, but time series of the summer (June–August) PDSI are available over the last millennium in
Morocco and Algeria (Figure 10). These locations correspond to those of the tree ring chronologies in
the Mediterranean region used for the OWDA (Supplementary Figure S1) [34].

Model results, proxy-based reconstruction, and observations consistently show a significant
decreasing trend of the PDSI over the last century (Figure 10, Table 6), according to the modified
Mann–Kendall test [35], while no trend was found during the last millennium (850–1800). The trend
started at the end of the 19th century for both PMIP3/CMIP5 models and reconstructed datasets.
The instrumental data also depict a trend starting in the beginning of the 20th century (Table 7), which
is in agreement with [77], which showed a clear trend toward drier conditions during the 20th century
in most western and central Mediterranean regions. The decreasing trend in the instrument-based
PDSI is larger than the one computed from the CMIP5/PMIP3 model output or OWDA reconstruction
(Table 7).
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Table 6. Results of modified Mann–Kendall test of trend detection applied to Palmer Drought Severity
Index PDSI simulated by CMIP5 models, reconstructed from Old World Drought Atlas (OWDA) over
1850–2005 in Morocco and Algeria. (Red indicates significance, with a p-value <0.05.).

Period 1850–2005

Location PDSI Time Series P-Value Slope

Algeria

CCSM4
MPI-ESM
CESM1 (mean of 10 members)
Reconstructed OWDA

0.007
0.002
1.9 × 10−07

0.002

−0.006
−0.008
−0.006
−0.006

Morocco

CCSM4
MPI-ESM
CESM1 (mean of 10 members)
Reconstructed OWDA

0.001
0.0004
1.2 × 10−06

0.003

−0.008
−0.009
−0.008
−0.005

Note: The red color in the P-value column is to highlight in which dataset the modified Mann-Kendall test for trend
detection is significant.
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Figure 10. Loess-smoothed time series (30-year window) of summer (June, July, August (JJA)) PDSI in
(A) Morocco and (B) Algeria in 850–2005 for CCSM4, MPI-ESM, and ensemble mean of CESM1 (mean
of 10 members), and reconstructed and instrumental dataset (observation) from OWDA.
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Table 7. Results of modified Mann–Kendall test of trend detection applied to observed PDSI over
1901–2005 in Morocco and Algeria. (Red indicates significance, with a p-value <0.05.).

Period 1901–2005

Location PDSI Time series P-value Slope

Algeria Instrumental data 0.004 −0.01

Morocco Instrumental data 0.005 −0.01

Note: The red color in the P-value column is to highlight in which dataset the modified Mann-Kendall test for trend
detection is significant.

The results show weak correlation coefficients between observed and simulated PDSI as well
as between the PDSI simulated by the various models (Supplementary Table S1), which leads us to
conclude that natural climate variability (internal variability) dominated the precipitation changes in
the North African region over the last millennium, as observed in several other regions for the same
period, e.g., [78,79]. This is confirmed by the wide range of ensemble simulations performed with
CESM1 over that period.

4. Conclusions

Our analysis of the links between North African winter precipitation changes and the atmospheric
patterns NAO, WeMO, MO, and U850 over the last millennium is based on recent observational
data, 20th century reanalysis, and the results of six PMIP3/CMIP5 models. Specifically, we analyze
the winter (November–April) precipitation variability observed during three periods (recent, 1979–2005;
last century, 1850–2005; and last millennium, 850–2005) in western, central, and eastern regions of
North Africa. Furthermore, we compared the results with reconstructed PDSI.

The link between NAO, WeMO, and MO atmospheric circulation indices and rainfall variability
over the three periods of the last millennium is stronger and more stationary in the western region of
North Africa than in the central and eastern parts, where it is overall weak. The NAO and MO are more
likely to affect precipitation variability in the western part of North Africa (Morocco coast and West
Algeria) associated with highly negatively significant correlation values, compared to the eastern part
with weak positive correlation results. Additionally, the link between WeMO and precipitation is
spatially and temporally not stationary over the period investigated, as it depends on the length of
the time series analyzed and the geographic location.

The correlation coefficients obtained between U850 and winter precipitation in the three parts
of North Africa over the last millennium are stronger than those calculated with NAO, WeMO,
and MO. The U850 correlation coefficients are uniformly distributed throughout the whole region,
with significant high positive values for the different data sources. The link between winter U850
and precipitation variability is consequently more robust over the last millennium and well describes
the interannual changes of precipitation in North Africa. The weak correlation coefficients of PDSI
in the climate model simulations over the last millennium, notably between members of the same
climate model (CESM1), but also between simulated and reconstructed PDSI, lead us to conclude
that internal climate variability dominated the precipitation changes in North Africa over this period.
In addition, the variability of the long-term PMIP3/CMIP5 winter precipitation, U850 time series
and PDSI (simulated and reconstructed from OWDA) presents a significant decreasing trend toward
drier conditions over the recent past. This negative trend started in the beginning of the 19th century,
except for the instrumental PDSI dataset, for which the trend started in the mid-20th century.

In conclusion, we find that precipitation variability associated with U850 represents an important
contribution to our understanding of potential causes of the long-term hydroclimate variability in
North Africa during the winter season. These results will benefit national governments and private
institutions in the planning and management of water resources in North Africa.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1154/8/5/62/s1.
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