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Abstract: A recent article reviewed data on Great Salt Lake (Utah) and concluded falsely that climate
changes, especially local warming and extreme precipitation events, are primarily responsible for lake
elevation changes. Indeed climatically influenced variation of net inflows contribute to huge swings
in the elevation of Great Salt Lake (GSL) and other endorheic lakes. Although droughts and wet
cycles have caused lake elevation changes of over 4.5 m, they have not caused a significant long-term
change in the GSL stage. This recent article also suggests that a 1.4 ◦C rise in air temperature and
concomitant increase in the lake’s evaporative loss is an important reason for the lake’s decline.
However, we calculate that a 1.4 ◦C rise may have caused only a 0.1 m decrease in lake level. However,
since 1847, the lake has declined 3.6 m and the lake area has decreased by ≈50%, despite no significant
change in precipitation (p = 0.52) and a slight increase, albeit insignificant, in river flows above
irrigation diversions (p = 0.085). In contrast, persistent water extraction for agriculture and other uses
beginning in 1847 now decrease water flows below diversions by 39%. Estimates of consumptive
water use primarily for irrigated agriculture in the GSL watershed suggest that approximately 85%
(2500 km2) of the reduced lake area can be attributed to human water consumption. The recent
article’s failure to calculate a water budget for the lake that included extensive water withdrawals
misled the author to focus instead on climate change as a causal factor for the decline. Stable stream
flows in GSL’s headwaters, inadequate temperature increase to explain the extent of its observed
desiccation, stable long-term precipitation, and the magnitude of increased water consumption from
GSL together demonstrate conclusively that climatic factors are secondary to human alterations to
GSL and its watershed. Climatization, in which primarily non-climatic processes are falsely attributed
to climatic factors, is a threat to the credibility of hydrological science. Despite a recent suggestion
to the contrary, pressure to support Earth’s rising human population—in the form of increasing
consumption of water in water-limited regions, primarily to support irrigated agriculture—remains
the leading driver of desiccation of inland waters within Earth’s water-limited regions.
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1. Introduction

Meng [1] examines the water balance of the Great Salt Lake (GSL), Utah, USA, and determines
that “climate changes, especially local warming and extreme weather including both precipitation and
temperature, drive the dynamics (increases and declines) of the GSL surface levels,” contradicting
a large body of research implicating human water consumption as the primary driver of shrinkage
among lakes in Earth’s water-limited regions [2–18]. We therefore critically examine the methods and
claims of [1].
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2. Errors of Prior Publication

2.1. Mistaken Water Balance

Meng’s [1] definition of inflows is erroneous in that it fails to account for how human water
consumption reduces river discharge. Instead the river discharge term is mistakenly assumed to be
free of human influence. Water withdrawals for agricultural and municipal uses in the GSL watershed
can be substantial, and appropriately accounting for them is standard practice when developing stream
flow reconstructions. Reconstructions of important GSL tributaries (i.e., Logan River, Weber River,
and Bear River) have all focused on upper headwater gages for precisely this reason [19–21]. Meng [1]
incorrectly states the water balance of GSL as:

“GSL water level = inflow (precipitation + river discharge)—outflow (human water use +

evaporation)”
This water balance equation is in error as the units are inhomogeneous, with water level in units

of depth and flows in units of volume. The standard water balance equation balances changes in
storage in the control volume (∆S) with volumetric inflows (Q_IN) less outflows (Q_OUT), all in units
of volume per time: ∆S = Q_IN − Q_OUT. Consumptive water uses reduce inflows to Great Salt Lake
rather than increase outflows from the lake as [1] asserted.

2.2. Impacts of Rising Temperatures

Meng [1] claims that “from the early 1970s, there is a significant trend of local climate warming
in the GSL region, which is primarily driving the declines of the GSL.” While the temperature trend
since the 1970s is legitimate, it is in part a local manifestation of global warming. Meng [1] provides
no quantitative evidence that lake evaporation flux rates have in fact increased or if so, by how
much. Nevertheless, a 1.4 ◦C increase in air temperature has likely increased lake evaporation and
contributed to the decline in lake level, but far less than implied by [1]. Following the approach
of [22], a modified Penman equation was used to estimate open water evaporation as a consequence of
warming air temperature while accounting for reduced evaporation rates due to increased lake salinity.
The reported 1.4 ◦C rise in temperature would have lowered the lake 0.12 m, whereas lake elevation
actually fell 0.81 m (USGS data) over the last 46 years. Consequently, increases in lake evaporation due
to temperature increases are important, but are insufficient to explain the decline in the Great Salt Lake.
Any future changes in air temperature due to global climate change would have additional impacts,
although these are likely to have a larger influence on evapotranspiration in the watershed than on the
lake itself [23]. Other studies have empirically correlated temperature increases with the shrinkage
of lakes [24–28]. However, those studies that have also quantified the role of rising temperature on
agricultural evapotranspiration have found that warming-driven lake evaporation changes remain of
lesser importance, relative to agricultural water consumption, given the level of observed warming at
present [17].

Meng [1] makes a variety of additional claims concerning temperature increases that are
unsupported by past research:

In contrast to the claim that “evaporation caused by the increases in temperature can be the
dominant water loss of saline lakes,” past work has shown that: (1) Predicted increases in lake
evaporation are small in the near-term (0.1–0.25% per year [29]); and (2) a range of factors control
evaporation from open water, of which temperature is only one. Thus, ref. [30] found that evaporation
was lower on warmer days when the wind was weaker as a result of synoptic weather conditions.
Additionally, lake evaporation is the product of lake area and evaporative flux. With lakes in
water-limited systems shrinking globally [18], evaporative fluxes decrease proportionally to lost lake
area [31], and with increasing salinity [22,32].

The claim that “climate changes, especially increasing temperature, have caused significant water
loss through evaporation in semi-arid regions” confuses substantial future increases in lake evaporation
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predicted to transpire by the end of the century [33] with substantially smaller increases in evaporation
from lakes that may have actually already occurred [17,29].

The suggestion that “increasing evaporation rates caused by climate warming have resulted in
approximately 40% of Australia’s total water storage capacity loss every year” is also misleading as
this loss is not a result of anthropogenic climate change, but rather primarily a consequence of natural
conditions of high evaporative demand [34].

2.3. Drivers of Changing Streamflow

Meng [1] postulates that “reduced river discharge is directly caused by the declining precipitation
and snowfall,” even though ref. [18] found that there has been no significant decline in precipitation
in the basin over a long timeframe (1875–2015; p = 0.52). They also found that there was a slight
upward trend, albeit insignificant (p = 0.085), in headwater streamflow above irrigation diversions
since pioneers began developing water resources in the mid-1800s. In contrast, river flows reaching
the Great Salt Lake have decreased by 39% due to water development for agriculture and other human
uses, which has significantly (p < 0.0001) reduced lake elevation by 3.6 m (Figure 1) [18]. Meng’s [1]
analysis of the 1904–2016 precipitation, temperature, and lake level records is misleading because it
ignores the data showing that approximately 80% of water development for agriculture and other uses
occurred before 1904 (Figure 1) [18].
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Figure 1. (A) Estimated water use for agriculture and other applications in the Great Salt Lake
watershed from 1850–2013. Note that [1] failed to analyze the period from 1850–1903, during which
approximately 80% of water development occurred. See [18] for methods. (B) Yearly and long-term
changes in the actual elevation of the south basin of Great Salt Lake derived from the U.S. Geological
Survey data (red). Droughts and wet years emphasized by [1] cause large swings in lake elevation
but cannot account for the significant (p < 0.001) decline since water development began in the basin.
The green line shows [18] estimate of the natural lake elevation if consumptive water use had not
occurred. The lake has declined approximately 3.6 m due to consumptive water use.
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Additional analyses show that when all long-term and active stream gages in the Great Salt Lake
watershed are considered, Meng’s [1] assertion that decreasing precipitation is reducing streamflows is
erroneous (Figure 2). In low order headwater streams above agricultural diversions, streamflow is
stable. In contrast, in higher order rivers proximal to irrigated agricultural areas, streamflow decreases
are observed. Indeed, such a pattern is a telltale sign of increasing agricultural water consumption over
time [5]. As of 2015, GSL had shrunk by 2874 km2 from 5966 km2 [35]. In the Great Salt Lake watershed,
3894 km2 of agricultural land is irrigated [36]. MODerate resolution Imaging Spectroradiometer
(MODIS)-derived annual evapotranspiration (ET) for irrigated areas in the GSL watershed suggest
mean ET is 370 mm·yr−1 [37], implying an annual consumption of water for irrigated agriculture in the
GSL basin of 1.5× 109 m3

·yr−1, similar to the estimate by [18]. If evaporation excess (evaporation—direct
precipitation) from the lake’s surface is 0.61 m·yr−1 on average [22], then approximately 2500 km2 of
the reduced lake area can be attributed to irrigated agriculture, over 85% of the observed lake area loss.
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Figure 2. River discharge trends and irrigated agriculture in the Great Salt Lake watershed. Dots show
long-term (≥50 year) discharge trends through 2018 in 16 rivers. Streamflow is steady in low
order headwater streams. Only higher order rivers that discharge into the lake have sharply
decreasing streamflow. This is consistent with increasing water consumption from irrigated agriculture.
(Mann Kendall tau values indicate the strength and direction of a trend over time).

2.4. Time Scales

Meng [1] highlights extreme weather events, which he suggests support an extremely changing
point analysis of “the so-called current declines of the world’s saline lakes”. He describes “extreme
weather events” as those that are more that ±2 S.D. of the mean. Meng [1] is correct that periods of
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extreme precipitation or drought cause large changes in runoff and the level of Great Salt Lake. This is
true for all closed-basin lakes (e.g., Lake Abert—[9]; Lake Urmia—[3]). For example, above average
precipitation in the Great Salt Lake watershed from 1967–1981 increased the lake level by 2.0 m and
then back-to-back 100-year precipitation events of 1982 and 1983 increased the lake level by another
2.4 m. This phenomenal increase, however, was followed by a 5.0 m decrease from 1987 to 2016,
when the lake reached its lowest recorded level of 1277.5 m [18]. Meng incorrectly indicated that the
lake’s lowest level was in 1963 because he failed to calculate changes in both the north and south
arms of the lake that are divided by a causeway [38]. Meng’s analysis highlights the importance of
weather-induced changes in the quasi-cyclic elevations of saline lakes, but without conducting a careful
water balance analysis, he failed to identify the more important long-term driver of change in most
saline lakes: persistent water withdrawals from their tributaries for agricultural and other forms of
evaporative consumption [2,5–10,12,18,39,40].

3. Conclusions

The dominance of water development, rather than climate change, for influencing most saline
lakes has important implications for managers. A warming climate and changes in precipitation
will have very important consequences for saline lakes and other ecosystems. Managers should
not, however, let climate change and the high variability of these ecosystems obscure the very
real desiccation of saline lakes caused by water development. Meng’s erroneous analysis is an
example of climatization, in which primarily non-climatic processes are falsely attributed to climatic
factors [13,15,16,41], thus absolving local governments of responsibility for sustainable management.
In many cases, discriminating between climate impacts and water development [2,12,18,42] will only
be understood with more thorough analyses than those attempted by [1]. Managers must be aware
of this issue and support thorough water balance analyses, and then take the appropriate actions to
preserve these ecosystems [43]. We support the recommendation of [44] that: “Aquatic ecosystems
may be most effectively managed in the context of global climate change if both the more pressing
anthropogenic threats [of water development] and the occurrence of extreme events are considered
and incorporated into management plans.”
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