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Abstract: Nepal has experienced recent changes in two crucial climatic variables: temperature and
precipitation. Therefore, climate-induced water security concerns have now become more pronounced
in Nepal as changes in temperature and precipitation have already altered some hydrological
processes such as the river runoff in some river systems. However, the linkage between precipitation
patterns and streamflow characteristics are poorly understood, especially in small rivers. We analysed
the temporal trends of temperature, precipitation, and extreme indices of wet and dry spells in the
Rosi watershed in Central Nepal, and observed the temporal patterns of the streamflow of the
Rosi river. We also examined the linkages between the average and extreme climate indices and
streamflow. We found that the area has warmed up by an average of 0.03 ◦C/year, and has seen a
significant decline in precipitation. The dry spell as represented by the maximum length of the dry
spell (CDD) and the magnitude of dryness (AII) has become more pronounced, while the wet spell as
represented by the number of heavy rainfall days (R5D) and the precipitation intensity on wet days
(SDII) has diminished significantly. Our analysis shows that recent changes in precipitation patterns
have affected the streamflow of the Rosi river, as manifested in the observed decline in annual and
seasonal streamflows. The decrease in the availability of water in the river is likely to have severe
consequences for water security in the area.
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1. Introduction

The impact of climate change on water availability is a major concern worldwide, and the question
of how water systems remain resilient under changing climate conditions has dominated the world’s
science and policy agenda recently [1,2]. Such a climate-induced water security concern is nowhere
more visible than in the Himalayan region. Climate change has significantly impacted the glaciers
and water resources in the Himalayan region, which is the water tower of Asia that provides water
and related hydrological services to 1.3 billion people downstream, from Afghanistan in the west to
Vietnam in the east [3,4]. The melting of snow and glaciers is a significant hydrological process in this
region that sustains the flows of rivers during the dry season [3], and this crucial hydrological process
is being affected by climate change, particularly regarding changes in temperature and precipitation [5].
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Furthermore, rising temperature and changes in precipitation alter some components of hydrological
systems such as precipitation extremes, increasing evaporation, and changes in river runoff [6,7].
Due to these climate-induced changes, two major impacts on hydrological systems are expected to
escalate. First, the availability of water and related hydrological services are likely to decrease due to
the recession of glaciers in the Himalaya [8]. Second, climate hazards such as flood and drought due to
precipitation extremes are expected to increase with climate change [7]. Such fundamental alterations
in the hydrological regime, which are attributed primarily to climate change, will have a cascading
impact on the irrigated agriculture and installed hydropower capacity, as well as the biodiversity and
natural resources [9], and will eventually intensify the regional conflicts in this region [10].

When aggregated at the national level, water is one of the most abundant natural resources in the
Himalayan country of Nepal [11]. Most of the rivers of Nepal are snow and glacier-fed, and the melting
of snow and glaciers provides sustained flows during dry seasons [12,13]. However, the narrative of a
national-scale water surplus hides the stark reality of many localities and regions facing acute water
shortages [14]. A higher rate of warming than the global average [11,15], erratic rainfall with a greater
spatial and temporal variability [16], and a prolonged drought spell [17] have been reported recently
in Nepal, which clearly indicate the growing impact of climate change in the country. Consistent
with these research findings, Nepal is already considered the 14 most vulnerable country in the world
in terms of the climate change vulnerability index [18]. As reported elsewhere, the observed and
predicted changes in the climate are likely to alter Nepal’s hydrological systems. Combined with
the rapid land-use transformations taking place across many of the mountain landscapes of Nepal,
climate change is poised to escalate water insecurity in many water-deficit regions of the country,
including several hilltop cities such as Dhulikhel in the central Nepal Himalaya, which could have
severe consequences for the amount and seasonality of water availability. The effect of water scarcity
has already been pronounced in many villages due to the drying up of local water sources that have,
in some instances, created competitions and conflicts [19], as well as forced migration [20].

Streamflow is an important hydrological variable that can be used as an indicator of hydrological
responses to climate change and variability [21–23]. It is determined by catchment heterogeneity (land
use, anthropogenic water usage) along with hydroclimatic processes such as precipitation, temperature,
infiltration, and evapotranspiration [4,24]. Climate change or variability contribute to the increased
variability of stream runoff due to changes in the timing, frequency, and intensity of precipitation
events [13]. Therefore, analysing streamflow trends in watersheds and identifying the causes and
drivers of changes has been a focus of hydrological research globally [21,23], including in Nepal [24,25].
In recent decades, runoff changes in Nepalese rivers have been reported as being associated with the
effects of climate change [11,24]. Fluctuations in the natural streamflow affect water availability, which
has direct consequences on the livelihood of the people who are heavily dependent on streamflow
for agriculture. It also has a potential impact on the economic development of the country, whose
economy largely depends on agriculture and hydropower development.

Although climate change is a global phenomenon, it has noticeable local impacts affecting local
biodiversity, ecosystems, water availability, and livelihoods [9,15]. Several efforts have been made
recently to analyse national and regional patterns of climate change in Nepal [11,16,17] and their
impacts on hydrology [26–29]. However, very few studies have focused on local watersheds, despite
the importance of small and localized watersheds to local livelihoods, including ecosystem goods and
services to the predominantly agrarian society in Nepal. Most of the hydrological studies have been
conducted in the larger river basins of Nepal such as the Dudhkoshi [12], Indrawati [28], Koshi [29–31],
Bagmati [32–34], Gandaki [26], Tamor and Seti [35], and Karnali [27] river watersheds. These studies,
which were conducted at the national level or in the large river basins, analysed the streamflow trends
of various rivers in Nepal [24], but little work has been done towards assessing the link between
changing climate and streamflow characteristics. This paper presents the findings of a study conducted
in a small watershed (of Rosi stream, about 30 km east of the capital city of Kathmandu) with the
goal of understanding the changes in hydroclimatic dynamics, including the analysis of the potential



Climate 2019, 7, 3 3 of 15

association between streamflow and climatic parameters. The streamflow dynamic in Rosi is directly
linked to the availability of water for anthropogenic usage such as drinking.

The Rosi watershed supplies drinking water to three municipalities in the Kavre district in central
Nepal: namely, Panauti, Banepa, and Dhulikhel. For the last few decades, a large part of Rosi water
has been diverted to cater to the drinking water needs of Dhulikhel, and more recently to the two other
cities, too. The Rosi-based water supply scheme also has a history of conflict and cooperation between
upstream rural and downstream urban communities, which are themselves undergoing rapid change
in relation to urbanisation, livelihood trajectories, and farming practices. The results of this study
could be useful to the similar watersheds of Nepal and in other mountainous countries. The three
specific objectives of this study are to: (a) investigate the spatial and temporal trends of temperature
and precipitation as well as moderate extreme indices related to precipitation; (b) analyse the temporal
streamflow trends of the Rosi river based on the available dataset (from 1971 to 2014); and (c) assess
the linkage between the river discharge with precipitation parameters in the Rosi river watershed.

2. Materials and Methods

2.1. Study Area

This study focuses on the Rosi watershed, which is located in the western part of the
Kavrepalanchok District of Nepal (Figure 1) and covers approximately 87 km2 area out of 540 km2

of its entire basin [36]. The Rosi watershed is one of the sub-basins of Sunkoshi river, which is a
tributary of the Kosi river that flows from the north to the south of India. The watershed extends
from the latitudes between 27◦22′ and 27◦42′ N, and longitudes between 85◦22′ and 85◦48′ E, with an
altitudinal range from 1450 m to 2828 m. The area has a sub-tropical climate with annual temperature
ranges between 9–24◦ Celcius, and receives moderate annual rainfall of 1040–2225 mm. The Rosi
watershed can be characterised as a typical watershed in the mid-hills of Nepal, which are dominated
by community forests, fragmented small-scale agriculture lands, scattered settlements, and small
towns. This watershed provides various ecosystem goods and services to local people, particularly
hydrological services, including drinking water to the approximately 50,000 inhabitants of the Panauti,
Banepa, and Dhulikhel municipalities. To harness the water from Rosi, a large-scale project called the
Kavre Valley integrated water supply project with financial and technical cooperation from the Asian
Development Bank has been implemented since 2013.
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Figure 1. Map of the study area showing average monthly temperature and precipitation (climatology)
calculated for the period between 1971–2014.

2.2. Data

The historical meteorological and hydrological data for the Rosi river basin were collected from
the Department of Hydrology and Meteorology (DHM), Nepal. There are three meteorological stations
(Kophasi, Dhulikhel: index number 1024, and Godavari: index number 1022) located in and around the
watershed boundary area (Figure 1). However, temperature data were available only for the Godavari
meteorological station. The meteorological data from the year 1971 to 2014 that were used in this
analysis include the daily precipitation, as well as the minimum and maximum temperature. The
gauge flow data measured at Panauti gauging station (index number 1049) was also collected from the
DHM. The hydrological station in Panauti and meteorological station in Kophasi were located within
a kilometer distance.

2.3. Data Analysis

We calculated trends of annual, seasonal, and maximum (extreme) discharge on the streamflow.
We conducted a regression analysis to identify the trends in the river discharge. We also
compared the spatial variation in precipitation trends among three stations, and analysed temporal
changes in the precipitation and temperature trends using linear regression. Seasonal analysis
was based on four seasons: winter (December–February), pre-monsoon (March–May), monsoon
(June–September), and post-monsoon (October–November). To understand the climate dynamics,
moderate climate extreme indices that describe events with short return periods are appropriate [37].
Currently, 27 different climate extreme indices were suggested by CCl/CLIVAR (Commission for
Climatology/Climate and Ocean: Variability, Predictability and Change)/JCOMM (Joint World
Meteorological Organization(WMO)-Intergovernmental Oceanographic Commission(IOC), Technical
Commission for Oceanography and Marine Meteorology Expert Team (ET) on Climate Change
Detection and Indices (ETCCDI) [38]. We selected six indices; three were related to the dry spell
(CDD, maximum length of the dry spell; FDD, the number of dry spells; and AII, the magnitude
of dryness) and three were related to the wet spell (SDII, the precipitation intensity on wet days;
R5D, the number of heavy rainfall days; and R20, the frequency of extremely heavy precipitation) for
moderate precipitation extremes. These indices represent both the intensity and duration of dry and



Climate 2019, 7, 3 5 of 15

wet spells and are directly related to the streamflow. The details of those indices are given in Table 1.
We used the Mann–Kendall test [39,40] for detecting trends in temperature, precipitation, precipitation
extremes, and streamflow. The Mann–Kendall test is a non-parametric test that is used to identify
a trends in time-series data such as precipitation and temperature. This test is a widely-used test
to detect significant trends in hydroclimatic data [16,21,27,29]. This test is not affected by the actual
distribution of the data and is less sensitive to outliers. Therefore, it is more suitable for detecting trends
in climatic and hydrological data, which are usually skewed, and may contain outlier observations [41].
We used Sen’s non-parametric estimate of the slope to determine the magnitude of trends [42], as the
Mann–Kendall test can examine the time series trend, but not the extent. The relationship between
precipitation parameters (annual and monthly averages, and precipitation extremes) and discharge
was calculated using Pearson’s correlation.

Table 1. Description of the indices.

Indices Name Definition Method of Calculation Unit

R5D Number of heavy
rainfall days

Annual count of days
when days

rainfall ≥five mm
RRij ≥ five mm Days

R20 Number of very
heavy rainfall days

Annual count of days
when days

rainfall ≥ 20 mm
RRij ≥ 20 mm Days

SDII Simple daily
intensity index

Annual mean rainfall
when

Precipitation ≥one mm
Days

CDD Maximum length of
dry spell

Maximum number of
consecutive

days with RR <one mm
RRij < one mm Days

FDD Number of dry spells Consecutive period with
at least eight dry days R < one mm Frequency

AII Aridity index
Ratio between the total

rain on dry days and the
number of dry days

Total rain on days with
(R < 10 mm)/number of

days with R < 10 mm
mm

RR is the daily precipitation amount on the day in a period. R5D is the number of heavy rainfall days. R20 is the
frequency of extremely heavy precipitation. SDII is the precipitation intensity on wet days. CDD is the maximum
length of the dry spell. FDD is the number of dry spells. AII is the magnitude of dryness.

3. Results

3.1. Spatial and Temporal Patterns of Precipitation

Monthly precipitation patterns (averaged over the study period from 1971–2014) of the three
meteorological stations are given in Figure 2. The Rosi river watershed received the majority of
precipitation (~80%) mainly during the monsoon season with little spatial variation (76% in Khopasi,
81% in Godavari, and 79% in Dhulikhel). Khopasi was the driest, while Godavari was the wettest
station. July was the wettest month, whereas November was the driest month in the study area.
Overall, the annual rainfall in the two stations (Godavari and Dhulikhel) of the study area significantly
decreased, with a rate of −10.4 mm/year (p = 0.006) in Godavari and −9.1 mm/year (p = 0.010) in
Dhulihel (Figure 3). The seasonal rainfall pattern showed no significant trends except in monsoon
season (Table 2). There was a significant decrease in monsoon rainfall across all three stations and a
maximum decrease occurred in Godavari, with −10.3mm/year (p = 0.002) and a minimum in Khopasi
with −6.3mm/year (p = 0.046).
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Table 2. Trends in the annual and seasonal precipitation.

Weather Stations Annual Pre-Monsoon Monsoon Post-Monsoon Winter

Khopasi −6.296 0.300 −6.260 * −0.386 −0.215
Godavari −10.435 * 0.501 −10.358 * −0.207 −0.117
Dhulikhel −9.122 * −0.349 −7.120 * −0.922 −0.162

* p =< 0.05.

3.2. Trends in Precipitation Extremes

Overall, the dry spell in the study area was increasing, while the wet spell was decreasing
(Figure 4). Three wetness indices (SDII, R5D, and R20) showed a significant decrease in the study
area, suggesting that the duration and intensity of the heavy precipitation events in the area have
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declined over the study period. SDII, which measures the precipitation intensity on wet days, showed
a significant decreasing trend in Khopasi (−0.047/year, p = 0.040). The Godavari had a maximum
decrease (−1.451/year, p = 0.018) in the number of heavy rainfall days (R5D), and Dhulikhel had a
maximum decrease (0.167/year, p = 0.038) in the frequency of extremely heavy precipitation, R20
(Table 3).
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AII, CDD, and FDD are dryness indices that are used to study trends in the dry spell. The
magnitude of dryness (AII) has significantly increased, albeit at a small rate in Khopasi and Dhulikhel,
but decreased in Godavari. A maximum number of consecutive dry days as measured by CDD
(maximum length of the dry spell) significantly increased in Godavari and Dhulikhel. A significant
increase in FDD (number of dry spells) was observed only in Godavari.

Table 3. Trends (Sen’s slope) in the dryness and wetness indices.

Khopasi Godavari Dhulikhel

AII 0.0007 *** −0.0005 *** 0.0004 ***
CDD 0.0001 0.148 *** 0.537 ***
FDD 0.250 0.707 ** 0.375
SDII −0.047 ** −0.018 −0.041 *
R5D −1.125 ** −1.452 ** −1.363 **
R20 −0.143 * −0.149 * −0.167 **

*** = 0.001, ** = < 0.05, * = < 0.10

3.3. Temporal Patterns of Temperature

The annual mean, maximum, and minimum temperature recorded only at the Godavari station
were analysed (Figure 5), as the data were available only to this station. The annual mean temperature
trend showed that the area warmed up by 0.03 ◦C/year (p =< 0.0001). The maximum temperature in
the study area increased at a rate of 0.067 ◦C/year, and the minimum temperature increased at a rate
of 0.005 ◦C/year over the last 44 years. The increasing trend in mean annual temperature over the past
four decades is consistent with the national and global averages.
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3.4. Hydrological Change and Its Linkage with Precipitation Indices

The annual river discharge pattern from 1971 to 2014 indicates a gradual decline of the river
flow, and the trend is statistically significant at the 10% significance level based on the Mann–Kendall
test (Figure 6). The trend slope based on Sen’s method showed that the rate of decrease in the
mean annual discharge of the Rosi river was −0.015m3/s/year (p = 0.08) over the last 44 years. The
monthly average discharge reached a maximum in August and a minimum in December (Figure 7).
Seasonally, the maximum flow of river occurred during the monsoon season (June–September),
whereas the minimum flow occurred during the winter (December–February). In the post-monsoon
season (October–November), the flow in the river is sustained by the infiltration supply available in
the monsoon season. The trends of seasonal flows in the winter, monsoon, and post-monsoon showed
negative trends except for the pre-monsoon, and a positive but statistically significant trend was found
only in the streamflow in the monsoon season (−0.041m3/s/year, p = 0.04).
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The annual streamflow in the Rosi river was highly correlated with annual precipitation. Figure 8
illustrates a high correlation between the annual precipitation and the runoff in the Rosi river (Pearson
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correlation (r) = 0.83, p =< 0.001). Not only the annual precipitation and annual runoff were significantly
correlated, a strong correlation between the runoff and the dry spell and wet spell indices was also
observed in the study area. CCD and FDD were negatively correlated with discharge, while SDII, R5D,
and R20 showed a significant positive correlation, suggesting that the flow of the river was highly
dependent on the extreme precipitation events (Figure 9). We did not find any significant correlation
between the annual temperature and the annual discharge, indicating that the increasing temperature
in the Rosi watershed may have had a minimum role in the streamflow.
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4. Discussion

We analysed runoff trends and assessed various climatic drivers of the runoff change, along with
the trends in the temperature, precipitation, and extreme precipitation indices. Our results of the
decreasing annual precipitation and increasing warming and precipitation extremes resonate with
the results that have been reported in previous studies [16,17,27]. Although, at the national level,
the precipitation pattern has remained more or less stable, a large spatial variability in precipitation has
been observed across various localities in Nepal [16]. In western Nepal’s Karnali basin, for example,
the annual precipitation is following a declining trend [27], while in the Gandaki Basin in central
Nepal, annual rainfall has remained stable [26]. The seasonality and magnitude of rainfall were found
to be more or less constant in the high mountain areas of Nepal [43]. We did not observe any trends in
seasonal rainfalls except in the monsoon, which was declining, although some studies [26] reported
a significant increase in monsoon rainfall, while post-monsoon, pre-monsoon, and winter rainfalls
were decreasing. This indicates not only spatial heterogeneity in the precipitation pattern, but also a
seasonal variation in the precipitation trends in different localities of Nepal.

Our results of an increasing dry spell (the number of consecutive dry days) and decreasing wet
spell (the number of rainy days) are consistent with the findings of Karki et al. (2017), who reported
a significant positive trend in the number of consecutive dry days and a significant negative trend
in the number of rainy days. This implies the prolongation of the dry spell of the study area. More
importantly, our finding reinforces the commonly reported experience of the local people of Nepal. In a
recent national survey, about 86.1% (n = 5060) of the respondents reported that they had experienced
drought, and 99.3% respondents reported increasing drought over the past 25 years [44]. Likewise,
our findings on warming trends are similar to those reported in previous studies that have been
conducted in other areas of the country [11,43,45].

On a national-level analysis, both increasing (59%) and decreasing (41%) streamflow trends
were found in Nepal [24]. Our result of a decline in streamflow parallels with the streamflow in the
Bagmati river [32], but contradicts with the streamflow of the Jhikhu river, where an upward trend of
streamflow was reported [24]. The streamflows of Nepalese rivers are determined by several factors
such as the quantum of melting snow, glacier, groundwater, and precipitation [12,24,27]. In the small
and non-snowfed rivers such as Bagmati and Jhikhu, streamflow is highly dependent on precipitation
events [24,32], which means that runoff events in the mid-hills catchments of such small rivers are
closely correlated to the rainfall intensity [46].

In the glacier-fed or snowfed river, temperature and discharge are correlated, as an increasing
temperature accelerates the ablation process [47]. The role of temperature in non-snowfed river
system such as that of the Rosi river is expected to be minimal; therefore, as shown in our results,
temperature has a minimum role in the river discharge. Increasing temperature causes the melting
of snow and glaciers, enhancing river flows noticeably in the pre-monsoon and winter season in
snowfed rivers [24]. In such snowfed river systems, the role of temperature is more pronounced than
the role of precipitation. For example, the streamflow in the snowfed Karnali river remains constant
with a decreasing precipitation trend [27]. A significant increase in the annual runoff with increasing
air temperature and decreasing precipitation was observed on the Tibetan side of the Himalayan
region [48]. Therefore, global phenomena such as increasing temperature might have a lesser effect in
a non-snowfed river such as Rosi compared to snowfed river systems.

Along with precipitation, water availability in smaller watersheds is prone to be impacted by
changes in land use and land management [49]. In some instances, anthropogenic activities such as
irrigated agriculture and population increase have significantly shaped the runoff in the streams [50] as
water is drawn from the river for anthropogenic usage. In the middle mountains of Nepal, reforestation
in the hillsides is reported to cause a considerable amount of water loss through evapotranspiration,
contributing to the observed decline in seasonal streamflow [51]. Globally, the impact of reforestation or
afforestation on local water yield was found to be negative; additional forest cover reduces downstream
water availability [52]. In the Rosi watershed, 8.19 km2 area of forest was added (37% increase) from
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1976 to 2014, with a decrease in the agricultural and barren land [53]. In the headstream of Rosi,
there are several small streams (Muldole Khola, Khar Khola, Gudgude Khola, Bairamahadev Kholsi,
and Shishakhani Kholsi), and most of the headstream is under forest cover. Due to the difficult and
steep terrain, water usage in the upstream areas is very low. However, our research does not make
a final claim between forest condition and streamflow, as there is a range of other factors, such as
stone quarrying, agricultural intensification, and others are at play in the catchment, all collectively
impacting the runoff. Therefore, changes in land use, particularly a recent increase in the forest in the
upper part of the watershed, might have contributed to the decline in runoff downstream by increasing
the use of water for evapotranspiration and reducing infiltration.

This study shows that the Rosi watershed has undergone changes in climatic parameters. We also
observed that the region has undergone significant land-use transformation. The area has warmed up
and received less rainfall, with increasing dry spells and decreasing wet spells. Both the change in
climatic factors—particularly precipitation—and local land use have impacted the streamflow of the
Rosi river, leading to a decline in the annual and seasonal discharges. While our analysis demonstrates
a significant causal association between precipitation parameters and streamflow trends, this study
has not been able to segregate the impact of land-use change in the upstream regions. Our fieldwork
and interviews with local seniors conducted between November 2014 and May 2016 confirm their
experience of receiving increasingly less rainfall in recent years, and that the condition of forest in the
watershed has improved. Therefore, a more detailed study is needed to understand the role of land
use and management, particularly regarding how the increased area of forest affects water availability
in the downstream of the Rosi river.

Considering the projected impact of climate change, proper adaptation strategies and plans need
to be formulated and implemented in order to cope with the escalating water insecurity challenge in
the study area. The strategy for securing water access should also incorporate measures to monitor the
impact of changing land use, including how increasing forest areas affect the hydrological cycle in the
small watershed of the Rosi river. Such monitoring of the forest–hydrology relationship is particularly
important, given the contradictory scientific claims being made on the link [52]: it is widely anticipated
that forests play a crucial role in water recharge; however, the opposite was true in many cases [51].
While this study has generated some insights into the relationship among the changes in precipitation
and hydrological systems, a robust monitoring system needs to be established in order to help the
adaptive management of water and watersheds to secure the water future of the region. Neither
national nor a large river basin-based approach can generate the evidence that is needed to ensure
locality-specific sustainable water management systems in the Himalayan region.

5. Conclusions

The decline of streamflow would cause a shortage of water for domestic, agricultural, and
industrial uses in the downstream. If the current trend of declining water flows and increasing
population growth continue, water insecurity will be exacerbated. The decline in the availability of
water, especially in the dry season will have severe consequences for water security in the Rosi Valley.
While the national level studies showed a vast heterogeneity in precipitation and streamflow patterns,
local research such as this provides vital evidence to inform local-level water management planning.
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