
climate

Article

An Empirical Comparison of Carbon Credit Projects
under the Clean Development Mechanism and
Verified Carbon Standard

Andrea von Avenarius 1,*, Thattekere Settygowda Devaraja 2 and Rüdiger Kiesel 1

1 Universität Duisburg-Essen, Universitätsstrasse 12, 45141 Essen, Germany; ruediger.kiesel@uni-due.de
2 Department of Commerce, Post Graduate Centre, Hemaganotri Campus, University of Mysore,

Hassan 573220, India; devaraj.uni.mysore@gmail.com
* Correspondence: andrea.vonavenarius@uni-due.de

Received: 2 May 2018; Accepted: 29 May 2018; Published: 4 June 2018
����������
�������

Abstract: Carbon credit projects generate carbon credits by abating greenhouse gas emissions.
Carbon credits can then be traded on carbon markets or immobilized in order to compensate for
caused emissions. The Clean Development Mechanism (CDM) and Verified Carbon Standard (VCS),
as the two most important carbon credit mechanisms, are investigated and compared regarding the
success of projects. We define success as the fulfilling of the ex-ante emission abatement estimation
and apply regression analyses to explain its variation on a project level by technology, location, scale,
duration and participation. The results are discussed in detail on technology level for wind power, energy
efficiency, hydro power as well as biomass projects and are compared with regard to CDM and VCS. Our
main results indicate that large scale projects often compensate for their under-performance due to
economies of time. Furthermore, the duration of projects, their location and structure of participants
have significant influence on the success of the projects. The sign of the coefficients of explanatory
variables are broadly in line with intuition and related literature, although, due to data availability,
they are not always highly significant statistically.

Keywords: Clean Development Mechanism; Certified Emission Reduction; Verified Carbon Standard;
Verified Carbon Unit

1. Introduction

Carbon credit trading regimes put a cost-efficient price on carbon emissions and foster investments
in clean and low carbon technologies. Carbon credit projects generate carbon credits by abating
greenhouse gas (GHG) emissions. For the abatement of one tonne of CO2 equivalent (CO2-eq hereafter,
is an aggregate measure for GHG, whereby they are expressed with respect to their global warming
potential ([1], p. 73)), one carbon credit is issued. Carbon credits can then be traded on the carbon
market or be immobilized in order to compensate for caused emissions. This can take place in a
mandatory or voluntary framework. There are diverse regimes of mandatory emission trading schemes,
such as the Oregon Carbon Dioxide Standard and Regional Greenhouse Gas Initiative in the USA or
the European Union Emission Trading Scheme (EU ETS), which is accountable for “over three quarters
of international carbon trading” ([2], p. 1). Furthermore, China tested Emission Trading Schemes in
several cities and provinces and launched a national ETS in December 2017 ([3], p. 24). According
to ([4], p. 23), this would “become the largest carbon pricing initiative in the world, passing the EU
ETS”. In addition, there are voluntary programs, for instance Gold Standard (GS) or Verified Carbon
Standard (VCS) [5]. The different standards have different scopes of emission reduction sometimes
in combination with further social engagements as well as differing administrative requirements.
Accordingly, the cost and effort to engage in carbon credit projects vary [6]. In some cases, a voluntary
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carbon trading regime is established as a pre-compliance framework before transforming it into a
mandatory one [7].

An important carbon credit scheme established in the frame of the Kyoto Protocol is the Clean
Development Mechanism (CDM). The CDM is highly regulated, so we refer in the sequel to it as
mandatory. Companies from Annex I countries have the opportunity to compensate for emissions
in their country of residence with regard to the local emission policies in force by establishing GHG
emission reduction projects in developing countries predefined by the Kyoto Protocol. The marginal
abatement costs in those developing or least-developed countries are lower compared to those of
industrialized countries [8]. For every tonne of CO2-eq avoided, a Certified Emission Reduction (CER)
is issued. The CERs can be traded and retired in the EU ETS. However, as the price for emission
certificates within the EU ETS fell rapidly in recent years, the value of CERs decreased as well to a
low level. Thus, CDM projects became very unattractive for companies and investors and the market
came to a standstill. In addition, the carbon market in general is sensitive to economic cycles [9,10].
Consequently, the investment in and issuance of carbon credits shrunk past 2008, but recovered within
the next years.

According to [11], the CDM Executive Board is evaluating new fields of application, for example
the International Civil Aviation Organization’s future offset market, in order to revive the CDM market.
Moreover, Ref. [12] (p. 10) states that “189 countries representing 96% of global GHG emissions and
98% of the world’s population have committed to reduce their GHG emissions and adapt to the
changing climate through their Intended Nationally Determined Contributions (INDCs)” linked to the
United Nations Framework Convention on Climate Change, 21st Conference of the Parties (COP21) in
Paris. Accordingly, these countries intend to make efforts towards a low carbon economy for which
emission trading is a measure and, thus, rivet on carbon credit projects [12].

The Verified Carbon Standard (VCS) program is the leading voluntary carbon standard by offset
issuance, retirement as well as transacted volumes [11]. Verified Carbon Units (VCU) are certificated
for each avoided tonne of CO2-eq generated by VCS projects in a voluntary carbon market. These VCS
projects face fewer as well as softer administrative barriers and, due to this, lower investment cost [13].

The increasing popularity of climate-neutral products as well as the goal of compensating the
business activity’s emissions in total lead companies to engage in carbon abatement projects and
actively participate in carbon markets. Refs. [13,14] identify mainly Corporate Social Responsibility as
motivation for the engagement in the voluntary carbon markets.

We will identify the driving factors of successful CDM and VCS projects, respectively, as
representatives for mandatory and voluntary carbon credit regimes. In order to do so, we will analyze
the types of carbon emission reduction projects separately and compare our findings. The performance
of a project can be measured by reaching the ex-ante estimated quantity of carbon credits generated
by the specific project. Identifying the determinants of successful CDM and VCS projects is relevant
due to the existing difficulties within these markets as market prices of CERs as well as VCUs having
declined heavily together with the number of projects.

The comparison of compliance and voluntary carbon offset success drivers is of interest for
companies as well as project developers who invest in emission reduction projects. Knowledge of
success drivers allows for adjusting to difficulties and avoiding losses. In addition, our results are of
interest to policy makers who design the corresponding carbon markets and set investment incentives.
The attractiveness and lucrativeness of carbon markets can be increased. Furthermore, the carbon
emission abatement and reduction will be more effective and efficient. Especially, since the number and
size of ETS have risen considerably, the determinants of carbon projects generating tradable certificates
are of major concern (see [12]).

A related work ([15], p. 3) concentrates on “the ratio between actual CERs issued and estimated”
in order to identify determinants on the CDM project success and to adjust procurement strategies
with regard to the CER production satisfying the Kyoto Protocol and the EU ETS commitments.
They investigate CERs with regard to host country, unilateral/bilateral project setup, type of project
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developer, project category, type and size, designated operational entity in charge of validation,
the quality of the additionality argumentation, the quality of the stakeholder consultation as well
as the quality of the expected sustainability benefits as stated in the project design documents.
Additionally, they conduct interviews with CDM experts, such as project developers. Their results
indicate that many CDM projects are under-performing and bilateral projects are more successful
than unilateral, especially when European project partners are involved due to “improved access
to technology, technical support, quality control and upfront financing” ([15], p. 6). They claim
that renewable energy and energy efficiency projects perform properly due to their monitoring
methodologies, which are not as complex as for the poorly performing waste projects. Hydro power
projects have a rate of issuance of 93% and, thus, they perform best. Moreover, small CDM projects, in
particular issuing below 20,000 CERs per year, and very large projects with more than 540,000 CERs
per year are successful.

Refs. [6,16] focus on explaining the prices of the primary CDM market and voluntary market,
respectively. On the primary market, the initial transaction takes place and the project developer
sells the offset. Intermediaries trade carbon credits on the secondary market [10]. Ref. [6] estimates
hedonic price functions considering diverse determinants, such as technology, host nation’s stage of
development and region among others. They find offset prices to be higher, if the host nation is a
developing or least-developed country. In addition, they find price premia for carbon credits that
are CDM- or GS certified, whereas VCUs face a price discount. In contrast, Ref. [16] applies an asset
pricing approach and finds that the “primary market is characterised by the preemptive behaviour of
carbon firms, and, potentially, speculation and inefficiencies of information transmission mechanism
between secondary and the primary market segments” (p. 88).

Focusing on nation level characteristics as explanatory variables, Ref. [17] applies cluster analysis
to potential CDM host countries in order to identify their attractiveness with regard to mitigation
potential, institutional CDM capacity and general investment climate. She finds the regions of Latin
America and Asia to host the most promising CDM countries while African CDM host countries signify
rather low attractiveness. Ref. [18] conducts regression analyses in order to explain the differential
distribution of CDM projects across host countries. They find human capital, GHG emission levels,
amount of CERs and countries offering a growing market for carbon credit project by-products to be
fostering the CDM activity of a host country.

Ref. [19] analyzed CERs only. They examined the cost structure of CERs with regard to different
project technologies, location, scale and time. Methodically, they apply ordinary least square (OLS)
estimation [19]. The main findings are: economies of scale exist in the cost of CERs; the effects
of scale vary across technologies; average CER costs decline over project duration; projects with a
later start compared to others have higher average cost in CERs; the distribution of CDM projects
regarding location or technology does not ensue the relative cost structure and the cost of CERs varies
significantly depending on the project location.

All mentioned studies focus on CER only and do not systematically compare CDM and VCS
performance. In contrast, our study sheds light on similarities and differences in success factors for
CDM and VCS projects, which has not been done before. We explain the rate of carbon credit issuance
considering the projects’ technology, methodology, location, duration and uni-/multilateral specifications.

This paper is organized as follows: the second section explains the conceptual model and the data
used. Section 2 analyzes the performance of CDM and VCS projects. Section 3 discusses the results.
Finally, Section 4 summarizes and concludes this paper.

2. Analyzing Factors Driving Successful Carbon Projects

The aim of our analysis is to find the determinants of successful carbon credits generating projects
with respect to mandatory and voluntary carbon regimes. As CDM projects have so far generated
most of the carbon credits worldwide [11], we focus on CDM projects representative for the mandatory
framework. Germany is among the most dedicated Annex I countries regarding its engagement in
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CDM activities [20]. The VCS program has the largest market share in the voluntary carbon market [11].
About 18% of the VCUs issued from 2012 until November 2016 originated from India and India hosts
about 30% of all VCS projects. By that, India is the leading VCS host country. We choose all VCS
projects hosted in India (VCS projects hereafter) as data representative of the voluntary carbon market.

2.1. Methodology

For the purpose of identifying the relevant factors of the success of carbon credit projects, we first
apply Ordinary Least-Squares (OLS) regressions to the separate carbon project groups. According to
the Gauss–Markov theorem, the OLS estimator does not necessarily need the regression residuals to
be normally distributed in order to yield a best linear unbiased estimator (blue) ([21], pp. 102–105).
Secondly, we employ stepwise regressions and allow the predictor variables to interact. Here, only a
subset of predictor variables, and combinations of those, is selected by adding and removing from a
linear model with respect to their statistical significance in explaining the response variable (for detailed
explanation and discussion, see [22,23], pp. 92–98, 364–369). We define the logarithmized quotient
of actual and estimated emission reductions, log(q), as success indicator and response variable as
inspired by [15]. If this quotient is close to 0, a project is considered successful. A project with a
quotient larger than 0 would, consequently, be over-performing. We regress the log quotients on
the candidate variables. The candidate variables are project-specific information—for example, the
project’s technology. CDM projects with German involvement cover the technologies wind and hydro
power, energy efficiency, biomass, gas to power and others. Gas to power projects cover biogas,
landfill gas and coal bed/mine methane to energy projects. CDM projects of the categories geothermal,
transport, cement, catalytic N2O reduction and HFC23 decomposition are subsumed by “others”.
The VCS projects cover the technologies biomass, energy efficiency, wind and hydro power, and others.
The category “others” comprises projects of the categories traffic, reforestation, solar power, N2O
reduction and Perfluorocarbon gases abatement, chemical recovery and composting. Energy efficiency
projects concerning both CDM and VCS cover fuel switching and waste heat recovery projects, district
heating as well as energy efficiency measures concerning households, industry, own power generation
or the energy supply side. Dummy variables represent the projects’ technology; here, the technology
category wind power serves as base. The different project technologies imply different levels of
complexity with regard to the planning, administration and execution of the project activity.

The project’s methodology is defined by the United Nations Framework Convention on Climate
Change (UNFCCC) and distinguishes between large and small scale projects [24]. According to those
methodologies, the emission reductions are calculated and documented. We also categorize the VCS
projects according to these definitions. The projects’ scale is transferred into a dummy variable, where
the small scale specification serves as base. This differentiation allows for addressing a question similar
to [19,25] related to the projects’ cost perspective concerning the existence of economies of scale for
the certificate issuance. Furthermore, the number of countries involved in a project are candidate
variables. Here, we want to investigate if it is advantageous to invest in a bilateral project or if there
are significant economies of scale when there are diverse countries engaged. The logarithmized actual
crediting time, log(t), describing the time span for which carbon credits have been issued, also serves
as a success factor in order to identify economies of time. In addition, we take into account the project’s
region of implementation for the CDM projects with German participation. This is of interest due to
the influence of the general investment climate in the designated regions on the project activity, which
might be affected by political unrest, infrastructure and human development among others [17,18].
We distinguish between Asia, Africa and Latin America following [19]. In addition, these regional
variables are dummy variables and Asia as the host region serves as base. As we focus our VCS
analysis on India as host country, we do not take into account further regional variables.
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2.2. Data

CDM projects are well documented by regulation on the UNFCCC websites (http://cdm.unfccc.
int/), which provide standardized data concerning the projects. All CDM projects undergo a specific
administrative cycle consisting of seven steps [26]. First, the project design document is prepared
using the approved emission baselines and monitoring methodology. Here, the project is presented
with regard to the applied technology, location, size, scale and project participants. In a second
step, the Designated National Authority of the party engaged in the project must confirm that the
country has ratified the Kyoto Protocol, that participation is not compulsory and that the host country
attests the project’s contribution to sustainable development. Then, the project design document
is validated by a third-party certifier, such as TUEV NORD CERT GmbH (Essen, Germany) (https:
//www.tuev-nord.de/en/company/certification/), and the project is registered by the CDM Executive
Board. In a fifth step, the project participant needs to submit monitoring reports documenting the
project activity and the actual emission abatement. Finally, the monitoring reports are verified by
the third-party certifier and the CERs are issued by the Executive Board. Equivalent to that, the VCS
projects are documented at the Verified Carbon Standard website (http://www.v-c-s.org/). During the
administrative process, in order to conduct a carbon credit project, the project developers must, among
other things, estimate the yearly emission abatement in CO2-eq. This is done in the project design
document, where further technical and administrative information is also given. Moreover, within
the projects’ lifetime monitoring reports, which document the project’s emission abatement, need to
be handed in to the responsible carbon standard. After reviewing the monitoring report, the carbon
credits are issued. Thus, the estimated and actual amount of emission abatement is supervised and
transparent.

We investigate 200 CDM projects with German participation and 303 VCS projects hosted in India,
which have been issuing CERs and VCUs, respectively, up to the end of 2014.

The logarithmized quotient of actual and estimated emission reductions as success indicator is
shown in Figure 1. On average, the carbon credit projects under perform with means of −0.32 and
−0.21 for German CDM projects and Indian VCS projects, respectively. The samples’ variances are
0.27 for German CDM projects and 0.17 for VCS projects. Although the CDM projects are said to
be more regulated compared to voluntary carbon abatement projects, which might imply increased
technical and administrative quality control, the German CDM projects show the highest variance
combined with the lowest mean of project success. One explanation for the under-performance of the
carbon credit projects is the presence of ramp-up phases during which the estimated annually emission
reductions are not yet met. Unfortunately, those phases are not evident in the project documentation
and, consequently, the corresponding projects were not excluded from the sample.

Figure 2 gives an overview of the carbon credit projects under observation regarding their scale
and technology. The number of small scale projects is indicated by black color. The top graph displays
the number of CDM projects with German participation by technology and scale. About 57% of the
CDM projects with German participation are large scale projects. Moreover, wind power together with
hydro power projects cover roughly 50% of the German CDM projects under consideration. The lower
graph shows the VCS projects as well by technology and scale. Wind power projects are, here, by far
the dominant technology with 68% followed by biomass with about 14%. The majority of VCS projects
considered here are small scale projects (60%).

In addition, 81.5% of those CDM projects in the sample are hosted in Asia, 6% and 12.5% in
Africa and Latin America, respectively. Associated with this are the findings of [19], in which fixed
project costs are significantly higher in the regions of Africa, Latin America and Oceania compared to
Asia. Among others, Ref. [27] explains the distribution of CDM projects by avoidance of investments
in regions of political unrest and that national GHG emissions, gross savings, population and GDP
enhance the investment climate. Ref. [18] explains that human capital, GHG emission levels as well as
emerging markets for CDM by-products influence the allocation of CDM projects. Concentrating on
Indian renewable energy CDM projects, [28] identify state level policies as a significant influence on

http://cdm.unfccc.int/
http://cdm.unfccc.int/
https://www.tuev-nord.de/en/company/certification/
https://www.tuev-nord.de/en/company/certification/
http://www.v-c-s.org/
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the distribution of projects across India and that existing renewable energy capacity attracts larger
renewable energy CDM power projects.
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Figure 1. Boxplots of logarithmized quotients of actual and estimated emission reductions of CDM
projects with German participation (left) and VCS projects hosted in India (right).

On average, four countries are involved in a CDM project with German participation. In contrast,
the average number of countries involved in a VCS project is 1.08. Only 6.6% of the VCS projects under
consideration have an international project partner.

In addition, the average duration of a carbon credit project is calculated as the time span where
CER and VCU issuance occurred, respectively. On average, the issuance period regarding CDM
projects was 3.8 years and 3.5 years with respect to VCS projects. We consider CDM and VCS data
from 2000 until 2014.
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Figure 2. CDM projects with German participation (top) and VCS projects hosted in India (bottom) by
technology and scale (small scale is indicated by black color, large scale is indicated by white color).

3. Empirical Findings

In Table 1, we list the explanatory variables with influence on the success of carbon credit projects
for each project group and their corresponding OLS coefficient estimates.

Table 1. OLS regression results for German CDM projects and VCS projects hosted in India; ** denotes
significance at the 5% level

CDM VCS

Constant −0.2983 ** 0.0029
Energy efficiency −0.0826 −0.0233

Hydro power −0.0735 0.2329 **
Biomass −0.1024 0.0246

Gas to power −0.1019
Others 0.0274 −0.0415

Latin America −0.0680
Africa −0.2269
Scale 0.0257 −0.0762
log(t) 0.0967 0.0052

Countries −0.0152 −0.1911 **
R-squared 0.0509 0.0565

Observations 200 303

The explanatory power of these regressions is limited with respect to the coefficient of
determination, R2, which is a common goodness of fit measure with regard to regressions.
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The OLS regression identifies no significant influence on the success of German CDM projects.
Nevertheless, compared to the listed technologies, CDM wind power projects perform best, with
the technology category “others” being an exception. Regarding the VCS projects’ success, hydro
power projects perform significantly better than wind power projects at the 5% level of significance.
Additionally, VCS projects with many countries involved are less successful with significance at
the 5% threshold. The number of countries influence on the CDM projects is also negative yet not
statistically significant. Moreover, the projects’ duration has a positive, but not significant, influence on
the projects’ success. This holds for CDM and VCS projects. The projects’ scale influences the rate of
certificate issuance positively with regard to CDM projects and negatively with respect to VCS projects.
Again, the coefficients are statistically not significant. Further regression results with interactions of
the coefficients can be requested from the authors. In the remaining work, we will examine the carbon
credit projects on technology level.

3.1. Wind Power Projects

Focusing on wind power projects, the samples’ means regarding log(q) are −0.22 and similar for
CDM and VCS projects. The variance for CDM wind power projects is 0.09 while the one for VCS
wind power projects is 0.13. Here, the CDM sample’s mean is larger and variance smaller than the
average. In addition, the VCS projects’ mean is equal to the corresponding CDM mean, but smaller
than the overall VCS mean; nevertheless, the variance is smaller compared to the sample variance.
We find little explanatory power with regard to the OLS regression of VCS projects. In contrast,
we can explain about 18% of the variation in log(q) with the help of the factors listed in Table 2
concerning CDM wind power projects. In both cases, projects with a longer credit issuing time are
more successful compared to shorter durations at a significance level of 5% and 1% for CDM and VCS
projects, respectively. This hints at learning effects. As found in the general OLS regression results for
CDM and VCS projects, large scale CDM projects are more successful compared to small scale CDM
projects, whereas the opposite holds for VCS projects. However, the corresponding coefficients are not
statistically significant.

Table 2. OLS regression results for CDM and VCS wind power projects; ** and *** denotes significance
at the 5% and 1% level, respectively.

CDM VCS

Constant −0.5215 *** −0.3093 ***
Latin America 0.1272

Africa −0.0991
Scale 0.2013 −0.0592
log(t) 0.2580 ** 0.1183 ***

Countries −0.0500 0.0077
R-squared 0.1780 0.0539

Observations 41 205

Applying stepwise regression, the coefficients of determination are 23% and 6% for CDM and
VCS wind power projects, respectively. Table 3 displays the stepwise regression factors and coefficients
for CDM wind power projects. Accordingly, an increased number of participating countries reduces
the projects’ success with significance at the 5% threshold indicating, for instance, communicative
or administrative difficulties. The projects’ duration and scale have no significant singular influence
on the projects’ success. The corresponding coefficients indicate that large scale CDM wind power
projects perform worse than small scale projects and that there are learning effects during the conduct
of CDM wind power projects. However, large scale projects with increasing durations outperform
small scale projects with significance at the 10% threshold and suggest that the disadvantages linked
to the large scale project specification is overcome by time. This implies economies of scale and time.
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Still, balancing effects might be present. According to the stepwise regression results, the projects’
location does not determine the success of CDM wind power projects.

Table 3. Stepwise regression results for CDM wind power projects; R2 = 0.2301; * and ** denotes
significance at the 10% and 5% level, respectively.

Estimate SE t Stat p-Value

Constant −0.1325 0.2842 −0.4661 0.6439
Scale −0.2705 0.2982 −0.9071 0.3704
log(t) 0.0546 0.1520 0.3593 0.7215

Countries −0.0615 ** 0.0287 −2.1428 0.0390
Scale × log(t) 0.3366 * 0.1979 1.7006 0.0976

Concerning VCS wind power projects, Table 4 shows the stepwise regression results.
Accordingly, we are able to explain about 7% of log(q)’s variation. The number of participating
countries does not influence the VCS wind power projects’ success significantly and is omitted by the
stepwise regression algorithm. Large scale VCS wind power projects perform worse than small scale
ones at the 5% threshold. The projects’ duration has positive, yet statistically insignificant, influence
on the rate of VCU issuance. Large scale VCS wind power projects with increased projects durations
have an increased rate of VCU issuance at the 10% level of significance indicating economies of scale
and time.

Table 4. Stepwise regression results for VCS wind power projects; R2 = 0.0666; *, ** and *** denotes
significance at the 10%, 5% and 1% level, respectively.

Estimate SE t Stat p-Value

Constant −0.2271 *** 0.0676 −3.3601 0.0009
Scale −0.1748 ** 0.0865 −2.0215 0.0446
log(t) 0.0415 0.0615 0.6740 0.5011

Scale × log(t) 0.1369 * 0.0825 1.6587 0.0987

3.2. Energy Efficiency Projects

The mean and variance of CDM and VCS energy efficiency projects are −0.4 and −0.31 as well
as 0.33 and 0.24, respectively. Table 5 shows the OLS regression results for CDM and VCS energy
efficiency projects. The variation of log(q) can be explained by 26% and 13% concerning CDM and
VCS projects, respectively. Focusing on CDM projects, only the coefficient of the host region Africa
is significant at the 10% level. This suggests that Africa as host region is inferior to the host region
Asia with regard to the rate of CER issuance. None of the coefficients regarding the VCS projects are
significant. However, Table 5 indicate economies of scale and time as the scale’s and project’s durations
coefficients are positive.

Table 5. OLS regression results for CDM and VCS energy efficiency projects; * denotes significance at
the 10% level.

CDM VCS

Constant −0.4185 −0.8099
Latin America −0.3767

Africa −0.5847 *
Scale 0.2791 0.0943
log(t) 0.0483 0.2336

Countries −0.0067 0.2642
R-squared 0.2250 0.1317

Observations 29 22
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The stepwise regression results for CDM energy efficiency projects are displayed in Table 6.
Accordingly, the projects’ scale has no significant influence on the projects’ success and is omitted by
the stepwise regression algorithm, whereas the host region Africa is disadvantageous compared to
Asia with significance at the 5% level. This confirms our result in Table 5. The African CDM energy
efficiency host countries, namely Nigeria, Lesotho, Rwanda and Zambia, are considered to be “very
unattractive” CDM host countries ([17], p. 2183). In contrast, energy efficiency projects located in
Latin America are more successful compared to those in Asia, yet the corresponding coefficient is not
statistically significant. Moreover, projects located in Latin America have an increased rate of CER
issuance when the project duration increases with significance at the 10% threshold. Nevertheless, an
increasing number of participating countries in energy efficiency projects hosted in Latin America
reduce the projects’ success with significance at the 10% level. Energy efficiency CDM project host
countries in Latin America are Argentina, Bolivia and Brazil. Argentina and Brazil are characterized
as “very attractive” CDM host countries, whereas Bolivia is identified to be “attractive to a limited
extent” ([17], p. 2183). Asian host countries for the CDM energy efficiency projects under consideration
are China, Bangladesh, India, Indonesia and Pakistan. Thereof, China, India and Indonesia are “very
attractive”, Bangladesh is “attractive to a limited extent” and Pakistan is considered “very unattractive”
as CDM host country by [17], p. 2183. The number of countries involved in CDM energy efficiency
projects also has negative, but not statistically significant, singular influence on the success of CDM
energy efficiency projects with respect to OLS and stepwise regression. The projects’ duration also
has negative, but statistically insignificant influence on the success of CDM energy efficiency projects
according to our stepwise regression results.

Stepwise regression identifies no significant factor determining the success of VCS energy
efficiency projects.

Table 6. Stepwise regression results for CDM energy efficiency projects; R2 = 0.4102; * and ** denotes
significance at the 10% and 5% level, respectively.

Estimate SE t Stat p-Value

Constant −0.1998 0.1557 −1.2839 0.2125
Latin America 1.0631 1.9092 0.5568 0.5833

Africa −0.7333 ** 0.2753 −2.6642 0.0142
log(t) −0.0274 0.1290 −0.2125 0.8337

Countries −0.0130 0.0227 −0.5723 0.5730
Latin America × log(t) 0.9721 * 0.5319 1.8277 0.0812

Latin America × Countries −1.0048 * 0.5834 −1.7222 0.0991

3.3. Hydro Power Projects

CDM hydro power projects are slightly less successful than CDM projects in general with a mean
of log(q) of −0.33. The variance of the projects’ success is 0.34. Furthermore, VCS hydro power projects
are the most successful within this work with an average log(q) of 0.03 and a corresponding variance
of 0.12, which is interesting from an investor’s point of view. All VCS hydro power projects have only
the host country as participating country. The variation of the success indicator can be explained by
33% and 25% regarding CDM and VCS projects with the help of OLS regression, respectively (see
Table 7). Here, CDM hydro power projects located in Latin America are significantly more successful
than those in Asia at the 1% threshold. Host countries of CDM hydro power projects in Latin America
are Ecuador, Guatemala, Honduras, Peru and Costa Rica. The latter is characterized to be an attractive
CDM host country, whereas, in [17], p. 2183, the other countries are considered as being “attractive to
a limited extent”. However, the CDM hydro power host countries in Asia are China, India, Laos,
Vietnam and Pakistan. China and India are categorized as “very attractive”, Laos and Vietnam as
“attractive to a limited extent” and Pakistan as “very unattractive” as CDM host country ([17], p. 2183).
Again, among others, singular political events, environmental issues or structural differences within
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a country might be the reason for this contradictory result, as the influential factors are not evident
on a country level, as discussed by [17]. Moreover, an increasing number of participating countries
reduces the success of CDM hydro power projects significantly at the 1% level, which is hinting at
communicative discrepancies or increased administrative difficulties delaying the issuance of CERs.

Table 7. OLS regression results for CDM and VCS hydro power projects; ** and *** denotes significance
at the 5% and 1% level, respectively.

CDM VCS

Constant −0.1365 0.1475
Latin America 0.8825 ***

Africa 0.2433
Scale 0.0412 0.1778
log(t) 0.0845 −0.2116 **

Countries −0.1126 ***
R-squared 0.3259 0.2451

Observations 64 19

Concerning VCS hydro power projects, the projects’ duration influences the rate of VCU issuance
negatively with significance at the 5% threshold. This implies the absence of learning effects in the
projects’ conduct.

In addition, 63% of the variation in log(q) concerning CDM hydro power projects can be explained
by stepwise regression. Table 8 states the explanatory variables and the estimated coefficients.
Accordingly, the projects location Latin America and Africa are beneficial compared to Asia each
with significance at the 1% level. However, there are balancing effects, as large scale projects in Latin
America have a decreased rate of CER issuance with significance at the 5% level. CDM hydro power
projects hosted in Africa with an increased number of participating countries also have a reduced
rate of CER issuance significant at the 1% threshold. Namely, the relevant countries are Kenya and
Uganda. Kenya is identified to have “rather low institutional CDM capacity, low mitigation potential
and a relatively bad investment climate” ([17], p. 2177). Uganda is identified to be of medium to very
high CDM capacity, low mitigation potential and bad investment climate and “attractive to a limited
extent” for CDM ([17], p. 2183). Large scale projects perform significantly worse than small scale
projects at the 1% level. The projects’ duration has significant negative influence on their success at
the 10% threshold. However, the disadvantages of the large scale project specification are overcome
by time with significance at the 1% threshold implying economies of scale and time. Additionally,
the number of participating countries shows a significantly negative influence on the rate of CER
issuance at the 1% threshold. This indicates administrative or communicative difficulties leading to
delays in CER issuance. These difficulties are overcome by time with significance at the 1% level.
Furthermore, large scale CDM hydro power projects with an increasing number of participating
countries have an increased rate of carbon credit issuance significant at the 5% level.

Furthermore, 19% of the variation of log(q) can be explained by the stepwise regression results
shown in Table 9. Here, only the duration of the projects is identified to have significant negative
influence on the projects’ success at the 10% level. This indicates that no learning effects are present
equivalent to the result in Table 7.
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Table 8. Stepwise regression results for CDM hydro power projects; R2 = 0.6255; *, ** and *** denotes
significance at the 10%, 5% and 1% level, respectively.

Estimate SE t Stat p-Value

Constant 0.4113 ** 0.2005 2.0513 0.0452
Latin America 0.8283 *** 0.2559 3.2368 0.0021

Africa 11.2064 *** 1.9449 5.7619 0.0000
Scale −0.7938 *** 0.2321 −3.4196 0.0012
log(t) −0.2775 * 0.1555 −1.7842 0.0801

Countries −0.2848 *** 0.0559 −5.0933 0.0000
Latin America × Scale −1.1202 ** 0.4326 −2.5895 0.0124

Africa × Countries −1.2405 *** 0.2225 −5.5763 0.0000
Scale × log(t) 0.5357 *** 0.1849 2.8965 0.0055

Scale × Countries 0.1191 ** 0.0458 2.5998 0.0121
log(t) × Countries 0.1073 *** 0.0322 3.3316 0.0016

Table 9. Stepwise regression results for VCS hydro power projects; R2 = 0.1876; * denotes significance
at the 10% level.

Estimate SE t Stat p-Value

Constant 0.1793 0.1063 1.6862 0.1100
log(t) −0.1827 * 0.0922 −1.9814 0.0640

3.4. Biomass Projects

Compared to the overall mean of CDM projects, CDM biomass projects perform almost equally
with a mean of −0.31 regarding the logarithmized quotient of actual and estimated emission reductions.
However, the associated variance is higher than the average with 0.28. The VCS biomass projects are
under-performing, yet slightly less than the corresponding CDM projects, with a mean of −0.19 and a
variance of 0.22. Accordingly, the biomass projects’ success is rather variable.

All CDM biomass projects are either located in Asia or Latin America. Thus, the host region Africa
is omitted as an explanatory variable here. Table 10 shows the regression coefficients for both CDM
and VCS projects’ regressions. We are able to explain about 33% of the variation in log(q) with the help
of those coefficients with regard to CDM projects. According to Table 10, there are economies of time
concerning CDM biomass projects as the rate of CER issuance increases over time with significance
at the 5% level. With regard to VCS biomass projects, we are able to explain about 10% of log(q)’s
variation. None of the coefficients are statistically significant. However, the large scale specification
influences the VCS biomass projects’ success negatively. The same holds for the projects’ duration.
Consequently, the findings are opposite to the results for CDM biomass projects. Only the number of
involved countries increases the rate of VCU issuance.

Table 10. OLS regression results for CDM and VCS biomass projects; ** and *** denotes significance at
the 5% and 1% level, respectively.

CDM VCS

Constant −1.2294 *** −0.3317
Latin America 0.4804

Scale 0.4056 −0.1916
log(t) 0.6731 ** −0.1759

Countries −0.0831 0.2716
R-squared 0.3328 0.1047

Observations 26 42
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With the help of stepwise regression, we can increase the percentage of explained variation in
log(q) in the case of CDM biomass projects up to 73% according to Table 11. Consequently, long project
durations decrease the rate of CER issuance with significance at the 1% level indicating the absence
of learning effects. In addition, an increasing number of participating countries significantly reduces
the project’s success at the 1% level. This is opposite to our finding in Table 10, where the projects’
duration has a positive influence on their success. However, the project duration combined with the
number of participating countries has a significantly positive influence on the rate of CER issuance at
the 1% level. This somehow sets off the singular influence of log(t). Thus, learning effects are present
when diverse countries are involved and are able to bring in their experience as well as overcome
administrative or communicative difficulties within a reasonable time span. The projects’ scale has
no significant singular influence on the success of CDM biomass projects; however, the coefficient
is negative and indicates that large scale projects under perform. The combination of the large scale
specification and the host region Latin America has a significant positive coefficient at the 1% threshold.
This implies that large scale CDM biomass projects in Latin America perform best. The CDM biomass
host countries in Latin America are Costa Rica and Brazil. Costa Rica is characterized as “attractive
for CDM” ([17], p. 2178). Brazil is identified to have “an exceptionally high mitigation potential, a
good institutional CDM capacity and a good investment climate” ([17], p. 2178). Nevertheless, 22 of
the 26 CDM biomass projects are hosted in Asia, whereof 16 are located in India, while the others are
hosted in China, Malaysia and Indonesia. China, India and Indonesia are identified to be among the
“CDM (non-sink) stars” according to ([17], p. 2182), whereas Malaysia is characterized as “attractive”
CDM host country ([17], p. 2183). Furthermore, large scale CDM biomass projects with many countries
involved have an increased rate of CER issuance with significance at the 5% level.

In contrast to CDM biomass projects the projects’ scale has no influence on the success of VCS
biomass projects with reference to the stepwise regression results in Table 12 and is omitted as
an explanatory variable. Moreover, the rate of VCU issuance decreases with an increase of credit
issuing time significantly at the 5% threshold. This means that the rate of issuance shows a negative
development over time and hints at problems in the conduct of the project activities as no learning
effects seem to be present. Additionally, the number of participating countries reduces the projects’
success significantly at the 5% level. This is set off by the factor combination of log(t) and the number
of involved countries, as this combination has a significant positive influence on the projects’ success
at the 5% threshold. Thus, there are learning effects the longer the projects continue and the more
countries are involved. With the factors and coefficients identified in Table 12, we can explain 17% of
the variation in log(q).

Table 11. Stepwise regression results for international CDM biomass projects; R2 = 0.7255; ** and ***
denotes significance at the 5% and 1% level, respectively.

Estimate SE t Stat p-Value

Constant 3.9996 *** 1.2228 3.2709 0.0042
Latin America 0.1464 0.2309 0.6338 0.5342

Scale −0.4399 0.4039 −1.0889 0.2905
log(t) −1.9406 *** 0.6105 −3.1788 0.0052

Countries −2.0112 *** 0.4352 −4.6208 0.0002
Latin America × Scale 2.8768 *** 0.6426 4.4769 0.0003

Scale × Countries 0.1987 ** 0.0933 2.1287 0.0473
log(t) × Countries 0.9593 *** 0.2119 4.5275 0.0003
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Table 12. Stepwise regression results for VCS biomass projects; R2 = 0.1690; ** denotes significance at
the 5% level.

Estimate SE t Stat p-Value

Constant 0.1978 0.3982 0.4968 0.6222
log(t) −0.9326 ** 0.3825 −2.4378 0.0196

Countries −0.2513 0.3602 −0.6978 0.4895
log(t) × Countries 0.6811 ** 0.3307 2.0597 0.0463

3.5. Discussion

Mandatory, in contrast to voluntary, carbon regimes potentially change the cost structure of obliged
companies permanently, depending on carbon prices as carbon credits can be seen as a factor of
production as discussed by [29,30]. Our results suggest, in general, that CDM wind power projects
are not outperformed by energy efficiency, hydro power, biomass or gas to power projects (see Table 1).
In contrast, VCS biomass and hydro power projects perform better than VCS wind power projects.
Furthermore, the CDM host region Asia is beneficial compared to Africa and Latin America. On
technology level, we find that increasing project durations increase the projects’ success except for
VCS hydro power projects. Small scale projects perform better compared to large scale projects in
the case of VCS wind power projects. Especially, in the cases of CDM and VCS wind and CDM
hydro power projects, we observe economies of scale and time. Location-wise, the host region Africa
is disadvantageous compared to Asia in the case of CDM energy efficiency projects, whereas, it is
beneficial for CDM hydro power projects, although there are off-setting effects. Our results suggest
that Latin America is advantageous compared to Asia for CDM biomass projects, despite leveling
effects for CDM energy efficiency and hydro power projects. When it comes to CDM wind power
projects, there is no significant difference in the performance concerning the host regions. A similarity
of CDM biomass and hydro power projects is the partly significant negative singular influence of
the number of countries involved, the large scale methodology and the increasing project duration,
whereas the combination of large scale projects with an increasing number of involved countries as
well as long project durations with an increased number of involved countries influences the projects’
success significantly positively. In the factor combinations of the stepwise regression results, balancing
effects are present and need to be kept in mind with regard to the interpretation of the results.

4. Conclusions and Policy Implications

There are diverse carbon credit regimes with different scopes, regulatory backgrounds and
administrative requirements. As there are new carbon credit mechanisms evolving and existing
mechanisms are struggling, we focus on the question of what determinants make a carbon credit
project successful. These determinants are important because they affect the effectiveness and efficiency
of a wide-spread climate policy measure. Identifying success factors of Clean Development Mechanism
(CDM) and Verified Carbon Standard (VCS) projects, as representatives for mandatory and voluntary
carbon credit regimes, is the aim of this work. To the best of our knowledge, the comparison of
success determining factors of different carbon credit regimes has not appeared in the literature so far.
We apply ordinary least squares (OLS) and stepwise regression and analyze the project data standard-
and technology-wise. In particular, we compare CDM and VCS wind power, energy efficiency, hydro
power and biomass projects, respectively. Our technology level results do not indicate economies of
scale per se. Furthermore, difficulties originating from the large scale project specification are overcome
by time in the cases of CDM and VCS wind power projects as well as CDM hydro power projects.
Additionally, our results suggest that CDM energy efficiency projects should preferably not be located
in African countries. VCS hydro power projects show no economies of time according to our data.
Moreover, the number of countries involved in a project associated with economies of time has a
significant and positive influence on CDM hydro power and biomass projects. This is a similarity of
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VCS and CDM biomass projects. The number of participating countries in CDM energy efficiency
and wind power projects should be as small as possible. The presented results are broadly in line
with intuition and the related literature, although they are not always highly significant statistically.
The explanation of the variation of the projects’ success is sounder with regard to CDM projects.
The lacking explanatory power concerning VCS projects might originate from the data availability
and the fact that many VCS projects have shorter crediting periods sometimes equivalent to ramp-up
phases, whereupon those projects switch to, for example, the CDM. Hence, these ramp-up phases
would bias the evaluation.
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