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Abstract: Changes in climate because of global warming during the 20th and 21st centuries have a 
direct impact on the hydrological cycle as driven by precipitation. However, studying precipitation 
over the Western Maritime Continent (WMC) is a great challenge, as the WMC has a complex 
topography and weather system. Understanding changes in precipitation patterns and their 
groupings is an important aspect of planning mitigation measures to minimize flood and drought 
risk as well as of understanding the redistribution of precipitation arising from climate change. This 
paper employs Ward’s hierarchical clustering on regional climate model (RCM)-simulated monthly 
precipitation gridded data over 42 approximately evenly distributed grid stations from the years 
2030 to 2060. The aim was to investigate spatial and temporal groupings over the four major 
landmasses in the WMC and to compare these with historical precipitation groupings. The results 
showed that the four large-scale islands of Java, Sumatra, Peninsular Malaysia and Borneo would 
experience a significant spatial redistribution of precipitation over the years 2030 to 2060, as 
compared to historical patterns from 1980 to 2005. The spatial groups were also compared for two 
future forcing scenarios, representative concentration pathways (RCPs) 4.5 and 8.5, and different 
groupings over the Borneo region were observed. 

Keywords: climate change; clustering; precipitation; WRF; global warming; maritime continents; 
tropics; hydrological cycle; floods and droughts 

 

1. Introduction 

Climate change during the 20th and 21st centuries because of global warming has directly 
influenced precipitation all over the world. Most reported studies [1–4] focus on the changes in 
intensity and frequency of precipitation because of climate change, while there is significantly less 
research on the effect of climate change on the redistribution of precipitation. The redistribution of 
precipitation within regions and seasons is an important aspect of climate change, as it poses a high 
risk to agriculture [5], water security [6], as well as an increased chance of floods and droughts [7,8]. 
Also, site selection for the construction of hydrological and hydraulic structures such as drains, dams 
and reservoirs is dependent on precipitation distribution within a region [9,10]. The redistribution of 
precipitation in the future can make these structures less useful and sometimes even redundant 
[11,12]. 

The alterations and variability in future precipitation are traditionally studied using outputs 
from global climate models (GCMs) [13–16]. However, GCMs have a low resolution, typically 1.5° to 
2.5°, and in order to mitigate impacts of future precipitation, their output needs to be able to focus on 
the regional or local scale [14,17]. Regional- or local-scale data can be achieved using dynamical 
downscaling, in which regional climate models (RCMs) are implemented to downscale GCM data to 
a higher grid resolution. 
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The weather research and forecasting (WRF) model is one such RCM and is used here to study 
future precipitation groups and patterns for the Western Maritime Continent (WMC). WMC 
precipitation is highly influenced by prominent convection in the region [18–20], as well as its 
complex topography. Also, since the WMC is a homogeneous air mass and has evenly distributed 
pressure and sea-surface temperatures, the weather and climate in this region are heavily dependent 
on local and mesoscale factors [21]. The WMC encompasses four large-scale islands: Java, Sumatra, 
Peninsular Malaysia and Borneo, and also has a multitude of smaller islands, many of which are 
mountainous [21,22]. Grouping precipitation patterns can provide a concise and structural summary 
of climate in the region. Thus, the objective of this work is to identify spatial and temporal patterns 
of monthly precipitation over the WMC using Ward’s clustering algorithm [23,24]. 

Statistical methods are effective for spatiotemporal characterization in meteorology and help to 
identify precipitation groupings. Several studies to characterize spatiotemporal data, such as 
principal component analysis to model diurnal rainfall over the Maritime Continent [25], empirical 
orthogonal functions to characterize the spatial variability of monthly rainfall over India [26], and k-
nearest-neighbor to simulate daily precipitation [27] have been implemented. However, most of these 
clustering methods require the number of clusters or components to be inputted. Specifying an 
incorrect number of clusters can result in substantial errors in the analysis [28,29]. To overcome this, 
the present study implements hierarchical clustering, using Ward’s cluster analysis (CA) method, 
which does not require pre-specification of the number of input clusters [30,31]. Thus, CA contributes 
to the identification of unusual patterns or groups and links within the data [32]. CA is recognized as 
an effective tool for identifying homogeneous groupings of stations with respect to their climatology. 
Furthermore, Blashfield [33] showed that Ward’s CA method generated the most accurate results 
among four hierarchical clustering methods tested. 

Previous studies primarily grouped the climatology of the major islands within the WMC based 
on their geographical location. For example, Peninsular Malaysia was divided into four regions, i.e., 
Northern, Central, Eastern and Southern [34,35]. The Northern region was reported to receive the 
highest precipitation from September to October, the Central from October to November, the Eastern 
from November to December, and the Southern from December to January. More precisely, the 
Indonesian Bureau of Meteorology, Climatology, and Geophysics (BMKG) [36] classified Indonesia 
into 293 areas with different precipitation characteristics to reflect the complexity and heterogeneity 
of precipitation distribution [37]. However, these groupings were based on the historical observed 
and modelled data, and thus may not hold in future, under alterations in the hydrological cycle 
resulting from climate change effects. 

The goal of this work is to apply Ward’s hierarchical clustering on monthly precipitation data 
obtained from WRF modeling over the WMC. The WRF model was driven using the Coupled Model 
Intercomparison Project Phase 5 (CMIP5) GCM data and bias-corrected with the observed Climate 
Hazards Group InfraRed Precipitation with Station (CHIRPS) dataset. The methodology was applied 
for 42 distributed stations (locations) as shown in Figure 1. The objectives behind clustering the 
precipitation data were: (i) to discover spatial grouping of precipitation distribution within the WMC 
under the present and future climate; and (ii) to uncover the monthly and seasonal precipitation cycle 
for each cluster. The author believes this is the first such study using CA over the WMC. 

 
Figure 1. A flowchart showing the clustering framework used in this study. 



Climate 2017, 5, 84 3 of 20 

 

2. Study Area and Datasets 

2.1. Study Area 

The WMC is the western part (900 E to 1200 E and 100 S to 100 N) of the Maritime region as 
defined by Ramage [21,38]. Figure 2a,b show the complex topography and mixed land-use patterns, 
respectively, of the WMC. A total of 42 distributed “stations” (the locations are listed in Table 1) were 
selected for the cluster analysis. Note that “stations” here actually refers to overall grid precipitation, 
although the grids are high resolution, being 25 km for CHIRPS and WRF–CMIP5. The stations were 
strategically chosen within the four major islands in the WMC, specifically from Sumatra (12), Java 
(7), Malaysia (10), Borneo (12) and the Independent Islands (2). Table 1 categorizes the islands from 
where the grid locations are selected along with their coordinates, altitude, mean annual 
precipitation, and land use, characterized into eight categories (i.e., commercial agriculture (Com 
Agr), livestock-raising, forest, nomadic herding, subsistence agriculture (Sub Agr), commercial 
fishing, little or no activity (LA/NA and urban). 

(a) (b)

Figure 2. Spatial map showing 42 locations and (a) topography, and (b) land-use patterns of the study 
region. 

Table 1. Stations, coordinates (latitude and longitude), altitude and land use of the locations used in 
this study. Time range of the monthly data is from January 1981 to December 2016. 

Number Location 
Latitude 

(°) 
Longitude 

(°) 
Altitude 

(m) 
Land Use 

Mean Annual 
Precipitation (mm/day) 

Java
1 Jakarta −6.17 106.87 9 Urban 4.87 
2 Bardung −6.9 107.61 704 Urban 5.61 
3 Surabaya −7.25 112.75 9 Urban 4.66 
4 Bali −8.3 115.03 1491 Com Agr 7.38 
5 Malang −7.9 112.6 458 Urban 6.25 
6 Tegal −6.879 109.12 9 Sub Agr 5.5 
7 Kebumen −7.6681 109.65 57 Com Agr 10.13 

Sumatra
8 Riau 0.2933 101.7 6 Sub Agr 7.71 
9 Jambi −1.6101 103.613 45 Sub Agr 5.9 
10 Lampung −4.55 105.4 32 Com Agr 7.45 
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11 Pagar alam −4.04 103.22 794 Sub Agr 7.54 
12 Padang −0.947 100.41 59 Forestry 10.05 
13 Tapan −2.14 101.025 18 Sub Agr 10.66 
14 Pekanbaru 0.507 101.447 10 Sub Agr 7.36 
15 Aceh 4.6951 96.749 1061 Forest 4.94 
16 Dumai 1.666 101.4 14 LA/NA 6.63 
17 Palembang −2.97 104.77 2 Forest 7.09 
18 Babahrot 3.93 96.7 67 Com Agr 7.7 
19 Tut tut 4.49 96.13 104 Forest 9.69 

Independent Islands
20 Singapore 1.3521 103.81 58 Urban 6.33 
21 Pulau Bintan 1.136 104.42 27 Urban 7.28 

Malaysia
22 Kuala lumpur 3.13 101.68 59 Urban 7.26 
23 Kluang 2.03 103.318 23 Forest 6.37 
24 Mersing 2.43 103.83 9 Forest 6.84 
25 Temerloh 3.448 102.41 59 Sub Agr 5.79 
26 Kampar 4.3 101.15 23 Forest 9.41 
27 Gua Musang 4.88 101.96 87 Forest 8.84 
28 Jitra 6.264 100.42 7 Com Agr 6.45 
29 Langkawi 6.35 99.8 49 Sub Agr 6.85 
30 Phuket 7.95 98.33 326 Sub Agr 6.71 
31 Hat Yai 7 100.47 11 Sub Agr 5.57 

Borneo
32 Labuan 5.28 115.23 27 Urban 8.78 
33 Kapit 1.99 112.93 39 Forest 11.05 
34 Amutai −2.4166 115.23 16 Sub Agr 7.22 
35 Melak 0.286 115.82 8 Forest 8.92 
36 Belaga 2.7 113.78 48 Forest 10.36 
37 Beluran 5.62 117.13 97 LA/NA 10.88 
38 Tarakan 3.327 117.57 25 LA/NA 10.46 
39 Sintang −0.137 112.81 579 LA/NA 9.87 
40 Balai Beukuak −0.48 110.38 203 Forest 8.99 
41 Berapi −2.25 111.75 70 Sub Agr 8.48 
42 Tewah −1 113.7 65 Forest 9.56 

2.2. Dataset Used 

2.2.1. Coupled Model Intercomparison Project Phase 5 (CMIP5) and Weather Research and 
Forecasting (WRF) 

The boundary and initial conditions needed for WRF runs were provided by CMIP5 Community 
Earth System Model (CESM) bias-corrected data (ds316.1 dataset). This dataset was built in 
accordance with the Intergovernmental Panel on Climate Change (IPCC) [39,40], by bias correcting 
the outputs from Version 1 of CESM, by Research Data Archive (RDA), using European Centre for 
Medium-Range Weather Forecasts (ECMWF) Interim Reanalysis (ERA-Interim) from 1981 to 2005. 
Here, CESM is a coupled GCM that has four different model components simulating atmosphere, 
ocean, sea-ice and land surface, corresponding to different representative concentration pathways 
(RCPs). 

The CMIP5 ds316.1 dataset was downscaled using WRF to 25 km grid resolution for the years 
1980–2005 (historical) and 2030–2060 (future) under RCP 4.5 and RCP 8.5. This was the most 
computationally intensive part of the work, where more than 88 years (26 historical years and 31 
years each for RCP 4.5 and RCP 8.5) of WRF runs were done using the parameterization scheme 
described in Section 3. 

2.2.2. Climate Hazards Group InfraRed Precipitation with Station (CHIRPS) Dataset 

CHIRPS is a long-period dataset that employs a “smart” interpolation technique on infrared 
cold-cloud distribution to estimate precipitation [41]. CHIRPS is built on 5 km climatology that 
includes daily, as well as monthly, precipitation from the year 1981 to the present. CHIRPS data is 
used as the observed dataset, for bias. Furthermore, CHIRPS also has a long time range (January 
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1981–December 2016). The spatial resolution of the WRF monthly precipitation data was 25 km. 
Hence, the CHIRPS 5 km data was bi-linearly averaged to 25 km to match the WRF resolution. 

3. Methodology 

3.1. Parametrization of WRF 

The WRF physics parametrizations implemented in this study are shown in Figure 3 along with 
their interactions within the model. The WRF parametrization was performed using a Thomson 
microphysics scheme [42]. Shortwave (SW) and longwave (LW) radiation modeling was 
parametrized using the Rapid Radiative Transfer Model for Global (RRTMG) [43]. The Yonsei 
University (YSU) model [44] was the planetary boundary layer scheme used, and the land-surface 
model was parametrized using the Noah land-surface model [45]. The new Tidtke scheme was the 
cumulus scheme used in this study to resolve precipitation resulting from convection [46]. The biases 
within the WRF model for long climate runs were minimized by activating spectral nudging for long 
waves. 

 
Figure 3. WRF physics parameterization used for running the Coupled Model Intercomparison 
Project Phase 5 (CMIP5) model. 

3.2. Performance of WRF in Modeling Precipitation over Study Domain 

The above parametrization scheme enabled the WRF model to capture precipitation accurately 
in all seasons. As noted above, the WRF model (25 km grid output) was checked using a comparison 
with CHIRPS data (5 km grid) (see Figure 4). A smaller magnitude of precipitation in many areas was 
expected, as the 25-km grid could not have captured sub-grid processes. However, it was observed 
that the simulated precipitation from the WRF parametrization captured details that could have been 
only resolved by higher resolution data. For example, excess precipitation resulting from the Borneo 
vortex was, unexpectedly, quite accurately captured by the WRF parametrization scheme. 

It was observed that the WRF–CMIP5 simulated precipitation was very close to CHIRPS for all 
seasons and regions, even on the elevated terrain of Sumatra and Java, which are typically over-
exaggerated by RCMs. The WRF model bias percentage in seasonal precipitation, i.e., (௠௢ௗ௘௟	ି	௢௕௦௘௥௩௘ௗ)௢௕௦௘௥௩௘ௗ 	× 	100 where observed data were from the CHIRPS data (bi-linearly averaged to 25 
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km) is plotted in Figure 5a,b. The overall bias plot (see Figure 5a) shows that the WRF-modelled data 
had a low bias compared to CHIRPS. However, some of the regions in the eastern Malaysian 
peninsula (for the months DJF and MAM) and western Sumatra (for SON) showed a higher bias 
percentage in the range of 45% during the dry periods. This bias with respect to the maximum value 
in the region is plotted in Figure 5b, which shows a much lower bias percentage, confirming that the 
higher percentage observed in Figure 5a was the result of low precipitation. 

 

Figure 4. Comparison plots for the seasonal precipitation rate (mm/day) between 5 km CHIRPS (left) 
and 25 km WRF (right) for the baseline period (1980–2005). 
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Figure 5. Percentage bias in precipitation rate (left) and the corresponding bias over the maximum 
spatial rain rate (right) plots of the seasonal precipitation rate (mm/day) between weather research 
and forecasting (WRF) historical (1980–2005) and CHIRPS (bi-linearly averaged to 25 km) as observed 
data. 

3.3. Bias Correction of the WRF Dataset 

As the comparison for WRF–CMIP5 was made with historical data, it was important to 
normalize the model biases for future data extracted from WRF. The bias correction of the 25 km–
scale monthly WRF–CMIP5 model was done using gamma quantile mapping (GQM) [47]. The GQM 
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bias-correction method is based on the initial assumption that both observed and simulated intensity 
distributions are well approximated by the gamma distribution: (ݔ)݂݀݌ = ௘ቀషഇೣ ቁ௫ೖషభҐ(௞)ఏೖ . (1) 

Here, x is the normalized monthly precipitation, k and θ are the form and scaling parameters, 
respectively, and Γ(k) = (k − 1)! Considering precipitation having k > 1 and following the distribution 
shown in Equation 1 is a general practice in hydrology [48–51]. However, when precipitation has k = 
1 (i.e., exponential distribution) or k < 1 (dry months), the GQM cannot be applied. The dry months 
are added to the parameters by providing a threshold value for dry months [47]. 

The GQM method is an efficient bias-correction method as it considers both mean and extreme 
precipitation while bias-correcting the precipitation [47,52,53]. It is observed that GQM filters out the 
extreme values that are results of errors while keeping the extreme values that are likely to be 
genuine. This makes GQM preferable over the conventional quantile mapping and scaling methods 
that do not distinguish between the extreme values resulting from noise or extreme climate 
conditions [54]. However, the accuracy of the GQM model is highly dependent on the period over 
which the data is trained, i.e., the larger the training period, the greater precision. In this study, the 
monthly historical data extracted from WRF was bias corrected with historical 25 km CHIRPS data 
using the GQM method for a period of 26 years (1980–2005). The bias-correction factor achieved from 
the historical datasets is mapped to the WRF–CMIP5 future dataset. Therefore, hereafter WRF–
CMIP5 stands for the bias-corrected WRF–CMIP5 dataset. 

3.4. Cluster Analysis (Ward’s Method) 

The method proposed by [24], “Ward’s Hierarchical Clustering” or the “method of minimum 
variance,” was used in this study. The method was used to group locations and their monthly 
precipitation distributions based on their similarity. Ward’s method looks at cluster analysis as a 
variance problem, and computes Euclidean distances to evaluate dissimilarity between the clusters. 
Equation (2) gives the formula for calculating Euclidian distance as: ݀݁ = ൣ∑ (ܲܽ,݆ − ܾܲ,݆)2݆݊=1 ൧0.5. (2) 

where Pa,j and Pb,j are the quantitative variable j (monthly precipitation in this study) from stations a 
and b, respectively. Ward’s algorithm, when implemented on a dataset, establishes groups by 
minimizing the dissimilarity or the total sum of squares (TSS): TSS = ∑ ( ௔ܲ,௝ − ௕ܲ,௝)ଶ௡௝ୀଵ . (3) 

The final clusters have minimum TSS within each cluster. Ward’s algorithm calculates several 
clusters at a level when intergroup similarity is maximized while intragroup similarity is minimized. 

Ward’s method, when implemented for precipitation, uses the coefficient of variation (CV) and 
the mean value for the monthly precipitation. The values for CV and mean were organized in two 
configuration matrices pnp. Each matrix pnp had mean (or CV) in its rows (n) and the station (p) in 
the columns. These configuration matrices were used to identify clusters of similar stations. 
Furthermore, precipitation within these clusters was analyzed to discover the monthly (i.e., temporal) 
patterns or seasonality within the spatial cluster. For the second step, the mean (or CV) were arranged 
in rows for matrix pnp, and months were set up in columns (p). The Ward’s clustering method used 
in this paper was implemented directly using the “stats” package [55] in R programming language. 

4. Results 

The future seasonal precipitation rate from WRF–CMIP5 was yearly averaged over the period 
2030–2060, while the historical period was 1980–2005. As seen in Figure 6, a significant change in 
precipitation rate was observed for the future scenarios as compared to the historical period for all 
seasons. In Figure 6, both future and historical modeled precipitation are bias-corrected using the 
same bias correction developed for the historical-modeled output, based on the observed CHIRPS 
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data. The bias correction removed the uncertainty resulting from the model; retaining, however, the 
uncertainty resulting from climate change forcing (RCP 4.5 and RCP 8.5 in this study). Thus, the 
change in future precipitation is presented in a consistent way. The maximum changes in mean 
seasonal precipitation rate ~45% were observed for Peninsular Malaysia and Java for the DJF season, 
as well as southern Sumatra for the season JJA. Seasons MAM and SON showed minimum changes. 
Interestingly, many regions in the WMC may also experience a decline in mean precipitation rate in 
future scenarios; for example, south-east Borneo in DJF and MAM, as well as western Sumatra and 
Malay Peninsular in MAM. However, as most of the reported studies, e.g., Lehmann [56] indicated 
that global warming is already increasing the odds of extreme precipitation events, it is of much more 
relevance to study the changes in precipitation, which is the focus in the next sections. 

 
Figure 6. Percentage precipitation changes (future modeled precipitation—historical modeled 
precipitation)/(historical modeled precipitation) for WRF model RCP 4.5 (left) and RCP 8.5 (right) for 
the years 2030–2060. 
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4.1. Spatial Grouping of Historical WRF Data 

For a fair comparison between the historical and future climate groupings, only three spatial 
groups (SGs) close to height 300 (distance between clusters) were compared in this study. This is 
because three SGs were formed corresponding to height 300 for all the datasets, and thus a fair 
comparison was achieved. 

As seen in Figure 7a, three SGs, i.e., SG1, SG2, SG3 were formed from the WRF historical data. 
SG1 consisted of the highest number (21) of stations, while SG2 had the smallest (5), while SG3 
included 16. The distribution of the clusters on a spatial map is shown in Figure 7b. It is observed 
that the most populated cluster SG1 encompasses most of the grid stations over Borneo. Also, Borneo 
having the largest tropical rainforest receives more precipitation compared to all other regions in the 
WMC. Apart from Borneo, SG1 also captured grid stations with similar land-use patterns over 
Sumatra and Malaysia that were near the Borneo landmass. It was observed that most of the stations 
within SG1 had similar land-use patterns (see Figure 2b), i.e., rain-forest except for two grids over 
Java, i.e., Jakarta and Bardung, which have an urban land-use pattern. The possible similarity of these 
locations with other members of SG1 is the high intensity of precipitation received by this region 
throughout the year, as they lie on the windward side of mountains (see Figures 2a and 7b). 

SG2 consists of five grid locations that lie over the Java landmass (Figure 7). All these lie near 
the western coast of Java and have an urban land-use pattern. These locations received moderate to 
heavy precipitation, depending on the season. 

(a)
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(b)

Figure 7. Cluster analysis groups (SG1–SG3) for WRF- historical (25 km) data for the 41 stations: (a) 
dendrograms based on their spatial similarity; and (b) spatial representation of the clusters on a map. 

Finally, SG3, the second most populated cluster, mostly included grid locations north of the 
Equator. Most of these stations are in Peninsular Malaysia while the other locations are over Sumatra 
(see Figure 8). Almost all the locations in SG2 have proximity to the sea. Unlike SG1 and SG2, SG3 
experiences maximum precipitation for the SON season. 

 
(a)
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(b)

Figure 8. Cluster analysis groups (SG1–SG3) for RCP 4.5: (a) dendrograms based on their spatial 
similarity; and (b) SG representation on a map. 

4.2. Spatial Grouping for RCP 4.5 WRF–CMIP5 Data (2030–2060) 

SGs corresponding WRF–CMI5 (RCP 4.5) were observed to be different compared to the 
historical SGs (see Figures 7 and 8). There were three clusters (see Figure 8a) SG1, SG2, SG3. SG2 was 
the most populated member with 19 members. However, SG1 had 18 members. SG3 was the least 
populated member with 5 members. 

SG1 for WRF–CMIP5 (RCP 4.5) was similar to SG1 of CHIRPS-25km (historical) regarding the 
stations captured by this group (see Figures 7 and 8). However, SG1 for WRF–CMIP5 (RCP 4.5) 
gained more grid locations over Java, bringing the entire island under a single group, whereas within 
SG1 of WRF (historical) both SG1 and SG2 both share location grids in Java. Furthermore, SG1 for 
WRF–CMIP5 (RCP 4.5) lost some of its members in Borneo in comparison to SG1 of WRF (historical) 
that captured all the grid locations over Borneo. The grid locations over Borneo that were occupied 
by SG1 for the historical time period were now held by SG3 for RCP 4.5, i.e., a new pattern that 
emerged over the eastern part of Borneo. 

SG2 for WRF–CMIP5 (RCP 4.5) was similar to SG3 of the WRF (historical) cluster, as most of the 
clusters within them were similar to each other. However, it was seen that SG2 of WRF–CMIP5 (RCP 
4.5) gained more stations over Sumatra compared to its counterpart SG3 from WRF (historical). 

Lastly, SG3, the least populated group, was constrained to the area of eastern Borneo. This group 
was recognized as a newly formed group in the future over Borneo. The stations within this group 
mostly included the grid locations that lie near steep terrain and mountains or sea (see Figure 2a). 

4.3. Spatial Grouping for RCP 8.5 WRF–CMIP5 Data (2030–2060) 

The SGs for WRF–CMIP5 (RCP 8.5) were observed to be very similar to SGs for WRF–CMIP5 
(RCP 4.5) for Java, Sumatra, and the Malay Peninsula in terms of the locations occupied by SG1 and 
SG2 for both the RCPs. However, a significant difference was seen over Borneo (see Figures 8 and 9). 
While a new pattern for SG3 emerged over eastern Borneo for RCP 4.5, SG3 for RCP 8.5 now almost 
eliminated the presence of the SG1 group over Borneo, leaving only the Amutai location. 
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(a)

 
(b)

Figure 9. Cluster analysis groups (SG1–SG3) for RCP 8.5: (a) dendrograms based on their spatial 
similarity; and (b) spatial representation of the clusters on a map. 

SGs corresponding to WRF–CMI5 (RCP 8.5) were also observed to be different compared to WRF 
(historical) SGs (see Figures 7 and 9). SG2 was the most populated with 20 stations. SG1 and SG3 both 
had 11 stations within them. 

SG1 for WRF–CMIP5 (RCP 8.5) was similar to SG1 of WRF (historical). However, SG1 for WRF–
CMIP5 (RCP 8.5) gained some stations over Java in comparison with SG1 of WRF (historical), making 
Java more homogeneous and mostly covered by SG1. Furthermore, SG1 for WRF–CMIP5 (RCP 8.5) 
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lost all stations over Borneo except for one, in comparison to SG1 of WRF (historical) that 
encompassed all the grid stations over Borneo. 

SG2 for WRF–CMIP5 (RCP 8.5) over Sumatra was similar to SG3 of the CHIRPS-25km cluster, 
however SG2 of WRF–CMIP5 (RCP 8.5) gained more stations. 

4.4. Temporal Groupings of Historical WRF Data 

Once the SGs had been discovered, Ward’s CA was next applied to the monthly precipitation 
data for each SG to find temporal groups (TGs) or seasonality within each SG. Box plots were used 
to represent the monthly precipitation intensity (mm/h) as seen in Figure 10a. TGs corresponding to 
each SG are shown in Figure 10b. 

 

(a) (b)

Figure 10. (a) The box plots and (b) dendrograms of TGs for the three different SGs discovered in the 
historical WRF data. 

4.4.1. Temporal Groups (TGs) for SG1 

Two seasons, TG1 and TG2, were predicted for SG1 by Ward’s clustering method (as seen in 
Figure 10b). TG1 was a dry season, as all the months were observed to have a median precipitation 
of less than 10 mm/day (see Figure 10a). TG2, on the other hand, was the wet season with a median 
precipitation of 10 mm/day or more for all the months within TG2. 

4.4.2. TGs for SG2 

Three temporal clusters were formed within SG2. TG1 depicted a dry season with precipitation 
intensity of less than 8 mm/day for each month. TG2 was composed of two months, April and 
November, that were transition months between wet to dry and dry to wet seasons, respectively. 
Lastly, TG3 depicted the rainy season with precipitation intensities of greater than 8 mm/day over 
the months within this group. 

4.4.3. TGs for SG3 

Three TGs were classified for SG3. TG1 was the six months predicted to have a precipitation 
interquartile range (IQR) of below 10 mm/day. Two of the wettest months for SG1 and SG2, i.e., 
January and December, were observed to have the lowest median in SG3. Also, the variability in 
January and December precipitation was found to be largest in SG3 by comparison with other 
months. 
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4.5. Temporal Grouping for RCP 4.5 WRF–CMIP5 Data (2030–2060) 

The TGs corresponding to RCP 4.5 WRF–CMIP5 data for all SGs are shown in Figure 11. 

 

(a) (b)

Figure 11. (a) The box plots and (b) dendrograms of TGs for the three SGs discovered in the WRF–
CMIP5 (RCP 4.5). 

4.5.1. TGs for SG1 

Three TGs were discovered for SG1. TG1 (as seen in Figure 11) corresponded to the dry season 
(May–September). TG2 appeared to be discontinuous transition periods between wet and dry 
months, i.e., March and April, with April as the transition month, and October–November as a 
transition period from the dry to the rainy season. Finally, TG3 corresponds to the rainy season (DJF) 
with median precipitation close to 10 mm/day. 

4.5.2. TGs for SG2 

Two distinct TGs were found for SG2. This SG was comparatively dry with a median below 10 
mm/day observed for most of the months (Figure 11b). The classification was based, comparatively, 
on wet and dry seasons. As seen in Figure 11b, TG1 encompassed the months from December to 
March while other months were part of TG2. 

4.5.3. TGs for SG3 

The precipitation for the TGs corresponding to SG3 was uniform and steady (see Figure 11). The 
two clusters formed for SG2 had very similar characteristics to each other as seen from the box plots; 
the median and IQR of all the months are approximately consistent. The minimum value for the TG1 
cluster was lower compared to the TG2 cluster. Also, all the members of the TG1 cluster had higher 
variability with a median equal or less to 10 mm/day. 

4.6. Temporal Grouping for RCP 8.5 WRF–CMIP5 Data (2030–2060) 

The TGs corresponding to RCP 8.5 WRF–CMIP5 data for SGs are shown in Figure 12. 

4.6.1. TGs for SG1 

As observed from SGs for RCP 4.5 and RCP 8.5 (see Figures 8 and 9), members in SG1 for RCP 
4.5 WRF–CMIP5 were similar to SG1 for RCP 8.5 WRF–CMIP5. Then, as expected, three TGs were 
formed for SG1 (RCP 8.5) as for SG1 (RCP 4.5). Interestingly, as seen in Figure 12a, the monthly 
precipitation intensity median for SG1 (RCP 8.5) was close to the median for months with SG1 (RCP 
4.5). 
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(a) (b)

Figure 12. (a) The box plots and (b) dendrograms of TGs for the three different SGs discovered in the 
WRF–CMIP5 (RCP 8.5). 

4.6.2. TGs for SG2 

A significant change in the median monthly precipitation and TGs were observed for SG2, 
corresponding to RCP 4.5 (see Figure 11) and RCP 8.5 (see Figure 12). SG2 for RCP 8.5 was discovered 
to have four TGs, whereas only two were formed within SG2 for RCP 4.5. TG1 here was created from 
two of the driest months for SG2, while TG2 appeared to be the transition intervals. TG3 was 
composed of months that were dry but had smaller IQR (variability) compared to TG1 dry months. 
Finally, TG4 was a grouping of the wettest months within SG2.  

4.6.3. TGs for SG3 

SG3 was the most dominant cluster over Borneo, as it grouped most of the locations over the 
Borneo area. The most significant difference between SGs for RCP 8.5 and SGs RCP 4.5 was because 
more locations within Borneo were captured by SG3 of RCP 8.5 than by SG3 of RCP 4.5. Although 
the monthly box plots for SG3 (RCP4.5) and SG3 (RCP 8.5) are similar, the TGs formed were very 
different. SG3 (RCP 8.5) has three TGs while SG3 (RCP 4.5) had two TGs. TG1 in RCP 8.5 
encompassed wet months with a median close to 10 mm/day and large IQR. TG2 had a comparatively 
lesser IQR compared to TG1, and was composed of wet months. TG3 was the dry season for SG3. 

5. Re-Clustering of Precipitation under Representative Concentration Pathway (RCP) Scenarios 

Table 2 gives the distribution of SGs over the four major land masses, showing a clear trend in 
the redistribution of SGs observed in this study. Individual landmasses over the WMC would tend 
to have a more homogeneous precipitation distribution in the future. Apart from Sumatra, all the 
landmasses would mostly have a single SG under RCP 8.5. Although Sumatra was consistent with 
the number of SGs within its spatial boundary, changes in characteristics, i.e., TGs and intensity of 
monthly precipitation, were observed. Thus, a change in internal as well as overall structure of SGs 
for monthly precipitation is noted. 

Table 2. The distribution of SGs over four landmasses for Historical and future time period (RCP 4.5 
and RC. 

 Number of SGs (with Minimum than Two Locations in a SG) 

Landmass Historical RCP 4.5 RCP 8.5 
Sumatra 2 2 2 
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Java 2 1 1 
Borneo 1 2 1 

Malaysian Peninsula 2 1 1 

Table 3 further shows the distribution of locations among the SGs for each landmass covering 
historical and future conditions. Borneo, of all the landmasses, experiences the most significant 
changes when going from RCP 4.5 to RCP 8.5. The distribution of SGs denoted as (SG1, SG2, SG3) 
over Borneo under historical is (9, 0, 2) which changes to (1, 10, 0) under RCP 8.5. Also, the Borneo 
stations have almost equal weights between SG1 and SG3 for RCP 4.5 that later amalgamate to SG3 
under RCP 8.5. Thus, Borneo becomes highly homogeneous under RCP 8.5 in terms of spatial 
distribution of monthly precipitation and along with seasonality, i.e., following the TGs of SG3. 
Similarly, the Malaysian Peninsula has a smaller redistribution, going from (1, 0, 8) under historical 
to (1, 8, 0) under both RCP 4.5 and RCP 8.5. Lastly, Java also sees a redistribution trend where the 
SGs change from (2, 5, 0) historical to (7, 0, 0) under RCP 4.5 and RCP 8.5. 

Table 3. Distribution of locations among the clusters over the five different landmasses in WMC for 
monthly precipitation. 

Island 
Landmass 

SG1 SG2 SG3 
Total Stations 
per Landmass HIS 

RCP 
4.5 

RCP 
8.5 

HIS 
RCP 
4.5 

RCP 
8.5 

HIS 
RCP 
4.5 

RCP 
8.5 

Sumatra 7 4 3 0 8 8 5 0 1 12 
Java 2 7 7 5 0 0 0 0 0 7 

Malaysia 1 1 1 0 8 8 8 0 0 9 
Borneo 9 6 1 0 0 0 2 5 10 11 

Ind. Island 2 0 0 0 2 2 0 0 0 2 

6. Conclusions and Recommendations 

This paper analyzes the change in the spatial and seasonal patterns of precipitation under 
climate change. Ward’s clustering method was used to study the redistribution of precipitation at 42 
locations over the WMC using WRF–CMIP5 (25 km) output for the years 2030 to 2060. As this was a 
comparative study, only three SGs were considered that had a height (between cluster distance) of 
~300. It was observed that SGs formed for WRF–CMIP5 (RCP 4.5 and RCP 8.5) were very different 
from historical groupings. The difference between SGs would signify changes in precipitation over 
the next 25 years. While comparing the SGs for RCP 4.5 and RCP 8.5, it was observed that of all the 
landmasses, Borneo would see the most significant redistribution of precipitation, being re-clustered 
to one spatial group along with its temporal groups (i.e., seasonality). Similar but smaller changes in 
monthly precipitation patterns were also seen for the landmasses of Malaysia and Java. 

Future studies can focus on applying clustering analysis on variables such as temperature, wind 
and relative humidity in order to understand the variables affecting the distribution and 
redistribution of precipitation over the WMC. Research can also focus on daily and hourly data in 
order to examine the distribution of daily climatology as well as the diurnal precipitation cycle. 
Lastly, the redistribution of precipitation should be studied in more detail by using an ensemble of 
RCMs that examines model uncertainty and has a resolution higher than 25 km. 
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