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Abstract: While there exists extensive assessment of urban heat, we observe myriad methods for 
describing thermal distribution, factors that mediate temperatures, and potential impacts on urban 
populations. In addition, the limited spatial and temporal resolution of satellite-derived heat 
measurements may limit the capacity of decision makers to take effective actions for reducing 
mortalities in vulnerable populations whose locations require highly-refined measurements. 
Needed are high resolution spatial and temporal information for urban heat. In this study, we ask 
three questions: (1) how do urban heat islands vary throughout the day? (2) what statistical methods 
best explain the presence of temperatures at sub-meter spatial scales; and (3) what landscape 
features help to explain variation in urban heat islands? Using vehicle-based temperature 
measurements at three periods of the day in the Pacific Northwest city of Portland, Oregon (USA), 
we incorporate LiDAR-derived datasets, and evaluate three statistical techniques for modeling and 
predicting variation in temperatures during a heat wave. Our results indicate that the random forest 
technique best predicts temperatures, and that the evening model best explains the variation in 
temperature. The results suggest that ground-based measurements provide high levels of accuracy 
for describing the distribution of urban heat, its temporal variation, and specific locations where  
targeted interventions with communities can reduce mortalities from heat events. 

Keywords: urban heat island; ground-based vehicle traverse; random forest; modeling; urban 
planning 

 

1. Introduction 

In the US and many other industrialized countries, heat events account for more than all other 
natural hazards combined [1,2]. Urban populations are especially susceptible to heat stress due to the 
high density of human habitation and the spatial variability in temperatures that result in 
microclimates [3,4]. An increasing urban population [5] and greater heat trapped in the atmosphere 
make relatively certain that larger populations of people across the wider latitudes will experience 
extreme heat stress. Indeed, based on the combination of several large-scale climate models, Meehl 
and Tebaldi (2004) [6] predict that extreme heat events “will become more intense, more frequent, 
and longer lasting in the second half of the 21st century.” A warming of urban climate has far-
reaching implications on the approaches to identifying the hottest areas of cities, and those 
communities who may suffer fatalities during heat waves.  

Urban heat islands (UHIs) are a common phenomenon that have been studied and documented 
since the early 19th century [7]. Modern advances in data capture and analysis seem to have increased 
interest in the subject, with calls for greater resolution and direct public action [8,9]. While numerous 



Climate 2017, 5, 41  2 of 17 

 

cities have empirically documented UHIs, the extant literature suggests extensive variation in the 
processes, descriptions, and measurements for capturing heat data, and their methods of assessment. 
The most prominent approach is the use of satellite-based methods, which draw on the extensive 
availability of datasets for virtually every city on the planet [10–12]. The satellite platforms provide 
direct measurement of UHI through specific sensors that are placed on the satellite. The most 
common sources for satellite-based temperature data are Landsat and Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER). While satellite imagery from Landsat and 
ASTER provide measures of surface-level temperature at varying resolutions, subsequent statistical 
analysis with land cover offers insights about the role of urban form that helps to explain the 
distribution of temperatures across the study region [13–16]. 

Integrating satellite imagery with land cover data offers numerous opportunities to diagnose 
potential contributions of physical landscape features that create UHIs. While abundantly available, 
and relatively inexpensive, satellite-based approaches to describe UHIs face several challenges. First, 
they are limited in terms of the spatial and temporal resolution of the datasets. The current Landsat 
platform, Landsat 8 Operational Land Imager (OLI) and Thermal Infrared Sensor (TIRS), has a spatial 
resolution of 100 m in its thermal infrared datasets, and a temporal resolution of 16 days; ASTER’s 
thermal infrared bands have a spatial resolution of 90 m and a temporal resolution of 16 days. UHIs, 
however, impact vulnerable populations at the parcel level, and with 90 m pixels, these descriptions 
are often too coarse to take mitigative and/or preventative actions [17]. Second, due to the long time 
periods between data capture, Landsat and ASTER temperature data are not able to describe changes 
in a city’s UHI throughout a day, which is necessary for understanding how fast specific areas of the 
city heat and cool. The 16-day intervals for satellite flights, furthermore, prevent systematic 
evaluations over a multi-day heat wave in a specific location. Relying on the available data can 
constrain, indeed, overlook the variations in temperatures throughout each day (i.e., 24-h period), 
and over a multi-day heat wave. Higher resolution techniques for characterizing UHIs are needed, 
especially for developing public policies that aim to reduce impacts to the public’s health [8]. 

Alternative approaches to satellite-based measurements of urban temperatures were first used 
in the 1960s, and consisted of ground-based collection of temperatures [18]. Ground-based methods 
offer advantages over satellite-based data collection of urban heat, because they capture temperatures 
on the ground where people experience the heat waves, as opposed to satellite readings, which reflect 
the surface temperatures. Surface temperatures based on satellite measurements are often much 
hotter than the ambient environment, because they reflect readings from roofs of buildings, and the 
surface of asphalt and roads [19]. The collection of ambient temperatures, on the contrary, uses 
‘vehicular-based traverses’ that contain highly sensitive temperature sensors, and can provide 
accurate readings throughout the day [20–24]. Limitations to traverse-based UHI analysis include 
data collection only being possible in areas that are accessible by vehicle. Due to this, a continuous 
surface of temperatures must be modeled based on site variables and predicted, as opposed to the 
direct measurement available through remote sensing techniques. Aside from potential error 
introduced during modeling, this ground-based approach provides several advantages that 
complement publically available satellite data, including: (1) the ability to develop UHI models that 
describe variation in temperatures throughout the day by location; (2) descriptions of ambient 
temperature readings that are consistent with human exposure to heat; and (3) the creation of models 
that describe specific landscape features that help to explain temperatures at highly resolved spatial 
scales. The emergence of GPS and highly accurate temperature measuring instruments offers an 
immediate and effective technique for characterizing UHIs and the factors that help to explain 
variations [21,24]. 

Currently missing from ground-based approaches, however, is the ability to identify landscape 
characteristics that are amenable to change and modification, which could be of direct relevance to 
public policy, urban planning, and public health organizations. Aligning ambient temperature data 
collection and analysis to support the mitigation of extreme heat is essential for reducing fatalities 
from urban heat waves. We note that planning organizations often focus on physical design and 
urban form that can potentially contribute to UHIs, while public health organizations are responsible 
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for outreach and prevention of fatalities during heat events. Together these two agencies are often 
the front line for reducing excess mortality and morbidity [9]. 

Our research aims to improve the spatial and temporal resolution of describing variations in 
urban temperatures, specifically UHI, while identifying landscape features that can be modified for 
reducing extreme microclimates. We ask three research questions: (1) how do urban heat islands vary 
in location throughout the day? (2) what statistical methods best explain the presence of temperatures 
at sub-neighborhood spatial scales; and (3) what landscape features help to explain variation in urban 
heat islands? We build on the extant traverse-based methods, incorporating high spatial resolution 
LiDAR-derived datasets to describe the landscape features. We further evaluate three statistical 
techniques for modeling and predicting variation in temperatures during a heat wave. We begin with 
a description of our methods, including data and processing, and follow with our results. Since one 
of the primary purposes of the present study is to provide guidance for reducing excess mortality 
and morbidity from heat waves, we conclude with a description of opportunities for improving 
public policy. 

2. Materials and Methods 

2.1. Study Area 

Our study area is the City of Portland, a mid-size city covering approximately 376 km2, with a 
population of ~619,000, located in the Pacific Northwest state of Oregon (USA, Figure 1). The city is 
in a temperate climate, with rainy winters and warm, increasingly hot and relatively dry summers. 
The Cascade Mountain Range is located 70 km to the east, and the Pacific Ocean is located 130 km to 
the west. For purposes of this paper, we use the official city limit boundaries, which were accessed 
through the Oregon regional government agency, Metro’s, Regional Land Information System (RLIS) 
[25]. 

 
Figure 1. Imagery of Portland, Oregon with coloring (light blue) to accent major rivers. Data collection 
locations are indicated in red. 

2.2. Data 

2.2.1. Temperature Data Collection and Compilation 

The initial step in describing the variation in Portland’s temperature extremes was the collection 
of temperature data during a heat wave. Although we currently do not have a universally acceptable 
definition of a heat wave [6], for the purposes of this study, we defined it as occurring when 
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temperatures exceed the 90th percentile of the historic average high temperatures for both the month 
and the day. Our measurements were collected on 25 August 2014, when the temperature exceeded 
the 90th percentile threshold; August high temperatures in Portland average 23.16 °C over the last 30 
years, and this specific date had an average high of 27.65 °C over the last 30 years [26]. 

Based on existing methods [21,24], we conducted vehicle traverses in six pre-determined 
sections of the city. The temperature sensors consisted of a Type T fine (30 gauge) thermocouple 
mounted within a 50 cm long, 2.5 cm diameter white plastic shade tube (Figure 2a–g). The tube was 
mounted on the passenger-side window approximately 25 cm above the vehicle roof (Figure 2h). 
These sensors were connected to data loggers, which recorded the temperature to an accuracy level 
of 0.1 °C once every second. Observations were collected three times a day for one-hour intervals 
beginning at 6 am, 3 pm, and 7 pm. A GPS unit was attached to each vehicle in order to pair the 
temperature measurements with their corresponding location. Based on time and vehicle, the 
temperature and location datasets were combined to create a spatial dataset that we integrated into 
a geographic information system (GIS). In order to reduce error in the model, all points collected 
during times of non-aspiration (when the vehicle was not moving) were discarded. Additionally, 
data collected at speeds over 56 kph were discarded to prevent any cooling of the sensors that might 
occur due to turbulence at higher speeds. Over the three time periods, approximately 50,000 
temperature measurements and their corresponding locations were collected on 25 August 2014. 

 

Figure 2. Rendering of Sensor Setup. A. Front of base; B. Aspirator detail; C. GPS unit; D. Back of 
base; E. Bottom of base; F. Profile of device; G. Front of device; H. Approximate scale of device and 
GPS unit (GPS unit kept inside of vehicle). Adapted with permission from Makido et al., 2016 [24]. 

2.2.2. LiDAR Data 

We used Light Detection and Ranging (LiDAR) data to characterize the biophysical landscape 
of the study region. The Oregon Department of Geology and Mineral Industry (DOGAMI) and the 
Oregon LiDAR Consortium (OLC) provided the 2014 LiDAR data, which was collected with both 
Leica ALS 70 and Orion H sensors operating at approximately 194 kHz. The flights covered the study 
area, and a total area of over 3200 km2, coinciding with the temperature traverses. The resulting point 
cloud had an average density of 12.24 points per square meter on flat surfaces, with a vertical 
accuracy of 0.03 m with an average deviation of 0.003 m. The data was obtained in both point cloud 
(all points from the scan) and raster formats (split into ‘ground only’ and ‘highest hit’ elevations) 
from the OLC. With these LiDAR data we are able to characterize the entire study region in terms of 
feature height and physical structures. 

2.2.3. Orthophotography Data 
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The LiDAR data was next combined with orthorectified aerial imagery to characterize all the 
biophysical features in the study area. The aerial imagery was collected via a Four-Band Radiometric 
Image Enhanced Survey (FRIES) along with the aforementioned LiDAR data. The FRIES utilized a 
charge coupled device (CCD)-based 260 megapixel 4-band (red: 590–720 nm; green: 490–660 nm; blue: 
410–590 nm; infrared: 690–990 nm) UltraCam Eagle camera which produced approximately 15 cm 
resolution imagery. Horizontal accuracy of the imagery has an RMSE of 0.31 m. The 
orthophotography data can be combined with the LiDAR height and structural data to classify 
biophysical landscape features known to affect temperatures. 

2.2.4. Building Data 

Buildings and the built environment have been shown to play a role in UHIs [4,27]. Building 
polygon data were collected from Metro’s 2014 RLIS [25]. The building polygons contained 
information on heights, total area, and footprint of each building. To integrate the buildings with 
other data, we converted them into discrete raster datasets at 1 m resolution, giving each pixel a value 
corresponding to the specific building’s height. The resulting raster is used to calculate building 
heights, the standard deviation in heights, and total volume. 

2.2.5. Canopied and Non-Canopied Vegetation 

The presence of canopied vegetation (i.e., trees) has also been shown to contribute to the 
reduction in urban heat [28,29]. In addition, non-canopied vegetation (i.e., grasses and shrubs) may 
mediate observed temperatures [30,31]. From the orthophotography dataset, a 1 m resolution Green 
Normalized Difference Vegetation Index (gNDVI) was created using the following formula: ݃ܰܫܸܦ = ܴܫܰ − ܴܫܰܩ +   ܩ

where: 

NIR = Near Infrared Imagery Band  

G = Green Imagery Band  

The gNDVI raster contains values between −1 and 1, with higher numbers signifying a higher 
amount of aboveground biomass [32]. In our approach, we used a gNDVI value of 0.02 and greater 
as a means for determining living plants from all other features. The gNDVI is similar to the more 
standard NDVI in terms of identifying vegetation [33]; however, we note the ability of gNDVI to 
perform especially well in vegetation classification in urban environments [34]. 

We also created a one-meter digital height model (DHM) by calculating the difference between 
two other datasets: a Digital Surface Model (DSM) and a Digital Elevation Model (DEM). To 
characterize canopied vegetation, we deployed a conditional equation to determine areas where 
gNDVI was greater or equal to 0.02 (heuristically determined to be a suitable threshold for vegetation 
representation) and DHM was greater than or equal to 3.048 m: ݀݁݅݌݋݊ܽܥ	݊݋݅ݐܽݐܸ݁݃݁ = ܯܪܦ ≥≥ 3.048 ܽ݊݀ ܫܸܦܰ݃ ≥ 0.02  

Alternately, non-canopied vegetation was calculated using the DHM where it was less than 3.048 m: ܰ݊݋ ݊݋݅ݐܽݐܸ݁݃݁	݀݁݅݌݋݊ܽܥ = ܯܪܦ < 3.048 ܽ݊݀ ܫܸܦܰ݃ ≥ 0.02  

We note that these specific thresholds can be changed depending on the context. 

2.2.6. Canopy Density Metric 

The canopy dataset we created is a 2-dimensional top-down presence/absence representation of 
canopy; however, we endeavored to characterize a canopy density metric (CDM) that accounts for 
the volume of each tree in the city. All point clouds, in LAS file format, were sent through ENVI 
LiDAR’s automatic classification routine. This process classified points into four categories based on 
structure and planar continuity: (1) ground; (2) canopied vegetation; (3) buildings; and (4) other. The 
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classified point clouds were next exported to two separate 1 m raster format datasets. The first 
dataset’s cell values represented the count of all LiDAR returns classified by the software as ‘canopied 
vegetation’, whereas the second dataset’s cell values represented the count of all LiDAR returns 
classified as ‘ground/building’. A canopy density ratio raster was created by dividing the ‘canopied 
vegetation’ raster by the sum of the ‘canopied vegetation’ and ‘ground/building’ rasters. Finally, the 
density ratio was multiplied by the DHM, resulting in a density-adjusted canopy height metric. A 
standard CDM equation includes an argument for filtering vegetation within a specified distance of 
the ground in order to define ‘canopy’ [35]. We use our definition of canopy, which incorporates this 
low-height filtering during classification, to generate a CDM equation for the present study: ܯܦܥ = ℎ( ݐܮݐܮ +   (݃ܮ

where: 

CDM = Canopy Density Metric per cell  

h = height from DHM  

Lt = ‘canopied vegetation’ classified LiDAR return count raster  

Lg = ‘ground/building’ classified LiDAR return count raster  

2.2.7. Elevation 

Given the role of elevation in affecting temperatures, we include elevation though the use of the 
LiDAR data. The LiDAR data provides a high resolution and accurate measurement of ground 
elevation, which we have chosen to omit this from our modeling for two primary reasons. First, in 
exploratory analysis we found a high correlation between elevation and canopy cover. Using 4000 
randomly generated points within the study region, we evaluated the correlation between canopy 
cover and elevation resulting a statistical significant and strong multi-collinearity (r2 = 0.6267, p < 
0.001). Second, our aims for this analysis are to assess the role of land use/land cover in amplifying 
or mitigating urban heat to inform mitigation opportunities. Though elevation will undoubtedly play 
a role in temperatures due to the adiabatic lapse rate, it is not easily altered, while arguably, 
vegetation (i.e., canopy cover) can be modified relatively easily. 

2.3. Modeling 

2.3.1. Effective Distances 

In order to understand the role of the biophysical landscape in explaining variations in 
temperature, we evaluated a series of distances from each of the measurement points. For this study, 
the following fifteen distances were chosen to search for patterns that could potentially occur both 
locally and at larger neighborhood scales: 50 m, 100 m, 150 m, 200 m, 250 m, 300 m, 350 m, 400 m, 450 
m, 500 m, 600 m, 700 m, 800 m, 900 m, and 1000 m. We combined each of the landscape features 
described above with each of these distances from the temperature measurement points to determine 
which variable at what distance best explains the variation in temperatures. To calculate statistics 
(e.g., mean, sum) for each variable at each distance we employed a moving window analysis. This 
process creates new raster data by assigning the value of the specific measurement statistic from all 
cells that fall within a specified distance (i.e., “window”, Figure 3). 
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Figure 3. Moving Window Analysis. Darker cells represent “raw” data position (e.g., a cell containing 
canopy) on a surface of null values. The grid on the right displays the output of a 3 by 3 meter ‘+’-
shaped moving window analysis performing a summation function. Original pixel locations are 
highlighted in red for comparison. 

The resulting raster datasets were merged to the vehicle traverse temperature observation data 
based on the raster value and geographic location. The merging results in a single table (henceforth 
known as the Master List) consisting of approximately 50,000 locations with observed temperatures, 
and a summary of each land use variable within each buffer distance from that point. For each 
modeling method, the Master List is split into three separate tables for each observation, creating 
three independent models for the morning, afternoon, and evening. 

2.3.2. Model Validity 

To assess the strength of our models, we used a 70/30 holdout cross-validation method, which 
consists of predicting 30% of the data with 70% of the observed data, selected randomly and without 
replacement from the Master List. The 70% is used to create a model of temperatures for the study 
area, which is then tested against the 30% of the data to evaluate the effectiveness of our model 
through three types of statistical predictive methods. 

2.3.3. Multiple Linear Regression (MLR) 

The first modeling method applied was multiple linear regression (MLR). For each time period, 
the respective table of temperatures vs. land uses was run through stepwise regression modeling in 
SPSS. We expected high multicollinearity in our dataset resulting from the inclusion of multiple 
effective distance variables, many of which would be only slightly different from one another. 
Multicollinearity and its effect on our model is addressed by calculating the variance inflation factor 
(VIF), which, if greater than ten, indicates an invalid model [36]. Other literature suggests that 
lowering the maximum allowable VIF limit to three is a more appropriate threshold [37]. Due to our 
large quantity of highly similar variables and expected high multicollinearity through these variables, 
a maximum allowable VIF between any two variables in any time-period model was capped at two. 
MLR and all subsequent techniques were performed in R statistical software [38] and the Master List, 
leveraging the “raster” package to allow for modeling temperatures directly from the effective 
distance raster datasets [39]. 

2.3.4. Classification and Regression Tree/Multiple Linear Regression Hybrid 

In addition to MLR, we created a combination of machine learning/clustering techniques and 
MLR. By combining Classification and Regression Tree (CART) analysis with MLR, we are able to 
increase the overall predictive power of a model [21,40,41]. CART analysis involves a recursive 
partitioning of data in order to separate it into more homogenous subsets [42]. This separation into 
like cluster was applied to the land use-based Effective Distance rasters to separate our study area 
into eight sections of similar urban form. Once a full CART tree was constructed, it was pruned back 
into six terminating nodes in order to prevent errors due to overfitting the model [43]. Next, the 
training dataset of observation points was put through the CART model to determine the 
classification scheme. Stepwise regression modeling was performed for each of these subsets of 
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observation points in order to create a cluster-specific mode. CART analyses and functions were 
performed in R statistical software using the “rpart” package [44]. 

2.3.5. Random Forest Analysis 

Finally, we evaluated the strength of a random forest (RF) model. The RF model is built from a 
collection of individual CART analyses. At an individual level, the CARTs are created randomly: a 
random independent variable is selected to start the analysis, and each subsequent fork in the tree is 
selected from a random subset of variables. By building CARTs in this random fashion, they can be 
assumed to be unbiased and have a reduced variance [43]. Once a predetermined number of 
randomized CART trees are created, a bootstrap aggregation technique averages out their results into 
one defined model. The final RF model can be used to predict new values based on new inputs. In 
this study we developed a model using 1000 individual and randomized CART trees built from the 
Master List. The model was next applied to all of the effective distance rasters in order to predict a 
new raster file representing temperature values across the study area. Random forest modeling was 
performed in R statistical software using the “randomForest” package [45]. 

3. Results 

We describe our results in three sections. First we use the 70/30 hold out method to evaluate the 
strength of each of the three statistical models in terms of their predictive power across the three 
vehicle-based traverses (Table 1). While all three models perform well (e.g., greater than 50% 
predictive power in almost all trials), we observe that across all three time periods, the RF model 
performs the best in predicting temperatures. 

Table 1. Overall Model Performance. Correlation and RMSE values calculated from the 70/30 holdout 
method for consistency across the three modelling methods. 

Time Rank Model r2 RMSE

6 am 
3 MLR 0.5912 0.6575 
2 CART/MLR 0.8595 0.3758 
1 Random Forest 0.9793 0.1479 

3 pm 
3 MLR 0.4554 0.8406 
2 CART/MLR 0.5681 0.7633 
1 Random Forest 0.8199 0.4798 

7 pm 
3 MLR 0.4290 0.9011 
2 CART/MLR 0.6638 0.7086 
1 Random Forest 0.9715 0.2078 

3.1. Multiple Linear Regression (MLR) 

The MLR models for each of the three time periods were compared with the 30% holdout data 
and had relatively poor performance. The 6 am model indicated the strongest performance with an 
r2 of 0.591 and an RMSE of 0.658 °C. The stepwise regression revealed that three landscape factors 
helped to predict over 50% of the temperatures: the percent of land cover classified as vegetation 
within 700 m, the percent of land cover classified as canopy within 450 m, and the sum of CDM within 
900 m. The 3 pm model had an r2 of 0.455 and an RMSE of 0.841 °C. This afternoon model indicated 
that four landscape variables were the strongest predictors of temperatures: sum of CDM within 1 
km, the sum of building volume within 800 m, mean building height within 350 m, and the sum of 
CDM within 50 m. The 7 pm model had even lower predictive power (an r2 of 0.429 and an RMSE of 
0.901 °C), and had a different set of predictors: percent of land cover classified as canopy within 150 
m, the sum of CDM within 600 m, the sum of building volume within 900 m, and the percent of land 
cover classified as vegetation within 400 m. 
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3.2. Classification and Regression Tree/Multiple Linear Regression Hybrid 

The CART/MLR hybrid method outperformed the standard MLR model. The ability to define 
homogenous subsets allowed for a notable increase in predictive power and reduction in RMSE over 
a single MLR model applied across the study area. Similar to MLR, the CART/MLR hybrid has 
optimum performance modeling during the 6 am period with an increase in predictive power (r2) 
over MLR of 0.268 (to 0.859) and a decrease in RMSE of 0.282 °C (to 0.376 °C). CART/MLR only saw 
a slight increase over MLR during the afternoon traverse with an increase in r2 of 0.113 (to 0.568) and 
a decrease in RMSE of 0.077 °C (to 0.763 °C). Finally, the 7 pm evening traverse increased the 
performance of the model more so than the afternoon model with an increase in r2 of 0.235 (to 0.664) 
and a decrease in RMSE of 0.193 °C (to 0.709 °C). 

3.3. Classification and Regression Tree/Multiple Linear Regression Hybrid 

Lastly the RF models performed the best of the three models. We note the top five most 
influential variables for each data collection time period RF model below (Table 2), however the 
model takes into account all independent variables and buffer distances when predicting 
temperatures. Variable rank (i.e., importance) is determined by taking the average of model MSE 
change when each variable is randomized (denoted by “%IncMSE” in Table 3) in the tree-growing 
stage of the random forest model [43]. 

Table 2. MLR variables selected with stepwise linear regression. Standardized (Beta) coefficients 
provided for comparison of variable influence. 

Time r2 RMSE (°C) Variables Beta 

6 am 0.5912 0.6575 
Vegetation cover within 700 m −0.6664 

Canopy cover within 450 m −0.3925 
Sum of CDM within 900 m −0.2710 

3 pm 0.4554 0.8406 

Sum of CDM within 1000 m −0.5483 
Building volume within 800 m −0.5128 

Mean building height within 350 m −0.3541 
Sum of CDM within 50 m −0.1652 

7 pm 0.4290 0.9011 

Building volume within 900 m −0.5446 
Sum of CDM within 600 m −0.4589 

Vegetation cover within 400 m −0.2392 
Canopy cover within 150 m −0.1673 

Table 3. The five most important landscape features using the RF model (determined by the 
%IncMSE) by time period. 

Model Variable Rank Variable %IncMSE

6 am 

1 Vegetation cover within 50 m 42.48 
2 Vegetation cover within 800 m 38.72 
3 Building volume within 900 m 33.90 
4 Sum of CDM within 1000 m 32.98 
5 Mean building height 100 m 32.69 

3 pm 

1 Standard deviation of building height within 1000 m 40.83 
2 Standard deviation of building height within 300 m 39.12 
3 Sum of CDM within 50 m 38.94 
4 Standard deviation of building height within 150 m 38.66 
5 Standard deviation of building height within 200 m 38.54 

7 pm 

1 Standard deviation of building height within 1000 m 39.95 
2 Vegetation cover within 100 m 32.53 
3 Building volume within 1000 m 30.93 
4 Canopy cover within 800 m 30.91 
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5 Building volume within 900 m 30.58 

3.3.1. Random Forest: Morning Results 

Based the above variables, the RF model provides spatially explicit descriptions of the 
distribution of urban heat throughout the city and by each of the time periods. Morning temperatures 
are derived by percent of land cover classified as vegetation at a local and broad scale (50 m and 800 
m respectively), total building volume within 900 m, sum of CDM at broad scale (1 km), and the mean 
building height within a localize area (100 m) (Figure 4). Temperatures of the output raster surface 
model representation depict temperatures from 13.04 °C to 18.20 °C, with a mean of 15.79 °C and 
standard deviation of 0.94 °C. We observe a pattern of heat distribution wherein downtown Portland, 
along with the inner-eastside industrial area, NW industrial area, and Swan Island Industrial area all 
exhibit the highest levels of heat. Temperatures in these areas can be over 5 °C hotter than areas of 
the city such as those to the east and southwest. 

 

Figure 4. Morning UHI modeled raster surface. The river has been masked out visually, however 
summary statistics incorporate its values. 

3.3.2. Random Forest: Afternoon Results 

Afternoon temperatures depend on the standard deviation of building height at 1 km, 300 m, 
150 m, and 200 m. Also included in the top five most important variables is the sum of CDM at 50 m. 
Temperatures of the output raster surface model representation depict temperatures from 25.21 °C 
to 34.87 °C with a mean of 30.98 °C and standard deviation of 1.43 °C (Figure 5). Distribution of 
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relative hot/cold temperatures through the city show a pattern that is quite different than that of the 
morning model. Unlike the morning model, the downtown area has shifted from being the hottest 
area in the city to one of the cooler ones. Heavily forested areas (including major parks, in addition 
to certain residential areas) show a tendency towards cooler temperatures. Areas with lower canopy 
cover, such as those at the northern edge of the city (industrial, port, and airport areas), eastern 
freeway corridors, and train yards, consistently appear hotter in the afternoon model. Additionally, 
areas around freeways and arterial roadways show small and localized ‘pockets’ of heat within close 
proximity. 

 

Figure 5. Afternoon UHI modeled raster surface. The river has been masked out visually, however 
summary statistics incorporate its values. 

3.3.3. Random Forest: Evening Results 

Evening temperatures exhibit the greatest diversity in terms of the top five most important 
variables that predict temperatures (Figure 6). The most important factors during this time period 
consisted of: standard deviation of building heights within 1 km, localized percent of land cover 
classified as vegetation within 100 m, total building volume within 1 km, percent of land cover 
classified as canopy within 800 m, and total building volume within 900 m. The evening model raster 
surface displays strong similarities to areas of relative heat and major freeways and arterial roads. 
Similar to the afternoon model, the major parks and forested areas are relatively cool and industrial 
areas (including train yards) are quite hot. Downtown Portland, which is hottest in the morning, 
appears relatively cooler in the evening. 
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Figure 6. Evening UHI modeled raster surface. The river has been masked out visually, however 
summary statistics incorporate its values. 

4. Discussion 

Our results suggest that the RF model helps to explain the greatest variation in temperatures 
across the city. While others have observed similar results (e.g., Makido et al., 2016 [24]), these results 
go further to suggest that in comparison to other models—including MLR and CART, which are often 
applied to urban heat assessments—RF models provide greater certainty for understanding the 
distribution of UHIs. Although we evaluate the strength of these different models in one city, the 
strength of these models (e.g., an r2 of 0.97) suggests that RF will likely be applicable in other cities 
with similar predictive power. Although the RF is a far stronger predictor, this is not to say that MLR 
and CART analysis are not useful. They do offer alternatives to conducting citywide assessments of 
urban heat, and indicate that similar landscape variables help to explain variations in urban heat. In 
the policy context, where certainty and resolution are essential, the RF model may provide greater 
value in making decisions about specific mitigation efforts. 

The variation in temperatures throughout the day also offers new insights about the dynamic 
nature of urban heat events. Afternoon temperatures were consistently more difficult to predict, 
which we speculate may be due to the non-land use variables (e.g., wind speed, albedo, urban 
canyons, etc.) that are left out of our models. Satellite-derived UHI studies commonly include 
variables such as albedo in their models which, if included in our research, could improve our 
predictive power for the afternoon periods. Henry and Dicks (1987) [3] predict that the placement, 
clustering, and contiguity of the urban forest throughout a city may be the dominant driver of the 
distribution of urban heat during midday. In addition to the form, we draw on earlier research [46] 
to further speculate that a difference in tree functional type (coniferous or deciduous) could help to 
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explain differences in temperature during the afternoons. The evening temperatures have the 
strongest predictive power, and high-heat distribution is concentrated along major paved areas, 
including the industrial and roadways. These findings are consistent with thermodynamics 
literature, which suggests that building materials absorb heat throughout the day, and release 
through the night [4,21]. At the same time the forested areas are the coolest in the city, likely due to 
the evapotranspiration that occurs [11]. Many of the explanatory land uses were significant at 
multiple distances; this local vs. regional cooling effect of trees is noted in other studies [47,48]. We 
attributed this result to site-specific (e.g., a tree directly shading the ground beneath it) and 
background effects (e.g., a high canopy cover neighborhood will provide a more broad-scale 
reduction in ambient temperatures) of land use/cover configurations [49]. 

Essential to understand is that our approach offers the ability to track the distribution of 
temperature across an entire city (or metropolitan region) throughout the day. While we used three 
time periods for assessing differences in temperature, we are also able to describe those areas that 
have cooled the fastest and conversely also amplify heat. We note that certain areas such as train 
depots/yards, heavy industry zones, ports, and transit corridors have consistently higher 
temperatures throughout morning, afternoon and evening. The city’s downtown area, often thought 
of as the hottest part of the city due to the highest amount of concrete, suggests a different pattern 
when compared to the rest of the diurnal period: though relatively hot in the morning, it does not 
warm as rapidly as, or to the maximum temperature of, many other areas. We speculate that the 
downtown area is cooler due to two interacting factors: (1) the orientation of the buildings and streets 
that provide shade to most streets during the hottest parts of the day [50,51]; and (2) the high variation 
in building heights (accounted for in the model with “standard deviation of building height”), which 
can generate turbulence in air flowing across the city, cooling it through increased heat transfer 
[52,53]. Other regions have found similar results [24,54]. 

Our method, though capable of producing high-accuracy models of intra-urban heat, does have 
several limitations. First, with 90 moving window rasters (6 land use/cover variables as 15 distance) 
and an average file size of approximately 5.5 GB, this analysis required a large amount of computer 
memory, which was computationally large and complex. Even when running the analysis on a high-
performance computational server, the time requirements for training and predicting a random forest 
UHI model limits the widespread adoption of these methods outside of research environments. As a 
result, practitioners may not be able to readily replicate our analysis. Second, the random forest 
model does not produce coefficients—much like the OLS model—making ascribing the contribution 
of each input variable difficult to interpret. Admittedly, we traded prediction accuracy for the 
interpretability of the model because the use of random forest modeling offers many advantages in 
terms of improving prediction accuracy, yet comes at a cost of not knowing the exact effects of 
explanatory variables (e.g. beta-coefficient). In addition, this method does not fit all of the use cases 
of more complex climate models. Unlike mesoscale and microscale climate models, our urban heat 
island models do not attempt to simulate complex climate or weather system interactions for the 
creation of long-term forecasting models. Often, these climate models point to areas where further 
non-simulated investigation (such as our on-ground empirical temperature measurements) is 
needed, as climate model performance can often vary at different locations or scales [55,56]. 

The temporal resolution of this study allows for a deeper understanding of temperature changes 
that can occur throughout the city, whereas the high spatial resolution allows for a more accurate 
measurement of temperatures in specific areas. With a 1 m resolution, the UHI surfaces allow for 
temperature analyses at the household-level for the entire study area without any resampling of the 
data (which, inherently, would introduce additional error). High spatial resolution also increases the 
ability to detect subtle changes in temperatures. Nowhere is this more important than in the smooth 
gradients of temperature surrounding heat-reducing landscapes (major parks and natural areas), 
where many suburban land uses develop. The edge effect of major cooling/heating landforms is 
accurately described only with high-resolution data, as coarse resolution pixels would obscure these 
subtleties. 
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5. Conclusions 

This study created descriptions of the distribution of Portland, Oregon’s urban temperatures 
throughout the day with extremely high spatial resolution and accuracy. For three separate time 
periods in the morning, afternoon, and evening, we collected GPS-located temperature 
measurements. These measurements were used in a variety of modeling methods, of which random 
forest produced the highest predictive power (r2 = 0.9793, r2 = 0.8199, and r2 = 0.9715 for morning, 
afternoon, and evening models, respectively). The applications of this research’s results to land use 
planning could prove helpful in shaping building, zoning, and general urban growth policies. We 
posit that our study contributes to the literature and practice of managing urban heat in two ways. 
First, urban planners are able to examine the drivers of heat within the city in terms of land cover and 
land use (i.e., built form). With greater detail in understanding the relationships between urban form 
and UHI, we can more effectively shape them, such that city design can reduce extreme heat impacts 
on the most vulnerable populations. Potential planning policies could include, for example, specific 
requirements for varied building heights within an area, to ensure that turbulent airflow will aid in 
cooling (as observed in downtown Portland, Oregon), or stricter stipulations on construction-related 
tree removals. Second, municipal decision makers could develop responsive building designs that 
ameliorate the presence of extreme heat. Though it may be far-fetched to alter building heights after 
they are built, tree planting campaigns in specific sections of the city could prove to reduce extreme 
heat [12,46]. 

Beyond urban planning work, the results of this study can be used to inform public health 
programs. These multi-temporal, high-accuracy, and high spatial resolution results provide an 
unparalleled description of potential heat exposure within the city. Locations in which the heat is 
‘trapped’ and does not dissipate are especially important to identify, as populations residing within 
them will potentially have longer exposure to extreme heat throughout the day. Extensive 
epidemiological evidence suggests that prolonged exposure to high temperatures can lead to heat-
related illness such as heat stroke, which has the potential to be fatal [1,57,58]. By coupling an 
understanding of exposure data with demographic information specific to sensitivity populations 
(i.e., older adults, pre-existing health conditions), and coping capacities (i.e., lower income, isolated 
individuals or communities), public health practitioners can specify residents who may face fatal 
impacts during extreme heat events [59]. Due to the high spatial resolution of the UHI surfaces, it is 
conceivable that a heat/health mitigation strategy could be enacted at a household scale, which could 
be conducted through information dissemination (e.g., pamphlets on cooling center locations). 
Highly accurate and spatially precise exposure information increases the likelihood of a successful 
overall health outcome for urban populations [8]. 

Climate change and destabilization will likely create impacts beyond our ability to respond 
effectively; indeed, it already has. An emerging body of research describes an increase in duration, 
intensity, and frequency of extreme weather events [6]; however, we have yet to understand local 
opportunities for evaluating the intensity and distribution of urban heat. Our study offers a timely 
and effective approach for addressing localized impacts before they occur. Although only for one 
city, we believe that our methods and approach are transferable to other metropolitan regions, and 
applications are currently underway [24]. Through systematic evaluation across multiple cities in 
different biophysical environments, and using similar ground-based techniques, we will be able to 
equip decision makers with highly resolved data for taking proactive action, ultimately reducing 
vulnerability to infrastructure, ecologies, and communities. 
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