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Abstract: A 15-year (1997–2011) climatology of dust events at the NASA DFRC in Lancaster,
California, USA, was performed to evaluate how the extratropical systems were associated with
dust storms over this region. For this study, we collected meteorological data for Edwards Air Force
Base (EAFB) in Lancaster, California, which is very close to NASA DFRC, from wunderground.com,
National Centers for Environmental Prediction (NCEP)/North American Regional Reanalysis
(NARR), NCEP/Hydro-meteorological Prediction Center/National Weather Service (NWS), and
Unisys analyses. We find that the dust events were associated with the development of a deep
convective boundary layer, turbulence kinetic energy (TKE) ≥3 J/kg, a deep unstable lapse rate
layer, a wind speed above the frictional threshold wind speed necessary to ablate dust from the
surface (≥7.3 m/s), a presence of a cold trough above the deep planetary boundary layer (PBL),
a strong cyclonic jet, an influx of vertical sensible heat from the surrounding area, and a low volumetric
soil moisture fraction <0.3. The annual mean number of dust events, their mean duration, and the
unit duration per number of event for each visibility range, when binned as <11.2 km, <8 km,
<4.8 km, <1.6 km, and <1 km were calculated. The visibility range values were positively correlated
with the annual mean number of dust events, duration of dust events, and the ratio of duration
of dust events. The percentage of the dust events by season shows that most of the dust events
occurred in autumn (44.7%), followed by spring (38.3%), and equally in summer and winter with
these seasons each accounting for 8.5% of events. This study also shows that the summer had the
highest percentage (10%) of the lowest visibility condition (<1 km) followed by autumn (2%). Neither
of the other two seasons—winter and spring—experienced such a low visibility condition during the
entire dust events over 15 years. Winter had the highest visibility (<11.2 km) percentage, which was
67% followed by spring (55%). Wind speed increasing to a value within the range of 3.6–11 m/s was
typically associated with the dust events.

Keywords: climatology; dust events; frequency; visibility; wind rose; TKE; cyclonic jet

1. Introduction

Wind erosion produces dust that can cause environmental impacts at regional and global
scales [1–3]. Tegen and Fung [4] estimated about 3000 Mt·yr−1 (metric tons per year) global dust
source strength, including 390, 1960, and 650 Mt·yr−1 for particle size distribution of 0.5–1, 1–25, and
25–50 µm, respectively. It has been observed that atmospheric dust affects climate globally through its
influence on the radiation balance of the atmosphere [5–8]. Similarly, on a regional scale, the presence
of high concentrations of atmospheric dust affects economies by lowering visibility with an increase
in cost of visibility impairment on national parks and wilderness areas as well as causing health
problems [9–17]. It is also a major geomorphological factor for land degradation in arid regions [18].
High concentrations of dust at the local level may indicate agricultural soils are being degraded by the
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loss of fine particles [19]. Many previous studies have shown a positive correlation between drought
years and increased dust emission [18,20], while others indicated the entry of dust in the atmosphere
occurs once the freshly deposited sediment brought by the intense storms becomes desiccated [21].
The capacity of the wind to entrain particles (erosivity), the soil’s susceptibility to entrainment
(erodibility), and the supply of erodible sediment are three major controls on the dust emission
process [22]. The frequency and impact of dust events are controlled, in part, by the climatological and
meteorological characteristics of a particular area [23].

In the context of surface characteristics to ablate the dust from the surface from our study
region (i.e., southwestern U.S.), Okin and Reheis [18] revealed that the presence of fine grained wind
erodible sediments and a dry climate facilitate a situation in which wind erosion may influence the
southwestern U.S. The genesis, transport, and deposition of wind-blown dust constitute an important
set of geomorphic, atmospheric, and ecologic processes in the drylands of the southwestern U.S. [24–26].
Mitchell et al. [27] stated that the western U.S. experiences an approximate 22-year drought cycle and
that these drought cycles are normally periods of increasing dust storm activity. A study carried out
over Southern California and Nevada by Reheis [28] revealed that alluvial deposits are major dust
sources during long periods of dusty conditions. Neff et al. [29] showed that sediment cores recovered
from alpine lakes downwind of southwestern drylands revealed strong proof for large increases in
dust flux during the past ~150 years because of land use impacts, especially those caused by grazing
and industrialization [30]. Recent research has indicated that the southwestern U.S. and northern
Mexico have the potential to become dominant regional dust sources in the future [31,32].

Although a number of studies about the origin, transport, and deposition of desert dust
are available [19,23,28,33,34], a detailed understanding of the climatological and meteorological
characteristics that influence dust event frequency and magnitude for sub-regions of the southwestern
region of the U.S. are still lacking. This type of knowledge is needed to understand the regional
and local dust climatology. The specific area of interest for this study is the area surrounding the
NASA DFRC in Lancaster, California. The NASA DFRC mission is to conduct and support research,
development, test, and evaluate manned and unmanned aerospace systems. Airfield operations on
the lakebed are an essential part of these activities. It has been seen that due to extreme winds
(e.g., Santa Ana) and dust storms over the southern California Mojave Desert result there is
significant decrease in visibility, effects in aviation and ground transportation operations, and poor
air quality conditions [35]. As the NASA DFRC lies in the Southern California Mojave Desert region,
these aforesaid effects caused by dust storms may obviously affect the NASA DFRC and its
performance. Therefore, to know the existing condition of dust events at and around NASA DFRC,
a study of dust climatology of the NASA DRFC has been carried out here. This will be accomplished
through an analysis of available climatological and meteorological data to identify what conditions
were associated with dust emission events. Studying the weather systems, magnitude and direction of
wind, the conditions of visibility, and the level of PM10 in ambient air reveal the onset, evolution and
termination of dust events [36], and the commensurate degradation of air quality [34,37].

2. Materials and Methods

The NASA DFRC lies within Antelope Valley, a large closed hydrologic basin, situated in the
southwest corner of the Mojave Desert of California. The NASA DFRC is situated at 34◦54′20” N
and 117◦53′01” W at an elevation of 702 m above mean sea level (msl). This area is characterized
by northwest-southeast trending dry valleys, confined by mountains reaching 2862 m in elevation,
some of which are forested at higher elevations. The climate is continental desert and semi-arid to
arid. There are intermittently flooded playas in the dry valleys. Winter temperatures can drop below
freezing, whereas summer temperatures often exceed 38 ◦C. Most of the precipitation falls in the winter
as rain or snow due to the passage of fronts, with a few monsoonal-type convective events forming in
the summer. Mean annual rainfall for the area is 127 mm.
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For the study of dust climatology of NASA DRFC, a daily meteorological data (1997–2011) record
for EAFB in Lancaster, California was collected from wunderground.com [38] since this EAFB station
is very close to NASA DFRC (Figure 1) [35]. Recorded meteorological data included visibility, wind
speed, wind direction, relative humidity, and precipitation. These data were updated hourly, or more
frequently when detrimental weather affecting aviation occurs (e.g., low visibility). Since data were
not available in certain days of certain months of certain years, a continuous record of data could not
be assembled. In this study, the critical meteorological data that were associated the observation of
dust according to wunderground.com were applied, The National Weather Service (NWS) labels dust
events at the time of observation when the prevailing station visibility is≤1 km. Orgill and Sehmel [39]
defined a dust event condition when visibility is less than ≤11.2 km. Similarly, Changery [36] analyzed
<11.2 km, <8 km, <4.8 km, <1.6 km, and <1 km visibility ranges to study the dust climatology of
the western U.S.. No single accepted definition of visibility range to define dust storm conditions
exists. In this study, following Changery [36], these visibility criteria were used to examine their
relationship with dust events and meteorological conditions: <11.2 km, <8 km, <4.8 km, <1.6 km, and
<1 km. During these visibility conditions of those particular days which were taken into account in
this study, wunderground.com marked that there were occurrence of dust events at EAFB, which is very
close to NASA DFRC. Therefore, this denies the roles of aerosols or other meteorological conditions
influencing visibility except the dust events. Visibility is automated instantaneous data measured by a
visibility sensor that has a maximum range of 32 km. Visibility sensor sends light from a Xenon flash
lamp in a cone-shaped beam and the receiver measures only the light scattered forward. Visibility
data were updated hourly, or more frequently when detrimental weather affecting aviation occurs
(e.g., low visibility).
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Figure 1. Satellite image of Rogers Dry Lake showing Edwards air field information—runways,
which also lie within Antelope valley. This also shows locations of the NASA Dryden and Edwards AFB.

To link dust events with synoptic meteorological systems, data were collected from NCEP/(NARR)
(32 km resolution), NCEP/Hydro-meteorological Prediction Center/NWS, and Unisys analyses
that characterized the planetary boundary depth analysis (900–600 hPa), turbulent kinetic energy
(900–600 hPa), upper air wind speed and direction, and jet streak analysis (900–600 hPa), pressure
reduced to mean sea level to see a constant elevation sea level chart commonly known as surface
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weather map, temperature analysis (900–600 hPa), sensible heat flux (900–600 hPa), soil moisture
content (0–200 cm), and volumetric soil moisture fraction (0–10 cm) [40].

3. Results and Discussion

3.1. Wind Rose Associated with Dust and no Dust Events

A wind rose associated with dust events is an important illustration to understand the directional
components of the dust-laden winds for the area of interest. Wind roses showing sixteen wind
direction bins for dust events with visibilities <11.2 km were developed and are shown in Figure 2a.
Similarly, wind roses for no dust events with visibilities <11.2 km were also developed and are shown
in Figure 2b. Figure 2a shows that during periods of decreased visibility that meet the set criteria
(<11.2 km), the wind directions most frequently associated with visibility degradation was southwest
(18%), west-northwest (18%), and west (15%).

Climate 2017, 5, 15  4 of 18 

3. Results and Discussion 

3.1. Wind Rose Associated with Dust and no Dust Events 

A wind rose associated with dust events is an important illustration to understand the 

directional components of the dust-laden winds for the area of interest. Wind roses showing sixteen 

wind direction bins for dust events with visibilities <11.2 km were developed and are shown in 

Figure 2a. Similarly, wind roses for no dust events with visibilities <11.2 km were also developed 

and are shown in Figure 2b. Figure 2a shows that during periods of decreased visibility that meet the 

set criteria (<11.2 km), the wind directions most frequently associated with visibility degradation 

was southwest (18%), west-northwest (18%), and west (15%). 

  
(a) (b) 

Figure 2. (a) Dust event wind rose; (b) No dust event wind rose. 

3.2. Annual Number of Dust Events, Annual Mean Number of Dust Events, Annual Mean Duration of Dust 

Events, and Ratio of Duration and Number of Dust Events 

Based on the number and time of dust events for the study period, we observe that 2007 had the 

highest number of dust events, 13 followed by 7, 6, and 6 in 1997, 2000, and 2009, respectively for the 

<11.2 km visibility criterion shown in annual time series vs. annual frequency of dust events (Figure 

3). It is important to note here that as this study is mainly focused on the study of the meteorological 

conditions associated with dust events, but not for finding the reason of occurrence of dust events 

and no dust events, detail understanding of causes of dust events in 1997, 1998, 2000, 2002, 2003, 

2004, 2006, 2007, 2008, 2009, and 2011 and no dust events in 1999, 2001, 2005, and 2010 (Figure 3) are 

not emphasized in this study. 

For the analysis of annual mean number of dust events, annual mean duration of dust events, 

and ratio of duration and number of dust events, first, all the dust event days and time 

corresponding to visibilities were selected and grouped from the last 15 years of recorded data. We 

note that in many cases, dust events displayed multiple occurrences below a visibility range in a 

given storm, since the storm alternatively weakened and strengthened. Each occurrence was 

counted as an event. It is seen that the annual mean number of dust events, annual mean duration of 

dust events, and ratio of duration to number of dust events were positively correlated for each 

visibility range shown in Figure 4. These parameters provide an indication of the duration and 

strength characteristics of a dust event in this region of California.  

Figure 2. (a) Dust event wind rose; (b) No dust event wind rose.

3.2. Annual Number of Dust Events, Annual Mean Number of Dust Events, Annual Mean Duration of Dust
Events, and Ratio of Duration and Number of Dust Events

Based on the number and time of dust events for the study period, we observe that 2007 had the
highest number of dust events, 13 followed by 7, 6, and 6 in 1997, 2000, and 2009, respectively for the
<11.2 km visibility criterion shown in annual time series vs. annual frequency of dust events (Figure 3).
It is important to note here that as this study is mainly focused on the study of the meteorological
conditions associated with dust events, but not for finding the reason of occurrence of dust events
and no dust events, detail understanding of causes of dust events in 1997, 1998, 2000, 2002, 2003, 2004,
2006, 2007, 2008, 2009, and 2011 and no dust events in 1999, 2001, 2005, and 2010 (Figure 3) are not
emphasized in this study.

For the analysis of annual mean number of dust events, annual mean duration of dust events,
and ratio of duration and number of dust events, first, all the dust event days and time corresponding
to visibilities were selected and grouped from the last 15 years of recorded data. We note that in many
cases, dust events displayed multiple occurrences below a visibility range in a given storm, since
the storm alternatively weakened and strengthened. Each occurrence was counted as an event. It is
seen that the annual mean number of dust events, annual mean duration of dust events, and ratio
of duration to number of dust events were positively correlated for each visibility range shown in
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Figure 4. These parameters provide an indication of the duration and strength characteristics of a dust
event in this region of California.Climate 2017, 5, 15  5 of 18 
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Figure 3. Annual number of dust events when the visibility was <11.2 km.
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Figure 4. Annual mean number of dust events, annual mean duration of dust events, and ratio of
duration and number of dust events.

The dust events data indicates that the time of onset of dust events had no consistency occurring
at any time during a 24-h period. This is in contrast to dust events in Yuma, Phoenix, Winslow, and
Tucson in Arizona, USA described by Brazel and Nicking [41], which usually occurred in the mid to late
afternoon due to a maximum in atmospheric instability and the associated high convectively-forced
wind speeds. Applying the lower visibility criterion for dust events to <1.6 km, reduces the number of
dust event values compared to other higher values such as <11.2 km, <8 km, and <4.8 km, which is
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also supported by Nicking and Brazel [23] stating that the number of dust events at Yuma and Phoenix,
Arizona increased by 290% and 140% if the visibility criterion was changed from <1.6 km to <11.3 km,
respectively. Hagen and Woodruff [42] assumed dust was responsible for reducing the visibility on
dusty days when the visibility ranged from 11.3 to 14.5 km and wind speed exceeded 5.4 m/s in the
Great Plains. They also found that the average dust storm duration was 6.6 h in the Great Plains. Orgill
and Sehmel [39] stated that the southern Great Plains experienced the highest number of dust events
followed by the western States, northern Great Plains, southern coastal Pacific and inland valleys and
the Southeast. Changery [36], based on a 30 year dust event analysis (1948–1977) for the area near
EAFB, California, reported annual mean durations of dust events of 1.75, 0.47, 0.19, and 0.17 h for
the visibility conditions <11.2, <4.8, <1.6, and <1 km, respectively. When comparing Changery’s [36]
results with our results for the NASA DFRC area, the duration of dust events as a function of visibility
is lower in all cases for our results. This study also reveals an important information that dust events
typically did not last very long (under 2 h) in the DFRC study region, which might be constrain
of visibility criteria (<11.2 km) since we only considered the duration of the dust storms when the
visibility was <11.2 km.

3.3. The Seasonal Percentage of Dust Events and Visibility

To evaluate the seasonality of dust events, the identified occurrences were categorized based on
the day of their occurrence into bins for the four seasons—winter (Dec., Jan., and Feb.), spring
(March, April, and May), summer (June, July, and Aug.), and autumn (Sept., Oct., and Nov.).
The occurrence of dust events by season was expressed as a percentage of the total number of annual
dust events and is shown in Figure 5. The visibility reduction of each season was categorized into
<11.2, <8, <4.8, <1.6, and <1 km ranges and expressed as a percent frequency of occurrence, which is
presented as a histogram in Figure 6. The percentage of total dust events by season indicate that most
dust events over the last 15 years occurred in autumn (44.7%) followed by spring (38.3%) and equally
in summer and winter with these seasons each accounting for 8.5% of events (Figure 5).

The magnitude of visibility reduction in percentage and by season shows that the lowest visibility
condition (<1 km) occurred most often in summer (10%), followed by autumn (2%) (Figure 6).
Neither of the other two seasons (winter and spring) had dust events reaching this low visibility
condition during the entire 15 year record. Dust events in winter had the least visibility impairment
with 67% having visibility <11.2 km. In spring, 55% of all events had visibility reduction <11.2 km.
The results also indicate that summer events had the highest percent occurrence (10%) of severe dust
events (i.e., visibility <1.6 km and <1 km) followed by autumn with 4% and 2% of severe events
respectively (Figure 6), which is similar to the findings of Nicking and Brazel [23] and indicative of
dust generated by deep convective phenomena in the atmosphere. For the NASA DFRC area in winter
and spring seasons, there were no recorded dust events over the last 15 years that reached these low
visibility conditions. For the visibility criteria <4.8 km, autumn experienced the highest dust event
frequency (24% of total events) followed by summer (20%), and spring with 16%. This is consistent
with Tong et al. [34], who reported that peak dust emission occurred in spring, summer, and autumn
over the western US. Changery [36] stated that southern Arizona and extreme southern California
experienced most of the dust events in the summer. The remaining part of the California and southern
Nevada regions experienced the majority of the dust events in the autumn and winter. In contrast,
our study area experienced the highest percentage (67%) in winter for the <11.2 km visibility criterion
followed by spring (55%), autumn (41%), and summer (40%).
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3.4. Relative Humidity and Precipitation during Dust Events

Dust events were observed during the lower relative humidity (RH) days [43–45]. The RH in
each dust event and the average RH for all dust events is also shown here in Figure 7. For the entire
record of dust events (1997–2011) in our study, the relative humidity (RH) ranged from 8% to 63%.
The average RH for all dust events was 36.5% ± 16.0%, which is higher than 15%–20% RH observed by
Novlan et al. [44] in El Paso, Texas, USA. There were also some dust storms cases observed in different
geographical region in different RH conditions, such as at 68.64% ± 11.36% and 68.02% ± 10.31% RH
observed by Chen et al. [43] and Yang et al. [45], respectively, during dust events in Taipei.
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Figure 7. Relative Humidity.

The total annual precipitation amounts over the last fifteen years (1997–2011) were also calculated
from the data records, categorized by season and shown in Figure 8. Figure 8 shows that the average
annual precipitation in the area surrounding the NASA DFRC was determined to be 278.18 mm with
a standard deviation of ±241.84 mm. The monthly precipitation values were combined to provide
seasonal precipitation amounts, which are also shown in Figure 8. The annual precipitation amounts
in 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2010, and 2011 were lower than the long-term
average annual precipitation (278.18 mm with a standard deviation of ±241.84 mm) by 73.6%, 40%,
93%, 15%, 72.4%, 27.6%, 67.5%, 22.1%, 39.6%, 24.7%, and 45.2%, respectively. The numbers of dust
events in these consecutive years were, 0, 6, 1, 3, 1, 0, 2, 13, 2, 0, and 2, respectively. This shows that
NASA DFRC experienced annual precipitation below than average annual precipitation for 11 years
out of total 15 years of study period.

The relationship between the percent contribution of precipitation to the total annual amount and
dust events by season is shown in Figure 9. Figure 9 shows that the greatest percentage of precipitation
occurred in the winter (46.29%), followed by summer (28.55%), spring (15.55%), and autumn (9.61%)
Hagen and Woodruff [42] found that most areas of the Great Plains experienced a significant number
of dust hours during low annual precipitation. Our results, which are shown in Figure 9, indicate a
consistency regarding precipitation versus dust events. It reveals that the higher the percentage of total
precipitation, the lower the total dust events percentage in the winter and the summer. Similarly, the
lower the percentage of total precipitation, the higher the total dust event percentage in the spring and
the autumn. For the spring, these results are consistent with the conclusion of Reheis and Kihl [21] that
greater amounts of precipitation can increase the delivery of sediment or rework previously deposited
sediments in closed basins, which increases the potential for deflation once this sediment dries out.
In winter, the lower frequency of dust events might be due to the effect of moderate precipitation in
terms of magnitude and intensity, which increased the threshold for wind erosion by increasing the
soil moisture content, which increased the binding energy between particles [46]. Intense summer
precipitation from thunderstorms can also deliver sufficient amounts of water to the soil to increase
the soil moisture thus increasing threshold wind speeds for deflation until levels decreased to critical
levels due to evaporation.
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3.5. Frequency of Wind Speed during Dust and No Dust Events

The frequency of wind speed when there were dust events and the frequency of occurrence of
high wind speed ≥11.55 m/s when there were no dust events were calculated to quantify the ranges
of the wind speed responsible for the dust event and the maximum number of wind speed ranges
during no dust event, respectively. The wind speed bins were 3.6–11.0, 11.0–12.5, 12.5–14.0, 14.0–15.5,
15.5–17.0, 17.0–18.5, 18.5–20, 20.0–21.5, and 21.5–23.0 and 11.0–12.5, 12.5–14.0, 14.0–15.5, 15.5–17.0,
17.0–18.5, 18.5–20, 20.0–21.5, 21.5–23.0, 23.0–24.5, 24.5–26.0, 26.0–27.5, and 27.5–29.0 m/s and the
corresponding frequency of occurrence in each bin for the dust event and no dust event are shown
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in Figures 10 and 11, respectively. Figure 10 shows that the wind speed bin of 3.6–11 m/s had the
highest frequency of 26% within the entire group of dust events. Since the cumulative frequency of
wind speed has sharply increased from 3.6–11.0 m/s to 12.5–14.0 m/s indicating the 7.3 m/s (mean
of 3.6–11.0 m/s) −13.25 m/s (mean of 12.5–14.0 m/s) wind speed played a crucial role in causing
the dust events (Figure 10). This value is a little bit lower than found in Hall [47], which stated that
15 m/s wind speed was required to cause sand and dust storms in the southwestern U.S. The causes
of difference of these two values could be defined by a detailed study regarding the interactions of
antecedent moisture conditions, land use/vegetation patterns, surface structure, and the dust emission
processes. The frequency of high wind speeds when there were no dust events was computed,
which is shown in Figure 11, and has different bin ranges than Figure 10. Figure 11 shows that
higher wind speed had lower frequency of the occurrence. It also shows that the wind speed range of
11.0–12.5 m/s had the highest frequency of occurrence, which was 1004 out of 1926 days.
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3.6. Ratios of Number of Dust Events to No Dust Events

The ratios of the number of dust events and no dust events to the total number of event days for
different consecutive wind speeds were calculated and shown in Figure 12. It shows that the ratios of
the no dust events were higher than ratios of the dust events up to a wind speed bin of 14.0–15.5 m/s.
This shows that dust events occurred when the wind speed exceeds 15.5 m/s. Figure 12 also shows
that ratios without the dust events were decreasing as the wind speed bin increased, but, in the case of
the ratios of dust events, there was no such consistent trend of decreasing of ratios with wind speed.
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3.7. Meteorological Systems

After analyzing the presence of meteorological and soil conditions during the dust events from
1997 to 2011 as per mentioned in the Table A1 of the Appendix A, it was summarized that these dust
events were associated with the development of a deep convective boundary layer, a deep unstable
lapse rate layer (a lapse rate between dry adiabatic and moist adiabatic which occupied 52% of total
dust events), a high-intensity turbulent kinetic energy ≥3 J/kg [48] (occupying 63% of total dust
events), a significant wind speed (≥7.3 m/s which is the threshold frictional wind speed occupying
98% of total dust events), as well as the presence of a cold trough (occupying 96% of total dust events),
a strong cyclonic jet (occupying 85% of total dust events), an influx of sensible heat flux from the
surrounding area during dust event, and a low volumetric soil moisture fraction (<0.3 which occupied
100% of total dust events).

The presence of deep convective PBL over the NASA DFRC area during the dust events in our
study are consistent with Danielsen [49,50] which all showed that dust events were associated with
intense wind fields and deep mixed layers adjoining the surface. The presence of an unstable lapse
rate during the dust produced a deep mixed layer to facilitate mixing down higher momentum winds
to the surface to cause the dust event [44,51]. There was high intensity TKE of ≤3 J/kg consistent
with Kaplan et al. [48]. We see that dust emission occurred when the wind speed near the surface
exceeded the threshold friction velocity [52], which was ≥7.3 m/s. Dust events were associated with
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the presence of cold troughs above the deep PBL, which support the findings of Shimzu et al. [53]
stating that significant transport of dust was observed after the passage of cold trough from the Gobi
and/or Taklamakan Deserts. The mass and momentum adjustments accompanying the propagation of
an upper level cyclonic jet streak observed in our study favored the development of convective storms
that caused dust events, which agree with the findings of Karyampudi et al. [54] and Lewis et al. [55].
During the period prior to dust storm formation cold air was transported above the heated ground
which produced a large magnitude of sensible heat flux to the atmosphere. This depleted the ground
of heat after the dust storm event. The presence of low volumetric soil moisture reduced the cooling
due to latent heat flux thus accentuating the transfer of heat from the Earth’s surface to the atmosphere.

3.8. The Weather Events Followed by Dust Events

Alteration of the threshold friction velocity for the emission of the dust from the surface is
controlled by weather events, such as non-convective rainfall and moist convection [36,47,56,57].
To characterize these weather events followed by dust events, all the dust events were grouped
into non-convective rainfall followed by dust events, moist convection followed by dust events,
non-convective rainfall and convective rainfall followed by dust events, and when none of those
were present at the time of dust events as shown in Figure 13. After evaluating the weather events,
such as non-convective rainfall followed by dust events, moist convection followed by dust events,
non-convective rainfall and moist convection followed by dust events, and none of those, the results
indicate that they occupied 12%, 11%, 5%, and 72% of the total dust events, respectively (Figure 13).
A dust event caused by moist convection is facilitated by the strong generation of the outflow of
rain-cooled air from the cumulonimbus clouds [36]. This happens when the rain falling from these
clouds evaporates and cools the surrounding air due to contact with the warm dry air below. The cool
air, which is heavier, accelerates downward and strikes the surface and spreads out widely. In those
conditions, winds generate dust events.Climate 2017, 5, 15  13 of 18 
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4. Conclusions

During the analyzed dust events, the major wind component directions were southwest,
west-northwest, and west. We observe that the annual mean number of dust events, annual mean
duration of dust events, and ratio of duration to number of dust events were positively correlated
for each visibility range. We find that the higher the percentage of total precipitation, the lower the
total dust events percentage in the summer and the winter, and the lower the percentage of total
precipitation, the higher the total dust event percentage in the spring and the autumn. Dust events
were associated with the development of a deep convective boundary layer, an unstable lapse rate,
a high-intensity turbulent kinetic energy, a significant wind speed (≥7.3 m/s), a presence of a cold
trough, a strong cyclonic jet, an influx of sensible heat flux from the surrounding area during dust event,
and a low volumetric soil moisture fraction. It is thought that this study will be broadly applicable
to communities and facilities of not only NASA DFRC, but also the Mojave Desert Region as the
information may be useful for developing strategies to mitigate the risks and vulnerabilities that could
result from the current climatology of the dust events.

Acknowledgments: This work was partially supported by the NASA Dryden Flight Research Center. We would
like to thank Jack A. Gillies and Fred Wohosky for providing supporting document and information related to
this study and Dave Campbell for graphics help.
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Michael L. Kaplan edited this manuscript and provided the additional information on it.

Conflicts of Interest: The authors declare that there are no conflicts of interest.

Appendix A

The Appendix includes a Table A1, which provides detailed meteorological parameters for
identified dust events during the period from 1997 to 2011.
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Table A1. The magnitude of meteorological parameters for identified dust events during the period from 1997 to 2011.

S.N. Date Season Local Time

Planetary
Boundary

Layer Depth
(m) (900–600

hPa)

Lapse Rate
(◦C/km)
(900–600

hPa)

Turbulent
Kinetic
Energy
(J/kg)

(900–600
hPa)

Cold
Trough

(900–600
hPa)

Wind Speed
(m/s)

Wind
Direction

Cyclonic Jet
(900–600

hPa)

Influx of
Vertical
Sensible

Heat from
(900–600

hPa)

Soil
Temperature
(0–10 cm) ◦C

Soil
Moisture

(0–200 cm)
(kg/m2)

Volumetric
soil

Moisture
Fraction at

0–10 cm

1 23/4/1997

Spring

16:55

3000 6 1–6 Yes 5–32.5 Northwesterly Yes North 32 500 0.1
2 23/4/1997 17:22
3 23/4/1997 18:22
4 23/4/1997 18:38
5 23/4/1997 18:55
6 23/4/1997 19:11

7 26/11/1997 Autumn 8:31 2000 4 1 Yes 10–37.5 Southwesterly Yes West, North,
and East 12 500 0.25

8 3/2/1998 Winter 4:46 2500 3.5 1–2 Yes 17.5–27.5 Southwesterly,
Southeasterly Yes West, North,

and South 9 500 0.3

9 25/5/1998 Spring 14:48 2500 4.6 1–4 Yes 10–17.5 Southwesterly Yes Northwestern,
Southwestern 32 600 0.2

10 31/8/1998 Summer 16:18 4500 7.5 2–6 Yes 2.5–7.5 Northerly,
Northwesterly No North,

Southwestern 47 500 0.12

11 20/2/2000 Winter 8:02 1800 4.4 0.3–1 Yes 7.5–20 Southeasterly,
Southerly Yes North,

Southwestern 20 500 0.25

12 20/3/2000 Spring 10:45 4500 5.3 1–6 Yes 15–20 Northerly Yes North,
Southwestern 17 500 0.25

13 21/9/2000

Autumn

14:44

2000 4.6 1–2 Yes 7.5 Southwesterly No North, East,
South 32 450 0.1214 21/9/2000 15:31

15 21/9/2000 15:55
16 21/9/2000 17:17

17 19/5/2002 Spring 13:55 2500 5.5 1–4 Yes 10–17.5 Southwesterly,
Southerly Yes North, East,

South 32 500 0.15

18 1/2/2003 Winter 12:28 2000 6.5 0.5–1.5 Yes 10–20 Southwesterly,
Southerly Yes North 22 500 0.25

19 20/8/2003 Summer 15:55 4000 6.8 1–5 Yes 5–10 Southeasterly Yes North,
South 42 450 0.1520 20/8/2003 16:01

21 13/8/2004 Summer 17:55 4000 7.3 1–6 Yes 5–10 Southerly,
Southeasterly No North, East,

South 47 500 0.1

22 2/9/2006 Autumn 17:35 5000 7.7 2–6 Yes 5 Southwesterly,
Southerly No North, East,

South 47 500 0.1523 2/9/2006 17:45

24 27/3/2007
Spring

15:55

3000 6.2 1–8 Yes 12.5–20.5 Northwesterly Yes North 27 500 0.225 27/3/2007 16:05
26 27/3/2007 16:29
27 27/3/2007 16:40

28 9/4/2007 Spring 19:18 2500 4.4 1–2 Yes 7.5–15 Northerly,
Northwesterly Yes North, West,

East 30 500 0.2

29 1/9/2007

Autumn

17:12

5000 6.8 2–8 Yes 5 North,
South No North,

South 47 500 0.15
30 1/9/2007 17:14
31 1/9/2007 17:15
32 1/9/2007 17:16
33 1/9/2007 17:17
34 1/9/2007 17:20
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Table A1. Cont.

S.N. Date Season Local Time

Planetary
Boundary

Layer Depth
(m) (900–600

hPa)

Lapse Rate
(◦C/km)
(900–600

hPa)

Turbulent
Kinetic
Energy
(J/kg)

(900–600
hPa)

Cold
Trough

(900–600
hPa)

Wind Speed
(m/s)

Wind
Direction

Cyclonic Jet
(900–600

hPa)

Influx of
Vertical
Sensible

Heat from
(900–600

hPa)

Soil
Temperature
(0–10 cm) ◦C

Soil
Moisture

(0–200 cm)
(kg/m2)

Volumetric
soil

Moisture
Fraction at

0–10 cm

35 16/10/2007 Autumn 12:55 2000 5.3 1–4 Yes 5–27.5 Northwesterly Yes North,
South, East 27 500 0.136 16/10/2007 13:55

37 1/3/2008 Spring 20:55 1500 3.5 1–2 Yes 5–40 Northwesterly Yes North,
Southeast 17 500 0.2

38 30/4/2008 Spring 4:55 1500 2.7 0.3–1 No 5–20 Northwesterly Yes North,
South 18 500 0.15

39 14/4/2009 Spring 16:24 3500 6.6 1–12 Yes NA NA NA North, West,
South, East 32 500 0.15

40 27/10/2009

Autumn

8:46

2500 3.1 1–2.5 Yes 5–27.5 Northwesterly Yes North, West, 15 500 0.15
41 27/10/2009 9:55
42 27/10/2009 10:35
43 27/10/2009 12:07
44 27/10/2009 12:23

45 16/2/2011 Winter 12:28 2000 4.6 1–2 No 10–32.5 Southwesterly Yes North 12 600 0.25

46 23/9/2011 Autumn 16:55 6000 7.5 4–6 Yes 5–12.5 Southeasterly,
Southwesterly No North 37 500 0.15
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