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Abstract: Monsoons are the life and soul of India’s financial aspects, especially that of 

agribusiness in deciding cropping patterns. Around 80% of the yearly precipitation occurs 

from June to September amid monsoon season across India. Thus, its seasonal mean 

precipitation is crucial for agriculture and the national water supply. From the start of the 19th 

century, several studies have been conducted on the possible increments in Indian summer 

monsoon precipitation in the future. Unfortunately, none of them has endeavoured to discover 

the models whose yield give the best fit to the observed data. Here some statistical tests are 

performed to quantify the models of Coupled Model Inter-comparison Project 5 (CMIP5). 

Then, after, the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) 

method is used to select optimum models. It shows that four models, CCSM4, CESM1-CAM5, 

GFDL-CM3, and GFDL-ESM2G, best capture the pattern in Indian summer monsoon rainfall 

over the historical period (1871–2005). Further, Student’s t-test is utilized to estimate the 

significant changes in meteorological subdivisions of selected optimum models. Also, our 

results reveal the Indian meteorological subdivisions which are liable to encounter significant 

changes in mean at confidence levels that differ from 80% to 99%.  
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1. Introduction  

Indeed, even post industrialization and fast development in the administration division, India 

transcendently remains a farming nation. Today, India ranks second all through the world in homestead 

yield from its farming and associated divisions. According to the information for the financial year 2011, 

agribusiness still keeps on contributing a noteworthy 16% to the national Gross Domestic Product (GDP) 

and 10% of the aggregate fare profit. Until now, around two-thirds of cultivated land specifically relied 

upon Indian summer monsoon rainfall. Accordingly, the variability of Indian summer monsoon rainfall 

assumes an essential part in the field of horticulture. Any anomaly in the seasonal rainfall influences the 

lives of a large number of individuals in the nation. Consequently, it is basic for government bodies to 

keep a nearby tab on the climate change patterns, particularly the changes in monsoon rainfall. This is 

more important in today’s scenario as the Intergovernmental Panel on Climate Change (IPCC) reports a 

significant change in the worldwide air temperatures amid the 21st century. This is going to have an 

immediate bearing on the season and intensity of rainfall the world over. Along these lines, suitable 

techniques are required to precisely anticipate these changing patterns and any climate conditions 

connected with it. 

Future projections regarding global monsoon patterns are generally provided by means of Coupled 

Model Inter-comparison Project CMIP. As of late, the fifth appraisal report of the IPCC has introduced 

climate projections known as CMIP5 [1]. Under a worldwide temperature alteration, IPCC has anticipated 

that there can be a diverse change in the future All India Summer Monsoon Rainfall (AISMR) in its fifth 

assessment report [2]. These models have been produced taking into account the recently presented 

Representative Concentration Pathways (RCPs) for four distinct scenarios such as RCP 2.6, RCP 4.5, 

RCP 6.0, and RCP 8.5. In light of these four scenarios, the climate projections for the future can be 

assessed from various models accessible under the CMIP5 venture. It has been accounted that the models 

of the CMIP5 data set have a higher spatial resolution and henceforth are relied upon to yield significantly 

more accurate results [2]. Contrasting the past adaptation CMIP3 with new models of CMIP5, the 

simulated mean rainfall patterns over India are enhanced [3]. Then again, the model projections are more 

precise for parameters averaged over the entire globe. At the point when utilized for making projections 

at the regional level (national in particular), each of the models confronts certain constraints [4]. Diverse 

models lead to distinctive projections even under the same RCP scenarios. Henceforth, it becomes hard 

to assess a specific model to re-enact future precipitation forecasts. This is particularly valid if there 

should be an occurrence of local precipitation expectation in the Indian sub-continent. In that capacity, 

precipitation projection over India is still a matter of extraordinary exploration and investigative level 

headed discussion. A few models find almost no effect of warming on India’s monsoon rainfall [5–8], 

while a few models anticipate an increment in the all-India mean precipitation and Inter-Annual 

Variability (IAV) [9–13] for the compelling warming condition RCP 8.5. The ability of climate models 

in simulating the IAV is strongly related to their ability in re-enacting mean AISMR [13]. Most of the 

revised models in the CMIP5 dataset foresee a significant increase in Indian seasonal rainfall under the 

unchecked (business-as-usual) scenario [14]. From that point, the seasonal variation in precipitation over 

Asia-Pacific assumes a vital role in simulating the mean and, in addition, IAV of AISMR [15].  

As of late, analytic studies have found that models predict clear future temperature increments but 

diverse changes in AISMR. Thus, to examine the variability of AISMR and the reliability of the 
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projections, the data set of CMIP5 is isolated into different groups based on the nature of IAV. It has been 

reported that the group with the highest reliability projects a future reduction in light rainfall, and an 

increase in high to extreme rainfall [16]. Despite the fact that, in this study, the group of models used 

project increased IAV and, in addition, increased Indian rainfall, it is not reported which model predicts 

more accurately than others. It is additionally critical to dissect the progressions in AISMR in each of the 

meteorological subdivisions. For this reason, the first step is to choose the ideal CMIP5 models (for  

RCP 8.5) for precipitation projection in India, taking into account a statistical selection approach. Data for 

20 CMIP5 models are compared with observations for the historical time period of 1871–2005. Six 

screening tests are used to assess the best fit in between the model and observed data for all-India rainfall. 

These include: (1) Z-value test, (2) correlation coefficient, (3) relative precipitation comparison (RPC) test, 

(4) probability function comparison (PDF) test, (5) root mean square error (RMSE) test, and (6) Student’s 

t-test. CMIP5 models are further hierarchically ranked using the Technique for Order Preference by 

Similarity to Ideal Solution (TOPSIS) technique. The projections of the chosen best model are then 

analyzed for the season of 2006–2100. The selected optimal models of this study agree with the results in 

a past study [16]. Thus, this may be considered as the results’ support and the quantitative outcomes of this 

study may be considered as a future reference. 

2. Data and Methodology  

This study uses information from 20 models that participated in CMIP5. Models are chosen in light 

of the accessibility of suitable data for comparison and projection purposes. Only those models for which 

historical data (1871–2005) was available for the RCP 8.5 are considered. The points of interest of the 

models utilized as a part of this study have been outlined in Table 1. 

Table 1. Details of the CMIP5 models considered. 

S. No Model (Long ° × Lat °) Modeling Centre (Group) 

1. CCSM4 (1.25 × 0.9424) National Center for Atmospheric Research, U.S.A 

2. CSIRO-Mk3.6.0 (1.8750 × 1.8497) 
Commonwealth Scientific & Industrial Research Organization in 

collaboration with Queensland Climate Change Center of Excellence  

3. FIO-ESM (2.815 × 2.7673 )  The first Institute of Oceanography, SOA, China 

4. HadGEM2-AO (1.8750 × 1.25) 
National Institute of Meteorological Research/Korea 

Meteorological Administration  

5. INM-CM4 (2 × 1.50) Institute for Numerical Mathematics, Russia 

6. IPSL-CM5A-MR (2.5 × 1.2676) Institute Pierre-Simon Laplace, France 

7. MIROC5 (1.4063 × 1.389) 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute, and National 

Institute for Environmental Studies, Japan 

8. MIROC-ESM (2.8125 × 2.7673) 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute, and National 

Institute for Environmental Studies, Japan 
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Table 1. Cont. 

S. No Model (Long ° × Lat °) Modeling Centre (Group) 

9. MIROC-ESM-CHEM (2.8125 × 2.7673) 

Japan Agency for Marine-Earth Science and Technology, 

Atmosphere and Ocean Research Institute, and National Institute 

for Environmental Studies, Japan 

10. MPI-ESM-LR (1.25 × 0.9424) Max Planck Institute for Meteorology, Germany 

11. MRI-CGCM3 (1.125 × 1.1121) Meteorological Research Institute, Japan 

12. NorESM1-M (2.5 × 1.8947) Norwegian Climate Centre, Norway 

13. NorESM1-ME (2.5 × 1.8947) Norwegian Climate Centre, Norway 

14. CESM1-CAM5 ( 1.25 × 0.9424)  Community Earth System Model Contributors, NCAR USA 

15. BCC-CSM-1.1 (2.8125 × 2.7673) Beijing Climate Center, China Meteorological Administration 

16. GFDL-CM3 ( 2.5 × 2) NOAA Geophysical Fluid Dynamics Laboratory 

17. GFDL-ESM2G (2.5 × 1.5169) NOAA Geophysical Fluid Dynamics Laboratory 

18. GFDL-ESM2M (2.5 × 1.5169) NOAA Geophysical Fluid Dynamics Laboratory 

19. GISS-E2-R (2.5 × 2) NASA Goddard Institute for Space Studies 

20. HadGEM2-ES (1.8750 × 1.25) Met Office Hadley Centre 

The data extraction included the development of a three-dimensional exhibit with the x, y, and z 

corresponding to longitude, latitude, and precipitation, respectively, for that specific month  

(in mm). The observed precipitation data have been taken from the website of the Indian Institute of 

Tropical Meteorology [17]. India is separated into 36 meteorological subdivisions. The insights about 

the meteorological subdivisions are given in Figure 1. The longitude and latitude values are utilized to 

separate the model data for comparing Indian meteorological subdivisions. Indian summer monsoon 

rainfall is considered from June to September, so it is defined as JJAS. Henceforth, for relative 

comparisons, all-India month-to-month precipitation is considered by taking the weighted average of 36 

Indian meteorological subdivisions over JJAS, in view of their land secured. To distinguish models with 

a possibly sensible delineation of the monsoon rainfall, six measurable routines have been utilized and 

they are described as follows:  

 

Figure 1. Details of Indian meteorological subdivisions. 



Climate 2015, 3 862 

 

 

2.1. Z-Value Test 

In statistics, the Z-value test or Z-test can be used to compare a sample mean with a reference mean, 

where distribution of the test statistic is defined as a difference between the two means divided by the 

standard deviation (std) of the observed and can be approximated by a normal distribution [18]. This 

statistic is calculated under the null hypothesis (H0) that there is no statistical significant difference 

between model and the observed mean, and the alternative hypothesis (H1) that there is a significant 

difference between model and the observed mean. Here, the Z-test is performed on the observed AISMR 

mean. The hypothesis is: 

A. H0: μ = 848.63 mm/JJAS 

B. H1: μ ≠ 848.63 mm/JJAS 

It implies that models whose AISMR mean falls under a 95% confidence interval of normal distribution 

of observed mean rainfall (848.63 mm/JJAS) are accepted; others are rejected.  

Out of those accepted models, the model possessing the lowest absolute Z-value will signify that the 

data associated with that particular model is almost similar to the observed data. Hence, that model will 

be accepted as the best model by this test. 

2.2. Student’s T-Test 

Here, Student’s t-test is used to find the significant difference between two samples (historical vs. 

projection) [19,20], where the hypothesis of the test is given below: 

C. 𝐻0: 𝜇2  ≤  𝜇1 

D. 𝐻1: 𝜇2  >  𝜇1 

where 𝜇1 and 𝜇2 are the mean of the historical and projected data (considered as sample mean). The null 

hypothesis is rejected at various confidence levels of 80%, 90%, 95%, and 99%.  

2.3. Correlation Coefficient 

This test is used to directly evaluate the similarity between the observed data and that provided by 

different models. It is defined as the covariance of the observed and the model divided by the product of 

their standard deviations. The test has been performed on subdivision means. The correlation coefficient 

is denoted by “r”. If r = 1, it implies a perfect positive linear correlation; if r = −1, it implies a perfect 

negative correlation; and r = 0 implies no linear relation between them (observed and models). 

2.4. Relative Precipitation Comparison Test 

In this test, mean rainfall of the model is directly compared with the observed mean. The observed 

mean is subtracted from each of the models and the result is divided by the observed mean. The formula 

used for getting the relative precipitation is given as: 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 =
(𝑚𝑜𝑑𝑒𝑙 𝑚𝑒𝑎𝑛 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑒𝑎𝑛)

𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑚𝑒𝑎𝑛
 (1) 
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2.5. Probability Density Function Comparison Test 

We use Kolmogorov-Simrnov (K-S test) to find the statistical significant differences between 

observed and model probability distribution functions. The K-S statistic quantifies a distance between 

the empirical distribution function (EDF) of the sample (model) and the cumulative distribution function 

(CDF) of the reference distribution (observed) [21]. Here, the probability density function of each of the 

model is compared with the probability density function of the observed rainfall. The most accurate 

model is selected on the basis of values of statistics obtained from the K-S test. The minimum value of 

the K-S test signifies a best model. The null hypothesis is defined as: 

𝐻0: 𝑑(𝐸𝐷𝐹𝑚𝑜𝑑𝑒𝑙 , 𝐶𝐷𝐹𝑜𝑏𝑠)  ≠  0 

𝐻1: 𝑑(𝐸𝐷𝐹𝑚𝑜𝑑𝑒𝑙 , 𝐶𝐷𝐹𝑜𝑏𝑠)  =  0 

where 𝑑(𝐸𝐷𝐹𝑚𝑜𝑑𝑒𝑙 , 𝐶𝐷𝐹𝑜𝑏𝑠) implies the distance in between the EDF of the model and the CDF of the 

observation. The minimum value of the K-S statistics implies the distance between them is very small. 

The null hypothesis is rejected at the 95% confidence level. 

2.6. Root Mean Square Error Test 

The root mean square error or root mean square deviation (RMSD) test is frequently used to measure 

the difference between values predicted by a model (estimator) and the observed values. The output is 

indicative of the sample standard deviation of the differences between the predicted and observed values. 

It is calculated using the following formula: 

𝑅𝑀𝑆𝐷 =  √∑ (𝑥1,𝑡  −  𝑥2,𝑡)
2𝑛

𝑡 = 1

𝑛
 (2) 

where 𝑥1,𝑡  is the simulated rainfall while 𝑥2,𝑡 is the observed rainfall. The best model is the one with the 

least RMSE value. 

3. TOPSIS Method for Ranking CMIP5 Models 

TOPSIS is a multiple-attribute decision-making (MADM) technique which was first proposed by 

Hwang and Yoon [22,23]. TOPSIS implies that any given decision matrix with 𝑚 alternatives and 𝑛 

attributes can be represented by points on an 𝑛-dimensional hyper-plane with 𝑚 points, with the location 

of these points being given by the value of their attributes. TOPSIS compares and ranks alternatives 

based on two sets of solutions known as the positive and negative ideal solutions. The ideal solutions 

are data-driven, i.e., the positive ideal solution contains data that are the most desirable from among all 

the alternatives and, similarly, the negative ideal solution contains data that are the least desirable from 

among all the alternatives. The ranking is determined by calculating the Euclidean distance of an 

alternative from these two ideal solutions. The alternative that has the largest distance from the negative 

solution and the smallest distance from the positive solution is termed as the best. 
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TOPSIS uses vector normalization for the scaling of data. TOPSIS is a very versatile and popular 

MADM tool among the scientific community. The TOPSIS method involves the following steps for a 

decision matrix having 𝑚 alternatives and 𝑛 attributes. 

Step 1: Construction of normalized decision matrix. 

𝑟𝑖𝑗 =  
𝑎𝑖𝑗

√∑ (𝑎𝑖𝑗)2𝑚
𝑖 = 1

 ;  ∀𝑗 (3) 

Step 2: Construction of a weighted normalized decision matrix. 

𝑉𝑖𝑗  = [𝑟𝑖𝑗]
𝑚 × 𝑛

∗ [𝑊𝑗]
𝑛 × 𝑛

𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙
 (4) 

Step 3: Determination of the positive ideal and negative ideal solution. 

The positive ideal solution 𝑉𝑗
+ and the negative ideal solution 𝑉𝑗

− are given by 

𝑉𝑗
+ =  {(max(𝑉𝑖𝑗 , 𝑗 ∈  𝐽1)), (min(𝑉𝑖𝑗 , 𝑗 ∈ 𝐽2)), 𝑖 =  1, 2, 3, … , 𝑚}; ∀𝑗 (4) 

𝑉𝑗
−  =  {(min(𝑉𝑖𝑗 , 𝑗 ∈ 𝐽1)), (𝑚𝑎𝑥 (𝑉𝑖𝑗 , 𝑗 ∈ 𝐽2)) , 𝑖 =  1, 2, 3, … , 𝑚} ; ∀𝑗 (5) 

where 𝐽1 and 𝐽2 correspond to benefit criteria and cost criteria, respectively. 

Step 4: Calculate the distances 𝑑𝑖
+ and 𝑑𝑖

− from the positive ideal and negative ideal solution, respectively. 

𝑑𝑖
+ = { ∑ (𝑉𝑖𝑗 − 𝑉𝑗

+)
2

𝑛

𝑗 = 1

}

1
2

 ;  ∀𝑖 
(6) 

𝑑𝑖
−  = { ∑ (𝑉𝑖𝑗 − 𝑉𝑗

−)2

𝑛

𝑗 = 1

}
1
2  ;  ∀𝑖 

(7) 

Step 5: Determine the relative closeness of the alternatives to the ideal solution. 

𝑐𝑙𝑖
+  =  

𝑑𝑖
−

𝑑𝑖
+ +  𝑑𝑖

−  ;  ∀𝑖 (8) 

where 0 ≤  𝑐𝑙𝑖
+  ≤  1. Alternatives with a higher magnitude of closeness are preferred. 

4. Results and Discussion 

In this study, information from the 20 CMIP5 models that have been utilized to analyze projected 

monsoon rainfall under the RCP 8.5 scenario was considered. These models have been contrasted with 

observed precipitation data for the historical time period of 1871–2005. Thus, to focus on possibly 

optimal models for precise future forecasts, the observed precipitation has been utilized as the 

comparison criteria. The observed AISMR mean is recorded to be 848.63 mm/JJAS with a standard 

deviation of 83.37 mm/JJAS.  

The statistical Z-test used for the purpose of evaluation has been discussed in the previous section. It 

can be observed from Figure 2 that the model CCSM4 has the closest proximity with the observed mean 

because it has the minimum Z-value. The Z-test values are listed in Table 2 for all 20 models. Moreover, 

it is seen from Figure 2 that models like MIROC, MIROC-ESM, MIROC-ESM-CHEM, GFDL-CM3, 

CCSM4, CESM1-CAM5, GFDL-ESM2G, GFDL-ESM2M, NorESM1-M, NorESM1-ME, INM-CM4, 

and FIO-ESM are within twice the standard deviation of the observed mean. Similar results were 

reported in [15]. 
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Figure 2. AISMR mean from 20 models for the historic period of 1871–2005. The black 

vertical line shows the all-India mean monsoon rainfall from observations for the period of 

1871–2005, and the dashed lines show the mean plus/minus one, and twice the standard 

deviation of the all-India mean rain. Circles with error bars represent mean and mean 

plus/minus one standard deviation for the 20 comprehensive models from 1871 to 2005. 

The correlation coefficient test is used to find the linear relation between observed and  

model subdivisional mean. It is seen that the data of models CCSM4, CESM1-CAM5, MIROC5 and 

MPI-ESM-LR are linearly related with observations as they have the highest r values of 0.79, 0.77, 0.66, 

and 0.55, respectively, in comparison with other models. 

The next test performed is a relative precipitation comparison and results for the same have been 

listed in Table 2. It is found that CCSM4, GFDL-CM3, CESM1-CAM5, and MIROC-ESM-CHEM are 

relatively close with the observation values as they have minimum errors. Also, it is seen that eight out 

of 20 models show a long-term positive trend in AISMR under the RCP 8.5 scenario at a 95% confidence 

level using Student’s t-test, which is depicted in Figure 3. 

The two other tests performed are probability density function comparison and the root mean square 

error test. Figure 4 shows the results for probability density overlays. The K-S test statistic values, for 

which the hypothesis is accepted at the 95% confidence level, are listed in Table 2. Similarly, the root 

mean square error is calculated between the observed and model rainfall. The quantitative estimations 

of this test are listed in Table 2 and Figure 5. 
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Table 2. Quantitative values of the tests performed. 

Models Z-Value RMSE Value (mm) Relative Error Cor. Coef Pdf Rank 

CCSM4 0.3871 123.9 0.038 0.7965 0.1926  1 

CESM1-CAM5 0.8034 136.5 0.0789 0.7750 0.3926 2  

GFDL-CM3 0.4916 127.7 0.0485 0.4240 0.1778 3 

GFDL-ESM2G 0.9472 144.8 0.0935 0.4240 0.3926 4 

MIROC-ESM CHEM 1.1561 141 0.1136 0.4707 0.5259 5 

NorESM1-ME 1.1387 161.4 0.1119 0.4229 0.4741 6 

INM-CM4 1.2726 152.5 0.125 0.4403 0.4963 7 

NorESM1-M 1.2069 163.2 0.1182 0.4159 0.4519 8 

MIROC-ESM 1.2741 142.5 0.1252 0.4631 0.5778 9 

GFDL-ESM2M 1.1271 165.7 0.1108 0.3458 0.4222 10 

FIO-ESM 1.4313 186 0.1406 0.3521 0.4963 11 

MIROC5 1.9597 205.1 0.193 0.6657 0.7037 12 

MPI-ESM-LR 3.5579 317.2 0.3489 0.5519 0.963 13 

BCC-CSM1.1 4.1368 369.9 0.4069 0.1804 0.9481 14 

HadGEM2-AO 4.64 403.7 0.4565 0.5170 0.9556 15 

IPSL-CM5A-MR 4.3746 382.4 0.4306 0.2710 0.9778 16 

HadGEM2-ES 5.3117 461.4 0.5223 0.5013 0.9704 17 

GISS-E2-R 5.3836 460.9 0.5293 0.2429 1 18 

CSIRO 6.29 535 0.6184 0.4192 1 19 

MRI-CGCM3 8.0679 680.1 0.792 0.4667 1 20 

 

Figure 3. Long-term trend in AISMR. Observations (black) are for the time period of  

1871–2005 and model outputs (pink) are for the time period of 1871–2100. 
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Figure 4. Probability density function for 20 models and observed data for AISMR. Black 

line represents observed data and red is for model data. The x-axis represents the 

precipitation of the models and the y-axis represents probability (in %). 

 

Figure 5. Root means square error between AISMR observed and models during  

1871–2005. 

It is observed that some models behave well for only specific statistical tests. In order to get a suitable 

model, ranking is done using the TOPSIS method. In light of the models’ ranking it is found that CCSM4 

is the best model for capturing the observed seasonal precipitation occurring over JJAS, trailed by three 

different models: CESM1-CAM5, GFDL-CM3, GFDL-ESM2G. TOPSIS ranking is given in Table 2. 
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To check the closeness in spatial distribution, observed as well as model sub-divisional means are 

graphically depicted in Figure 6. The highest mean rainfall (more than 450 mm/JJAS) is observed over 

the southwest (Konkan and Goa, Coastal Karnataka, and Kerala) and the northeast (Sub-Himalaya, West 

Bengal, and Sikkim), and 375–450 mm/JJAS is observed in Assam and Meghalaya. Figure 6 shows that 

no model captures the spatial pattern completely; however, sub-divisional means of some of the models 

are very close to the observation. 

 

Figure 6. Spatial patterns of JJAS mean rainfall across meteorological subdivisions of India 

over the time period 1871–2005. 

It is likewise imperative to notice the changes in the subdivisions of the optimum models. In Figure 7, 

maps compare the graphical patterns by means of four optimum models across meteorological 

subdivisions of India. The projection map predicts there is an increased rainfall in certain sub-divisions 

of India. Also, the percentage changes in the sub-divisional mean and standard deviation during the 21st 

century (2006–2100) with respect to the historic period (1871–2005) under RCP 8.5 are summarized in 

Figure 7. It is seen that these four optimum models do not show the same spatial patterns; however, a 

sub-divisional percentage change in mean for each model demonstrates in a comparable way. In the 

model CCSM4, it is seen from Figure 7 that subdivisions like Assam and Meghalaya, Bihar, East Uttar 

Pradesh, West Madhya Pradesh, Madhya Maharashtra, Konkan and Goa, Marathwada, North Interior 

Karnataka, Sub-Him, West Bengal and Sikkim, Nagaland, Manipur, Mizoram and Tripura, and 
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Rayalaseema are liable to experience 10%–20% changes in mean rainfall. Similarly, the meteorological 

subdivisions such as West Uttar Pradesh, Coastal Andra Pradesh, and South Interior Karnataka are liable 

to encounter 10%–20% changes and the rest of the subdivisions are likely to experience 20%–35% 

changes in standard deviation. In comparison with CCSM4, it is seen that models CESM1-CAM5 and 

GFDL-ESM2G also show 10%–20% changes in mean in the northeast region. Thus, the chosen optimum 

models concur with the percentage changes in mean and standard deviation to some extent. 

 

Figure 7. Comparison of the graphical patterns of means of four optimum models across 

meteorological subdivisions of India. 
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For AISMR, percentage changes are shown in Figure 8. The models are arranged in the order of their 

rank in Table 2. It is found that, on average, there will be a 10% change in mean and a 20% change in 

standard deviation (values are listed in Table 3). It is found that the relative increase in mean monsoon 

rainfall is up to 10% for the models that are within the range of two standard deviations from the observed 

mean, given in Figure 2. It is observed that in CCSM4, the future mean AISMR and standard deviation are 

likely to change by 8.2077% and 22.0146%, respectively. Similarly, in CESM1-CAM5, GFDL-CM3, and 

GFDL-ESM2G, the mean and standard deviation are likely to change by 2.8859, 17.0459; 2.1689, 

13.4897; and −4.4374, 9.2692, respectively. It is found that model MRI-CGCM3 shows a maximum 

increase in mean AISMR of about 48.3% during the 21st century compared to the end of the 19th century 

for the RCP 8.5 scenario. From Figures 2–5, it is seen that this model has maximum variation from the 

observations. Similar results were reported in [14]. In a similar manner, a maximum increase in standard 

deviation of about 58% is observed in model BCC-CSM1.1. 

 

Figure 8. Percentage changes in mean and standard deviation of AISMR.  
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Table 3. Percentage changes in mean and standard deviation of AISMR for different models. 

Models 
Historical 

Mean (mm) 

Historical 

Std (mm) 

Projected 

Mean (mm) 

Projected 

Std (mm) 

Change in 

Mean (%) 

Change in 

Std (%) 

CCSM4 880.89 83.6526 953.1906 102.0684 8.2077 22.0146 

CESM1-CAM5 781.6400 70.2667 804.1977 82.2443 2.8859 17.0459 

GFDL-CM3 889.7600 91.6713 909.0578 104.0375 2.1689 13.4897 

GFDL-ESM2G 769.2800 97.0605 735.1439 106.0572 −4.4374 9.2692 

MIROC-ESM-CHEM 945.0700 63.5008 1007.1000 70.6841 6.5635 11.3121 

NorESM1-ME 753.6800 88.8100 816.1367 103.6032 8.2869 16.6571 

INM-CM4 742.5200 91.6529 768.5972 110.3688 3.5120 20.4204 

NorESM1-M 748.3000 96.9179 787.7335 92.8092 5.2697 −4.2394 

MIROC-ESM 954.8400 59.0414 1025.3000 77.6480 7.3792 31.5145 

GFDL-ESM2M 754.5900 106.6198 748.5410 110.0879 -0.8016 3.2528 

FIO-ESM 729.2900 102.9061 735.7116 122.7334 0.8805 19.2674 

MIROC5 1012.4000 92.0586 1077.900 101.7629 6.4698 10.5414 

MPI-ESM-LR 552.5200 64.7001 570.1562 82.4450 3.1920 27.4264 

BCC-CSM1.1 503.7300 97.0290 656.2200 153.5000 30.2722 58.2001 

HadGEM2-AO 461.2200 95.4294 522.0657 117.4652 13.1923 23.0912 

IPSL-CM5A-MR 483.1900 86.8206 550.2872 103.4100 13.8863 19.1077 

HadGEM2-ES 405.3700 106.5349 496.3961 122.4545 22.4551 14.9431 

GISS-E2-R 399.4900 56.4887 438.7487 75.3044 9.8272 33.3088 

CSIRO 323.8600 69.9287 382.8951 94.2486 18.2286 34.7781 

MRI-CGCM3 176.5100 61.5337 261.9405 76.3110 48.3998 24.0150 

Lastly, it is imperative to demonstrate significant changes in mean at various confidence levels, as 

shown in Figure 9. We trust the results in Figure 9 are robust on the grounds that percentage changes 

that appeared in Figure 8 do not precisely demonstrate distinctions that are statistically significant. Here, 

we test a null hypothesis that there is no difference in mean rainfall between historical and projected 

data, which is rejected at various confidence levels against the alternate hypothesis that the projected 

mean is greater than the historical mean using a one-tailed two-sample t-test [20]. The consequences of 

Student’s t-test are given in Table 4. 

 

Figure 9. Significant changes in mean at various confidence levels. 
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Table 4. Results of the t-test (the numbers in the first column represent meteorological 

subdivisions of the models mentioned in Figure 1). 

H—Represents either null hypothesis accepted or rejected. H = 1 implies null hypothesis is rejected, and it is 

accepted for H = 0.  

Figure 9 shows that subdivisions like Gujarat and West Rajasthan are liable to encounter 99% 

significant changes in mean, whereas subdivisions like Saurashtra, Kutch and Diu, Punjab, West Uttar 

Pradesh, Haryana, Chandigarh, Delhi, East Rajasthan, Rayalaseema, and Kerala are liable to experience 

80% significant changes, and the rest of the subdivisions are liable experience 99% significant changes 

in mean according to model CCSM4. 

Similarly, in other selected models, the subdivisions are liable to experience 80%–99% significant 

changes in mean. 

  

Subdivisions 

Of Indian 

Region. 

CCSM4H 

Value 

CCSM4 

Tstat 

Value 

CESM1-

CAM5 H 

Value 

CESM1-

CAM5 Tstat 

Value 

GFDL-

CM3 H 

Value 

Tstat 

Value 

GFDL-

ESM2G H 

Value 

Tstat 

Value 

3 1 3.1918 0 −2.3054 0 0.3423 0 −4.0926 

4 1 5.0288 0 −3.5458 1 2.8255 0 −4.1950 

5 1 5.6283 0 −5.9594 0 −7.6830 0 −6.9997 

6 1 2.4040 0 −2.9430 0 −0.4272 0 0.4418 

7 1 2.1844 0 −3.3821 0 −1.6730 1 2.7121 

8 1 3.3408 0 −2.7676 0 −0.1076 1 2.6312 

9 1 3.1278 0 −1.2017 0 −1.8879 0 −0.7752 

10 1 2.5083 0 −1.2557 0 0.8850 0 1.1680 

11 0 0.1866 0 −0.1518 0 0.7660 1 5.8242 

13 0 0.2579 0 −1.7960 0 −1.4831 1 5.5170 

14 0 0.4851 0 −2.3072 0 −1.6966 1 4.7469 

17 0 0.6212 0 −1.1210 0 −1.5813 1 4.5300 

18 0 0.5435 0 −1.6183 0 −1.2329 1 5.3156 

19 1 2.7873 0 −1.0441 0 −0.4740 1 3.2688 

20 1 2.6581 0 1.2123 0 −0.0810 1 4.2279 

21 0 0.7595 0 −0.8732 0 −0.8567 1 2.3534 

22 0 −0.2848 0 −1.4930 0 −0.6006 1 2.1334 

23 1 4.4458 0 −1.6183 0 0.8939 0 2.1334 

24 1 3.6481 0 −1.0441 0 −1.2785 0 0.0221 

25 1 3.6035 0 −0.0400 0 −1.0729 0 −0.6592 

26 0 1.5056 0 −0.6453 0 −0.0717 0 1.1050 

27 1 2.3492 0 −1.5515 0 −0.1111 0 1.36200 

28 0 1.3216 0 1.3444 0 −0.0376 0 −2.9115 

29 1 2.6522 0 0.5145 0 −1.5548 0 −3.1241 

30 1 11.6299 0 0.2144 0 0.0838 0 −3.1855 

31 1 2.7201 0 0.2096 0 1.2837 0 0.3814 

32 1 4.4458 0 −1.6183 0 0.0086 0 −0.4567 

33 1 4.9104 0 0.6908 0 −0.9744 0 −1.9052 

34 1 3.5646 0 1.0849 1 2.4366 0 0.1630 

35 0 −0.3084 0 1.4092 0 −2.5387 0 −1.0303 
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5. Conclusions 

This study investigates seasonal mean changes in AISMR and 30 meteorological subdivisions of India 

over the historical time period 1871–2005 and projected time period 2006–2100. We have found that the 

diverse models are fit for capturing distinctive parts of monsoon precipitation. These are the 

accompanying conclusions drawn from our study: 

Using the multiple-attribute decision-making technique TOPSIS, we found that model CCSM4 

(National Center for Atmospheric Research, USA) best fits the mean rainfall observations. 

A few models catch the time-slice (seasonal) forecasts precisely, while the others have a superior spatial 

determination. Also, some different models still have fantastic concurrence with the observed data.  

There is no all-inclusive answer for selecting the best model for a definite analysis. Consequently, it 

becomes indispensable to deliberately select the model that will yield precise forecasts relying upon the 

sort of examination required. In such a manner, this study is a first step to deliberately audit and select 

the ideal models for mean occasional expectation utilizing measurable methodologies.  

Furthermore, this focus additionally gives us a chance to painstakingly audit and select the models 

for foreseeing geological circulation of the changing precipitation rates across the nation. This lends 

more believability and weight to the results provided in this study.  

We look at the execution of models on AISMR and spatial patterns of subdivisions for the historical 

period of 1871–2005 from the precipitation data. From our examination we presume that four models, 

in particular CCSM4, CESM1-CAM5, GFDL-CM3, and GFDL-ESM2G, best catch the behavior of 

seasonal monsoon precipitation.  

CCSM4 predicts an 8.2% change in AISMR mean precipitation which is roughly the average of 

different models, though CESM1-CAM5 and GFDL-CM3 foresee a 2% change in mean. Similarly, 

CCSM4 predicts a 22% change in standard deviation which is around average for the different models.  

 Recent study [16] has partitioned the CMIP5 models into unmistakable groups in light of the mean 

precipitation, seasonal cycle, and so forth. Furthermore, it is found that they reported that the group that 

indicates the highest reliability in projected changes in mean precipitation matches well with our four 

best models. 

Subdivisions like Assam, Bihar Plains, East Uttar Pradesh., West Madhya Pradesh Madhya 

Maharashtra, Konkan and Goa, Marathwada, North Interior Karnataka, and Rayalaseema are prone to 

experience 10%–20% changes in mean precipitation, while subdivisions like Telangana, Orissa, 

Gangetic West Bengal, and Tamilnadu are liable to experience 20%–30% changes in mean precipitation, 

which is most astounding among all the subdivisions. The majority of these subdivisions show critical 

changes at the 99% confidence level (Figure 9). 

In subdivisions such as Saurashtra and Kutch and Kerala, the mean precipitation is prone to diminish 

by 0%–10%, which indicates critical changes at the 80% confidence level (Figure 9). The diminishing 

mean precipitation in Kerala is a disturbing circumstance as this subdivision denotes the onset of an 

Indian summer monsoon. 
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