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Abstract: Online-coupled climate and chemistry models are necessary to realistically represent 

the interactions between climate variables and chemical species and accurately simulate 

aerosol direct and indirect effects on cloud, precipitation, and radiation. In this Part I of a 

two-part paper, simulations from the Weather Research and Forecasting model coupled with 

the physics package of Community Atmosphere Model (WRF-CAM5) are conducted with 

the default heterogeneous ice nucleation parameterization over East Asia for two full years: 

2006 and 2011. A comprehensive model evaluation is performed using satellite and surface 

observations. The model shows an overall acceptable performance for major meteorological 

variables at the surface and in the boundary layer, as well as column variables (e.g., precipitation, 

cloud fraction, precipitating water vapor, downward longwave and shortwave radiation). 

Moderate to large biases exist for cloud condensation nuclei over oceanic areas, cloud variables 

(e.g., cloud droplet number concentration, cloud liquid and ice water paths, cloud optical 
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depth, longwave and shortwave cloud forcing). These biases indicate a need to improve the 

model treatments for cloud processes, especially cloud droplets and ice nucleation, as well 

as to reduce uncertainty in the satellite retrievals. The model simulates well the column 

abundances of chemical species except for column SO2 but relatively poor for surface 

concentrations of several species such as CO, NO2, SO2, PM2.5, and PM10. Several reasons 

could contribute to the underestimation of major chemical species in East Asia including 

underestimations of anthropogenic emissions and natural dust emissions, uncertainties in  

the spatial and vertical distributions of the anthropogenic emissions, as well as biases in 

meteorological, radiative, and cloud predictions. Despite moderate to large biases in the 

chemical predictions, the model performance is generally consistent with or even better than 

that reported for East Asia with only a few exceptions. The model generally reproduces the 

observed seasonal variations and the difference between 2006 and 2011 for most variables 

or chemical species. Overall, these results demonstrate promising skills of WRF-CAM5 for 

long-term simulations at a regional scale and suggest several areas of potential improvements. 

Keywords: WRF-CAM5; East Asia; coupled climate-chemistry modeling; model evaluation; 

trend analysis 

 

1. Introduction 

Online-coupled climate/meteorology-chemistry models are essential tools for simulating the real 

atmosphere in which gases, aerosols, and cloud interact through many physical and chemical processes that 

influence air pollution, weather, and climate ([1,2]). A number of online-coupled models on regional and 

global scales have been developed since the mid-90s. Detailed reviews of recently developed online-coupled 

models can be found in several review papers (e.g., [1–4]). Current online-coupled models differ largely 

in their treatments of the impacts of aerosols on the formation of various types of clouds including warm, 

ice, mixed-phase, and convective clouds. While most models represent aerosol activation for cloud 

droplet formation in warm and mixed-phase clouds, very few models account for the impacts of aerosols 

on the formation of cumulus and ice clouds. Differences in aerosol-cloud interaction treatments contribute 

to the largest uncertainties in predicting aerosol indirect effects by online-coupled models.  

To facilitate the use of regional models as testbed for physics parameterizations used in global models, a 

new online-coupled climate and chemistry model, i.e., the Weather Research and Forecasting model coupled 

with chemistry (WRF/Chem) ([5]) with the physics suite of Community Atmospheric Model version 5 

(referred to as WRF-CAM5) ([6,7]) has been recently developed. WRF-CAM5 is based on WRF/Chem 

version 3.5 released as of April 2013 and CAM version 5.0 released as of June 2010. WRF-CAM5, with the 

CAM5 physics suite (i.e., aerosol, cloud, deep and shallow convections, and turbulence) as described in 

Neale et al. [8] and Liu et al. [9] has been used to estimate the radiative forcing and climatic impacts of 

aerosols (e.g., [6]). WRF-CAM5 offers several heterogeneous ice nucleation parameterizations (INPs) for 

mixed-phase cloud regimes including the default INP based on Meyers et al. [10] and three new INPs 

based on Niemand et al. [11], Phillips et al. [12], and DeMott et al. [13] that were recently incorporated 

into WRF-CAM5 and evaluated using observations of a supercell storm case over Oklahoma in Central 
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U.S. WRF-CAM5 with different heterogeneous INPs predict quite different cloud ice, snow, and liquid 

water and they are highly sensitive to the dependent variables such as the surface areas of dust particles, 

which may lead to large uncertainty in simulating dust effects on clouds and radiative forcing. As a newly 

developed online-coupled model, there has been very limited evaluation of WRF-CAM5 for its capability 

in simulating climate, air pollutants, and various climate-chemistry feedback mechanisms. 

In this study, WRF-CAM5 with two INPs: the Meyers et al. [10] (M92) and the Niemand et al. [11] 

(N12) INPs is applied to East Asia for two full years: 2006 and 2011. A comprehensive model evaluation 

is first conducted using available observations from various surface networks and satellites, and the 

results using the two INPs are then intercompared and analyzed. Since WRF-CAM5 is a newly 

developed model, a comprehensive evaluation of its meteorological and chemical predictions is necessary 

to assess its skills in reproducing available observations because the model’s skills may affect the 

evaluation and comparison of ice nucleation schemes within WRF-CAM5. As Part I of a two-part study, 

this paper describes the selected years, model setup, and evaluation of baseline simulations for the  

two selected years using the M92 INP. Part II describes the sensitivity simulations using the N12 INP 

for both years and the intercomparison between results using M92 and N12. The objectives of this study 

are to evaluate the performance of WRF-CAM5 in simulating climate, air pollutants, and their 

interactions in 2006 and 2011, as well as the differences between 2006 and 2011, and to examine the 

sensitivity of model predictions to model representations of heterogeneous ice nucleation processes for 

mixed-phase clouds. 

2. Simulation Episodes, Model Configurations, and Evaluation Protocols 

2.1. Modeling Episode and Setup 

During the past decades, East Asia, especially China, experienced a rapid economic increase in 

conjunction with urbanization, leading to increased emissions and severe air pollutions. For example, 

the emissions of SO2 and NOx over China have increased by 60% and 80%, respectively, from 2000 to 

2006. The drastic growth of energy and natural resources consumption leads to dramatically increased 

exposure to major trace gases and aerosols and subsequently significant air quality degradation.  

Hao et al. [14] reported that 207 out of 522 cities with air quality monitoring sites in China were severely 

polluted and in non-attainment zones. Due to the high anthropogenic emissions and natural emissions of 

mineral dust as well as the long range transport of primary and secondary pollutants, East Asia provides a 

supreme testbed for studying aerosol-cloud interactions and ice nucleation in mixed-phase clouds as well 

as for evaluating the model performance of WRF-CAM5 under a variety of atmospheric conditions 

ranging from coastal/desert to heavily-polluted conditions. 

In this work, WRF-CAM5 simulations over East Asia are performed at a horizontal grid resolution 

of 36-km and a vertical resolution of 23 layers from 1000 hP to 100 hP for two full years: 2006 and 

2011. An emission reduction target of 10% reduction of SO2 emission from 2005 to 2010 was proposed 

in the Chinese 11th (2006–2010) Five-Year Plan (FYP11). Based on the proposed emission reduction 

targets in the Chinese 12th (2011–2015) Five-Year Plan (FYP12), the total emissions of SO2 and NOx 

are projected to be reduced by 8% and 10% from 2010 to 2015, respectively. As the first year of the 

FYP11, 2006 is considered as the year with the highest SO2 emissions during 2000 to 2011. The selection 
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of 2006 and 2011 permits an examination of the impacts of proposed emission changes on air quality 

from 2006 to 2011 due to the emission control policies during FYP11 and FYP12. In addition, according 

to NOAA’s Climate Prediction Center (CPC), two separate cool-phase La Niña events were observed in 

2011, resulting in relatively colder winter and spring compared to 2006. However, a warmer summer 

was reported in 2011. Due to the impact of the La Niña events, the global precipitation over land in 2011 

is the second highest since 1900, behind 2010. The precipitation anomalies vary across East Asia, with 

northwestern China wetter and northeastern China drier in 2011. Such differences in meteorology may 

have impacts on air quality. In this study, the model’s responses to the emission reductions and the 

changes in meteorology from 2006 to 2011 are examined. 

Table 1 summarizes the major physics and chemistry options used in this study. The major physics 

options include the Rapid Radiative Transfer Model for Global Climate Models (GCMs) (RRTMG) 

longwave and shortwave radiation schemes ([15,16]), the Community NCEP, Oregon State University, 

Air Force, and Hydrologic Research Lab-NWS Land Surface Model (NOAH) ([17]), the Monin-Obukhov 

surface layer scheme ([18,19]), the University of Washington boundary layer scheme from CAM5 ([20]), 

the Zhang-Macfarlane cumulus scheme ([21]) with the modifications from Song and Zhang ([22]), the 

Morrison two-moment cloud microphysics scheme ([23]), and the Fast Tropospheric Ultraviolet-Visible 

(FTUV) photolysis scheme ([24,25]). For aerosol activation to form cloud droplets, the default AR-G02 

parameterization of Abdul-Razzak and Ghan ([26]) is used to simulate the impact of aerosols on the 

formation of warm, mixed-phase, and convective clouds. The primary ice crystal nucleation treatment is 

based on the scheme developed by Liu et al. [27] (L07), which simulates homogeneous ice nucleation, 

heterogeneous deposition nucleation, immersion freezing, and contact freezing in mixed-phase and cirrus 

clouds. Immersion freezing is based on the formulation of Bigg ([28]), contact freezing follows the 

parameterization of Young ([29]), and heterogeneous deposition/condensation nucleation is based on M92. 

While M92 is used in the baseline simulations, N12 is used in the sensitivity simulations to be described in 

the Part II paper. The gas-phase and aqueous-phase chemistry is baesd on the Carbon-Bond mechanism 

version Z (CBMZ) ([30]) and the simple aqueous-phase chemical mechanism of Barth et al. ([31]), 

respectively. A 3-mode (i.e., Aitken, accumulation, and coarse modes) modal aerosol module (MAM3) is 

used to predict aerosol number and mass concentrations of major aerosol species, including black carbon 

(BC), mineral dust, sulfate (SO4
2−), ammonium (NH4

+), sea salt, and primary and secondary organic aerosols 

(POA and SOA, respectively). 

The meteorological initial and boundary conditions are from the National Centers for Environmental 

Prediction/Final (NCEP/FNLs) Reanalysis Meteorological data. The chemical initial conditions are from 

the Community Multiscale Air Quality (CMAQ) modeling system, and the chemical boundary conditions 

are from the Goddard Earth Observing System Atmospheric Chemistry Transport Model (GEOS-Chem). 

The simulations with the M92 and N12 INPs are conducted for 2006 and 2011 with two weeks for spin 

up. An additional simulation with the N12 INP but without dust emissions is performed. The results for 

the five full years are evaluated and analyzed in this and the companion papers.  
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Table 1. Model configurations and inputs used in this study. 

Attribute Model Configuration 

Model WRF-CAM5 

Simulation period 
18 December 2005 to 31 December 2006 (spinup from 18–31 December 2005)  

18 December 2010 to 31 December 2011 (spinup from 18–31 December 2005) 

Domain East Asia 

Horizontal resolution 36 km (164 × 97) 

Vertical resolution 23 layers from 1000 mb to 100 mb, with 8 layers in PBL 

Shortwave radiation The Rapid Radiative Transfer Method for GCMs (RRTMG) ([15,16]) 

Longwave radiation RRTMG ([15,16]) 

Land surface 
Community NCEP, Oregon State University, Air Force, and Hydrologic 

Research Lab-NWS Land Surface Model (NOAH) ([17]) 

Surface layer Monin-Obukhov ([18,19]) 

PBL UW boundary layer scheme from CAM5 ([20]) 

Cumulus Zhang-MaCfarlane ([21]) with modifications from Song and Zhang ([22]) 

Microphysics Morrison two-moment scheme ([23]) 

Aerosol activation Abdul-Razzak and Ghan ([25]) 

Ice nucleation Liu et al. ([27]) 

Heterogeneous ice  

nucleation 

Meyers ([10]) in the base simulation  

Niemand ([11]) in the sensitivity simulation 

Gas-phase chemistry Carbon-Bond mechanism version Z (CBMZ) ([30]) 

Photolysis Fast Tropospheric Ultraviolet-Visible (FTUV) ([24]) 

Aerosol module A modal aerosol model with three lognormal modes (MAM3) ([9]) 

Aqueous-phase chemistry Barth et al. ([31]) 

Meteorological IC and BC NCEP-FNL reanalysis data; re-initialization every 5 days 

Chemical IC Community Multiscale Air Quality (CMAQ) modeling system ([32]) 

Chemical BC 
The Goddard Earth Observing System Atmospheric Chemistry Transport 

Model (GEOS-Chem) 

Anthropogenic emissions 

Multi-resolution Emission Inventory for China (MEIC) and the 

Intercontinental Chemical Transport Experiment-Phase B (INTEX-B) for the 

rest of the domain ([33]) 

Biogenic emissions 
Model of Emissions of Gases and Aerosols from Nature (MEGAN) version 2 

([34]) 

Dust emissions Zender et al. ([35]) implemented by Wang et al. ([36]) 

Sea-salt emissions Gong et al. ([37]) 

2.2. Observational Datasets and Evaluation Metrics 

Observational data are taken from surface observations for meteorological variables and gas and aerosol 

concentrations, and from satellites for meteorological, radiative, aerosol, and cloud variables (Table 2). 

The meteorological data for surface temperature at 2 meters (T2), air pressure (P), wind speeds at 10 meters 

(WS10), water vapor mixing rations at 2 meters (Q2), and daily precipitation are available at 900 sites over 

East Asia from the National Climatic Data Center (NCDC). Several datasets are used to evaluate surface 

chemical concentration predictions including SO2, NO2, and PM10 derived based on air pollution index 

(API) over mainland China from the Ministry of Environmental Protection of China (MEP), PM10, PM2.5, 
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SO2, NO2, CO, and O3 over Hong Kong, China from the Environmental Protection Department (EPD) of 

Hong Kong, NO, NO2, CO, SO2, O3, and PM10 over Japan from the National Institute of Environmental 

Studies, Japan (NIES), PM10, PM2.5, SO2, NO, NO2, CO, and O3 over Taiwan from the Taiwan Air Quality 

Monitoring Network (AQMN), and PM10, CO, NO2, O3, and SO2 over South Korea from Air Korea. 

Observations of PM2.5 and its composition (i.e., SO4
2−, NO3

−, NH4
+, elemental carbon (EC), and organic 

carbon (OC)) at a rural site (Miyun (MY)) and a suburban site (Tsinghua University (THU)) in Beijing, 

China described in Duan et al. ([38]) are also used in the model evaluation. While some datasets have high 

accuracy (e.g., the accuracy of chemical data from Hong Kong is within ±10% ([39]), some datasets 

contain large uncertainties, e.g., the concentrations derived based on API are uncertain. 

Observational data are also taken from several satellites or satellite-based analysis data for meteorological 

and chemical column evaluations, including precipitation from the Global Precipitation Climatology Project 

(GPCP); precipitable water vapor (PWV), cloud fraction (CF), cloud liquid water path (LWP), cloud ice 

water path (IWP), cloud optical depths (COT), cloud condensation nuclei (CCN) (over ocean), cloud droplet 

number concentration (CDNC), and aerosol optical depth (AOD) from the Moderate Resolution Imaging 

Spectroradiometer (MODIS); downward shortwave radiation at surface (SWD), downward longwave 

radiation at surface (LWD), shortwave cloud forcing (SWCF), and shortwave cloud forcing (LWCF) from 

the Clouds and the Earth’s Radiant Energy System (CERES); tropospheric ozone residual (TOR) from the 

Ozone Monitoring Instrument (OMI); column CO mass abundance from the Measurements of Pollution in 

the Troposphere (MOPITT); and column mass abundances of NO2, SO2, and HCHO from the Scanning 

Imaging Absorption Spectrometer for Atmospheric Chartography (SCIAMACHY). Terra satellite passes the 

equator at 10:30 a.m. local time, which corresponds to 0000-0500 UTC when the Terra orbits cross the East 

Asia domain. Therefore, the simulated monthly mean for all the variables related to MODIS are calculated 

as the average of model output values during 0000-0500 UTC. Similar to surface network data, 

uncertainties also exist for satellite-derived data, in particular, CDNC, LWP, IWP, and COT, as discussed 

in literature (e.g., [40,41]). 

Following Zhang et al. ([42]), a number of statistical measures are calculated to assess the domain-wide 

model performance, such as correlation coefficient (R), normalized mean bias (NMB), normalized mean 

error (NME), mean bias (MB), mean absolute gross error (MAGE), root mean square error (RMSE), and 

fractional bias (FB), fractional gross error (FGE), and Index of Agreement (IOA). To minimize the impact 

of boundary conditions on model evaluation, observations and model outputs within the lateral boundaries 

defined by the five grid cells on each side of the domain are excluded in calculating the performance statistics. 

Scatter plots are made for the comparison of observed and simulated surface concentrations of major 

pollutants at each surface network, including MEP (mainland China), NIES (Japan), AQMN (Taiwan), EPD 

(Hong Kong), and AirKorea (South Korea). The site-specific comparison of observed and simulated mass 

concentrations of PM2.5 and its components is performed at MY and THU sites in Beijing, China. 
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Table 2. Surface and satellite observations used in the model evaluation. 

Database* Type Sites Variables/Species Data Frequency 

NCDC Meteorology Domain-wide 

Precip (mm∙day−1) Daily 

T2 (°C) 

Every 6  
RH (%) 

Q2 (kg∙kg−1) 

WS10 (m∙s−1) 

CERES Meteorology Domain-wide 

SWD (W∙m−2) 

Monthly 
GLW (W∙m−2) 

SWCF (W∙m−2) 

LWCF (W∙m−2) 

GCPC Meteorology Domain-wide Precip (mm∙day−1) Monthly 

OMI Column Domain-wide TOR (Dobson Unit)(DU) Monthly 

SCIAMAC

HY 
Column Domain-wide 

SO2(DU) 

Monthly NO2 (1015 molecules∙cm−2)  

HCHO(1015 molecules∙cm−2) 

MOPITT Column Domain-wide CO (1017 molecules∙cm−2) Monthly 

MODIS/TE

RRA 
Column Domain-wide 

CDNC (cm−3) 

Monthly 

AOD 

COT 

LWP (g∙m−2) 

IWP (g∙m−2) 

PWV (cm) 

CCN (# cm−2) (ocean) 

MEP Chemistry 
Mainland 

China 
SO2, NO2, PM10 Daily 

NIES Chemistry Japan CO, NO, NO2, O3, SO2, and PM10 Monthly 

AQMN Chemistry Taiwan CO, NO, NO2, O3, SO2, PM2.5 and PM10 Hourly 

EPD Chemistry Hong Kong CO, NO2, O3, SO2, PM2.5 and PM10  Hourly 

AirKorea Chemistry South Korea CO, NO2, O3, SO2, and PM10  Monthly 

Beijing Chemistry 

THU (Beijing) 

PM2.5, SO4
2−, NO3

−, Na+, Cl−, and NH4
+ Weekly Miyun 

(Beijing) 

EANET Chemistry 

Mainland 

China, Japan, 

and  

South Korea 

NO, NO2, O3, SO2, PM2.5 , PM10,  

and SO4
2− 

Monthly 

* NCDC—National Climate Data Center; CERES—Clouds and the Earth’s Radiant Energy  

System; GPCP—Global Precipitation Climatology Project; OMI—Ozone Monitoring Instrument;  

SCIAMACHY—Scanning Imaging Absorption Spectrometer for Atmospheric Chartography;  

MOPITT—Measurements of Pollution in the Troposphere; MODIS—Moderate Resolution Imaging 

Spectroradiometer; MEP—Ministry of Environmental Protection of China (http://datacenter.mep.gov.cn/); 

NIES—National Institute of Environmental Studies, Japan (http://www.nies.go.jp/igreen/index.html); 

AQMN—Taiwan Air Quality Monitoring Network (http://taqm.epa.gov.tw/taqm/en/default.aspx);  

EPD—Environmental Protection Department of Hong Kong (http://epic.epd.gov.hk/), AirKorea—air quality 

data from South Korea (http://www.airkorea.or.kr/), THU—PM data from Tsinghua University, Beijing,  

China ([38]); EANET—the Acid Deposition Monitoring Network in East Asia (http://www.eanet.asia/). 

http://datacenter.mep.gov.cn/
http://www.nies.go.jp/igreen/index.html
http://taqm.epa.gov.tw/taqm/en/default.aspx
http://epic.epd.gov.hk/
http://www.airkorea.or.kr/
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3. Evaluation of Baseline Simulations 

3.1. Meteorological Predictions 

Tables 3 and S1 summarize the annual mean model performance statistics of the meteorological, 

radiative, and cloud predictions from the 2006 and 2011 baseline WRF-CAM5 simulations, respectively. 

Figure 1 shows the spatial distributions of annual mean MBs of T2, Q2, WS10, and precipitation against 

NCDC dataset for both years. The model performs well in predicting P, T2, Q2, and WS10 for both 

years with annual mean MBs of −13.9 and −13.4 hPa for P, −0.9 and −1.1 °C for T2, 0.03 and 0.1 g∙kg−1 

for Q2, 0.3 and 0.4 m∙s−1 for WS10, respectively. The corresponding annual mean MAGEs are 22.2 and 

21.8 hPa, 1.9 and 2.0 °C, 0.8 and 0.8 g∙kg−1, 1.0 and 1.0 m∙s−1, respectively, and the corresponding annual 

mean RMSEs are 35.9 and 35.3 hPa, 2.7 and 2.7 °C, 1.2 and 1.1 g∙kg−1, 1.3 and 1.3 m∙s−1, respectively. 

The values of annual mean IOA are 0.7 for WS10 and 1 for P, T2, and Q2 in both years. The model 

reproduces the observed seasonal variations for P, T2, and Q2. For WS10, the observed domain-wide 

mean WS10 is the highest in spring, followed by winter, fall, and summer, the simulated domain-wide 

mean WS10 is the highest in winter, followed by spring, fall, and summer.  

The largest discrepancy between the observed and simulated T2 occurs in summer with seasonal mean 

MBs of −1.3 °C in 2006 and −1.4 °C in 2011. Consistent with Ma et al. ([43]) and Zhang et al. ([44]), 

large cold bias occurs in the Tibet Plateau, where the Mt. Himalayas covered with thick snow is located 

(see Figure 1). The large cold bias indicates the limited capability of WRF-CAM5 in reproducing 

observed snow cover and its rate of melting. Large biases (both warm and cold biases) in T2 also occur 

over Japan, South and North Korea. WS10 is slightly underpredicted in summer in 2006 and overpredicted 

in other seasons in 2006 and in all seasons in 2011. The overpredictions in WS10 may be responsible 

for the underpredictions of the chemical concentrations, which will be discussed in Section 3.2. Despite 

overpredictions, WS10 predictions in this work have much lower biases comparing to most other 

WRF/Chem applications which reported MBs of 1.3–2.6 m∙s−1 over East Asia for 2001 ([45]), 2006 ([46]), 

and 2010 ([47]), and 0.03–1.2 m∙s−1 for 2010 over North America ([48]), and 1.0–1.4 m∙s−1 for 2010 

over Europe ([48]). This is because the Monin-Obukhov surface layer scheme ([18,19]) can represent 

surface roughness and topographical features well, which leads to better representation of surface drag in the 

Bretherton and Park ([20]) PBL scheme used in this work than that used in the YSU PBL scheme used 

in most previous WRF/Chem applications.  

Emery et al. ([49]) proposed threshold values for satisfactory performance for several meteorological 

variables: MB within ±0.5 °C, MAGE of ≤ 2.0 °C, and IOA of ≥ 0.8 for T2, MB within ±1.0 g∙kg−1, MAGE 

of ≤ 2.0 g∙kg−1, and IOA of ≥ 0.6 for Q2, and MB within ± 0.5 m∙s−1, RMSE of 2.0 m∙s−1 and IOA of ≥ 0.6 

for WS10. Note that such criteria were developed based on the meteorological simulations with the four 

dimensional data assimilation (FDDA). In this work, FDDA is not used to allow the meteorology-chemistry 

feedbacks to be investigated. Instead, T2, Q2, and WS10 are re-initialized every five days as a compromise 

to allow the simulation of feedbacks while periodically constraining the simulation with re-initialized 

meteorological conditions based on observations. As a result, the model agreement with observations is 

not expected to be comparable with simulations that use FDDA. The annual mean MBs of T2 are larger 

than the suggested threshold values by Emery et al. ([49]) but they are comparable or even better than the 

performance using MM5 (e.g., [44,50]) and WRF (e.g., [47,48,51,52]), and hence deemed acceptable. 
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The annual mean values of MAGEs, IOAs, and RMSEs of T2, Q2, and WS10 are also within the 

suggested threshold values. 

Figure 1. Spatial distribution of annual mean MBs of T2, Q2, WS10, and precipitation 

against NCDC dataset for the 2006 and 2011 WRF-CAM5 simulations with M92. 

Precipitation is overpredicted against both surface observations from NCDC and the merged satellite 

and rain gauge data from GPCP, with annual-mean NMBs of 13.6% and 9.0%, for 2006 and annual-mean 

NMBs of 11.1% and 2.5% for 2011. In 2006, the largest overpredictions of precipitation occur in fall 

against NCDC, with an NMB of 23.8%, and in winter against GPCP, with an NMB of 35.1%. In 2011, the 

largest overpredictions of precipitation occur in winter against NCDC, with an NMB of 28.1%, and in fall 

against GPCP, with an NMB of 20.9%. Those biases are either consistent or better than other applications 

of WRF, WRF/Chem, or WRF-CAM5 over East Asia reported in the literature (e.g., [45,53–55]). The 

moderate overpredictions in some seasons against NCDC and GPCP in both years may be due to several 

possible reasons including neglecting the impact of effect of clouds on radiation through the changes of 

droplet and ice effective radii ([56]) and overpredictions of convective precipitation intensity by the 

 2006 2011 

T2 

  

Q2 

  

WS10 

 

 

Precip (NCDC) 
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cumulus parameterization. The model captures well the observed seasonal variations in both NCDC and  

GPCP data. 

As shown in Figure 2, the model generally captures the observed spatial distributions of precipitation 

from GPCP in all seasons in both years. In 2006, precipitation is slightly to moderately overpredicted in 

all seasons, particularly over oceanic areas, resulting in a large annual mean overprediction over western 

Pacific. In 2011, a large overprediction also occurs over western Pacific in all seasonal and annual means, 

although the domain-wide mean precipitation is slightly or moderately underpredicted in summer and 

spring. Precipitation is moderately overpredicted over Taiwan and Japan in all seasons in both years, 

leading to the underpredictions of concentrations of gaseous and PM species which will be discussed in 

Section 3.2. The GPCP merged dataset contains precipitation estimates from satellite and rain gauge 

observations. It gives comparable precipitation to NCDC data in terms of domain-wide mean and spatial 

distributions (see Figure 2 and Tables 3 and S1), but its coarse horizontal resolution of 2.5° × 2.5° cannot 

capture the considerable spatial variability at a finer grid resolution, especially in southeastern China, 

Japan, and over oceanic areas. Comparing to 2006 NCDC, 2006 GPCP gives higher precipitation in 

summer and fall but lower precipitation over land in winter and spring, leading to a slightly higher 

observed annual mean precipitation. GPCP gives higher precipitation in all seasons in 2011 than does 

NCDC, especially over oceanic regions. The observed seasonal variation for precipitation is the same 

for NCDC and GPCP in 2011, but somewhat different in 2006. The inconsistencies in magnitudes and 

seasonality between NCDC and GPCP indicate uncertainties in observations that also contribute in part 

to the model performance evaluation. 
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Table 3. Performance statistics for meteorological predictions for 2006 WRF-CAM5 baseline simulation with M92. 

Variable 
Data 

Source 
Number 

Mean 

Obs. 
Sim. 

Mean 

Sim. 
R 

NMB 

(%) 

NME 

(%) 
MB MAGE RMSE FB FGE IOA 

P (mb) NCDC 6946 939.7 M92 925.8 0.96 −1.5 2.4 −13.9 22.2 35.9 −0.02 0.03 1.0 

T2 (°C) NCDC 10524 13.8 M92 12.9 0.98 −7 14 −0.9 1.9 2.7 0.92 −0.93 1.0 

Q2 (g∙kg−1) NCDC 6945 8.0 M92 8.0 0.98 0.4 11 0.03 0.8 1.2 0.00 0.13 1.0 

WS10 (m∙s−1) NCDC 8010 3.1 M92 3.4 0.54 11 32 0.3 1.0 1.3 0.10 0.29 0.7 

Precip (mm∙day−1) 
NCDC 10131 2.7 M92 3.0 0.68 14 62 0.4 1.7 3.1 - - 0.8 

GPCP 15908 2.9 M92 3.1 0.76 9 37 0.3 1.0 1.5 −0.02 0.40 0.9 

CCN (cm−2) 

MODIS 

4917 0.8 M92 0.5 0.78 −33.8 40.9 −0.3 0.3 0.7 −0.2 0.3  

CDNC (cm−3) 9111 143.0 M92 101.0 0.63 −29.3 36.2 −41.9 51.7 65.2 −0.4 0.5  

CF 13398 0.6 M92 0.6 0.81 −12.0 17.2 −0.1 0.1 0.1 −0.2 0.2  

PWV (cm) 13398 2.2 M92 2.2 0.99 −0.9 6.3 0.0 0.1 0.2 0.05 0.1  

LWP (g∙m−2) 13398 110.3 M92 48.0 0.87 −56.5 56.6 −62.3 62.4 65.6 −1.0 1.0  

IWP (g∙m−2) 13398 245.1 M92 9.5 0.01 −96.1 96.1 −235.6 235.6 243.9 −1.8 1.8  

AOD 13070 0.3 M92 0.2 0.70 −35.7 43.6 −0.1 0.1 0.2 −0.5 0.6  

COT 13398 16.3 M92 8.2 0.84 −50.0 50.3 −8.2 8.2 8.9 −0.8 0.8  

GLW (W∙m−2) 

CERES 

13398 324.6 M92 317.4 0.99 −2.2 2.6 −7.2 8.4 12.0 −0.03 0.03  

SWD (W∙m−2) 13398 183.4 M92 204.9 0.91 11.7 11.8 21.5 21.6 25.0 0.1 0.1  

SWCF (W∙m−2) 13398 −51.7 M92 −42.0 0.90 −18.7 21.2 −9.7 10.9 13.3 −0.3 0.3  

LWCF (W∙m−2) 13398 29.1 M92 18.5 0.68 −36.4 36.5 −10.6 10.6 11.6 −0.5 0.5  

Number: number of observations; Sim: simulation; Obs: observation; NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean error; 

RMSE: root mean square error; FB: fractional bias; FGE: fractional gross error; IOA: index of agreement.
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Figure 2. Spatial distributions of simulated seasonal-average precipitation for the 2006 and 2011 simulations with M92 against the GPCP data. 
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Figure 3. Spatial distributions of annual mean observed and simulated CCN, CDNC, CF, 

PWV, CWP, and IWP for the 2006 and 2011 simulations with M92. 

Figures 3 and 4 compare observed and simulated annual mean spatial distributions of radiation and 

cloud related variables for both years. The simulated CCN at a supersaturation (S) of 0.5% (CCN0.5) are 

evaluated against MODIS observations over oceanic area (note that no CCN data are available over land 

areas). Moderate underpredictions of CCN occur for all months and seasons in 2006 and 2011, especially 

in winter, with annual mean NMBs of −33.8% in 2006, and annual mean NMBs of −32.2% in 2011 

(Tables 3 and S1 and Figure 3). The model does not reproduce the seasonal variation of the CCN over 

oceanic area. The underpredictions in CCN are due to possible underpredictions of sea salt over coastal 

areas and uncertainties in the CCN retrievals. CDNC in warm clouds is moderately underpredicted in 

both years against the MODIS-derived CDNC by Bennartz ([40]). The annual mean MB and NMB are 

−41.9 cm−3 and −29.3% in 2006, respectively. The annual mean MB and NMB are −42.6 cm−3 and −30.4% 

in 2011, respectively. The model generally reproduces the seasonal variation of CDNC for both years. 

As shown in Figure 3, the largest underpredictions in CDNC occur over mainland China, Japan, and 

North and South Korea. CDNC depends strongly on several parameters such as CCN, updraft velocity, 
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mass accommodation, and supersaturation in the AR-G02 parameterization. The underpredictions of 

CDNC are caused by possible underpredictions over land and moderate underpredictions over oceanic 

areas for CCN as well as possible underestimate in the fraction of activated particles by the AR-G02 

parameterization due to the simplified calculation of maximum supersaturation and other assumptions 

and approximations used in the AR-G02 parameterization ([51]) and the omission of CCN from 

insoluble particles such as mineral dust and black carbon through an absorption mechanism ([55,57]). 

The derived CDNC is based on MODIS retrievals of cloud properties such as cloud effective radius 

(CER), LWP, and COT, all of which are subject to uncertainties. As indicated by Bennartz ([40]), the 

errors in CDNC can be up to 260%, especially for regions with low CF (<0.1) (e.g., northwestern China, 

see Figure 3). The large uncertainties in derived CDNC may affect the evaluation of the simulated CDNC. 

 2006 2011 
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Figure 4. Spatial distributions of annual mean observed and simulated COT, AOD, LWD, 

SWD, LWCF, and SWCF for the 2006 and 2011 simulations with M92. 

The simulated annual-mean CF agrees well with the MODIS data in terms of domain-wide mean with 

NMBs of −12.0% in 2006 and −5.7% in 2011. The spatial distributions of annual mean CF are overall 

consistent with observations except for northwestern China where underpredictions occur (Figure 3). 

Relatively large discrepancies of the spatial distribution of simulated CF against MODIS occur in winter 
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and spring in 2006 and 2011, particularly over northern China (Figures not shown). Such discrepancies 

may be due to the underpredictions of water and possible underpredictions of CCN over northern China 

in dry seasons (i.e., winter and spring). The simulated and observed PWV is overall consistent in terms 

of both magnitudes and spatial distributions for both 2006 and 2011. Large uncertainties exist in the 

predictions in LWP, IWP, and COT. LWP is significantly underpredicted over the most of the domain, 

particularly over Tibet Plateau and Mongolia Plateau, in all seasons and annually (see Tables 3 and S1, 

and Figure 3), with annual mean NMBs of −56.5% and −49.8%in 2006 and 2011, respectively. The 

largest underprediction occurs in fall in 2006 and in winter in 2011; the best model performance occurs 

in summer for both years. Such underpredictions may be due to the model’s limitations in simulating 

cloud properties, aerosol-cloud interactions, as well as inaccuracies in satellite-derived LWP, which is 

highly uncertain ([41]). For example, uncertainties exist in the parameterizations for cloud microphysics 

and aerosol-cloud interactions used in the model simulations. Zhang et al. ([51,53]) compared two aerosol 

activation parameterizations and reported that the AR-G02 parameterization used in this work has a 

tendency to underpredict aerosol activation fraction and thus CDNC, CWP, and COT due to several 

limitations of the AR-G02 parameterization. The large uncertainties in the satellite retrieval of LWP may 

also affect the evaluation of the simulated LWP. Both observed and simulated LWP show the highest 

values in summer in 2006 and the highest values in summer and the second highest values in fall in 2011. 

Comparisons with observations indicate that IWP is significantly underpredicted over most of the 

domain, with annual mean NMBs of −96.1% and −95.7% in 2006 and 2011, respectively. This is due 

mainly to the uncertainties in predicting cloud ice nuclei (IN) formation and growth and related variables 

such as cloud ice number concentrations and ice mixing ratio by the parameterizations for cloud 

microphysics and aerosol-cloud interactions, as well as uncertainties associated with satellite-derived 

IWP. Another possible reason lies in the underpredictions in the concentrations of aerosols aloft that can 

serve as IN (note that Tables 4 and 5, Tables S2 and S3 show underpredictions of surface concentrations 

of PM2.5 and PM10), While both the derived and simulated IWP show the highest domain-wide mean in 

summer, the second highest mean occurs in fall for the satellite-derived IWP but in spring in the 

simulated IWP. The significant underpredictions of LWP and IWP also indicate a need of improvement 

for the model treatments for cloud droplet and ice nucleation. Comparing against the MODIS 

observations, COT is moderately to significantly underpredicted over the entire domain, with annual 

mean NMBs of −50.0% and −44.0%in 2006and 2011, respectively. The best performance for COT in 

summer in 2006 and 2011 coincides with the best performance for LWP because they are closely related. 

While the model reproduces the seasonal variation of COT in 2011, it gives somewhat different seasonal 

variation from the observations in 2006. The significant underprediction of COT is due not only to 

underpredictions of LWP, IWP, and CDNC, but also other reasons, e.g., the calculation of COT does not 

include contributions from graupel.  

The MODIS-derived AOD peaks in spring due to the highest PM concentrations, followed by 

summer, fall, and winter in 2006 and 2011. The satellite-derived high AOD values in spring and summer 

in both years are attributed to several factors such as stagnant synoptic meteorological conditions, secondary 

aerosol formation, growth of hydrophilic aerosols due to enhanced relative humidity, and smoke aerosols 

from regional biomass burning ([58]). Comparing with MODIS data, moderate underpredictions of AOD 

occur in all seasons with annual mean NMBs of −35.7% and f −45.2% in 2006 and 2011, respectively. 

The model reproduces the observed seasonal variations of AOD, with the highest in spring, followed by 
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summer, fall, and winter. As shown in Figure 4, while the model generally captures the spatial 

distributions of AOD in northern domain. AOD is significantly underpredicted over the southern domain 

in both years, where dust concentrations are low and PM2.5 concentrations are significantly 

underpredicted (except for Hong Kong) (which will be discussed in Section 3.2).  

LWD and SWD agree well with observations in terms of spatial distributions and magnitudes over 

the entire domain for all seasons in both years (Figure 4 and Tables 3 and S1), with annual mean NMBs 

of −2.2% and 11.7% and R of 1.0 and 0.9 in 2006, and annual mean NMBs of −2.8% and 12.7% and R 

of 1.0 and 0.9 in 2011. The model generally reproduces the seasonal variation of LWD and SWD in both 

years. The small underpredictions of LWD and moderate overpredictions of SWD may be due likely to 

the underpredictions of aerosol direct radiative forcing (indicated by underpredictions of PM and AOD) 

and underpredictions of cloud radiative forcing (indicated by underpredictions of LWP, IWP, and COT).  

The model biases in prediction of clouds parameters such as LWP, IWP, COT, and CF, directly affect 

the radiative forcing at top-of-atmosphere, aqueous-phase chemistry, and wet scavenging. As shown in 

Figure 4 and Tables 3 and S1, LWCF is moderately-to-significantly underpredicted over the entire 

domain, with annual mean NMBs of −36.4% and −30.9% in 2006 and 2011, respectively. The largest 

underprediction occurs in winter in both years. Despite the underpredictions, the model reproduces  

the observed seasonal variations of LWCF, with the highest in summer, followed by spring, fall, and 

winter. The model is capable of capturing the spatial distributions and seasonal variations of SWCF, but 

underpredicts its magnitudes. The domain-wide annual mean MB and NMB are −9.7 W∙m−2 and 

−18.7%, respectively, in 2006. The domain-wide annual mean MB and NMB are −8.4 W∙m−2 and 

−15.5%, respectively, in 2011. Moderate underpredictions of SWCF occur in both years over the entire 

winter and spring, especially over the southern domain and oceanic areas, leading to moderate 

undepredictions in annual mean SWCF (Figure 4). The moderate underpredictions of LWCF and SWCF 

may be due to the uncertainties associated with the predictions of cloud properties such as CDNC, CF, 

cloud albedo, and incoming radiation at the top-of-the atmosphere. The biases in meteorological, 

radiative, and cloud variable predictions will in turn affect gas-phase chemistry and secondary aerosol 

formation, as discussed below. 

3.2. Chemical Predictions 

The annual mean performance statistics for surface chemical concentrations and column mass for 

2006 and 2011 are given in Tables 4 and 5, Table S2. Figure 5 compares the simulated and observed 

surface mixing ratios (or concentrations) of CO, NO, NO2, SO2, and O3, and concentrations of PM2.5 and 

PM10 from various datasets in Hong Kong, Taiwan, Japan, South Korea, and mainland China for 2006. 

The results in 2011 are similar to those in 2006, thus not shown. The mixing ratios of CO and NO2 at 

the Hong Kong sites are slightly-to-moderately underpredicted, with annual mean NMBs of −17.8% and 

−2.4% in 2006, and annual mean NMBs of −26.9% and −13.3% in 2011, respectively. The mixing ratios 

of NO at the Hong Kong sites are significantly underpredicted, with annual mean NMBs of −86.8% and 

−83.1% in 2006 and 2011, respectively. The possible reasons for underpredictions in NO and CO include 

underpredictions in their emissions, overpredictions in WS10, and overestimations of planetary boundary 

layer (PBL) height. The mixing ratios of O3 at the Hong Kong sites are moderately overpredicted due 

likely to insufficient of titration by NO, with annual mean NMBs of 22.4%, and 33.9% in 2006 and 2011, 
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respectively. The mixing ratios of SO2, and mass concentrations of PM2.5, and PM10 in Hong Kong are 

moderately to significantly overpredicted, with annual mean NMBs of 265%, 154%, and 79% in 2006, 

and 478%, 85.5%, and 31.3%, in 2011, respectively. The overpredictions of PM2.5 and PM10 are clearly 

caused by the significant overprediction of SO2, which is due likely to the overestimation of SO2 emissions 

in the MEIC used and overpredictions in precipitation in the Hong Kong area (see Figure 2), which may 

lead to the overpredictions of SO4
2− and NH4

+. Another possible reason for overpredictions of PM2.5 and 

PM10 may be the overestimation of emissions of dust particles that are transported from nearby mega cities, 

such as Guangzhou and Shenzhen. As shown in Figure 5, most simulated values of CO, NO2, and O3 at 

the Hong Kong sites are within a factor of two of the observations, with relatively higher R values of 0.41, 

0.46, and 0.52, respectively. However, most simulated values of NO, SO2, PM2.5, and PM10 are beyond a 

factor of two of the observations, with low R values of 0.3, 0.19, 0.31, and 0.3, respectively. At the Hong 

Kong sites, the model reproduces the seasonal variations of CO in both years and those of PM2.5 and PM10 

in 2006, but fails to reproduce the seasonal variations of NO, NO2, SO2, and O3 in both years. 

At the Taiwan sites, the mixing ratios of O3 are moderately overpredicted with annual mean NMBs 

of 18.9% and 16.6% in 2006 and 2011, respectively. The concentrations of all other species are moderately 

to significantly underpredicted, with annual mean NMBs of −48.0% and −41.1% for CO, −86.7% and 

−79.6% for NO, −47% and −36.4% for NO2, −66.0% and −62.2% for SO2, −49.7% and −49.5% for 

PM2.5, and −65.8% and −62.7% for PM10 in 2006 and 2011, respectively. The significant underpredictions 

for CO, NOx, SO2, PM2.5, and PM10 are associated with the underestimations for anthropogenic emissions 

and the overpredictions for WS10 (Figure not shown) and precipitation in this region (see Figure 2). 

Moderate underpredictions of cloud amounts and significant underpredictions of LWP (Tables 3 and S1) 

might affect the aqueous-phase chemistry in cloud, which is a major source for SO4
2−. The significant 

underpredictions for NO and NO2, and moderate overpredictions for O3 indicate possible underestimations 

in NOx emissions, leading to insufficient NOx for titration of O3. The concentrations of SO2, PM2.5, and 

PM10 are largely overpredicted in Hong Kong but underpredicted in Taiwan, indicating some problems 

in the spatial distributions of the emissions of SO2 and primary PM in the MEIC emission inventory. As 

shown in Figure 5, at the Taiwan sites, most simulated values are within a factor of two of the observations 

for CO and O3 with R values of 0.39 and 0.33, but fall beyond a factor of two of the observations for 

NO, NO2, SO2, PM2.5, and PM10 with R values of 0.66, 0.2, 0.05, 0.22, and 0.25, respectively. At the 

Taiwan sites, the model reproduces the seasonal variations of O3 and PM10 in 2006, and those of CO, 

O3, PM2.5, and PM10 in 2010. 

In Japan, the mixing ratios of CO are significantly underpredicted, with annual mean NMBs of −63.7% 

and −55.4% in 2006 and 2011, respectively. The mixing ratios of NO and NO2 are also significantly 

underpredicted, with annual means of −93.7% and −89.0% for NO and annual means of −59.0%  

and −46.1%, for NO2 in 2006 and 2011, respectively. The large underpredictions may be caused by 

underestimations of anthropogenic CO and NOx emissions, overpredictions of WS10, and overestimations 

of PBL height (PBLH). The underpredictions in NOx mixing ratios may have resulted in insufficient 

titration of O3 by NO. The mixing ratios of SO2 are also significantly underpredicted with annual mean 

NMBs of −56.9% and −41.4% in 2006 and 2011, respectively. Similar to the results at the Taiwan sites, only 

the annual mean mixing ratio of O3 is overpredicted in Japan, with NMBs of 11% and 14.9%, respectively. 
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Table 4. Performance statistics for surface chemical concentrations and column mass abundance of gaseous species for 2006. 

Variable Data Source Number Mean Obs. Mean Sim. R NMB (%) NME (%) MB MAGE RMSE FB FGE 

CO (µg·m−3) HK 8760 855.7 703.6 0.41 −17.8 33.8 −152.1 289.0 380.7 −0.23 0.37 

CO (ppm) 

TW 324 0.5 0.2 0.39 −48.0 50.1 −0.2 0.2 0.3 −0.57 0.62 

JP 1390 0.5 0.2 0.03 −63.7 64.1 −0.3 0.3 0.4 −0.87 0.88 

SK 731 0.6 0.2 0.28 −62.0 62.3 −0.4 0.4 0.4 −0.82 0.83 

Col. CO (1018 

molec.·cm−2) 
MOPPIT 13398 2.0 2.0 0.94 0.3 7.5 0.01 0.2 0.2 0.00 0.08 

NO (µg·m−3) HK 8758 103.5 13.8 0.30 −86.6 86.7 −89.7 89.8 109.2 −1.57 1.57 

NO (ppb) 
TW 324 5.8 0.8 0.66 −86.7 86.7 −5.0 5.0 6.6 −1.47 1.47 

JP 2670 7.8 0.5 −0.02 −93.7 94.3 −7.3 7.4 10.3 −1.55 1.63 

NO2 (µg·m−3) 
CH 40 125.8 16.0 0.04 −87.3 87.3 −109.8 109.8 118.3 −1.59 1.59 

HK 8760 62.1 60.6 0.46 −2.4 41.3 −1.5 25.7 33.2 −0.09 0.43 

NO2 (ppb) 

TW 324 15.2 8.1 0.20 −47.0 52.7 −7.2 8.0 10.2 −0.57 0.69 

JP 2670 12.2 5.0 −0.07 −59.0 70.5 −7.2 8.6 10.6 −0.8 1.00 

SK 732 17.4 9.8 0.16 −43.3 60.7 −7.5 10.6 13.0 −0.49 0.80 

Col. NO2 (1015 

molec.·cm−2) 
SCIAMACHY 13398 2.3 2.5 0.91 7.6 34.2 0.2 0.8 1.8 0.07 0.36 

SO2 (µg·m−3) 
CH 2600 101.5 67.1 −0.12 −33.9 66.9 −34.4 67.9 88.9 −0.56 0.82 

HK 8760 21.8 79.9 0.19 265.8 273.0 58.0 59.6 78.6 1.03 1.07 

SO2 (ppb) 

TW 324 4.3 1.5 0.05 −66.4 74.1 −2.9 3.2 3.8 −1.05 1.10 

JP 2612 2.7 1.2 −0.18 −56.9 72.8 −1.6 2.0 2.6 −0.66 0.99 

SK 732 5.0 3.6 0.32 −28.3 52.5 −1.4 2.6 3.5 −0.31 0.63 

Col. SO2 (DU) SCIAMACHY 13398 0.2 0.3 0.87 62.9 103.5 0.1 0.2 0.4 −0.15 0.72 

Col. HCHO  

(1015 molec.·cm−2) 
SCIAMACHY 13398 5.3 6.1 0.83 15.0 26.1 0.0 0.8 1.9 0.06 0.25 

O3 (µg·m−3) HK 8760 35.8 43.8 0.52 22.4 87.5 8.0 31.3 46.0 −0.35 0.95 
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Table 4. Cont. 

Variable Data Source Number Mean Obs. Mean Sim. R NMB (%) NME (%) MB MAGE RMSE FB FGE 

O3 (ppb) 

TW 324 31.3 37.2 0.33 18.9 28.6 5.9 8.9 10.9 0.18 0.26 

JP 2355 31.6 35.2 0.48 11.1 23.3 3.5 7.4 9.2 0.13 0.23 

SK 732 25.5 36.0 0.44 40.9 52.9 10.4 13.5 16.3 0.34 0.45 

TOR (DU) OMI 13398 30.7 33.6 0.95 9.5 9.7 2.9 3.0 3.4 0.09 0.09 

PM2.5 (µg·m−3) 
HK 8757 40.8 103.4 0.31 153.6 167.2 62.7 68.2 111.8 0.64 0.77 

TW 324 31.7 15.9 0.22 −49.7 52.7 −15.8 16.7 20.9 −0.62 0.66 

PM10 (µg·m−3) 

CH 1030 98.6 97.8 0.09 −0.8 58.0 −0.8 57.2 74.5 −0.12 0.60 

HK 8760 58.7 105.1 0.30 79.0 104.7 46.4 61.5 103.6 0.33 0.60 

TW 324 57.6 19.7 0.25 −65.8 66.1 −37.9 38.1 44.1 −0.95 0.96 

JP 2719 23.4 13.3 −0.01 −42.9 52.9 −10.0 12.4 15.1 −0.56 0.67 

SK 789 47.9 30.2 0.27 −37.0 46.0 −17.7 22.0 26.5 −0.50 0.58 

Number: number of observations; Sim: simulation; Obs: observation; NMB: normalized mean bias; NME: normalized mean error; MB: mean bias; MAGE: mean error; 

RMSE: root mean square error; FB: fractional bias; FGE: fractional gross error; IOA: index of agreement. 
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Table 5. Performance statistics for surface chemical concentrations of gaseous species for 2006 against EANET. 

Variable Region Number Mean Obs. Mean Sim. R NMB (%) NME (%) MB MAGE RMSE FB FGE 

NO (ppb) 
CH 24 3.0 0.4 0.53 −86.8 86.9 −2.6 2.6 3.5 −1.23 1.23 

JP 12 3.7 1.3 −0.43 −66.2 66.2 −2.4 2.4 2.5 −0.99 0.99 

NO2 (ppb) 
CH 24 17.6 4.3 0.61 −75.4 75.4 −13.3 13.3 14.7 −1.37 1.37 

JP 12 3.7 1.3 −0.43 −66.2 66.2 −2.4 2.4 2.5 −0.99 0.99 

SO2 (ppb) 

CH 48 11.0 6.3 0.41 −42.2 54.7 −4.6 6.0 8.3 −0.66 0.82 

JP 106 0.6 0.4 0.62 −29.8 59.3 −0.2 0.4 0.5 −0.76 0.98 

SK 36 2.5 0.1 0.75 −96.9 96.9 −2.4 2.4 2.6 −1.88 1.88 

O3 (ppb) 
JP 118 41.7 34.9 0.26 −16.2 32.4 −6.8 13.5 16.1 −0.14 0.38 

SK 36 37.1 30.0 0.17 −19.1 28.2 −7.1 10.5 13.1 −0.20 0.31 

PM2.5 (µg m−3) JP 24 11.7 4.4 0.07 −62.0 62.0 −7.2 7.2 8.7 −0.87 0.87 

SO4 (µg m−3) 
JP 120 4.3 2.3 −0.05 −47.8 63.8 −2.0 2.8 3.7 −0.46 0.82 

SK 35 7.7 1.6 −0.36 −79.6 79.6 −6.1 6.1 7.7 −1.2 1.2 

PM10 (µg m−3) 

CH 48 71.0 41.3 0.53 −41.8 56.0 −29.7 39.7 50.3 −0.68 0.71 

JP 117 21.7 13.1 0.25 −39.9 51.9 −8.7 11.3 14.1 −0.52 0.68 

SK 36 50.0 9.5 0.03 −81.0 81.0 −40.5 40.5 43.3 −1.35 1.35 

EANET: Acid Deposition Monitoring Network in East Asia. Number: number of observations. Sim: simulation. Obs: observation. NMB: normalized mean bias.  

NME: normalized mean error. MB: mean bias. MAGE: mean error. RMSE: root mean square error. FB: fractional bias. FGE: fractional gross error; IOA: index of agreement. 
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Figure 5. Cont. 
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Figure 5. Simulated and observed surface mixing ratios of CO, NO, NO2, SO2, and mass concentrations of PM2.5 and PM10 for the 2006 

simulation with M92. 
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The concentrations of PM10 are significantly underpredicted, with annual mean NMBs of −42.9% and 

−35.0% in 2006 and 2011, respectively. The largest underpredictions occur in summer, followed by fall, 

winter, and spring in both years. The smallest underprediction of PM10 in spring among all seasons reflects 

the impact of the long-range transport of dust particles from China. The significant undeprediction of 

PM10 in summer, on the other hand, may be due to several reasons including the overprediction of wet 

deposition resulted from overpredicted precipitation, and the underestimation of anthropogenic emissions 

of primary aerosol particles and precursor gases for secondary aerosols. As shown in Figure 5, at the Japan 

sites, most simulated O3 mixing ratios are within a factor of two of the observations with R of 0.48. Most 

simulated values for other species are beyond a factor of two of the observations with R values of 0.03, 

−0.02, −0.07, −0.18, and −0.01 for CO, NO, NO2, SO2, and PM10, respectively. The negative R values 

may indicate inconsistent or even opposite spatial distributions and/or temporal variations of the 

simulated concentrations of those species, due likely to spatial and temporal variations in emissions and 

the large biases in simulated meteorological fields over Japan as shown in Figure 1. At the Japan sites, 

the model reproduces the seasonal variations of O3 but fails to reproduce those of CO, NO, NO2, SO2, 

and PM10 in both years. 

Similar to the statistical results for Japan and Taiwan sites, the mixing ratios of CO, NO2, and SO2 in 

South Korea are moderately to significantly underpredicted, with annual mean NMBs of −62.0%, 

−43.3%, and −28.3% in 2006, and −51.9%, −37.2%, and −21.6% in 2011, respectively. The mixing 

ratios of surface O3 in South Korea are moderately overpredicted in spring, fall, and winter with NMBs 

of 14.5%, 41.8%, and 27.1% in 2006 and 10.0%, 37.9%, and 12.2% in 2011, and significantly overpredicted 

in summer, with NMBs of 83.2% in 2006, and 68.7% in 2011, respectively. The mass concentrations of 

PM10 are moderately underpredicted, with annual mean NMBs of −37.0% and −31.7% in 2006 and 2011, 

respectively. The moderate to significant underpredictions of the mixing ratios of CO, NO2, and SO2, 

and mass concentrations of PM10 are possibly due to the underestimation of the emissions of these 

species, overpredictions in WS10 (see Tables 3 and S1), and the overpredictions of precipitation over 

South Korea (see Figure 2). As shown in Figure 5, at the South Korea sites, most simulated O3 values 

are within a factor of two of the observations with an R value of 0.44. Most simulated values for CO, 

NO2, SO2, and PM10 are beyond a factor of two of the observations with R values of 0.28, 0.16, 0.32, 

and 0.27, respectively. The model reproduces the seasonal variations of O3 and PM10 in 2011, but does 

not capture well the seasonal variations of other species in 2011 and all species in 2006.  

The API-derived NO2 concentrations are significantly underpredicted with annual mean NMBs of 

−87.3% in 2006 and −48.0% in 2011. The API-derived SO2 concentrations are moderately overpredicted 

in summer and moderately to significantly underpredicted in other seasons in 2006. They are moderately 

overpredicted in spring and summer and moderately to significantly underpredicted in fall and winter in 

2011. The overpredictions and underpredictions in SO2 concentrations compensate, leading to annual 

mean NMBs of −33.9% in 2006 and −18.2% in 2011. The API-derived PM10 concentrations are overall 

well produced with annual mean NMBs of −0.8% and −3.6% in 2006 and 2011, respectively. In 2006, 

PM10 is well simulated in summer and fall, but moderately underpredicted in winter and ovepredicted in 

spring. In 2011, PM10 is moderately overpredicted in spring and underpredicted in other seasons.  

The performance of PM10 in this work is consistent or even better than those from WRF/Chem 

applications over East Asia reported in the literature ([53,59]). As shown in Figure 5, over mainland 

China, many simulated values of NO2, SO2, and PM10 are beyond a factor of observations with R values 
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of 0.04, −0.12, and 0.09 for NO2, SO2, and PM10, respectively. The model fails to reproduce the seasonal 

variation of those species over mainland China. The simulated spatial distributions of PM10 in Figure 6 

show that the major dust source regions in East Asia are located in northwestern and northern China, 

and southern Mongolia, which is consistent with previous studies ([60,61]). In the dust season (spring), 

large amounts of dust particles are generated in these regions and transported to eastern China, southeastern 

China, South Korea, and Japan. The model overpredicts the particle concentrations in northern China, 

especially over the dust source regions in northwestern China, but underpredicts those in southern China, 

leading to a very low R value (i.e., 0.09 in 2006 and 0.2 in 2011) for PM10. The overpredictions of the 

concentrations of coarse aerosol particles in northern China might be associated with the overestimations 

of dust emissions in dust source regions, while the underpredictions of the concentrations of PM10 in 

southern China might be due to the underestimation of anthropogenic emissions for primary particles 

and the precursor gaseous species for secondary aerosols, as well as the overprediction of precipitation 

(see Figure 2) (which may lead to overpredictions of wet deposition of chemical species in this region). 

Figure 7 compares annual mean concentrations of PM2.5 and its major components such as SO4
2−, NH4

+, 

Cl−, and Na+ at the THU and MY sites in Beijing, China. Although WRF-CAM5 uses a relatively simple 

aerosol module that is based on the modal approach and does not simulate nitrate, the simulated mass 

concentrations of PM2.5 and SO4
2− agree well with the observations at both sites, indicating a good skill 

of WRF-CAM5 in simulating site-specific PM2.5 and SO4
2−. However, the concentrations of Na+ and Cl− 

at both sites are significantly underpredicted because anthropogenic sources predominate at both sites, 

and the anthropogenic emissions of Na+ and Cl− are not included in the emission file.  

As shown in Tables 5 and S3, the concentrations of NO, NO2, SO2, O3, SO4
2−, PM2.5, and PM10 are 

underpredicted at all EANET sites in mainland China, Japan, South Korea including urban, rural and 

remote sites, which is consistent with surface evaluation using data from other surface networks. The 

underpredictions in NOx and SO2 may be caused by underestimations in their total emissions and/or 

vertical allocations of the total emissions, as well as strong cloud lofting. The underpredictions in  

SO4
2− concentrations may be caused by several reasons such as the underpredictions of SO2 and  

the overprediction of precipitation. The underpredictions in PM2.5 and PM10 may result from the 

underestimations of emissions of their gaseous precursors and primary PM species such as black carbon, 

organic carbon, and mineral dust. Unlike Hong Kong where the underpredictions of NOx level lead to 

the overpredictions in O3 due to insufficient titration, the underestimations of NOx emissions at the 

EANET sites may contribute to the moderate underpredictions of O3 concentrations, because most of 

the EANET sites are located at rural and remote sites where O3 chemistry is NOx-limited as shown in 

Liu et al. ([62]). At some urban sites where O3 chemistry is VOC-limited or both NOx- and VOC-limited, 

underestimations of VOC emissions may also contribute to the underpredictions of O3. 
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Figure 6. Simulated PM10 concentrations overlaid with API-derived observations for 2006 

and 2011 simulations with M92. The observational data are denoted as dots. 
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Figure 7. Simulated and observed surface concentrations of PM2.5 and PM2.5 composition at 

THU and MY sites in Beijing, China for the 2006 simulation with M92. WRF-CAM5 does 

not simulate NO3
−. 

Figure 8 compares the spatial distributions of annual mean simulated column mass abundance with 

satellite observations. The simulated column CO is comparable with observations from MOPITT in 

terms of spatial distributions and magnitudes for both years with annual mean NMBs of 0.3% in 2006 

and −1.8% in 2011 (Tables 4 and S2). Moderate underpredictions occur in spring, and slight or moderate 

overpredictions occur in other seasons. While the satellite-derived CO column abundances show the 

highest in spring, followed by winter, fall, and summer, the simulated CO column abundances show the 

highest in winter, followed by spring, fall, and summer for both years. CO is a slowly reacting gas in the 

atmosphere with a sink reaction of CO + OH and the secondary formation through the oxidation of 

volatile organic carbons (VOCs). Its fate is mainly affected by emissions, transport, and deposition 
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processes. Great biomass burning activities, which are large contributors to CO emissions, over South 

and Southeast Asia in spring were reported ([63]). The CO emissions from biomass burning in spring 

over Southeast Asia may lead to a relatively high background CO concentrations over East Asia that 

WRF-CAM5 cannot reproduce because it does not represent such biomass burning emissions, leading to 

moderate underpredictions in column CO abundances in spring. Column abundances of NO2 agree well 

with observations against SCIAMACHY in terms of spatial distributions, magnitudes, and seasonal 

variations, with small underpredictions in spring, and small to moderate overpredictions in other seasons. 

The annual mean NMBs are 7.6% in 2006 and 0.4% in 2011. The good performance of the column 

abundances of NO2 but the significant underpredictions of surface mixing ratios of NO and NO2 suggest 

some uncertainties in the vertical distribution of NOx emissions used in the model.  

Column SO2 is moderately to significantly overpredicted in all seasons in 2006 with NMBs of 18.7% 

to 137%. In 2011, column SO2 is moderately overpredicted in fall and winter and underpredicted in 

spring and summer. The annual mean NMBs of column SO2 are 62.9% in 2006 and −14.5% in 2011. As 

shown in Figure 8, significant overpredictions of column SO2 occur in North China Plain, indicating 

significant overpredictions of anthropogenic emissions of SO2 and/or possible uncertainties in the 

vertical allocation of SO2 emissions, namely, more SO2 emissions should have been allocated to surface 

layer rather than upper layers. Another possible reason for overpredictions in SO2 aloft is the inefficient 

conversion into sulfate by cloud chemistry. While the SO2 column abundance is overpredicted for all 

seasons in 2006 and fall and winter 2011, the mixing ratios of SO2 at surface are significantly 

underpredicted, indicating the uncertainties in the vertical distribution of SO2 emissions. This also indicates 

vigorous cloud lofting. Overpredictions in precipitation shown in Tables 3 and S1 also contribute to the 

underpredictions in surface SO2 concentrations in both years. While the model fails to reproduce the 

observed seasonal variations of the column SO2 abundances, there are a large fraction of missing values 

and the reported overall error in the SO2 retrievals is 45%–80% for annual averages over polluted  

regions ([64]), the relatively poor data quality and inaccuracies in the retrieval algorithms for SO2 would 

affect the evaluation of column SO2. The situation is somewhat different in 2011. As shown in Table S2, 

SO2 is moderately to significantly underpredicted at the surface (except for Hong Kong) and also aloft 

in 2011. In such a case, possible reasons for underpredicted surface and aloft SO2 include overpredicted 

precipitation, underestimation in total SO2 emissions, and uncertainties in the SO2 retrieval. 

In 2006, the column HCHO is slightly to moderately overpredicted with an annual mean NMB  

of 15.0%. In 2011, the column HCHO is slightly underpredicted in spring and winter and slightly 

overpredicted in summer and fall, leading to an annual mean NMB of −0.3%. The satellite-derived HCHO 

column abundances show the highest in summer, followed by spring, fall, and winter, the simulation 

shows the highest in summer, followed by fall, spring, and winter for both years. As shown in Figure 8, 

the overpredictions occur mainly in central China, Napel, northeastern India, and northern Burma, Thailand, 

Laos, and Vietnam. Possible reasons for such overpredictions may include uncertainties in HCHO emissions, 

biogenic emissions that can produce secondary HCHO, and satellite retrievals. In particular,  

De Smedt et al. ([65]) reported the errors in HCHO retrievals of (0.5–2.0)× 1015 molecules∙cm−2 are on the 

same order of magnitudes or even larger than the MBs in the simulated HCHO column for both years.  

 



Climate 2015, 3 654 

 

 

 2006 2011 

 OBS SIM OBS SIM 

CO 

 

 

  

NO2 

  

 

 

SO2 

    

HCHO 

    

TOR 

    

Figure 8. Spatial distributions of annual mean observed and simulated column CO, NO2, SO2, HCHO, and TOR for the 2006 and 2011 

simulations with M92. 
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The simulated TOR agrees well with observed TOR with annual mean NMBs of TOR are 9.5% in 

2006 and 7.9% in 2011. TOR is slightly underpredicted for summer and overpredicted for other seasons. 

The largest overprediction occurs in winter with an NMB of 26.5%, and an MB of 6.7 DU in 2006 and 

an NMB of 24.0%, and an MB of 6.2 DU in 2011. The satellite derived O3 column abundances show the 

highest in summer, followed by spring, fall, and winter, where the simulated column abundances show 

the highest in spring, followed by summer, winter, and fall in both years. The model performs better in 

predicting column TOR than surface O3 concentration, indicating that TOR predictions largely depend 

on O3 from upper atmosphere. 

4. Model Responses to Changes in Emissions and Meteorology in 2011 Relative to 2006 

As shown in Figure S1 in the supplementary material, moderate decreases occur for the emissions of 

major species such as CO, SO2, HCHO, and PM species from 2006 to 2011 over central and southern 

China. The annual mean percentage differences in emissions between 2011 and 2006 are −23.2%, -

14.7%, and −32.6% for CO, SO2, and HCHO, respectively. Those for PM species including primary OC, 

BC, SO4
2−, other inorganic fine PM, and coarse PM are −32.2%, −24.2%, −10.0%, −26.7%, and −24.7%, 

respectively. However, the emissions of NOx, toluene, and NH3 are higher in 2011 than in 2006, with 

annual mean percentage differences of 8.7%, 13.4%, and 13.6%, respectively. The changes in SO2 and 

NOx emissions are consistent with those reported in previous studies ([66,67]).  

Table 6. Comparison of annual mean observed and simulated trends in meteorological 

variables and chemical species for 2006 and 2011. 

Variable 2006 2011 Absolute Difference % Difference 

 Obs. Sim. Obs. Sim. Obs. Sim. Obs. Sim. 

P  939.7 925.8 942.0 928.6 2.3 2.8 0.2 0.3 

T2 (°C) 13.8 12.9 13.5 12.4 −0.3 −0.5 −2.2 −3.9 

Q2 (g∙kg−1) 7.95 7.98 7.98 8.04 0.03 0.4 0.06 0.8 

WS10 (m∙s−1) 3.09 3.43 3.04 3.41 −0.05 −0.02 −0.9 −0.6 

Precip (NCDC) 

(mm∙day−1) 
2.7 3 2.6 2.9 −0.1 −0.1 −3.7 −3.3 

Precip (GPCP)  

(mm∙day−1) 
2.9 3.1 3.1 3.2 0.2 0.1 6.9 3.2 

CCN (cm−2) 0.82 0.54 0.76 0.51 −0.06 −0.03 −7.3 −5.6 

CDNC (cm−3) 143 101 140.3 97.6 −2.7 −3.4 −1.9 −3.4 

CF 0.64 0.56 0.65 0.61 0.01 0.05 1.6 8.9 

PWV (cm) 2.25 2.23 2.14 2.18 −0.11 −0.05 −4.9 −2.2 

LWP (g∙m−2) 110.3 48 101.1 50.7 −9.2 2.7 −8.3 5.6 

IWP (g∙m−2) 245.1 9.5 222.9 9.6 −22.2 0.1 −9.1 1.1 

AOD 0.33 0.21 0.31 0.17 −0.02 −0.04 −6.1 −19.0 

COT 16.3 8.2 15.2 8.5 −1.1 0.3 −6.7 3.7 

GLW (W∙m−2) 324.6 317.4 324.4 315.2 −0.2 −2.2 −0.1 −0.7 
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Table 6. Cont. 

Variable 2006 2011 
Absolute 

Difference 
% Difference 

SWD (W∙m−2) 183.4 204.9 179.7 202.6 −3.7 −2.3 −2.0 −1.1 

SWCF (W∙m−2) −51.7 −42 −54 −45.6 −2.3 −3.6 4.4 8.6 

LWCF (W∙m−2) 29.1 18.5 28.8 19.9 −0.3 1.4 −1.0 7.6 

Col. CO 2.007 2.014 2.015 1.978 0.008 −0.036 0.4 −1.8 

Col. NO2 (1015 molecular∙cm−2) 2.3 2.5 3.3 3.3 1 0.8 43.5 32.0 

Col. SO2 (DU) 0.20 0.33 0.35 0.30 0.15 −0.03 75.0 −9.1 

Col. HCHO  

(1015 molecular∙cm−2) 
5.3 6.1 6.1 6.0 0.8 −0.03 14.8 −0.5 

TOR (DU) 30.7 33.6 31.1 33.5 0.4 −0.1 1.3 −0.3 

PM10 98.6 97.8 89.5 86.2 −9.1 −11.6 −9.2 −11.9 

NO2 (µg∙m−3) 125.8 16 117.3 61.1 −8.5 45.1 −6.8 281.9 

SO2 (µg∙m−3) 101.5 67.1 94.7 77.5 −6.8 10.4 −6.7 15.5 

To examine the model’s capability in predicting the observed variation trends from 2006 to 2011, the 

observed and simulated annual mean trends for all meteorological variables, surface chemical concentrations, 

and column abundances that have domain-wide observations are calculated and summarized in Table 6. 

The spatial distributions of absolute differences in meteorological, radiative, and cloud variables as well 

as the concentrations of major chemical species are shown in Figures 9 and 10, respectively. The 

observed and simulated annual mean pressure both increase slightly by 0.2% and 0.3%, respectively. 

The observed annual mean temperatures reported by NCDC decrease by 0.3 °C (or by −2.2%) in 2011 

relative to 2006. Comparing to 2006, 2011 gives annual mean T2 lower by 0.5 °C (or by −3.9%) at the 

NCDC sites and lower by 0.7 °C (or by −5.4%) domain-wide based on WRF-CAM5 simulations, 

consistent with the observed climate records from NOAA’s CPC. The trends in observed and simulated 

WS10 are a small decrease, by −0.05 and −0.02 m s−1 (or by −0.9% and 0.6%), respectively. No observed 

PBLH data are available to assess its simulated trend. The simulated domain-wide mean PBLH in both 

2006 and 2011 remains similar, with only an increase of 4 m (by 1%) in 2011. The trends in observed 

and simulated precipitation at the NCDC and GPCP sites are consistent, decreasing by 3.7% and 3.3%, 

respectively, for NCDC sites and increasing by 6.9% and 3.2%, respectively, for GPCP grid cells. The 

domain-wide mean simulated precipitation decreases by 2.8% in 2011 relative to 2006. 

The MODIS-derived and simulated CCN over the oceanic areas show small decreases (by −7.3% and 

−5.6%, respectively) between 2011 and 2006, due to decreases of CCN over land areas. In responses to 

a small decrease in simulated CCN over land areas in 2011, simulated CDNC decreases slightly (by 

−3.4%), which is consistent with the trend in the MODIS-derived CDNC (by −1.9%). The trends in 

MODIS-derived and simulated CF are consistent, both show small increases (by 1.6% and 8.9%) despite 

a larger increase by the simulation than the observation due to a much larger decrease in simulated T and 

a larger increase in simulated Q throughout the atmosphere (as reflected in the observed and simulated trends 

in T2 and Q2 near surface, note that no observed T and Q vertical profiles are available to evaluate 

simulated T and Q in upper layers). The observed and simulated PWV show a small decrease (by −4.9% 

and −2.2%, respectively) in 2011. The observed LWP and IWP decrease slightly (by 8.3% and 9.1%, 

respectively), whereas the simulated LWP and IWP increase slightly (by 5.6% and 1% domain-wide, 

respectively), due in part to the increased CF from the simulation that is much larger than observed CF. 
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As shown in Figure 9, the increases in LWP occur in most areas except for southern China and Japan, 

and the increases in IWP occur over the western part of the domain and also oceanic areas. The observed 

and simulated AOD decrease in 2011 by 6.1 and 19%, respectively. The observed COT decreases slightly 

(by 6.7%), whereas the simulated COT increases slightly (by 3.7%), also partly because the increased 

CF from the simulation is much larger than observed CF. The increases in COT occur in most areas except 

for southern China and Japan, which is consistent with the spatial distributions of CWP. The observed 

LWD and SWD show a small decrease (by 0.2 W∙m−2 (or 0.1%) and 3.7 W∙m−2 (or 2.0%), respectively). 

The simulated LWD and SWD also show a small decrease (by 2.2 W∙m−2 (or 0.7%) and 2.3 W∙m−2 (or 

1.1%), respectively). The observed and simulated SWCF increase slightly (by 4.4% and 8.6%) in 2011. 

The slight increase in observed SWCF is inconsistent with the observed slight decreases of COT, LWP, 

and IWP (see Figures 3 and 4). Such inconsistencies indicate possible uncertainties in the satellite-derived 

products. On the other hand, the simulated SWCF increases coincide with the simulated increases of 

COT, which are closely related to the increases in simulated LWP and to a lesser extent the increases in 

simulated IWP (see Figures 3 and 4). The observed LWCF decreases slightly (by 1%) in 2011 whereas 

the simulated LWCF increases slightly (by 7.6%). The increases in LWCF occur in most of the domain 

except for Japan, and southern and northeastern China. 

The observed column CO abundance increases by 0.4% whereas the simulated column CO decreases 

by 1.8%. Despite moderate decreases in CO emissions from 2006 to 2011, the simulated column CO 

abundances only decrease by 1.8% and surface CO mixing ratios decrease by 4.8% in most areas (see 

Figure 10). Moderate increases in NOx emissions from 2006 to 2011 result in moderate increases in both 

column NO2 abundances (by 32.0%, Table 6) and surface NO2 mixing ratios (by 23.8%, Figure 10), such 

increases are consistent with the increase of 43.5% in the observed column NO2 abundance. Slight to 

moderate decreases in simulated SO2 column abundances (by 9.1%) and surface mixing ratios (by 2.5%) 

from 2006 to 2011 correspond to the decreases in SO2 emissions in 2011. However, such changes are 

inconsistent with the observed SO2 column abundances, which increase by 75%. Given large uncertainties 

in the satellite-derived SO2 column abundance, it is not clear if such a large increase is true, as it is 

inconsistent with 15% reduction in SO2 emissions. The observed HCHO column abundance increases 

by 14.8%, but the simulated one decreases by −0.5%. The observed TOR increases by 1.3%, but the 

simulated one decreases by −0.3%. Although the changes in the TOR and surface O3 mixing ratios are 

small, they result from the compensation of large decreases in most eastern part of the domain and large 

decreases in the remaining areas. Moderate decreases (by 9.2% and 11.9%, respectively) in observed and 

simulated surface PM10 mass concentrations in major cities in mainland China from 2006 to 2011 are 

found due to the moderate reductions of emissions of primary anthropogenic aerosol and precursor gas 

species (i.e., SO2) that lead to lower concentrations of primary and secondary aerosol such as POM and 

SO4
2− in most areas in eastern China, South and North Korea, and western Pacific (see Figure 10). 
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Figure 9. Annual mean absolute differences in meteorological, radiative, and cloud variables 

between 2011 and 2006. 
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Figure 10. Annual mean absolute changes of mixing ratios of surface CO, NO2, SO2, O3, 

and mass concentrations of surface PM10, POM, BC, and SO4
2− between 2011 and 2006. 

5. Summary and Conclusions 

The WRF-CAM5 simulations are conducted over East Asia for 2006 and 2011. Simulations results 

are evaluated against satellite data, merged satellite and rain gauge data, and surface network data. The 

simulated near-surface meteorological fields such as P, T2, Q2, and WS10 for both years agree well with 

the observations. The mean bias, mean absolute gross error, and index of agreement of Q2 and the mean 

bias, root mean square error, and index of agreement of WS10 are within the benchmark proposed by 

Emery et al. ([49]). The WS10 predictions outperform those reported in the literature. The annual mean 

MBs of T2 are larger than the suggested threshold values because of no use of FDDA but they are 

comparable or even better than the reported performance of mesoscale meteorological models, they are 

deemed acceptable. The annual-mean precipitation for both years is well predicted with annual-mean 

NMBs of 13.6% against NCDC and 9.0% against GPCP in 2006, and annual-mean NMBs of 11.1% against 

NCDC and 2.5% against GPCP in 2011. The precipitation performance is either consistent or better than 

the WRF performance reported in the literature. The moderate overpredictions are attributed to the 

neglecting of the effect of clouds on radiation through the changes of droplet and ice effective radii 
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and/or the overpredictions of convective precipitation intensity by the cumulus parameterization. The 

model reproduces the observed seasonal variations for P, T2, Q2, and precipitation.  

The simulated annual-mean CF, PWV, LWD, and SWD generally agree well observations in terms of 

both magnitudes and spatial distributions. The small underpredictions of LWD and overpredictions of 

SWD may be due likely to the underpredictions of aerosol direct radiative forcing and underpredictions of 

cloud radiative forcing. Moderate underpredictions occur in CCN due to possible underpredictions of sea 

salt concentrations and uncertainties in the CCN retrievals. Moderately underpredictions of CDNC also 

occur in both years, due to possible underpredictions of PM and thus CCN over land and oceanic areas as 

well as possible underestimated fraction of activated particles by the AR-G02 parameterization. Large 

uncertainties exist in the predictions of LWP, IWP, and COT due to the model’s limitations in simulating 

dynamics and thermodynamics for accurate predictions of cloud properties, the uncertainties of ice 

nucleation parameterizations in partitioning total water path into LWP and IWP, as well as inaccuracies in 

satellite-derived products. LWP, IWP, and COT are significantly underpredicted over the most of the 

domain with annual mean NMBs of −56.5%, −96.1%, and −50.0% in 2006, and annual mean NMBs of 

−49.8%, −95.7%, and −44.0% in 2011, respectively. Moderate underpredictions of AOD occur with annual 

mean NMBs of −35.7% in 2006 and −45.2% in 2011. The underpredictions of LWP, IWP, and COT result 

in moderate to significant underpredictions in LWCF and SWCF. The model generally reproduces the 

observed seasonal variations of CDNC, AOD, LWD, SWD, LWCF, and SWCF for both years, however, 

it either fails (e.g., the CCN over oceanic area) or partially fails (e.g., IWP, LWP, and COT) to reproduce 

the observed seasonal variations for several variables.  

The biases in meteorological, radiative, and cloud variable predictions affect chemical predictions  

by affecting several processes such as gas-phase photochemistry, secondary aerosol formation, transport, 

and wet scavenging. Moderate to significant underpredictions of CO, NO2, SO2, and aerosol particles 

are found over Taiwan, Japan, and South Korea due to the possible underestimations of emissions of 

these species, the overprediction of precipitation, wind speed, and PBL height over these regions. The mixing 

ratios of SO2 and mass concentrations of PM2.5, and PM10 in Hong Kong are moderately to significantly 

overpredicted due likely to the overestimation of SO2 and dust emissions, and overpredictions in 

precipitation. The mixing ratios of O3 at the Hong Kong, Taiwan, Japan, and South Korea sites are 

moderately overpredicted due likely to insufficient of titration by NO. The concentrations of SO2, PM2.5, 

and PM10 are largely overpredicted in Hong Kong but underpredicted in Taiwan, indicating some 

problems in the spatial distributions of the emissions of SO2 and primary PM. The API-derived NO2 

concentrations are significantly underpredicted with annual mean NMBs of −87.3% in 2006 and −48.0% 

in 2011. The API-derived SO2 concentrations are moderately overpredicted in some seasons (e.g., summer 

in 2006 and spring and summer in 2011) but underpredictions in other seasons, leading to annual mean 

NMBs of −33.9% in 2006 and −18.2% in 2011. The API-derived PM10 concentrations are overall well 

produced. The evaluation of the simulated mass concentrations of PM2.5 and SO4
2− at the two sites in 

Beijing, China agrees well with the observations but poorly for Na+ and Cl− because the anthropogenic 

emissions of Na+ and Cl− are not included in the emission file used in the model simulations. The model 

reproduces the seasonal variations for CO in both years and for PM2.5 and PM10 in 2006 the Hong Kong 

sites, for O3 and PM10 in 2006 and for CO, O3, PM2.5, and PM10 in 2010 at the Taiwan sites, for O3 in 

both years at the Japan sites, and O3 and PM10 in 2011 at the South Korean sites. Despite moderate to 

large biases for some species, the performance of chemical predictions is generally consistent with or 
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even better than that reported for East Asia with a few exceptions (e.g., significant overpredictions in 

the concentrations of SO2, PM2.5, and PM10 in Hong Kong sites). 

The simulated column CO is comparable with observations from MOPITT in terms of spatial distributions 

and magnitudes for both years. However, moderate underpredictions occur in column CO abundances 

in spring, due likely to the inaccurate representation of CO emissions from biomass burning over 

Southeast Asia. Column abundances of NO2 agree well with observations in terms of spatial distributions 

and magnitudes. Column SO2 is significantly overpredicted in 2006 but moderately underpredicted in 

2011. The inconsistent performance between the column abundances and surface concentrations of NO2 

and SO2 suggests some uncertainties in the vertical distribution of NOx and SO2 emissions used in the 

model. The column HCHO is slightly to moderately overpredicted. The simulated TOR agrees well with 

observed TOR. The model reproduces well the seasonal variations of NO2 column abundances and 

marginally well for those of the column abundances of HCHO, CO, and O3 but fails to reproduce those 

of the column abundance of SO2 due to large uncertainties in the emissions of SO2 and poor quality of 

satellite-derived column abundance of SO2.  

Comparing to the emissions in 2006, the emissions of major species such as CO, SO2, HCHO, xylene, 

and PM species decrease but those of NOx, toluene, and NH3 increase in 2011. Comparing to the annual 

mean meteorology in 2006, the 2011 simulations give lower T2, higher WS10, higher precipitation over 

most of the domain. They also give lower Q2 and higher PBLH over eastern part of domain but higher 

Q2 and lower PBLH over the western part of the domain. The model is capable of reproducing the 

observed variation trends from 2006 to 2011 for most variables except for LWP, IWP, COT, LWCF, 

column abundances of CO, SO2, HCHO, TOR, and surface concentrations of NO2 and SO2. The 

predicted concentrations/mixing ratios of chemical species (i.e., CO, NO2, SO2, O3, PM2.5, and PM10) 

are sensitive to the changes in emissions and meteorology. 

This study has several limitations. First, air quality observations over mainland are limited and there 

are insufficient data to accurately evaluate the NO2, SO2, O3, and PM2.5 predictions. On the other hand, 

the satellite data are useful for model evaluation as it bridges some gaps in the absence of available 

surface observations, however, large uncertainties are associated with satellite retrievals, in particular, 

for CDNC, LWP, IWP, COT, and column abundances of SO2 and HCHO. In addition, no observations 

are available to evaluate the number concentrations of ice nuclei and cloud ice crystals. Second, the 

anthropogenic and natural dust emissions used in this study are possibly underestimated. On the other 

hand, the dependence on aerosols including dust particles for IN and cloud simulations requires more 

accurate predictions of aerosol in climate models. The model evaluations show that WRF-CAM5 

moderately-to-significantly underpredicts the concentrations of PM10 over East Asia, especially over 

southern China, Taiwan, Japan, and South Korea due to the underestimates in emissions of primary PM 

and gaseous precursors for secondary PM, inaccurate dust emissions, as well as omission of nitrate formation, 

one of the most important secondary aerosol components. The underpredictions of aerosol concentrations 

can result in underpredictions in CDNC and IN number concentrations, which in turn contribute in part 

to the underpredictions of LWP, IWP, and COT. Third, the inherent assumptions and limitations of the 

MAM3 approach lead to the limited capability of resolving the abrupt size transition between the 

interstitial and activated aerosol fractions as indicated in Zhang et al. ([68]). Finally, the grid resolution 

used in this study might be too coarse to represent the spatial distributions of emissions, and subgrid 
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scale processes such as turbulence mixing and cumulus cloud formation, contributing in part to the model 

biases reported in this work. 
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