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Abstract: Satellite-based precipitation products have been shown to represent precipitation
well over Nepal at monthly resolution, compared to ground-based stations. Here, we extend
our analysis to the daily and subdaily timescales, which are relevant for mapping the hazards
caused by storms as well as drought. We compared the Tropical Rainfall Measuring Mission
(TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B42RT product with individual
stations and with the gridded APHRODITE product to evaluate its ability to retrieve different
precipitation intensities. We find that 3B42RT, which is freely available in near real time, has
reasonable correspondence with ground-based precipitation products on a daily timescale;
rank correlation coefficients approach 0.6, almost as high as the retrospectively calibrated
TMPA 3B42 product. We also find that higher-quality ground and satellite precipitation
observations improve the correspondence between the two on the daily timescale, suggesting
opportunities for improvement in satellite-based monitoring technology. Correlation of
3B42RT and 3B42 with station observations is lower on subdaily timescales, although
the mean diurnal cycle of precipitation is roughly correct. We develop a probabilistic
precipitation monitoring methodology that uses previous observations (climatology) as well
as 3B42RT as input to generate daily precipitation accumulation probability distributions at
each 0.25◦× 0.25◦ grid cell in Nepal and surrounding areas. We quantify the information
gain associated with using 3B42RT in the probabilistic model instead of relying only on
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climatology and show that the quantitative precipitation estimates produced by this model
are well calibrated compared to APHRODITE.

Keywords: quantitative precipitation estimation; generalized linear model; Nepal;
himalayas; monsoon Asia

1. Introduction

Precipitation products based on remote sensing offer the potential for improving hazard response
and water resource management in mountainous areas with inadequate near-real-time ground-based
data [1]. We focus on Nepal and its surroundings (26◦–31◦N, 79◦–89◦E), a region that encompasses
the Himalaya range and its foothills in the north of the Indian subcontinent, has wide geographic
and seasonal ranges of precipitation frequency and intensity [2,3], and whose population is largely
agrarian and highly vulnerable to climate-related hazards, including flooding and drought [4,5]. We have
previously compared the performance of several remote sensing based precipitation products over Nepal
relative to station observations on the monthly timescale, finding that the Tropical Rainfall Measuring
Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) 3B43 precipitation product, which
combines data from TRMM and other satellites with calibration to surface measurements, performed
best and showed little bias [6]. Here, we extend this work by (a) considering the reliability of satellite
precipitation at daily and subdaily temporal resolutions, which are better suited than monthly resolution
for most hydrological hazard assessment work; (b) comparing the performance of the near-real-time
TMPA 3B42RT product to the research TMPA 3B42 product (the 3B43 product previously assessed
is the monthly-resolution version of 3B42); (c) estimating rainfall rate probabilities conditional on the
satellite data [7], which enables, for example, the mapping of areas that experienced heavy rainfall with
high probability. We validate and calibrate the TMPA products against the Asian Precipitation—Highly
Resolved Observational Data Integration Towards Evaluation of Water Resources (APHRODITE)
gridded daily precipitation product, which is based on station precipitation observations, and against
automatic weather stations that provide precipitation time series at high (sub-hourly) time resolutions.

2. Data

2.1. Satellite-Based Precipitation

TMPA Product 3B42 is released by the Goddard Space Flight Center of the National Aeronautics
and Space Administration (NASA) [8]. Product 3B42 is a 3-hour precipitation product with a spatial
resolution of 0.25◦, available for the period since 1998, which incorporates microwave and infrared
observations from multiple satellites including TRMM [9]. 3B42 is a retrospective research product that
is generally updated with a lag of several months because it uses monthly rain gauge accumulations in
order to correct the estimated precipitation field. Product 3B42RT [10] has the same spatial and temporal
resolution as 3B42 but is processed in near real time, available since March 2000, with updated fields
typically posted about 3 hours after the end of each 3-hour window. Both products are available globally
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over 50◦S–50◦N. While 3B42RT currently does not come with quantitative error estimates, it does
include source information that distinguishes between pixels where the precipitation estimate is based
on microwave sounders (more accurate) or only on infrared imagery (less accurate). Here, we consider
the 3B42RT product because its near real time availability makes it more suitable than 3B42 for most
hydrological applications, but also compare the two products to assess the extent to which after-the-fact
calibration improves the correspondence with gauge-based precipitation. The product versions used
were the most recent available as of early 2015, i.e., 3B42 Version 7, which has generally been found
to improve on the older Version 6 [11–13]. Several studies have previously evaluated 3B42RT against
ground measurements and other satellite-based products in different regions [14–21].

2.2. Gauge-Based Precipitation

Our primary “ground-truth” dataset in this study is from the Asian Precipitation—Highly Resolved
Observational Data Integration Towards Evaluation of Water Resources (APHRODITE) project, which
has produced a daily precipitation dataset over Asia based on an extensive compilation of rain gauge
measurements [22], primarily station data obtained from national meteorological agencies, including
Nepal’s Department of Hydrology and Meteorology (DHM). Station data were interpolated using an
algorithm that takes topography into account and uses climatology to estimate missing values. We
used the APHRODITE V1101 monsoon Asia product at the best available resolution of 0.25◦, which
is available for 1951–2007. APHRODITE includes information on the percent of 0.05◦ cells in each
pixel containing gauge data. Unless otherwise specified, we employed only 0.25◦ pixels for which this
quantity was positive, i.e., which are directly based on at least some gauge measurements, in calibrating
and comparing with the satellite products. The satellite products were aggregated to daily resolution for
comparison with APHRODITE.

Note that one possible contributor for inconsistency between these data sets is that the days in the
aggregated satellite products follow Universal Time (Greenwich Mean Time) while the reading times
for the daily values recorded from gauges and used as the basis for the APHRODITE interpolation
may vary [22]. However, in preliminary testing we found that shifting the satellite product aggregation
window to allow for time zone and gauge reading time differences did not greatly change the correlations
with APHRODITE daily values.

To characterize the performance of the TMPA satellite products in reproducing the precipitation
diurnal cycle, we also compared them with precipitation measured at high temporal resolution at
3 automatic weather stations (AWSs) in Nepal installed by our team. These stations are located
in farm fields representing different agro-ecological zones at (a) Baireni, Valtar in Dhading district,
27◦47’0.45”N, 85◦0’42.68”E (elevation of 550 m above sea level); (b) Tindobate, Jholpe in Syangja
district, 27◦58’17.48”N, 83◦45’0.86”E (745 m); (c) Jayanagar, Gorusinge in Kapilvastu district,
27◦40’41.38”N, 83◦1’54.83”E (115 m). These stations record accumulated precipitation at 5 minute
intervals and temperature and relative humidity at 15 minute intervals. The rain gauges use tipping
buckets to measure precipitation at 0.2 mm resolution; the gauge models are TR-525S (manufactured
by Texas Electronics, Inc., Dallas, Texas, USA) at the Dhading site and TB3 (Hydrological Services,
Ltd., Sydney, NSW, Australia) at the other two sites. The gauges are not heated, since the site elevations
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are low enough that they do not experience snow. Data were available beginning June 2013 and ending
September 2014 (Syangja and Kapilvastu) or December 2014 (Dhading).

3. Analysis Methods

3.1. General Approach

Probabilistic precipitation forecasts are common in the short-term synoptic context [23,24] and
also for long-term seasonal prediction [25–28]. An ensemble of precipitation fields consistent with
observations has been used to represent the uncertainty of radar-based precipitation estimates [29,30].
The uncertainty represented by such probability distributions or ensembles can be propagated to
streamflow and water supply quantities using hydrological models [31]. Bellerby and Sun [32] is
one study that adopted a probabilistic approach to precipitation retrieval from remote sensing, fitting
gamma distributions to represent precipitation intensity probabilities at different measured cloud-top
infrared brightness temperatures. Authors in [33] used a nonparametric (kernel density) approach to
estimate 3-hourly precipitation occurrence and intensity probabilities over part of the United States
conditional on retrievals from the satellite precipitation product CMORPH, but noted that sampling the
resulting nonparametric probability distributions is not straightforward. Here, we model the probability
distribution p(x) of APHRODITE precipitation amount x by bringing together separate models for
precipitation occurrence (p(x > 0)) and precipitation intensity conditional on occurrence (p(x|x > 0)).
(An alternative approach would be to subsume both in one distribution that has a point mass at zero
precipitation amount [34,35].) We use flexible parametric functional forms to facilitate fitting the
conditional probability distributions to the observed precipitation amount data.

3.2. Precipitation Amount Modeling

For precipitation intensity, we assume a generalized linear model [36]

g(p(x|x > 0)) ∼ N (Zβ, σ2) (1)

where N denotes the normal distribution, Z is an 1 × l vector of predictor values, which can include
climatological (observed spatial and seasonal variability), and 3B42RT terms, and β is a k × 1 vector of
coefficients. Values for β and the model standard deviation σ are determined by linear regression using
the data from 2001–2007. Given this training data, standard statistical results show that g(p(x|x > 0))

for unobserved data with a known set of predictor values is given by a t distribution [37]. Note that, for
simplicity and to make use of all the available valid data, β, σ were fitted over the entire study domain
and not for each grid point separately.

We compared 4 models, which differ in the predictor values considered: (a) no predictors (baseline
probability distribution, which is the same for all times and places); (b) predictors based on the
3B42RT precipitation amount; (c) predictors based on spatial location and Fourier components of the
seasonal cycle (climatology); (d) both 3B42RT and climatology predictors. For each of models (b)–(d),
which predictors to retain out of a candidate set was decided using stepwise linear regression [38] as
implemented in the stepwisefit function of the Statistics package in GNU Octave [39].
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The transformation g(p), which serves as the link function in the generalized linear model, is based
on approximating the APHRODITE precipitation intensity probability density as a sum of exponential
distributions, also known as a hyperexponential distribution:

pH(x|x > 0; a,b) =
N∑
i=1

aie
−x/bi (2)

with the component distributions arranged in order of scale, so that 0 < b1 < b2 < . . . < bN ,

and additional constraints ai > 0,
∑N

i=1 aibi = 1. The coefficient values are chosen to maximize the
likelihood of observed APHRODITE precipitation over 1981–2000, and the number of components N
is chosen by applying the corrected Akaike information criterion [40,41] with the same data. (See
Appendix for more details.)

A variety of probability distributions have been used to model daily precipitation intensity series,
including the gamma distribution [42–44], a stretched exponential distribution based on the idea
that precipitation intensity can be thought of as the product of three independent Gaussian variables
representing mass flux, specific humidity, and precipitation efficiency [45], or a hybrid exponential and
generalized Pareto distribution [46]. However, these distributions have few (2–3) adjustable parameters
and cannot be made to fit daily precipitation series well over the entire range of precipitation intensity.
By contrast, the hyperexponential distribution provides an analytically tractable approximation to the
observed precipitation intensity distribution that can approximate well even long-tailed positive-valued
distributions with monotone decreasing densities, such as those for queuing times [47]. Wilks [48]
previously considered a hyperexponential distribution withN = 2 for precipitation intensity, and [49,50]
use an exponential distribution (i.e., N = 1) to model hourly precipitation intensity.

Given the fitted hyperexponential distribution, the link function is a normal quantile transform [51]:

g(x) = P inv
N (PH(x)) (3)

where PH(x) =
∫ x

0
pH(u)du denotes the cumulative distribution function obtained by integrating the

hyperexponential density function pH above, and P inv
N is the inverse of the standard normal cumulative

distribution function.
The skill of the fitted probability distribution was evaluated using leave-one-month-out

cross-validation with root mean square error (RMSE) and mean negative log likelihood (NLL) metrics.
NLL is a particularly useful metric for probabilistic models because it evaluates not only the quality of
the model’s central estimate, as RMSE does, but also whether the model standard deviation is consistent
with the model-observation spread [27]. The difference in NLL between an augmented model and a
baseline can be interpreted as the information gain in bits (assuming base-2 logarithms are taken) from
the data (such as 3B42RT) included in the augmented model. RMSE and NLL averages were computed
over all APHRODITE rainy pixels (x > 0) for the 2001–2007 period.
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3.3. Precipitation Occurrence Modeling

For precipitation occurrence, we assumed a logistic regression model, one form of a generalized
linear model:

L(p(x > 0)) = Zγ (4)

where L(p) denotes the logistic function log p
1−p , Z is a 1 × k vector of predictor values identical with

that used in the precipitation amount model, and γ is a k × 1 vector of coefficients. Given the predictors
and APHRODITE data over 2001–2007, the coefficients γ were determined via maximum likelihood,
using the trust region Newton method implemented in LIBLINEAR [52,53].

Skill measures for the precipitation occurrence model included both NLL and a probabilistic form
of RMSE closely related to the popular Brier skill score [54,55], namely the square root of the average
value of (p(x > 0)− po)2, where the observation po is equal to 1 if the day was rainy and 0 if not.

4. Results

We begin with a comparison of precipitation patterns between the satellite products (TMPA 3B42RT
and 3B42) and ground-based products (APHRODITE and the AWSs). First, both satellite products
have broadly similar regional spatial patterns of mean precipitation as APHRODITE when evaluated
for the overlap period of 2001–2007 (Figure 1). 3B42 shows the benefits of retrospective calibration
against rain gauges in a sharper precipitation gradient across the Himalayas that compares better with
APHRODITE, whereas, as previously shown [20], 3B42RT overestimates precipitation over the Tibetan
Plateau. On the other hand, 3B42RT better shows the double heavy-precipitation band just south of
the Himalayas also seen in APHRODITE and missed by 3B42 because its calibration at 1◦ resolution
imposes smoothing [6].

We next consider how the correspondence of satellite-derived with ground-based precipitation
changes with timescale (Figure 2). We use rank correlation as an appropriate overall measure of
correspondence, as this is less sensitive to the non-normal distribution of precipitation and to outlying
values than Pearson product-moment correlation. The correlation coefficients of 3B42RT and 3B42
with APHRODITE are comparable on the daily timescale (0.58 and 0.61 respectively), and increase
with aggregation time to 0.90 and 0.96 respectively at 30 days. Correlations with the AWSs behave
similarly on the daily to monthly scales (coefficients of 0.53 and 0.62 at 1 day and 0.70 and 0.90 at 30
days—the somewhat lower correlations are expected given that we are comparing an individual station
and not an interpolated product with the gridded satellite precipitation field), but show a sharp drop-off
at shorter time scales than daily, down to 0.26 and 0.30 at 3 hours. On the other hand, the satellite
products do roughly reproduce the pronounced precipitation diurnal cycle seen in the AWS observations,
which features a maximum in early morning (local time) and a minimum in the afternoon (Figure 3).
Previous studies suggest that the precipitation diurnal cycle in Nepal varies by season [56] and differs
for precipitation occurrence versus amount [57], which we may consider in a future study.

At the daily timescale, 3B42RT was better correlated with APHRODITE when the satellite
data quality was higher (as measured by more 3-hour periods with microwave precipitation rate
determinations) and when the ground-based data quality is higher (as measured by more 0.05◦squares
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with reporting gauges within the 0.25◦pixel), with the satellite data quality having a more pronounced
impact (Figure 4). This highlights the potential role of better observations in improving satellite-based
precipitation products.

Figure 1. Mean precipitation (mm·d−1) over 2001–2007 from the gauge-based
APHRODITE product and from the satellite-based 3B42RT and 3B42 products for Nepal
and vicinity.

The regional APHRODITE daily precipitation amount distribution turned out to be fit very well by the
sum of N = 5 exponentials (Figure 5). The exponential function was a good basis for this probability
distribution because the empirical probability density decreased for increasing precipitation amounts.
(APHRODITE’s spatial interpolation procedure favors showing light precipitation amounts rather than
exactly zero precipitation, with about 60% nonzero daily precipitation amounts in the region.)

This baseline hyperexponential distribution was modified based on location, season, and 3B42RT
precipitation to give spatiotemporally varying predictive distributions. An example of how this affects
the base distribution is shown in Figure 6, illustrating a situation when both the monsoon season and the
detection of heavy precipitation by 3B42RT implies a higher probability of heavy precipitation compared
to the baseline. Probabilities for any precipitation level of interest being exceeded can be mapped over
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the entire region based on our combined climatology and satellite based model, and can be seen to reflect
both climatological precipitation patterns and precipitation reported in 3B42RT (Figure 7).

(a)

(b)

Figure 2. Rank correlation of precipitation of the satellite-based 3B42RT and 3B42 products
as a function of aggregation timescales: (a) Correlation with the gauge-based APHRODITE
product for 2001–2007 over aggregation timescales from 1 to 90 days; (b) Correlation with
automated weather stations for 2013–2014 over aggregation timescales from 3 hours to
90 days.
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Figure 3. Mean precipitation diurnal cycle, 2013–2014, averaged across 3 stations in Nepal
(5-minute values and a Fourier series smoothed fit are shown) and for satellite products with
3-hour resolution subsampled at the same grid points. Nepal Standard Time is 5:45 hours
ahead of Universal Time.

Figure 4. Rank correlation of daily precipitation between the satellite-based 3B42RT
product and APHRODITE as a function of both station data coverage (expressed as the
number of 0.05◦subcells in a 0.25◦grid cell with precipitation gauges) and satellite data
coverage (availability of higher-quality microwave (MW) sounder precipitation estimates for
at least 4 of the daily 3-hour windows versus only lower-quality estimates based on infrared
(IR) imagery). Error bars are 95% confidence intervals for the correlation coefficients.
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Figure 5. Empirical probability density for APHRODITE daily precipitation amount at the
0.25◦grid scale (conditional on occurrence) for the region 26◦–31◦N, 79◦–89◦E and for two
time periods, compared with a hyperexponential distribution fit only to the 1981–2000 data.

Figure 6. Example probability density functions for daily precipitation amount at the
grid point containing Kathmandu, Nepal (27.7◦N, 85.3◦E) for a heavy-rainfall monsoon
day (2 September 2013): background PDF, climatology PDF taking into account
location and season, and probabilities that incorporate data from the satellite precipitation
product 3B42RT.
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Figure 7. Example maps of regional precipitation for 2 September 2013: (a) 3B42RT
amount (mm); (b) climatological mean (mm); (c) probability of precipitation > 10 mm
based on combined climatology + satellite model; (d) probability of precipitation > 50 mm.

Table 1. Skill measures for probabilistic daily precipitation estimates relative to
APHRODITE values averaged over Nepal and vicinity, 2001–2007. The models are
B = baseline (same probability distribution for all locations and days), S = satellite
(incorporates precipitation from 3B42RT), C = climatology (incorporates past patterns of
precipitation location and seasonality), Comb = combined (both satellite and climatology
predictors). NLL = negative log likelihood, RMSE = root mean square error. RMSE is
in transformed precipitation units, while NLL is in bits. Smaller values denote more skill.
Precipitation amount skill measures are averaged only over cases with nonzero precipitation
in APHRODITE.

B S C Comb

Precipitation amount:
RMSE 0.957 0.839 0.776 0.742
NLL 2.064 1.875 1.759 1.715
Precipitation occurrence:
RMSE 0.486 0.433 0.382 0.364
NLL 0.961 0.776 0.641 0.588
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(a)

(b)

(c)

Figure 8. Frequency of precipitation above different threshold values ((a) 1; (b) 10;
(c) 50 mm/day) as a function of modeled probability (combined satellite and climatology
model). 1-1 lines indicating an ideally calibrated model are also shown.
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Skill measures for the different probabilistic models show that both the climatology and 3B42RT
measures yield improvements over the baseline probability distribution, and their combination yields
the best performing models for both precipitation occurrence and precipitation amount (Table 1). Note
that while the satellite product yields some 0.19 bits of information gain over baseline for precipitation
amount (S versus B NLL in Table 1), satellite plus climatology only outperforms climatology by 0.04 bits
(Comb versus C). Results for the other skill measures show the same trend, presumably because much
of the correlation of the satellite product with APHRODITE reflects spatial and mean seasonal patterns
of variability that can be captured in climatology, whereas it does not offer as much useful information
on interannual variability [6].

Well calibrated probabilities are an important feature for a probabilistic monitoring model, and the
models developed here indeed generally give probabilities that match the observed (APHRODITE)
frequency of occurrence for precipitation over a wide range of threshold values and model probabilities
(Figure 8), despite their linearity in transformed precipitation amount.

5. Discussion and Conclusions

Likely the most useful extension of the model offered here would be adding other sources of
information available in near real time. These include numerical weather prediction model output
fields, regional circulation pattern variables and global modes of variability that affect precipitation
expectation [58–60], and any ground-based radar or weather stations available in near real time.
Improvements in the availability and quality of past ground-based precipitation datasets for model
calibration (such as extending APHRODITE past 2007) would also be expected to improve precipitation
retrievals. While most precipitation in the region occurs in summertime as rain, special treatment of snow
may be explored to improve high-altitude winter precipitation retrievals [61] considering that the current
algorithms for converting satellite sensor values to precipitation rates have been developed primarily for
liquid precipitation and have been shown to underestimate snowfall water equivalent [62].

Including spatial and temporal correlations is another possible direction for extension. How to
efficiently specify mutivariate probability distributions in highly non-normal quantities such as daily
precipitation amounts is an active area of research [29,46,63,64].

Our work here presents a comprehensive approach to constructing a probabilistic model of
precipitation given an imperfect, deterministic satellite precipitation product without explicit error
information and ground-based observations from past years. We anticipate that this method could be
adapted to different regions where near-real-time precipitation observations are scarce.
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Appendix: Fitting a Hyperexponential Distribution to Data

For a nonnegative real random variable x, the hyperexponential distribution with N mixture
components has a probability density function given by

p(x) =
N∑
i=1

aie
−x/bi (A1)

The corresponding cumulative density function is easy to compute:

P (x) =

∫ x

0

p(u)du =
N∑
i=1

aibi(1− e−x/bi) (A2)

How to fit parameters a,b to data in the form of M independent deals {xi|i = 1 . . .M}? Given
the distribution degree N, we can formulate finding the maximum-likelihood parameter values as a
constrained optimization problem where the objective function J is the negative log likelihood:

Minimize J(a,b) = −
M∑
j=1

log

(
N∑
i=1

aie
−

xj
bi

)
(A3a)

subject to ai ≥ 0, i = 1 . . . N (A3b)

0 < b1 < b2 < . . . < bN (A3c)
N∑
i=1

aibi = 1 (A3d)

The first constraint prevents p(x) from assuming negative values, the second constraint improves the
identifiability of parameter sets a,b, and the final constraint ensures that

∫∞
0
p(x)dx = 1.

To facilitate solution, we reformulated this as an unconstrained optimization problem in new
parameter N -vectors c,d that are related to the original parameters a,b as follows:

ai =
eci∑N

k=1 e
ck
∑k

l=1 e
dl

(A4a)

bi =
i∑

j=1

edj (A4b)

The resulting a,b obey the three constraints given above for any real-valued c,d.Also, any admissible
a,b pair can be obtained by an appropriate choice of c,d (with the exception of limiting cases where
some ai are exactly zero, but even these can be approached arbitrarily closely). Hence, we can write the
unconstrained optimization problem as
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Minimize J∗(c,d) = −
M∑
j=1

log

(
N∑
i=1

aie
−

xj
bi

)
+

(
log(

N∑
k=1

eck
k∑

l=1

edl)

)2

(A5)

where a,b for the first term of the cost function J∗ are obtained from c,d using Equation (A4), and the
second term of the cost function is optional but improves the identifiability of the optimum by favoring
the scaling

∑N
k=1 e

ck
∑k

l=1 e
dl = 1.

Thus formulated, the problem may be solved using any of a number of standard numerical
unconstrained optimization methods. In particular, the cost function J∗ is differentiable with respect
to c,d, allowing methods that employ the Jacobian and Hessian of the cost function to be utilized. For
the application in this paper, we minimized J∗ using a derivative-free numerical method, the Nelder and
Mead simplex algorithm [65] implemented in the fminsearch function of GNU Octave [39].

We selected the number of components N to employ by solving the optimization problem (A5)
for successive N beginning with 1, and computing the Akaike information criterion with second-order
correction [40,41] for each N,

AICC(N) = J∗optim(N) +
2MN

M − 2N − 1
(A6)

stopping once AICC stopped decreasing with increasing N. For our data, we found that N = 5

minimized AICC .

We obtained effective starting values for numerical optimization as follows. For N = 1,

c1 ← − log x̄ (A7a)

d1 ← log x̄ (A7b)

where x̄ is the average of the data to be fitted. For N > 1, we began with the optimal c,d found for
N − 1 components and modified them thus:

c1 ← c1 − 1 (A8a)

d1 ← d1 − 1 (A8b)

cN ← cN−1 − 1 (A8c)

dN ← log x̄ (A8d)

Iterative algorithms have previously been offered for fitting hyperexponential distributions to given
probability density functions [47]. Additionally, fitting phase-type (including hyperexponential)
distributions using constrained optimization has been discussed [66,67]. To our knowledge, the
transformation to an unconstrained optimization problem given here to fit a hyperexponential distribution
to data is novel.

Hyperexponential distributions can fit wide classes of monotone decreasing probability distributions
defined over nonnegative values [47,68]. For situations where the rainfall amount probability density
has a clear peak at a positive value, more general or different classes of mixture distributions
would be appropriate. Possibilities include a mixture of geometric distributions [67], generalized
hyperexponentials that allow negative ai [69], or a mixture of exponential with Erlang or gamma
distributions [70].



Climate 2015, 3 344

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Serrat-Capdevila, A.; Valdes, J.B.; Stakhiv, E.Z. Water management applications for satellite
precipitation products: Synthesis and recommendations. J. Am. Water Resour. Assoc. 2014,
50, 509–525.

2. Chalise, S.B.; Shrestha, M.L.; Thapa, K.B.; Shrestha, B.R.; Bajracharya, B. Climate
and Hydrological Atlas of Nepal; International Center for Integrated Mountain Development:
Kathmandu, New Zealand, 1996.

3. Panthi, J.; Dahal, P.; Shrestha, M.L.; Aryal, S.; Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.;
Jha, A.K.; Sharma, M.; Karki, R. Spatial and Temporal Variability of Rainfall in the Gandaki River
Basin of Nepal Himalaya. Climate 2015, 3, 210–226.

4. Dhakal, C.K.; Regmi, P.P.; Dhakal, I.P.; Khanal, B.; Bhatta, U.K. Livelihood Vulnerability to
Climate Change based on Agro Ecological Regions of Nepal. Glob. J. Sci. Front. Res. 2013,
13, 47–53.

5. Pradhanang, U.B.; Pradhanang, S.M.; Sthapit, A.; Krakauer, N.Y.; Jha, A.; Lakhankar, T. National
livestock policy of Nepal: Needs and opportunities. Agriculture 2015, 5, 103–131.

6. Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K. Evaluating satellite products for
precipitation estimation in mountain regions: A case study for Nepal. Remote Sens. 2013,
5, 4107–4123.

7. Hossain, F.; Huffman, G.J. Investigating error metrics for satellite rainfall data at hydrologically
relevant scales. J. Hydrometeorol. 2008, 9, 563–575.

8. Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.;
Bowman, K.P.; Stocker, E.F. The TRMM Multisatellite Precipitation Analysis (TMPA):
Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol.
2007, 8, 38–55.

9. Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring
Mission (TRMM) sensor package. J. Atmos. Ocean. Technol. 1998, 15, 809–817.

10. Huffman, G.; Adler, R.; Bolvin, D.; Nelkin, E. The TRMM multi-satellite precipitation analysis
(TMPA). In Satellite Rainfall Applications For Surface Hydrology; Springer: Berlin, Germany,
2010; pp. 3–22.

11. Chen, S.; Hong, Y.; Cao, Q.; Gourley, J.J.; Kirstetter, P.E.; Yong, B.; Tian, Y.; Zhang, Z.; Shen, Y.;
Hu, J.; Hardy, J. Similarity and difference of the two successive V6 and V7 TRMM multisatellite
precipitation analysis performance over China. J. Geophys. Res. Atmosp. 2013, 118, 13060–13074

12. Qiao, L.; Hong, Y.; Chen, S.; Zou, C.B.; Gourley, J.J.; Yong, B. Performance assessment of
successive Version 6 and Version 7 TMPA products over the climate-transitional zone in the
southern Great Plains, USA. J. Hydrol. 2014, 513, 446–456.



Climate 2015, 3 345

13. Chen, S.; Hong, Y.; Gourley, J.J.; Huffman, G.J.; Tian, Y.; Cao, Q.; Yong, B.; Kirstetter, P.E.;
Hu, J.; Hardy, J.; Li, Z.; Khan, S.I.; Xue, X. Evaluation of the successive V6 and V7 TRMM
multisatellite precipitation analysis over the Continental United States. Water Resour. Res. 2013,
49, 8174–8186.

14. Gourley, J.J.; Hong, Y.; Flamig, Z.L.; Li, L.; Wang, J. Intercomparison of rainfall estimates from
radar, satellite, gauge, and combinations for a season of record rainfall. J. Appl. Meteorol. Climatol.
2010, 49, 437–452.

15. Hirpa, F.A.; Gebremichael, M.; Hopson, T. Evaluation of high-resolution satellite precipitation
products over very complex terrain in Ethiopia. J. Appl. Meteorol. Climatol. 2010, 49, 1044–1051.

16. Yong, B.; Chen, B.; Gourley, J.J.; Ren, L.; Hong, Y.; Chen, X.; Wang, W.; Chen, S.; Gong, L.
Intercomparison of the Version-6 and Version-7 TMPA precipitation products over high and low
latitudes basins with independent gauge networks: Is the newer version better in both real-time and
post-real-time analysis for water resources and hydrologic extremes? J. Hydrol. 2014, 508, 77–87.

17. Moazami, S.; Golian, S.; Hong, Y.; Sheng, C.; Kavianpour, M.R. Comprehensive evaluation of four
high-resolution satellite precipitation products over diverse climate conditions in Iran. Hydrol. Sci.
J. 2014, doi:10.1080/02626667.2014.987675.

18. Huang, Y.; Chen, S.; Cao, Q.; Hong, Y.; Wu, B.; Huang, M.; Qiao, L.; Zhang, Z.; Li, Z.; Li, W.a.
Evaluation of version-7 TRMM multi-satellite precipitation analysis product during the Beijing
extreme heavy rainfall event of 21 July 2012. Water 2014, 6, 32–44.

19. Liu, Z. Comparison of precipitation estimates between Version 7 3-hourly TRMM Multi-Satellite
Precipitation Analysis (TMPA) near-real-time and research products. Atmos. Res. 2015,
153, 119–133.

20. Tong, K.; Su, F.; Yang, D.; Hao, Z. Evaluation of satellite precipitation retrievals and their potential
utilities in hydrologic modeling over the Tibetan Plateau. J. Hydrol. 2014, 519A, 423–437.

21. Mantas, V.M.; Liu, Z.; Caro, C.; Pereira, A.J.S.C. Validation of TRMM multi-satellite precipitation
analysis (TMPA) products in the Peruvian Andes. Atmos. Res. 2015, in press.

22. Yatagai, A.; Kamiguchi, K.; Arakawa, O.; Hamada, A.; Yasutomi, N.; Kitoh, A. APHRODITE:
Constructing a long-term daily gridded precipitation dataset for Asia based on a dense network of
rain gauges. Bull. Am. Meteorol. Soc. 2012, 93, 1401–1415.

23. Theis, S.E.; Hense, A.; Damrath, U. Probabilistic precipitation forecasts from a deterministic
model: A pragmatic approach. Meteorol. Appl. 2005, 12, 257–268.

24. Hamill, T.M. Verification of TIGGE Multimodel and ECMWF Reforecast-Calibrated Probabilistic
Precipitation Forecasts over the Contiguous United States. Mon. Weather Rev. 2012,
140, 2232–2252.

25. Mason, S.J.; Goddard, L. Probabilistic precipitation anomalies associated with ENSO. Bull. Am.
Meteorol. Soc. 2001, 82, 619–638.

26. Barnston, A.G.; Mason, S.J. Evaluation of IRI’s seasonal climate forecasts for the extreme 15%
tails. Weather Forecast. 2011, 26, 545–554.

27. Krakauer, N.Y.; Grossberg, M.D.; Gladkova, I.; Aizenman, H. Information content of seasonal
forecasts in a changing climate. Adv. Meteorol. 2013, 2013, 480210.



Climate 2015, 3 346

28. Luo, L.; Tang, W.; Lin, Z.; Wood, E.F. Evaluation of summer temperature and precipitation
predictions from NCEP CFSv2 retrospective forecast over China. Clim. Dyn. 2013,
41, 2213–2230.

29. Germann, U.; Berenguer, M.; Sempere-Torres, D.; Zappa, M. REAL–Ensemble radar precipitation
estimation for hydrology in a mountainous region. Q. J. R. Meteorol. Soc. 2009, 135, 445–456.

30. Tesfagiorgis, K.; Mahani, S.E.; Krakauer, N.Y.; Khanbilvardi, R. Bias correction of satellite rainfall
estimates using a radar-gauge product – a case study in Oklahoma (USA). Hydrol. Earth Syst. Sci.
2011, 15, 2631–2647.

31. Schaake, J.; Demargne, J.; Hartman, R.; Mullusky, M.; Welles, E.; Wu, L.; Herr, H.; Fan, X.;
Seo, D.J. Precipitation and temperature ensemble forecasts from single-value forecasts. Hydrol.
Earth Syst. Sci. Discuss. 2007, 4, 655–717.

32. Bellerby, T.J.; Sun, J. Probabilistic and ensemble representations of the uncertainty in an
IR/microwave satellite precipitation product. J. Hydrometeorol. 2005, 6, 1032–1044.

33. Gebremichael, M.; Liao, G.Y.; Yan, J. Nonparametric error model for a high resolution satellite
rainfall product. Water Resour. Res. 2011, 47, W07504.

34. Dunn, P.K. Occurrence and quantity of precipitation can be modelled simultaneously. Int. J.
Climatol. 2004, 24, 1231–1239.

35. Hasan, M.M.; Dunn, P.K. Two Tweedie distributions that are near-optimal for modelling monthly
rainfall in Australia. Int. J. Climatol. 2011, 31, 1389–1397.

36. Chandler, R.E. On the use of generalized linear models for interpreting climate variability.
Environmetrics 2005, 16, 699–715.

37. Krakauer, N.Y.; Devineni, N. Up-to-date probabilistic temperature climatologies. Environ. Res.
Lett. 2015, 10, 024014.

38. Draper, N.R.; Smith, H. Applied Regression Analysis; Wiley: New York, NY, USA, 1966.
39. Eaton, J.W. GNU Octave and reproducible research. J. Process Control 2012, 22, 1433–1438.
40. Hurvich, C.M.; Simonoff, J.S.; Tsai, C.L. Smoothing parameter selection in nonparametric

regression using an improved Akaike information criterion. J. R. Stat. Soc. 1998, 60B, 271–293.
41. Krakauer, N.Y.; Krakauer, J.C. A new body shape index predicts mortality hazard independently

of body mass index. PLoS ONE 2012, 7, e39504.
42. Stern, R.D. The calculation of probability distributions for models of daily precipitation. Arch.

Meteorol. Geophys. Bioklimatol. Serie B 1980, 28, 137–147.
43. Groisman, P.Y.; Karl, T.R.; Easterling, D.R.; Knight, R.W.; Jamason, P.F.; Hennessy, K.J.;

Suppiah, R.; Page, C.M.; Wibig, J.; Fortuniak, K.; Razuvaev, V.N.; Douglas, A.; FÃÿrland, E.;
Zhai, P.M. Changes in the probability of heavy precipitation: important indicators of climatic
change. Clim. Chang. 1999, 42, 243–283.

44. Semenov, V.; Bengtsson, L. Secular trends in daily precipitation characteristics: Greenhouse gas
simulation with a coupled AOGCM. Clim. Dyn. 2002, 19, 123–140.

45. Wilson, P.S.; Toumi, R. A fundamental probability distribution for heavy rainfall. Geophys. Res.
Lett. 2005, 32, 022465.

46. Li, C.; Singh, V.P.; Mishra, A.K. A bivariate mixed distribution with a heavy-tailed component and
its application to single-site daily rainfall simulation. Water Resour. Res. 2013, 49, 767–789.



Climate 2015, 3 347

47. Feldmann, A.; Whitt, W. Fitting mixtures of exponentials to long-tail distributions to analyze
network performance models. In Proceedings of the Sixteenth IEEE Annual Joint Conference of
the Computer and Communications Societies, Kobe, Japan, 7–12 April 1997.

48. Wilks, D.S. Interannual variability and extreme-value characteristics of several stochastic daily
precipitation models. Agric. For. Meteorol. 1999, 93, 153–169.

49. Shamir, E.; Wang, J.; Georgakakos, K.P. Probabilistic streamflow generation model for data sparse
arid watersheds. J. Am. Water Resour. Assoc. 2007, 43, 1142–1154.

50. Shamir, E.; Megdal, S.B.; Carrillo, C.; Castro, C.L.; Chang, H.I.; Chief, K.; Corkhill, F.E.; Eden,
S.; Georgakakos, K.P.; Nelson, K.M.; Prietto, J. Climate change and water resourcesmanagement
in the Upper Santa Cruz River, Arizona. J. Hydrol. 2015, 521, 18–33.

51. Bogner, K.; Pappenberger, F.; Cloke, H.L. Technical Note: The normal quantile transformation and
its application in a flood forecasting system,. Hydrol. Earth Syst. Sci. 2012, 16, 1085–1094.

52. Lin, C.J.; Weng, R.C.; Keerthi, S.S. Trust region Newton method for large-scale logistic regression.
J. Mach. Learn. Res. 2008, 9, 627–650.

53. Fan, R.E.; Chang, K.W.; Hsieh, C.J.; Wang, X.R.; Lin, C.J. LIBLINEAR: A library for large linear
classification. J. Mach. Learn. Res. 2008, 9, 1871–1874.

54. Roulston, M.S.; Smith, L.A. Evaluating probabilistic forecasts using information theory. Mon.
Weather Rev. 2002, 130, 1653–1660.

55. Benedetti, R. Scoring rules for forecast verification. Mon. Weather Rev. 2010, 138, 203–211.
56. Shrestha, D.; Deshar, R. Diurnal variation of pre-monsoon and monsoon rainfall over Nepal. In

Proceedings of the 2014 Seminar on Water & Energy, Kathmandu, Nepal, 24 March 2014.
57. Bhatt, B.C.; Nakamura, K. Characteristics of monsoon rainfall around the Himalayas revealed by

TRMM precipitation radar. Mon. Weather Rev. 2005, 133, 149–165.
58. Bogardi, I.; Matyasovszky, I.; Bardossy, A.; Duckstein, L. Application of a space-time stochastic

model for daily precipitation using atmospheric circulation patterns. J. Geophys. Res. 1993,
98, 16653–16667.

59. Morin, J.; Block, P.; Rajagopalan, B.; Clark, M. Identification of large scale climate patterns
affecting snow variability in the eastern United States. Int. J. Climatol. 2007, 28, 315–328.

60. Kenyon, J.; Hegerl, G.C. Influence of modes of climate variability on global precipitation extremes.
J. Clim. 2010, 23, 6248–6262.

61. Lang, T.J.; Barros, A.P. Winter storms in the central Himalayas. J. Meteorol. Soc. Jpn. 2004, 82,
829–844.

62. Anders, A.M.; Roe, G.H.; Hallet, B.; Montgomery, D.R.; Finnegan, N.J.; Putkonen, J. Spatial
patterns of precipitation and topography in the Himalaya. Geol. Soc. Am. Special Papers 2006,
398, 39–53.

63. Mirakbari, M.; Ganji, A.; Fallah, S. Regional bivariate frequency analysis of meteorological
droughts. J. Hydrol. Eng. 2010, 15, 985–1000.

64. Peleg, N.; Shamir, E.; Georgakakos, K.P.; Morin, E. A framework for assessing hydrological regime
sensitivity to climate change in a convective rainfall environment: a case study of two medium-sized
eastern Mediterranean catchments, Israel. Hydrol. Earth Syst. Sci. 2015, 19, 567–581.

65. Nelder, J.A.; Mead, R. A simplex method for function minimization. Comput. J. 1965, 7, 308–313.



Climate 2015, 3 348

66. Asmussen, S.; Nerman, O.; Olsson, M. Fitting phase-type distributions via the EM algorithm.
Scan. J. Stat. 1996, 23, 419–441.

67. Horváth, A.; Telek, M. PhFit: A general phase-type fitting tool. In Computer Performance
Evaluation: Modelling Techniques and Tools; Field, T., Harrison, P., Bradley, J., Harder, U., Eds.;
Springer: Berlin, Germany, 2002; pp. 82–91.

68. Gleser, L.J. The gamma distribution as a mixture of exponential distributions. Am. Stat. 1989,
43, 115–117.

69. Botta, R.F.; Harris, C.M. Approximation with generalized hyperexponential distributions: Weak
convergence results. Queueing Syst. 1986, 1, 169–190.

70. Riska, A.; Diev, V.; Smirni, E. An EM-based technique for approximating long-tailed data sets
with PH distributions. Perform. Eval. 2004, 55, 147–164.

c© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article
distributed under the terms and conditions of the Creative Commons Attribution license
(http://creativecommons.org/licenses/by/4.0/).


	Introduction
	Data
	Satellite-Based Precipitation
	Gauge-Based Precipitation

	Analysis Methods
	General Approach
	Precipitation Amount Modeling
	Precipitation Occurrence Modeling

	Results
	Discussion and Conclusions
	Appendix: Fitting a Hyperexponential Distribution to Data

