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Abstract: The increasing drought frequency poses a significant threat to global and regional river
systems and ecosystem functioning, especially in the complex topographical Buffalo River catchment
area of the Eastern Cape Province, South Africa. This study explored the impact of drought on
riparian vegetation dynamics using the Normalize Difference Vegetation Index (NDVI), Transformed
Difference Vegetation Index (TDVI) and Modified Normalized Difference Water Index (MNDWI) from
satellite-derived Landsat data from 1990 to 2020. The least-squares linear regression and Pearson’s
correlation coefficient were used to evaluate the long-term drought in riparian vegetation cover
and the role of precipitation and streamflow. The correlation results revealed a moderate positive
correlation (r = 0.77) between precipitation and streamflow with a significant p-value of 0.04 suggest-
ing consequences on riparian vegetation health. Concurrent with the precipitation, the vegetation
trends showed that precipitation increased insignificantly with less of an influence while the reverse
was the case with the streamflow in the long term. The results show that the NDVI and TDVI were
significant indices for detecting water-stressed vegetation in river catchment dynamics. Much of
these changes were reflected for MNDWI in dry areas with a higher accuracy (87.47%) and dense
vegetation in the upper catchment areas. The standardized precipitation index (SPI) revealed the
inter-annual and inter-seasonal variations in drought-stressed years between 1991–1996, 2000–2004,
2009–2010, 2015, and 2018–2019, while 2020 exhibited slight sensitivity to drought. The findings
of this study underscore the need for heightened efforts on catchment-scale drought awareness for
policy development, programs, and practices towards ecosystem-based adaptation.

Keywords: drought assessment; hydro-meteorological variables; riparian vegetation; river-catchment;
vegetation indices

1. Introduction

Climatic predictions have indicated an increase in drought frequency, duration, and
severity [1]. Droughts can occur in most climatic zones including both high and low rainfall
regions marked by a decrease in precipitation for an extended period such as a season or a
year [2]. The World Meteorological Organization (WMO) accentuates the severity of these
climatic shifts with far-reaching consequences for ecosystems and water resources [3]. The
Centre for Research on the Epidemiology of Disasters (CRED) further emphasized the impact
of drying trends on communities, revealing a growing number of reported drought-related
disasters globally [4]. Riparian vegetation serves as an important natural resource that
regulates a variety of key ecosystem roles and services [5]. Riparian vegetation is used as a
river rehabilitation tool and biological engineering plays a large role in agricultural practices

Climate 2024, 12, 7. https://doi.org/10.3390/cli12010007 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli12010007
https://doi.org/10.3390/cli12010007
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://orcid.org/0000-0001-7593-9096
https://doi.org/10.3390/cli12010007
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli12010007?type=check_update&version=3


Climate 2024, 12, 7 2 of 22

in riparian fencing [6]. In semi-arid ecosystems, riparian vegetation acts to control water
flow, the effect of water, transportation, and the deposition of sediments thus, presenting
a distinctive habitat for an extensive array of plants and animals on the landscape [7].
Evidence of anthropogenic impacts on global drought frequency, duration, and intensity
signals threats to various environmental components including riparian vegetation and
ecosystem functioning [8]. Riparian ecosystems characterise vegetation components along
river networks and are functionally related to fluvial systems and surrounding areas [9].
According to [10], riparian vegetation serves two pollution control functions including the
prevention of pollution from entering water bodies and the removal of pollution from water
bodies that may affect them, thereby causing chemical transformations. The spatial and
temporal dynamics of riparian vegetation in response to drought stress are increasingly
becoming imperative for effective conservation and sustainable water resource management.

Satellite-derived Normalized Difference Vegetation Index (NDVI) [11], Transformed
Difference Vegetation Index (TDVI) [12] and Modified Normalized Difference Water In-
dex (MNDWI) [13] have been applied to broader drought and vegetation-climate related
studies, and plant species for change detection [14,15]. Numerous studies have shown that
the major climatic factors including precipitation, temperature, solar radiation, and wind
speed affect vegetation response to drought stress, which may vary across different climatic
regions [16,17]. Long-term ecological studies on riparian vegetation change and their re-
sponses to drought stress in the semi-arid environment are crucial to understanding how
vegetated ecosystems respond to environmental change [18,19]. South Africa witnessed one
of the worst droughts hit between 2015 and 2016, with rainfall and water levels extremely
declining in most parts of the country [20]. Buffalo River catchment in the Eastern Cape
Province has been experiencing increasing incidences of drought in recent years affecting
riparian vegetation health and ecosystem functioning due to the region’s aridity and the
hydrological complexity of the topographic environment [20,21]. Assessment of riparian
vegetation response to water stress in a semi-arid environment especially along river net-
works is still lacking at the microscale level over a long-term period [22–24]. Only a few
studies have explored the Buffalo River vegetation change placing limited emphasis on
comprehensive riparian vegetation assessment to reveal the topographic complexities along
the catchment dynamics because drought conditions are linked to multiple factors [25–28].
The complexities in interactions between drought and river hydrology necessitate a compre-
hensive approach that combines advanced remote sensing techniques to accurately assess
riparian vegetation response to drought.

The advancement in space-based technologies in assessing ecological interactions has
provided numerous options for change detection in riparian vegetation dynamics, making
ground-based observations less efficient [15,29]. Therefore, this study integrates multi-
modal drought-related vegetation indices (NDVI, TDVI and MNDWI) from Landsat and
hydro-meteorological variables (precipitation and streamflow) to provide a comprehensive
assessment of the impacts of drought on riparian vegetation change along the Buffalo River
in South Africa. As such, an integrated approach is crucial in identifying areas vulnerable to
drought along the Buffalo River catchment, which may help in mitigating drought risks and
potential ecosystem collapse. The change detection method least-squares linear regression
and the pixel-wise Pearson’s correlation coefficient were used to evaluate long-term drought
trends and the role of hydro-meteorological variables. The broadly used Standardized Pre-
cipitation Index (SPI) was employed to assess the frequency and severity of drought over the
long term [30,31]. The shorter time scale of 3 months and 6 months SPI are more efficient in
identifying short-term droughts, while the longer time scale of 12 months is better for identi-
fying less frequent with longer-lasting drought episodes [32,33]. Hence, this study aimed
to assess riparian vegetation response to drought along the Buffalo River catchment in the
Eastern Cape Province, South Africa from 1990 to 2020. The specific objectives of the study
are to (i) identify riparian vegetation areas vulnerable to drought stress along the Buffalo
River catchment between the period 1990–2020 and (ii) assess the frequency and severity
of drought impacts on the riparian vegetation change. The outcomes of this study can aid
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environmental protection managers in the adoption of strategies for preserving riparian
vegetation variation from recurrent drought stress along the river-catchment dynamics.

2. Materials and Methods
2.1. Study Area

The Buffalo River Catchment is located between 33◦39′ and 33◦05′ S and longitude
27◦05′ and 27◦33′ E spanning 1237 km2 on the east coast of South Africa in the Eastern Cape
Province (Figure 1), with an approximately total population of 642,000 inhabitants [27]. The
Buffalo River estuary enters the Indian Ocean in the city of East London with the catchment
drained by the Buffalo River and runs southeastward towards the Indian Ocean with an
elevation of 1200 mean sea level (3900 ft) [25]. The geology of the area is mostly made of
marine sediments of the Beaufort Series with the Buffalo River being naturally saline [34].
Rainfall varies from the mountainous landscape and natural forest to the plain in the
Northwestern to Southeastern direction [26]. In general, the average minimum temperature
is 13.5 ◦C and can be as low as −3 ◦C in winter at the hilltop [25]. The average maximum
temperature is 22.3 ◦C across the area while maximum summer temperatures reach 38 ◦C
on the plain, especially at Gwaba town of the Buffalo River catchment [25].
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Province, South Africa.

Buffalo River catchment has four dams which are located from north to south compris-
ing the Maden Dam, Rooikrans Dam, Laing Dam and Bridle Drift Dam with a full supply
volume of 101 million m3 [28]. Consequently, a large proportion of the Buffalo catchment
has been transformed from its natural condition as reported that almost 17% of the total
catchment area is degraded thicket and grassland with urban built-up and industrial areas
covering almost 12% of the catchment [34]. Along the Buffalo River, four dams supply the
main areas of King William’s Town, Zwelitsha, Mdantsane and East London.
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2.2. Data Acquisition and Pre-Processing

Satellite imageries obtained from Landsat were used to assess the impact of drought
on riparian vegetation changes along the Buffalo River catchment from 1990 to 2020. The
first step involves the acquisition of Landsat imageries from the United States Geological
Survey (USGS) database (https://earthexplorer.usgs.gov/, accessed on 5 July 2023). Landsat
data provide the best spectral bands and ground resolution for efficiently tracking riparian
vegetation in the long term and documenting changes in response to drought stress [29]. In
this study, the Landsat imageries were processed, mosaicked, and geometrically corrected
to the World Geodetic System (WGS84) coordinate system and clipped using the boundary
of the Buffalo River catchment. Landsat data were acquired at a spatial resolution of 30 m
with a cloud cover of less than 10% during the observed period. The data were grouped into
five-year intervals to detect the long-term impacts of drought stress on riparian vegetation
from 1990 to 2020. The selection of the drought assessment period was informed by the
documented literature and information on the onset of drought [20,33]. Consequently, the
polygon for South African dams and the dams on the Buffalo River catchment were extracted
using the DIVA-GIS database (https://www.diva-gis.org/gdata/, accessed on 7 August
2023). A uniform riparian buffer of 50 m was placed on the Buffalo River and dam layers
for this study. The Standardized Precipitation Index (SPI) values were calculated based on
precipitation data obtained from eight meteorological weather stations from the Agricultural
Research Council (ARC) database. The long-term precipitation data was fitted to the Gamma
probability distribution to calculate the SPI values at different time scales [32,33,35] because
it is suitable for this type of data. The streamflow data were obtained from the Department
of Water Affairs database (https://www.dws.gov.za/Hydrology/Verified/hymain.aspx/,
accessed on 9 August 2023). Consequently, the two hydro-meteorological datasets were
used to assess the lucid relationship between the variables.

2.3. Image Processing
2.3.1. Normalize Difference Vegetation Index

Riparian vegetation along the Buffalo River often occurs in a narrow pattern. The Nor-
malize Difference Vegetation Index (NDVI) was calculated using the Landsat imagery [36].
The NDVI proposed by [37] was calculated as a ratio between measured reflectivity in the
red and near-infrared (NIR) side of the electromagnetic spectrum. The red and NIR spectral
bands are mainly affected by the chlorophyll absorption of leaves in green vegetation and
the thickness of the green vegetation on the surface. The NDVI values normally range from
−0.2 to 0.1 for inland water bodies, snow, deserts, bare soils, and sparsely vegetated areas
and between 0.1 to 1 for increasing amounts of vegetation. NDVI values increase with
increasing green biomass, positive seasonal changes, and positive factors such as abundant
precipitation [36]. Therefore, the NDVI was calculated using Equation (1):

NDVI =
ρnir − ρred
ρnir + ρred

(1)

where, ρnir is the near-infrared band reflectance and ρred is the red band reflectance
respectively. In this study, the NDVI was calculated using Landsat 5 and 7 (bands 4 and 3)
and Landsat 8 (bands 4 and 5).

2.3.2. Transformed Difference Vegetation Index

The Transformed Difference Vegetation Index (TVDI) proposed by [38] was calculated
to assess drought impact on riparian vegetation along the Buffalo River catchment [39].
As such, the TDVI was used to reduce the effect of soil brightness, environmental effects,
the colour of soil, moisture and shadow and enhance the actual vegetation response to
the effects of drought. The TDVI has been tested in previous studies where the index has
performed better than other indices for assessing vegetation response to drought [39]. The
TDVI has demonstrated high performance in differentiating vegetation cover, especially in
arid and semi-arid lands [38,39]. Subsequently, the TVDI was evaluated using Equation (2):

https://earthexplorer.usgs.gov/
https://www.diva-gis.org/gdata/
https://www.dws.gov.za/Hydrology/Verified/hymain.aspx/
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TDVI = 1.5[
NIR − R√

NIR2 + R + 0.5
] (2)

where, R and NIR depict the reflectance in the red and near-infrared spectral bands of
Landsat satellite imageries respectively. The output of the TDVI difference imageries was
overlaid with the riparian buffer polygon to determine where primary changes (i.e., an
increased or decreased and/or remained the same) might have occurred during the period
of the study.

2.3.3. Modified Normalized Difference Water Index

The Modified Normalized Difference Water Index (MNDWI) was extracted with
the near-infrared RNIR as a reference wave band using the short infrared wave band
(SWIR) [37]. The MNDWI was originally developed for use with Landsat TM bands 2 and
5, and applicable with other Landsat imagery such as Landsat 4/5 and 7 (bands 2 and 5)
used for this study. The MNDWI was used to supervise the soil moisture state and the
status of the water bodies. Furthermore, Landsat 8 (bands 3 and 6) were subsequently used
respectively. Therefore, the MNDWI was calculated using Equation (3):

MNDWI =
Green − SWIR
Green + SWIR

(3)

When compared with the NDWI water bodies, the MNDWI have greater positive
values because water bodies mostly absorb more SWIR light than NIR light [40]. Soil,
vegetation, and built-up classes have been evaluated to show smaller negative values
because they reflect more SWIR light than green light [41]. The MNDWI values range
between −1 (vegetation and land surface) and +1 (freshwater bodies). MNDWI delivers
higher positive values of −1 to +1 (i.e., close to one) for water than the near-infrared (NIR)
of the NDWI because of the absorption of light. The MNDWI indicator has a stronger
ability to reduce disturbances generated by buildings, vegetation, and soils [42]. Numerous
studies have used MNDWI for the extraction of information on water bodies including
lakes, rivers, ponds, etc. [40,42].

2.4. Standardized Precipitation Index (SPI)

Monthly precipitation data from eight meteorological weather stations employed were
obtained from the Agricultural Research Council (ARC) database within the Buffalo River
catchment from 1990 and 2020. The selected weather stations for the analysis include the
stations covering the catchment areas. Annual precipitation data was used to analyse and
derive the Standardized Precipitation Index (SPI) using the RStudio v.4.1 software. The SPI
was calculated and analysed into (three, six and twelve-month) intervals from the long-term
mean. The SPI has been widely used for drought monitoring and assessment [30,43] due
to its ability to produce reliable comparisons of various climatic conditions at different
timescales [31]. Equation (4) was used for SPI calculation as follows:

SPI =
(

P − P* )/σp (4)

where, P is the precipitation value for a given time. P* is the mean precipitation over
the reference period. σp is the standard deviation of the precipitation over the reference
period. If a value less than zero is consistently observed and it reaches a value of 1 or less, a
drought is said to have occurred [44]. When the SPI value becomes positive it indicates the
end of a drought, thus the onset of a drought can be described as shown in Table 1. The
standardized precipitation index threshold value of ±1 has been widely used to compute
the frequency and severity of drought for wet and dry phases over a long term [42,44,45].
Monthly river flow data for the period of investigation was sourced from the Department
of Water Affairs database (https://www.dws.gov.za/Hydrology/Verified/hymain.aspx,
accessed on 9 August 2023), and subsequently, the mean annual values were evaluated.

https://www.dws.gov.za/Hydrology/Verified/hymain.aspx
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Table 1. Classification of SPI values (McKee et al., 1993) [46].

SPI Values Drought/Wetness Category

2.0+ Extremely wet

1.5 to 1.99 Very wet

1.0 to 1.49 Moderately wet

−0.99 to 0.99 Near normal

−1.0 to −1.49 Moderate drought

−1.5 to −1.99 Severely dry

−2 and less Extremely dry

2.5. Study Methods

The spatial and inter-annual characteristics of riparian vegetation response to drought
were analysed using the NDVI, TDVI, and MNDWI. Annual precipitation and stream-
flow were evaluated to reveal the degree of correlation between the variables. Conse-
quently, the entire period was characterised into four seasons, which included spring
(September–November), summer (December–February), autumn (March–May), and winter
(June–August) respectively. The geospatial technique adopted a hybrid methodological
approach using ArcGIS v.10.8 and R statistical package (RStudio v.4.1 software) to compute
the inter-annual variability of vegetation indices and changes in climatic patterns in response
to drought. The change detection allows the identification of changes in the state of drought
incidence quantified over a repeated time interval [47]. In this study, the widely adopted
change detection method was employed in mapping and assessing riparian vegetation
response in a time series interval of five years [48,49]. Post-classification assessments and
image differencing techniques [50] were used to identify and approximate the extent of land
cover changes in the study area between 1990, 1995, 2000, 2005, 2010, 2015, and 2020 respec-
tively. The least-squares linear regression was used to evaluate the long-term vegetation
trends [51] and the role of hydro-meteorological variables including annual precipitation
and streamflow during the study period. To better understand the relationship between
hydro-meteorological variables and vegetation series along the Buffalo River catchment, the
pixel-wise Pearson’s correlation analysis was carried out between streamflow, NDVI, TDVI
and MNDWI as dependent variables and precipitation being the independent variable
from 1990 to 2020 [45]. The correlation coefficient analysis (rxy) is evaluated in Equation (5):

rxy =
∑i (xi − x)(yi − y)√

∑i (xi − x)2 − ∑ (yi − y)2
(5)

where, xi and yi are independent and dependent variables, and x and y are the sample
mean values with a value ranging from −1 to 1 respectively.

Classification and Accuracy Assessment

An unsupervised classification was performed on the vegetation index imageries
to create user-defined classes and harmonise them into four classes [47]. The quantified
classes include dense riparian vegetation, sparse, non-vegetated areas, and water bodies.
The accuracy assessment for the derived indices including the TDVI, NDVI and MNDWI
was computed through the user, producer, overall accuracy, and validation [12]. Based
on the classified maps, change detection was applied to quantify the changes in natural
riparian vegetation cover within the area. In addition, Figure 2 shows the flowchart of the
methodology for pre-processing and data-processing techniques used for the study. Hence,
the study methodology navigates the overall indices and hydro-meteorological variables
used for the study period.
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3. Results
3.1. Spatial Variation of Buffalo River Catchment Dynamics for TDVI

The inter-annual variation of TDVI from 1990 to 2020 is presented in Figure 3. The
results show substantial inter-catchment changes in riparian vegetation over time. As such,
these changes vary in the magnitude of TDVI thresholds along the Buffalo River. Overall,
the TDVI results revealed the lowest (0.59) and highest (0.77) values between 1995 and 2015
respectively. The largest decrease in TDVI was observed in 2015 (0.59) and 2020 (0.68). The
TDVI shows slight variations in the three sections of the Buffalo River Catchment including
the upper, middle, and lower reaches. The accuracy assessment of the derived index shows
that the accuracy values for TDVI varied from 0.89 to 0.95. In contrast, the highest overall
accuracy was witnessed in 2000 at the level of 95.22 and 88.34 in the year 1990 as shown in
Table 2.

Table 2. Accuracy Assessment for TDVI.

TDVI
Years 1990 2000 2005 2010 2015 2020

Kappa coefficient 0.91 0.93 0.92 0.89 0.93 0.95
Overall classification accuracy (%) 88.34 95.22 91.31 95.41 94.18 91.47
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3.2. Spatial Variation of Buffalo River Catchment Dynamics for NDVI

The NDVI algorithm was evaluated to identify the riparian vegetation status over the
study area as shown in Figure 4. The inter-annual changes in NDVI revealed a substantial
decrease in the riparian vegetative cover along the Buffalo River. The maximum NDVI
values ranging from 1990 (0.44), 1995 (0.65), and 2000 (0.54) show some slight variations
with maximum NDVI values while the year 2005 witnessed a slight increase of about
0.76. For the subsequent years, the NDVI gradually decreased in 2010 from 0.51 to 0.47
in 2015 followed by a slight increase of 0.50 in 2020. This connotes that there were more
decreasing changes in NDVI trend over the last five years specifically between 2015 and
2020 when compared to the previous years. In general, the decrease of vegetation cover
density in the study area was witnessed in the middle and lower reaches in combination
with precipitation averages, and surface water bodies. Accuracy assessment was performed
using random points for the NDVI and TDVI imageries and classification results were
obtained. The estimated accuracy of the vegetation cover density and classification results
for the study area is presented in Table 3. The accuracy assessment for NDVI results varies
between 0.82 and 0.88. The highest overall accuracy was witnessed in 2020 at the level of
88.47% and 82.34% for the year 1990 as shown in Table 3.
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Figure 4. Spatial and temporal variation of NDVI from 1990 to 2020 along the Buffalo River catchment.

Table 3. Accuracy assessment for NDVI.

NDVI
Years 1990 2000 2005 2010 2015 2020

Kappa coefficient 0.79 0.78 0.80 0.88 0.87 0.85
Overall classification accuracy (%) 82.34 84.22 85.31 85.41 84.18 88.47

3.3. Spatial Variation of Buffalo River Catchment for MNDWI

The inter-annual variation of MNDWI of the Buffalo River catchment is presented
in Figure 5. The MNDWI imageries were derived by using the MNDWI algorithm for
the 5-year time intervals across the region. By visual interpretation, vegetation was dis-
tinguished from water bodies using the MNDWI which enhances the water surface such
that the water bodies are depicted clearly from other surface features. The index showed
high accuracy (87.47%) even though there was misclassification, especially in the upper
catchment areas with dense vegetation. The MNDWI results show that a large part of the
Buffalo River catchment was affected by drought over three decades significantly affecting
dams, lakes and streams becoming low because of the severe conditions that occurred over
the study period. The overall accuracy for the MNDWI values varied between 0.82 and
0.89 as shown in Table 4. The highest overall accuracy was witnessed in 2015 at the level of
94.47 and the lowest was recorded as 85.40 for the year 2005.
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Table 4. Accuracy assessment for MNDWI.

MNDWI
Years 1990 2000 2005 2010 2015 2020

Kappa coefficient 0.82 0.81 0.73 0.89 0.87 0.85
Overall classification accuracy (%) 92.34 92.22 85.40 92.41 94.47 87.47

3.4. Analysis of Annual Precipitation, Streamflow and Vegetation Series (1990–2020)

The correlation between annual precipitation and streamflow reveals the changes
between drought and relative drought-free years based on the annual precipitation change,
vegetation series and streamflow during the study period (Figure 6A). The lowest precipi-
tation peaks were recorded in 1992, 2003, 2007, 2009, 2018 and 2019 respectively. However,
the precipitation change depicts a wave-like sinusoidal effect that can be attributed to
the significant variation in rainfall across the Buffalo River catchment. These years were
associated with the period when drought was most likely linked to El Niño/Southern
Oscillation (ENSO) perturbation [52]. The prevalent drought episodes ravaged some crop-
lands and vegetated ecosystems with profound effects on the inhabitants in some parts of
southern Africa including South Africa [53]. The streamflow reveals a declining trend in
the time series associated with the increased frequency of prolonged drought periods and
less precipitation amounts received across the catchment area (Figure 6A). The relationship
between annual precipitation and streamflow was relatively low with insignificant positive
trends across time scales. Streamflow decreases in some years while precipitation increases
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in other years which may be due to the complexities created by spatial heterogeneity of
different natural and human-induced changes [54].
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Figure 6B revealed a time series correlation analysis between precipitation and vegeta-
tion series from 1990 to 2020. The hydro-meteorological variables were used to reveal the
spatial variation in response to vegetation series (i.e., TDVI and NDVI) along the Buffalo
River Catchment dynamics (Figure 6B). Riparian vegetation cover and hydro-meteorological
variables (i.e., precipitation and streamflow) exhibited drought variation trends during the
study period. The correlation analysis revealed insignificant positive relationships between
precipitation and vegetation series suggesting variations in vegetation cover due to the
presence of water in the soil [55]. In essence, the NDVI and TDVI trends revealed a similar
trend across the Buffalo River with NDVI indicating an insignificant positive correlation
during the study period. The period of low vegetation series corresponds with the decrease
in rainfall trend and streamflow in some years. For instance, in 1990 and 2005, vegetation
cover showed a corresponding increase in above-average rainfall trend while 2010 and 2015
showed a decrease in TDVI, NDVI and rainfall trend (Figure 6B).

Figure 6C shows the correlation between MNDWI and hydro-meteorological time
series. The results revealed year-to-year fluctuations in streamflow with less water coverage
during the drought period suggesting less than average precipitation over the catchment.
At the start of 1995, the inter-annual changes revealed a decline in MNDWI with minor
vegetation recoveries from 1995 to 2005 (Figure 6C).

Figure 6D shows the analysis between streamflow and vegetation series. At the start of
2010, the vegetation along the catchment began to show consistency in decline while the
reverse was the case for precipitation and the streamflow (Figure 6D). The development
may be attributed to the semi-arid microclimate dynamics of the area, which might have im-
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pacted the dams and rivers becoming severely low [56]. During the year 2015, the catchment
dynamics revealed a decline that coincided with the recurrent dry episodes that occurred
from 2015 to 2016, contributing to the reduction in water dam levels [53]. Consequently, the
next five years after 2016 exhibited minor vegetation recovery with a positive relationship
between precipitation and the streamflow (Figure 6B,D). The development may be associ-
ated with the relative recovery gained during the impacted period of proximal catchment
discharge and native vegetation cover in the area. Consequently, this might have changed
to a certain extent and improved riparian vegetation recovery.

3.5. Standardized Precipitation Index Classification for 3, 6 and 12 Months

Standardized Precipitation Index (SPI) classification for drought (3, 6, and 12 months)
timescales from 1990 and 2020 is shown in Figure 7A–C. The time series precipitation data
was used based on the monthly average to calculate SPI for drought at 3-time scales (i.e.,
3 months, 6 months, and 12 months) for the study area. Accordingly, the predominant
wet years exhibited higher values (blue colour), while the frequent drought years showed
lower values (red colour). The research area’s SPI for drought at three-time scales—three
months, six months, and twelve months—was determined using the time series precipita-
tion data based on the monthly average. To assess seasonal drought, the entire season was
divided into four seasons: winter (June–August), spring (September–November), summer
(December–February), and autumn (March–May). Subsequently, the long-time drought
and trend were calculated for each season based on the annual and seasonal SPI series of
the Buffalo River catchment dynamics.
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3.5.1. 3-Months SPI Patterns (1990–2020)

The SPI results of the Buffalo River catchments show that the summer of 2009 was the
driest season based on the average SPI values of −1.12 suggesting severe dry conditions
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(Figure 7A). The year 2005 shows high positive SPI values suggesting wetter-than-average
conditions during the summer period. The SPI values for most years in summer seasons
are negative indicating severe conditions. During the autumn season, the SPI values exhibit
more variations when compared to the summer with both positive and negative values
indicating the combination of wetter and drier conditions (Figure 7A). Although no strong
consistent trend is apparent. In the winter season, the SPI values show a combination of
positive and negative values indicating a fluctuating condition. Some years experienced
wetter winters (e.g., 1997, 1.40; 2006, 1.94; 2011, 2.01), while others indicate drier winters
(e.g., 1994, −2.29; and 2019, −1.09) as shown in Figure 7A. The 3-month SPI reveals short
and medium-term moisture conditions with no clear trend over the long term, suggesting
variability in winter precipitation. Similarly, the SPI values for the spring season show a
combination of positive and negative values indicating varying precipitation patterns (e.g.,
1994, −2.04). Some years have wetter springs (e.g., 2002, 2.14), and others experience drier
spring seasons suggesting a fluctuating pattern of spring precipitation (e.g., 2010, −0.71)
and the driest month (2018, −1.29; 2019, −1.64) respectively.

3.5.2. 6-Months SPI Patterns (1990–2020)

The 6-month SPI classification timescale for the Buffalo River catchment reveals the
precipitation over distinct seasons (Figure 7B). The 6-month SPI values provided the
emphasis on the months with the most negative SPI values as they indicate drier conditions
when compared to the long-term average. By visual interpretation, we can infer that most
negative SPI values for each month exhibit the driest values including January 1992: −1.48;
February 1992: −2.11; March 1992: −2.40; April 1991: −2.20; May 1991: −1.95; June 1991:
−1.28; July 1991: −1.14; August 2009: −1.59; September 2019: −2.10; October 2019: −2.34;
November 2019: −2.25; and December 2019: −2.25 respectively. The 6-month SPI averaged
values indicate that the Buffalo River catchment experienced mild inter-annual drought
variability. Based on these values, we can infer that March 1992 and October, November,
and December 2019 had the most negative SPI values indicating extremely dry conditions
during those months as shown in Figure 7B.

3.5.3. 12-Month SPI Patterns (1990–2020)

The 12-month SPI scales reflect long-term precipitation patterns in riparian vegetation
change at different time scales within the Buffalo River catchment area (Figure 7C). In the
analysis of the 12-month SPI series, certain years exhibited a higher level of drought impact
when compared to others in the study area. These periods can have significant impacts on
riparian vegetation and river ecosystems. The averaged 12-month SPI values range between
−0.23 to −1.19 for the dry episodes and 1.09 to 2.77 for the wet episodes. Specifically, the
years 1991–1996, 2000–2004, 2009–2010, 2015, and 2018–2019 were identified as the most
drought-affected years (Figure 7C). These periods of reduced precipitation affect the overall
health of the river ecosystem which in turn decreases riparian vegetation. In some years,
the results show the period of above-normal rainfall with positive SPI values in 1997–1999,
2005–2007, 2011–2016 and 2017 respectively.

3.5.4. Correlation between Indices and SPI Drought Patterns (1990–2020)

Figure 7D shows the SPI drought classification patterns and indices for SPI-3-, 6-
and 12-months between 1990 and 2020. The SPI-6 and SPI-12 months for the year 2005
reveal wet years indicating wet years indicating wet years indicating wetter-than-average
conditions while the 3-month SPI shows the period of short and medium-term precipitation
variations. In 2015, the SPI-3 and 12 months showed a period of above-normal rainfall,
particularly for the 6-month SPI drought index. In contrast, the 3- and 6-month SPI in 1990
reveals a dry year, especially for the 12 months where riparian vegetation and agricultural
practices are impacted by the stress caused by drought during the study period. More so,
the year 2010 shows a period of dry spells for 12 months SPI followed by 6 months and
3 months with the short period which may have impacted agricultural production with a
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potentially adverse impact on the economy. The years 1990 and 2010 appear to have lower
values across multiple indices, indicating potential environmental stress or disturbance as
shown in Figure 7D.

Information in Table 5 shows the correlation results between indices and SPI-3, 6 and
12 months drought Index. The negative values in the SPI3, SPI-6, and SPI-12 drought index
for certain years reveal periods of drought. The results indicate a weak positive correlation
between SPI-3 and NDVI (r = 0.16) and a moderate positive correlation between SPI-3 and
TDVI (r = 0.40). This connotes that the NDVI and TDVI may slightly increase as SPI-3
months increase suggesting a potential positive relationship between vegetation indices and
the 3-month precipitation. SPI-6 month shows a moderate negative correlation between
SPI-6 and NDVI (r = −0.38) while a weak negative correlation was observed between
SPI-6 and TDVI (r = −0.14). This suggests that NDVI and TDVI may decrease as SPI-6
months increase, indicating a potential negative relationship between vegetation indices
and 6-month precipitation. Overall, there is a strong positive correlation between SPI-6
and SPI-12 (r = 0.86) indicating a strong relationship between SPI-6 and 12-month drought
Index. In contrast, the negative correlations between the SPI-6, SPI-12, and the vegetation
indices (NDVI, TDVI) suggest that the study area witnessed longer dry periods for (SPI-
6 and SPI-12), which may have resulted in a decrease in vegetation health. Moreover,
the MNDWI indicates variability in water content over the years with a weak positive
correlation between MNDWI and SPI-3 (r = 0.14). This suggests a slight tendency for
MNDWI to increase with SPI-3 as shown in Table 5.

Table 5. Correlation results between indices and SPI-3, 6 and 12 months drought Index.

Indices NDVI TDVI MNDWI

NDVI 1
TDVI 0.44 1

MNDWI 0.07 0.30 1
SPI-3 0.16 0.40 0.14
SPI-6 −0.38 −0.14 −0.26

SPI-12 −0.40 −0.18 −0.22

Information in Table 6A shows the hydro-meteorological variables and vegetation
series from 1990 to 2020. The correlation coefficient and band collection statistics were
employed to calculate the correlation matrix. The correlation matrix assessed the spa-
tiotemporal patterns between the inter-annual indices and climate data. The values range
between −1 and +1, where 1 indicates a strong association between hydro-meteorological
variables and vegetation series. While 0 indicates a neutral relationship, and −1 indicates
a weak relationship. The correlation results show an insignificant relationship between
vegetation indices (NDVI and TDVI), precipitation and streamflow which indicates the
period of riparian vegetation activity in response to surface water level and land cover
change (Table 6A). During the dry years, the hydro-meteorological variables indicate a high
agreement of vegetation dependency on streamflow while a low vegetation dependency
was observed for precipitation along the Buffalo River catchment. A study showed that the
higher rainfall received throughout wet years does not necessarily equate to significantly
higher vegetation series [57]. Extremely high precipitation is harmful to vegetation and
terrestrial ecosystems and leads to erosion while moderate precipitation tends to support
vegetation activity. Furthermore, the results of MNDWI revealed a weak correlation coeffi-
cient (R = 0.58) between streamflow and precipitation while a high correlation coefficient
(R = 0.77) was observed between annual precipitation and streamflow.

Information in Table 6B shows Pearson’s correlation analysis between Precipitation,
streamflow, NDVI, TDVI and MNDWI from 1990 to 2020. The correlation analysis evalu-
ates the relationships between precipitation and the variables under review. A moderate
positive correlation coefficient of (r = 0.77) was observed for precipitation and streamflow
with a p-value of 0.04, which suggests that the correlation is statistically significant at
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conventional levels. Similarly, the correlation between precipitation and NDVI yielded
a moderate positive coefficient of (r = 0.58) with a p-value of 0.17 which connotes an in-
significant relationship. The correlation between precipitation and TDVI shows a weak
positive relationship (r = 0.24) with an insignificant association with a p-value of 0.29.
The analysis indicates a weak correlation (r = 0.24) between precipitation and MNDWI
with an insignificant p-value of 0.60 (Table 6B). This connotes spatial heterogeneity in the
distribution of rainfall and water bodies in the study area which may have contributed to
the weak relationship.

Information in Table 6C shows Pearson’s correlation analysis between streamflow,
NDVI, TDVI and MNDWI. The correlation analysis examines the relationships between
streamflow and vegetation indices. A moderate positive correlation coefficient of (r =
0.55) between streamflow and NDVI was observed which suggests a potential connection.
The associated p-value of 0.20 indicates that this correlation is not statistically significant
at standard amounts. Likewise, the correlation between streamflow and TDVI yielded a
moderate positive coefficient of (r = 0.47) with an insignificant p-value of 0.29. Furthermore,
the analysis shows a weak positive correlation (r = 0.18) between streamflow and MNDWI,
with a p-value of 0.70 suggesting an insignificant connection (Table 6C). This may be
associated with natural variability in streamflow patterns due to factors such as soil type,
topography or vegetation cover can introduce complexities and reduce the strength of
the correlation.

Table 6. (A–C) Summary statistics results (1990 to 2020).

(A)

Variables Precipitation Streamflow NDVI TDVI MNDWI

Precipitation 1
streamflow 0.77 1

MNDWI 0.58 0.55 1
NDVI 0.13 0.47 0.48 1
TDVI 0.24 0.18 0.71 0.48 1

(B)

Precipitation and Streamflow Precipitation and NDVI Precipitation and TDVI Precipitation and MNDWI

Coefficient (r): 0.77 0.58 0.47 0.24

N 7 7 7 7

T statistic 2.70 1.59 1.18 0.56

DF 5 5 5 5

p value 0.04 0.17 0.29 0.60

(C)

Streamflow and NDVI Streamflow and TDVI Streamflow and MNDWI

Coefficient (r): 0.55 0.47 0.18

N 7 7 7

T statistic 1.49 1.18 0.41

DF 5 5 5

p value 0.20 0.29 0.70

4. Discussion
4.1. Hydro-Meteorological Influence on Climate-Related Vegetation Series

The study assessed riparian vegetation change in response to drought stress using
multimodal drought-related vegetation indices between NDVI, TDVI, MNDWI and hydro-
meteorological variables (precipitation and streamflow) along the Buffalo River Catchment
from 1990 to 2020. The vegetation series revealed distinct spatial characteristics of drought
across the region in response to hydro-meteorological variations suggesting shifts in ripar-
ian vegetation. The TDVI and NDVI reveal spatial patterns in riparian vegetation cover
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dynamics with the TDVI demonstrating better accuracy in detecting vigorous riparian
vegetation change along the river catchment when compared to the NDVI (Figures 3 and 4).
The study shows that the changes in riparian vegetation were largely influenced by the
declining streamflow, while some years experienced variations in precipitation associ-
ated with drought years over the area. Inter-annual and inter-seasonal climate variability
predominantly influenced dry years in riparian vegetation change thus, revealing high
variability in the inter-seasonal drought trends in the study area (Figure 7A–D). During the
period of drought-induced stress, plants and vegetation provide their capacity to bounce
back when climatic conditions become more favourable, demonstrating their adaptive
capacity to withstand harsh environmental conditions [58]. The dynamic nature of riparian
ecosystems and their ability to recover during improved climatic conditions enhance the
riparian ecosystem’s resilience and adaptability [59]. For instance, the negative relationship
between NDVI, TDVI, precipitation and streamflow exerts a significant influence on the
inner catchment changes along the Buffalo River. This presents negative consequences for
ecological interactions and water budgets which pose threats to ecosystem services and
sustainable human well-being [12]. The recurrent drought experienced along the Buffalo
River catchment has lasting impacts on agricultural resources which has led to food and
water shortage and ecosystem functioning affecting the local community resilience in the
area. Consequently, the resilience capacity of ecosystems in the area is inhibited by the fre-
quency and severity of drought on riparian vegetation over the long term thereby making
recovery and resilience multifaceted, particularly in a semi-arid environment.

The inter-annual changes reveal a declining trend in streamflow (R2 = 0.0235) across the
catchment over decades indicating dry years with reduced vegetation vigour (Figure 6A).
The declining trend of annual streamflow can be attributed to the shifting patterns in
precipitation resulting in drought stress [60]. Moreover, precipitation shows an increasing
trend (R2 = 0.0781) over time across the catchment. The year 2006 was observed with a high
precipitation amount in the study area which indicates a healthy vegetation condition, while
2020 exhibited slight sensitivity to drought (Figure 6A,B). For instance, the drought year of
2015 shows a notable decline in riparian vegetation change as severe drought gripped a
large part of the area with significant implications on the water cycle and ecosystem services
(Figure 6D). In contexts of hydro-meteorological factors, precipitation and streamflow are
two main drivers of riparian vegetation health, if one of these aspects deviates from optimal
values, the riparian vegetation becomes stressed and plant productivity declines [15].
The trends in NDVI, TDVI and MNDWI vary along the Buffalo catchment vegetation,
thus indicating that the climate characteristics in the microscale areas differ significantly
compared to large areas within the river ecosystems [56].

The river catchment flows showed modest year-to-year changes in response to rainfall
trend indicating a low streamflow level that can be attributed to the variations in rainfall.
The MNDWI revealed changes in the water surface within the dams of the catchment sug-
gesting a reduction in downstream flow during the drought years [22]. Similarly, the riparian
vegetation showed a growth trend in years with high streamflow, while the reverse was
the case in other years that experienced severe drought (Figure 6D). This suggested that the
riparian vegetation in the upper reaches has more time to recover over the period due to the
possible continuous streamflow compared to the lower reaches during the drought period.
This can be attributed to the perennial condition of the Buffalo streamflow groundwater
discharge from the aquifer system that sustains the river catchment flow [26,61], thus causing
the riparian vegetation to remain relatively healthy. Consequently, the mid to lower reach of
the river has a long past of river regulations and flow management which may considerably
influence the rate of change in riparian vegetation growth and performance [62]. This con-
notes that the climate variability and predictability of streamflow due to drought stress can
pose negative impacts on riparian ecology and management. Studies show that drought can
result in the reduction of leaf longevity in vegetation, with the length and intensity of the
drought playing a significant role [63]. The decrease in water availability limits vegetation
health resulting in reduced reflection in the NIR region [64]. Drought impacts can reduce
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riparian vegetation and drying of soil, which in turn reduces the moisture and volume of
soil resulting in significant changes in riverbank [65].

Consequently, the study shows a slight relationship between hydro-meteorological
variables and vegetation change indicating spatial heterogeneity in riparian systems sus-
tained by low levels of biodiversity and productivity of riparian vegetation due to vari-
ous landforms [54]. Depending on land heterogeneity, the response of riparian vegetation
has an impact on the regional circulation pattern, resulting in the various responses of
hydro-meteorological variables. The seasonal climatology and inter-annual variability of
the Buffalo catchment revealed a high spatial heterogeneity in riparian vegetation growth
trends (Figures 6 and 7). The findings show that overall, vegetation-covered areas in Buf-
falo catchment have been decreasing due to climate change and variability, therefore, the
decrease of the spatial heterogeneity in riparian vegetation trends requires management
and strategic planning. The results showed different patterns and variations between the
NDVI, TDVI, MNDWI, precipitation and streamflow. As a result, the increased (decreased)
NDVI was linked to a decreasing (increasing) insignificant positive trend in precipitation
and subsequently increased (decreased) streamflow as the length of the period increased.
A recent study further corroborates the findings of these results based on NDVI trends
and precipitation variations in the semi-arid region of South Africa [66]. The results of the
riparian vegetation dynamic and hydro-meteorological factors in this study varied season-
ally and are largely consistent with the results of previous studies [67–73]. The deductions
from this current study can enable informed decisions for the management and conserva-
tion of vital ecosystems in the face of recurrent drought episodes at the catchment scale.
Drought-related challenges in the study area permit the adoption of effective strategies and
innovative policies and planning for mitigating the adverse impacts of increasing drought
risks. Overall, the summary of outputs differs in spatial characteristics at different time scales.
Pearson’s correlation analysis revealed a weak positive correlation between precipitation,
streamflow and MNDWI and largely insignificant along the Buffalo River catchment. The
MNDWI may be attributed to the spectral characteristics and saturation effects of soil type,
topography and vegetation cover associated with index sensitivity [74]. Vegetation indices
such as NDVI and TDVI showed a moderate positive correlation and hydro-meteorological
variables with implications for riparian vegetation change. This means that if one of the
hydro-meteorological variables deviates from the standard mean, it will in turn threaten
riparian vegetation performance and growth.

4.2. SPI Drought Classification Patterns between 1990 and 2020

The 3-month SPI average values range between −1.50 and −1.19 drought classification.
The results show that the summer of 2009 suggested that severe dry conditions dominated
most of the landscape while the year 2005 indicated high positive SPI values suggesting
wetter-than-average conditions during the summer period (Figure 7 and Table 1). The
6-month SPI average values range between −2.40 and −1.59 drought category. The results
indicate mild inter-annual drought variability indicating severe drying conditions during
early autumn, summer, and mid-spring months between 1992 and 2019. This can be as-
sociated with frequent and recurrent drought episodes that pose significant implications
on Buffalo River and dam levels affecting riparian vegetation along the catchment [75,76].
Furthermore, the averaged 12-month SPI values range between −0.23 to −1.19 for the
dry episodes and 1.09 to 2.77 for the wet episodes, which suggested moderate to extreme
drought conditions (Figure 7 and Table 1). The years 1991–1996, 2000–2004, 2009–2010,
2015, and 2018–2019 were identified as the most drought-affected years with declining
precipitation affecting the overall riparian vegetation health within the river ecosystems.
During the period of study, some years exhibited periods of above-normal rainfall indi-
cating positive SPI values which corresponds to an increase in streamflow in other years,
while the reverse was the case for dry years. As a result, the negative values indicated
drier conditions less than the average rainfall while the positive SPI values revealed wet
conditions greater than the average rainfall as shown in the classification (Table 1).
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To better understand the role of drought on riparian vegetation (NDVI and TDVI), the
correlation between different indices and SPI drought index for 3, 6 and 12 months were
analysed. The results revealed a moderate positive relationship between NDVI and TDVI at
different time scales. The TDVI showed a consistent increase across the study period while
NDVI and MNDWI depict an increase in the second decade of the analysis, particularly
for the year 2005. The vegetation indices revealed a notable peak in 2005 with a sharp
significant decline in 2015 which coincided with riparian vegetation stress as compared to
the variation in MNDVI during the study period (Figure 7D). The observed decline might
have presented implications for farmers with a further significant effect on food resource
processing and losses to different communities especially during drought years as noted in
the study. The findings of this study revealed valuable insights into drought dynamics of
6 months and the 12 months SPI of a longer time scale for identifying less frequent droughts
with longer-lasting episodes. Therefore, the increased variations in precipitation exert a
significant influence on riparian vegetation, owing to their susceptibility to drought stress
in the region. The denser riparian vegetation shows years of higher precipitation, whereas
the drought years indicate sparse and/or less vegetation growth in the study area.

Additionally, the SPI evaluation revealed the extent and severity of drought impact on
riparian vegetation with varying complexities. With the integration of vegetation indices
and hydro-meteorological variables, the study offers a more holistic perspective on the com-
plex interplay between hydro-meteorological factors and riparian vegetation health. The
magnitude of drought stress in the microscale river catchment contributes to enhancing the
accuracy of the assessment. Further research employing observational data instead of reanal-
ysis data is also important to comprehend the impact of water-stressed vegetation change
via simulated interactions between riparian vegetation and drought as well as feedback
mechanisms within the Buffalo River catchment zone. The integration of different riparian
vegetation indices used for this study was relatively coarse, thus revealing overall trends
for the entire Buffalo River catchment. This might not have provided enough resolution to
precisely distinguish ecological processes including urbanization, land use, warming and
ecological restorations. Hence, further studies can use a higher spatial resolution dataset
to better assess the sensitivity of riparian vegetation to drought stress and distinguish the
effects of external factors such as soil characteristics and human activities on water-stressed
vegetation cover. There is a need for further assessment of a larger dataset or sample size to
determine a more robust relationship between hydro-meteorological factors and vegetation
indices. The study suggests more studies on the integration of remote sensing-based models
such as the Riparian Vegetation Response Assessment Index (VEGRAI) and Vegetation
Drought Response Index (VegDRI) as drought monitoring tools. This will provide a robust
assessment of the use of different datasets to quantify the rate of riparian vegetation status
and monitor drought-induced stress on vegetation at both regional and local scales.

5. Conclusions

The least-squares linear regression and Pearson’s correlation coefficient were used to
evaluate the long-term drought trends in riparian vegetation cover and the role of precipita-
tion and streamflow during the period from 1990 to 2020. Post-classification assessments and
image differencing techniques were used to identify and estimate the extent of land cover
changes. Change detection technique was employed to assess riparian vegetation change
in response to drought stress using different vegetation indices (NDVI, TDVI, MNDWI)
and hydro-meteorological variables (precipitation and streamflow) along the Buffalo River
Catchment, in the Eastern Cape Province, South Africa. The study establishes that while the
area witnessed variations in precipitation in some years due to droughts, the changes in ri-
parian vegetation were mostly caused by the diminishing streamflow. The major conclusions
from this study are summarised below.

1. The change detection technique and Pearson’s correlation analysis show that the NDVI
and TDVI were significant indices for detecting water-stressed vegetation in river
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catchment dynamics. Much of these changes were reflected for MNDWI in dry areas
with a higher accuracy (87.47%) and dense vegetation in the upper catchment areas.

2. The correlation results revealed a moderate positive correlation (r = 0.77) between the
precipitation and streamflow with a significant p-value of 0.04 suggesting consequences
on riparian vegetation health. Concurrent with the precipitation, the vegetation trends
showed that precipitation increased insignificantly with less of an influence while the
reverse was the case with the streamflow in the long term.

3. The standardized precipitation index (SPI) revealed the inter-annual and inter-seasonal
variations in drought-stressed years between 1991–1996, 2000–2004, 2009–2010, 2015,
and 2018–2019, while 2020 exhibited slight sensitivity to drought. Within context, the
last decade exhibited slight sensitivity to drought along the Buffalo River catchment,
highlighting the dynamic nature of riparian ecosystems and their ability to recover
during improved climatic conditions.

4. The findings of this study revealed valuable insights into drought dynamics of 6 months
and the 12 months SPI of a longer time scale for identifying less frequent droughts with
longer-lasting episodes. The result of this study can be used to establish a provincial
drought monitoring system and risk assessment program, considering the frequency
and severity of droughts in the region.

5. The assessment of drought disaster in this study provides guidelines for policymakers
on disaster preparedness and response, emphasizing the importance of managing
recurrent drought within the river ecosystems.

Author Contributions: Conceptualization, Z.M.; methodology, Z.M.; writing—original draft prepara-
tion, Z.M.; writing—review and editing, A.M.K., L.Z. and G.A.A. All authors have read and agreed
to the published version of the manuscript.

Funding: This research was funded by The South Africa/Flanders Climate Adaptation Research and
Training Partnership (SAF-ADAPT).

Data Availability Statement: Data used in this study is available on request.

Acknowledgments: All thanks to The South Africa/Flanders Climate Adaptation Research and
Training Partnership (SAF-ADAPT), the Risk and Vulnerability Science Centre, and the University of
Fort Hare, South Africa for creating an enabling environment for research, and to the anonymous
reviewers for their wonderful insights that strengthened this paper.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Haile, G.G.; Tang, Q.; Hosseini-Moghari, S.M.; Liu, X.; Gebremicael, T.G.; Leng, G.; Kebede, A.; Xu, X.; Yun, X. Projected impacts

of climate change on drought patterns over East Africa. Earth’s Future 2020, 8, e2020EF001502. [CrossRef]
2. Tramblay, Y.; Koutroulis, A.; Samaniego, L.; Vicente-Serrano, S.M.; Volaire, F.; Boone, A.; Le Page, M.; Llasat, M.C.; Albergel, C.;

Burak, S.; et al. Challenges for drought assessment in the Mediterranean region under future climate scenarios. Earth-Sci. Rev.
2020, 210, 103348. [CrossRef]

3. Svoboda, M.; Fuchs, B.A. Handbook of Drought Indicators and Indices; World Meteorological Organization (WMO) and Global
Water Partnership (GWP), Integrated Drought Management Programme (IDMP), Integrated Drought Management Tools and
Guidelines Series 2; Taylor and Francis Group: Geneva, Switzerland, 2016.

4. CRED. Centre for Research on the Epidemiology of Disasters. CRED Disasters in Numbers 2021. 2021. Available online: https:
//cred.be/sites/default/files/2021_EMDAT_report.pdf (accessed on 1 July 2023).

5. del Tánago, M.G.; Martínez-Fernández, V.; Aguiar, F.C.; Bertoldi, W.; Dufour, S.; de Jalón, D.G.; Garófano-Gómez, V.; Mandzukovski,
D.; Rodríguez-González, P.M. Improving river hydromorphological assessment through better integration of riparian vegetation:
Scientific evidence and guidelines. J. Environ. Manag. 2021, 292, 112730. [CrossRef]

6. Walz, Y.; Min, A.; Dall, K.; Duguru, M.; de Leon, J.-C.V.; Graw, V.; Dubovyk, O.; Sebesvari, Z.; Jordaan, A.; Post, J. Monitoring the
progress of the Sendai Framework using a geospatial model: The example of people affected by agricultural droughts in Eastern
Cape, South Africa. Prog. Disaster Sci. 2020, 5, 100062. [CrossRef]

7. Cornejo-Denman, L.; Romo-Leon, J.R.; Castellanos, A.E.; Diaz-Caravantes, R.E.; Moreno-Vázquez, J.L.; Mendez-Estrella, R. Assessing
riparian vegetation condition and function in disturbed sites of the arid northwestern Mexico. Land 2018, 7, 13. [CrossRef]

8. Chiang, F.; Mazdiyasni, O.; AghaKouchak, A. Evidence of anthropogenic impacts on global drought frequency, duration, and
intensity. Nat. Commun. 2021, 12, 2754. [CrossRef]

https://doi.org/10.1029/2020EF001502
https://doi.org/10.1016/j.earscirev.2020.103348
https://cred.be/sites/default/files/2021_EMDAT_report.pdf
https://cred.be/sites/default/files/2021_EMDAT_report.pdf
https://doi.org/10.1016/j.jenvman.2021.112730
https://doi.org/10.1016/j.pdisas.2019.100062
https://doi.org/10.3390/land7010013
https://doi.org/10.1038/s41467-021-22314-w


Climate 2024, 12, 7 20 of 22

9. Dufour, S.; Rodríguez-González, P.M. Riparian Zone/Riparian Vegetation Definition: Principles and Recommendations. Report,
Cost Action ca16208 Converges. 2019, p. 20. Available online: https://converges.eu/wp-content/uploads/2019/04/Report_
definitions_Riparian_V1-2.pdf (accessed on 1 July 2023).

10. Kusler, J. Protecting and Restoring Riparian Areas. Association of State Wetland Managers. Windham, ME. 2016. Available online:
https://www.nawm.org/pdf_lib/protecting_and_restoring_riparian_areas_kusler_030916.pdf (accessed on 2 July 2023).

11. Jiang, L.; ·Jiapaer, G.; Bao, A.; Guo, H.; Ndayisaba, F. Vegetation dynamics and responses to climate change and human activities
in Central Asia. Sci. Total Environ. 2017, 599–600, 967–980. [CrossRef]

12. Bhunia, G.S.; Chatterjee, U.; Kashyap, A.; Shit, P.K. (Eds.) Land Reclamation and Restoration Strategies for Sustainable Development:
Geospatial Technology Based Approach; Elsevier: Amsterdam, The Netherlands, 2021.

13. Hussain, S.; Qin, S.; Nasim, W.; Bukhari, M.A.; Mubeen, M.; Fahad, S.; Raza, A.; Abdo, H.G.; Tariq, A.; Mousa, B.G.; et al. Monitoring
the Dynamic Changes in Vegetation Cover Using Spatio-Temporal Remote Sensing Data from 1984 to 2020. Atmosphere 2022, 13, 1609.
[CrossRef]

14. Afuye, G.A.; Kalumba, A.M.; Orimoloye, I.R. Characterisation of Vegetation Response to Climate Change: A Review. Sustainability
2021, 13, 7265. [CrossRef]
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