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Abstract: The consequences of climate change are arising in the form of many types of natural
disasters, such as flooding, drought, and tropical cyclones. Responding to climate change is a long
horizontal run action that requires adaptation and mitigation strategies. Hence, future climate
information is essential for developing effective strategies. This study explored the applicability of
a statistical downscaling method, Bias-Corrected Spatial Disaggregation (BCSD), in downscaling
climate models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) and then applied
the downscaled data to project the future condition of precipitation pattern and extreme events
in Cambodia. We calculated four climate change indicators, namely mean precipitation changes,
consecutive dry days (CDD), consecutive wet days (CWD), and maximum one-day precipitation
(rx1day) under two shared socioeconomic pathways (SSPs) scenarios, which are SSP245 and SSP585.
The results indicated the satisfactory performance of the BCSD method in capturing the spatial
feature of orographic precipitation in Cambodia. The analysis of downscaled CMIP6 models shows
that the mean precipitation in Cambodia increases during the wet season and slightly decreases in
the dry season, and thus, there is a slight increase in annual rainfall. The projection of extreme climate
indices shows that the CDD would likely increase under both climate change scenarios, indicating
the potential threat of dry spells or drought events in Cambodia. In addition, CWD would likely
increase under the SSP245 scenario and strongly decrease in the eastern part of the country under
the SSP585 scenario, which inferred that the wet spell would have happened under the moderate
scenario of climate change, but it would be the opposite under the SSP585 scenario. Moreover, rx1day
would likely increase over most parts of Cambodia, especially under the SSP585 scenario at the end
of the century. This can be inferred as a potential threat to extreme rainfall triggering flood events in
the country due to climate change.

Keywords: Coupled Model Intercomparison Project Phase 6; Bias-Corrected Spatial Disaggregation;
consecutive dry days; consecutive wet days; maximum 1-day precipitation

1. Introduction

Climate change would likely impact ecosystems, the hydrologic cycle, and human
lifestyles. Several sectors of the human system, such as the economy, agriculture, transporta-
tion, health, and water resources, are also vulnerable to these impacts. Many studies have
examined the consequences of extreme weather events and natural disasters, but most of
these assessments have not considered long-term changes in climate patterns or long-term
trends in the intensity or frequency of extreme events [1]. The hydrologic cycle is changing
due to global warming, leading to increasingly severe weather events. The modifications
to the hydrologic cycle are causing a variety of health issues, such as respiratory issues,
waterborne infections, and ailments brought on by heat [2]. Furthermore, climate change
poses a major threat to the agricultural sector by altering crop resistance through changing
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climate patterns and surface temperatures. Climate change adaptation in this sector will
require significant effort and resources, but it is essential to ensure food security in the
future [3]. Moreover, transportation is essential for economic growth but is also a major
source of greenhouse gas emissions. Efforts to reduce emissions from transportation, such
as promoting electric vehicles and alternative fuels, could reduce transportation efficiency
and slow down economic growth [4]. On top of that, climate change is expected to cause
more frequent and severe floods, which are a major threat to road infrastructure in urban
areas. This is because urbanization has led to increased impervious surfaces, which cannot
absorb water, and decreased green spaces, which can help to slow down and reduce heavy
rainfall [5]. Consequently, temperature and precipitation alteration would affect developing
countries heavily due to their limited adaptation capacity; the severity depends on the
location of the regions [6].

Climate projection using original coarse-resolution climate model over a small domain
is not enough to investigate detailed local climate change features. Therefore, a downscale
of the climate model is essential before using the climate model for future climate projec-
tion. Climate model downscaling involves refining global climate model projections by
incorporating local-level factors like topography, vegetation, and land use. This process
enhances the accuracy and regional relevance of climate projections [7]. Two main types of
downscaling methods can be used to study local-scale climate change; it can be either sta-
tistical downscaling or dynamical downscaling [8,9]. Statistical downscaling uses statistical
relationships between large-scale climate variables and local weather data to project how
climate change will affect a specific region. This method is less computationally expensive
than dynamical downscaling. Whereas, the dynamical downscaling uses the output from
Global Climate Models (GCMs) as boundary conditions to drive the regional climate model
to derive smaller-scale information [10]. This method would be more expensive and require
high-skill human resources to perform the work.

There are a few previous research studies about climate change projection in Cambodia.
A study on temperature and rainfall projection in Cambodia was done using the Coupled
Model Intercomparison Project Phase 3 (CMIP3) climate model under two emission sce-
narios [11]. Additionally, a World Bank report projected the future climate of Cambodia
by utilizing the CMIP5 climate model under four climate change scenarios to foresee
changes in temperature and rainfall [12]. Similarly, research on climate change in one of
Cambodia’s provinces was also done using the CMIP5 climate model from three different
Representative Concentration Pathways (RCPs) scenarios, using a downscaling method on
precipitation and temperature [13]. However, the climate projection based on the newly
released CMIP6 climate model specifically over Cambodia has not been carried out yet.
Moreover, most of the previous studies focused only on the changes in mean precipitation;
limited studies focus on the changes in extreme precipitation, which is very pronounced
under the impact of climate change. Therefore, a study related to the projected changes in
extreme precipitation in Cambodia based on CMIP6 models is required to fill in this gap.

Dealing with climate change impacts requires adaptation and mitigation strategy
before the consequences occur. Therefore, the study of future climate information must be
done to formulate effective strategies. In this study, we made climate change projections
for the near future period (2015–2045) and far future period (2070–2100) by using Coupled
Model Intercomparison Project Phase 6 (CMIP6) models. We calculated the changes in mean
precipitation and extreme events, such as consecutive dry days (CDD), consecutive wet
days (CWD), and maximum 1-day precipitation (rx1day). However, the coarse resolution
of the CMIP6 climate model limits their application to small regions, like Cambodia,
potentially producing high bias results. Hence, we explore the applicability of the Bias-
Corrected Spatial Downscaling (BCSD) method for downscaling the CMIP6 models for
investigating the climate change signal in Cambodia. This research aims to project future
precipitation patterns by using CMIP6 climate model, combined with the BCSD method,
while consuming fewer resources and less time. Thus, using the BCSD method is the key to
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the cost-effective approach in the project since it is a statistical downscaling method that
requires only a personal computer and climate data input.

2. Materials and Methods
2.1. Study Area

In this study, we selected the whole of Cambodia as the main scope for precipitation
projection. Cambodia is a country located in the Southeast Asia region, sharing borders
with Thailand, Vietnam, Laos, and the Gulf of Thailand. The country has a total population
of 16.5 million (2019 census), with an area of 181,035 square kilometers. Cambodia’s
landscape is characterized by a central plain surrounded by hills and mountains (Figure 1).
The plain is home to the Tonle Sap Lake, the largest freshwater lake in Southeast Asia.
The uplands and low mountains of Cambodia are home to a variety of forests, including
tropical rainforests, deciduous forests, and mangrove forests. The average annual rainfall in
Cambodia ranges from 1400 mm to 4000 mm. However, some parts, such as Northeastern
and Southwestern Cambodia, receive more rainfall than others [12]. Cambodia is under the
influence of monsoon rainfall, which is divided into three periods: pre-monsoon, summer
monsoon, and post-monsoon [14].
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Figure 1. Elevation Profile of Cambodia.

2.2. Dataset

Statistical downscaling employs statistical relationships between observation and cli-
mate model to replicate a climate condition over a specific region in more detail. Therefore,
two types of datasets were used in this research: observed data and climate model data
(Table 1). We selected five climate models from CMIP6 [15] by choosing one model or
one ensemble from each institution to ensure that they are independent from each other
(avoid inter-model dependency). Those models are Euro-Mediterranean Centre for Climate
Change (CMCC), Model for Interdisciplinary Research on Climate (MIROC), Max Planck
Institute for Meteorology (MPI), Meteorological Research Institute (MRI), and Nanjing
University of Information Science and Technology. In addition, the observed data were
obtained from Multi-Source Weighted-Ensemble Precipitation (MSWEP) [16].
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Table 1. Detailed information on the dataset.

Data Center Model Acronym Resolution Frequency Available Period

MSWEP MSWEP 0.1◦ daily 1979 to present
CMCC CMCC-CM2-SR5 1.25◦ daily 1850–2100
MIROC MIROC6 1.4◦ daily 1850–2100

MPI MPI-ESM1-2-HR 0.94◦ daily 1850–2100
MRI MRI-ESM2-0 1.13◦ daily 1850–2100

NUIST NUIST-NESM3 1.88◦ daily 1850–2100

2.3. Bias-Corrected Spatial Disaggregation

The climate model from CMIP6 has a relatively coarse resolution, which is not suitable
for extreme precipitation analysis in the local area. Therefore, downscaling the climate
model is essential before applying it to local-scale studies, as it helps to reduce large biases
in the model output. In this study, we applied a statistical downscaling method called
“Bias-Corrected Spatial Disaggregation” (BCSD), which was first applied by [17]. The
process of BCSD method contains three main steps described in detail in [18]. The flowchart
in Figure 2 shows the detailed process of the BCSD method. Step 1 is to interpolate the
observation data to the same spatial scale as that of the climate model. Step 2 is to use
the upscaled observation to bias-correct the climate model, using the quantile mapping
method. Step 3 is to perform spatial disaggregation on the bias-corrected climate model to
a finer resolution.
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2.3.1. Spatial Linear Interpolation of the Observed Data

The observed data were interpolated from its original scale to the same scale as the
model data by using the bilinear interpolation method. Note that this process was done
without any intervention of bias correction and spatial disaggregation. Afterward, the
interpolated observed data were used to bias-correct the model data to remove as much of
the model bias as possible.

2.3.2. Quantile Mapping

Quantile mapping was employed for bias correction. In other words, quantile mapping
enhances the reliability of climate models by adjusting the distribution of their outputs
to more closely match the observed distribution of climate variables. Quantile mapping
was achieved by identifying a transfer function that captures the relationship between the
observed and climate model data. Once the transfer function is determined, it can be used
to calibrate the climate model outputs that accurately resemble the observed data during
the calibration period. Then, the calibrated relationship between the model and observed
data was applied to the validation period or future period.
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2.3.3. Spatial Disaggregation

After bias-correcting the climate model, the long-term mean of the model was removed
to obtain the anomalous field (by dividing the data by the daily long-term mean). The daily
long-term mean was calculated using a 30-day running window centered on each day of
the year. The anomalous field of the bias-corrected model data was then interpolated to
a fine scale that matches that of the observation. Next, the interpolated anomalous field
was scaled by the long-term mean of the observation to align the model’s spatial feature
with the spatial pattern of the observation. Finally, the downscaled climate model data
were obtained.

2.4. BCSD Method Performance

Before applying the BCSD method to downscale climate models for climate change
projection, we evaluated the performance of the method. We employed statistical indicators
such as time-series correlation, pattern correlation (correlation of 2D map rearranged into
1D), and root mean square errors (RMSE) to evaluate the performance of the BCSD method.
A detailed description of these statistical indicators can be found in [19]. Additionally, we
also checked the performance in terms of climatological annual cycle pattern.

2.5. Climate Change Projection

After downscaling the climate models, we predicted the future climate patterns in the
near-future period (2015–2045) and far-future period (2070–2100) under two climate change
scenarios, using the downscaled climate model data. This research employed two Shared
Socioeconomic Pathways scenarios (SSPs), namely SSP245 and SSP585. SSP245 is a climate
change scenario that assumes moderate socioeconomic development and moderate climate
change mitigation. The number 45 refers to the radiative forcing of 4.5 watts per square
meter by the year 2100. SSP585 is the worst-case climate change scenario that assumes high
greenhouse gas emissions and high temperatures. The number 85 refers to the radiative
forcing of 8.5 watts per square meter by the end of the year 2100. The main objective of this
study was to project the changes in mean precipitation and extreme rainfall events, using
extreme climate indices.

2.6. Climate Change Indicators

In this study, we projected two types of precipitation change information over Cambo-
dia after downscaling the coarse-resolution climate model to 10 km resolution. Firstly, we
calculated the mean precipitation changes. Secondly, the CDD and CWD were calculated
alongside the rx1day. These climate indicators are important for climate change projection
linked to flood, drought, and rainfall pattern changes. The CDD is an indicator used for
measuring drought severity and monitoring the changes in precipitation patterns over
time [20]. The CWD is a climate index that measures the longest period of consecutive
days with at least 1 mm of precipitation, as defined by the expert team on climate change
detection and indices (ETCCDI) [21]. The rx1day is a climate index used for measuring the
amount of precipitation that falls in a single day. The rx1day can be used to assess flood
risk; monitor changes in precipitation patterns; and predict the likelihood of future flood
events, such as flash floods or riverine floods [22].

Furthermore, the multi-model ensemble of each climate indicator was calculated. The
process was simply done by dividing the downscaled climate model of the future time
frame into two periods, which are the near future (2015–2045) and far future (2070–2100),
and subtracting from the baseline period (1980–2014). Then, the median of the five climate
models was calculated (multi-model ensemble) to conclude a more reasonable outcome of
precipitation change projection rather than showing the individual results of climate model.
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3. Results
3.1. Performance Evaluation of BCSD Method

Downscaling is very important in this study; therefore, we performed a cross-validation
of the BCSD method on the historical data from CMIP6 models and compared it with ob-
served data. In the evaluation process, we used the data from 1980 to 2014 and divided them
into two time periods: calibration period (1980–2004) and validation period (2005–2014).
The calibration is denoted as the baseline period, while the validation is denoted as the
future period. Thus, the performance of BCSD relies more on the validation outcomes as
the climate projection is done in future periods.

Figure 3 presents the improvement of the climate models after downscaling in terms
of pattern correlation and RMSE of the climatological annual cycle map. Figure 3a shows
the pattern correlation of the climatological annual cycle map of the raw model and the
downscaled model with observation. It can be seen that the correlation of the downscaled
model with observation improves drastically from January to December. Additionally,
Figure 3b shows the RMSE of raw and downscaled models with observation. The RSME
of the downscaled model with observation reduces significantly each month compared to
the raw model. However, only in November and December, the RSME of the downscaled
model slightly surpasses the raw model.
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Figure 3. Pattern correlation (a) and RMSE of climatological annual cycle for the MPI-ESM1-2-
HR model (b). Sample size for correlation calculation is 2500, which is the number of grid cells
over Cambodia. Raw model data are bilinear interpolated to the same resolution as downscaled
model data.

Figure 4 shows the correlation between the downscaled data and observed data.
As seen on each map plot, the correlation of each climate model indicated a good re-
lationship, with an average value of more than 0.7. Moreover, the highest correlation
mostly occurs in the high-elevation area (northeastern part of the country) and coastal area
(southwestern part).

Figure 5 illustrates the root mean square errors of downscaled and observed data. The
highest error mostly happens in the coastal area (bottom left of the map plot), resulting
from the orographic effect varying the rainfall amount. Similarly, there are slight biases
over the high-elevation area (top right of the map plot), while the low-land area shows the
smallest biases (central part of the country).

In summary, the results of cross-validation indicated the satisfactory performance of
the BCSD method, which is suitable for application in Cambodia.
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3.2. Projection of Mean Precipitation

After verifying the performance of the BCSD method, we proceeded to apply BCSD
to the future climate model data and then used the outcome to predict future changes
in precipitation. The future monthly long-term mean precipitation was calculated for
each month of the year and then subtracted with the baseline period to figure out the
percentage changes in the rainfall pattern. As Cambodia is highly influenced by the
monsoon circulation, the seasonal match of rainfall pattern in the country is divided into
dry season, pre-monsoon, full monsoon, and post-monsoon [14]. Thus, we illustrate the
mean precipitation change for the following key months: dry monsoon (January), pre-
monsoon (April), full monsoon (August), and post-monsoon (October). The projected
change in mean annual rainfall is also analyzed. Furthermore, the variation in rainfall
distribution is also due to the country’s topographical conditions.

Figure 6 visualizes the projection of each climate model for mean precipitation changes
under scenario SSP245 in the far future period. Different climate models indicated different
rainfall change tendencies, and most models show a drastic increase in future rainfall.
However, the result from MRI-ESM2-0 shows that, in three out of four months (except
August), the rainfall tends to decrease significantly to a maximum of 40%. Even though each
model produces enormous rainfall changes, the calculation of the multi-model ensemble
shows that the percentage ranges from negative 20% to 40%, which follows the trend
of CMCC-CM2-SR5, MRI-ESM2-0, and NUIST-NESM3; notably, the northwestern part
would face the most drastic change. Furthermore, the annual rainfall changes can be seen
increasing for all climate models, except for MRI-ESM2-0 which is decreasing by 10% for
the majority part of the country. Similarly, the annual rainfall changes in the multi-model
ensemble also align with the trend of the other four climate models. From an overall
perspective, the dry season is getting drier, while the wet season is getting wetter, which
could result in drought and flood events.

Figure 7 illustrates the change in mean precipitation under scenario SSP585 for far
future period (2070–2100). The trend of precipitation changes under SSP585 shows that
there is even more increase in rainfall than in scenario SSP245. For January, most climate
models project a huge decline in rainfall, notably for MRI-ESM2-0, which is around 40%
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decrease; the exception is MIROC6, which shows a positive percentage of up to over 40%.
In addition, CMCC-CM2-SR5 and MRI-ESM2-0 also show a decreasing rainfall in April,
covering the entire domain, while others show the opposite result. However, in August and
October, most models show a consistently increasing rainfall trend in Cambodia. The multi-
model ensemble is essential to conclude the overall changes. The multi-model ensemble for
each month shows a strong decrease in rainfall in January (+10% to +40%) and a mixture
of signals in April (−10% to +10%). The annual rainfall changes in each climate model
follow the trend of the projection under scenario SSP245 (Figure 6) while only different in
percentage. However, there is a slight difference in the CMCC-CM2-SR5 that contains a
minority of decreasing rainfall in the southern part. The multi-model ensemble shows a
slight increase in the annual rainfall over the whole country. In conclusion, the rainfall in
Cambodia would likely decrease in the dry season and increase in the wet season, and it
would slightly increase if aggregated to the annual amount.
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3.3. Projection of Consecutive Dry Days

The consecutive dry day (CDD) is a climate index used to measure the dry spell
that is linked to a drought event which is determined by counting the number of days
consecutively with the amount of less than a specific value of precipitation (1 mm in this
study). We used the downscaled data of each climate model for the projection of the CDD
under scenarios SSP245 and SSP585 and divided them into two time periods: near and far
future periods. The information about the CDD can be used to spotlight the drought area
and prepare an adaptation plan dealing with water shortage.
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Figure 8 illustrates the CDD projection under SSP245. Most climate models for both
time frames show that the CDD is decreasing. However, models like CMCC-CM2-SR5 and
MRI-EMS2-0 show an increase in the CDD in the southern and southeastern parts of the
country. The multi-model ensemble balances off the uneven percentage changes in the
CDD among the five models. These consequences make the multi-model ensemble twist
the outcome with a slight increase of around 10% covering a larger portion of the domain.
However, some areas would have a slight decrease in the CDD, but mostly refer to the near
future period, while it can hardly be detected in the far future period.

Figure 9 shows the projected changes in the CDD under scenario SSP585. For the near
future period (first-row panels), almost all climate models project a decreasing percentage
of the CDD, excluding CMCC-CM2-SR5, which shows an increasing trend. However, the
multi-model ensemble indicates that the CDD would likely decrease up to 10% for most
parts of Cambodia, while the CDD increases around 10% over small areas in the middle of
the part of country, as well as near the border with Thailand, Lao PDR, and Vietnam. In
the far future period (second-row panels), MPI-ESM1-2-HR and NUIST-NESM3 project
both rising and dropping percentages of the CDD that range from minus 20% to 40%, while
CMCC-CM2-SR and MRI-ESM2-0 indicate a stronger increase over the whole of Cambodia.
Lastly, the multi-model ensemble signaled that the CDD will slightly increase to around
20%, especially over the coastal region (bottom right panel of Figure 8).

In summary, the projection of the CDD suggests an increase in the CDD over most
parts of Cambodia, especially under the unmitigated world scenario SSP585 at the end of
the century. This can be inferred as the potential threat for dry spells and drought in the
country due to climate change impacts.
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3.4. Projection of Consecutive Wet Day

Just the opposite of the CDD, an expert team on climate change detection and indices
(ETCCDI) defined the CWD as the climate index used for measuring the longest consecutive
days with at least 1 mm of precipitation [21]. The CWD is calculated by counting the number
of consecutive days with more than a specified amount of rainfall (1 mm in this study).
Regarding the information on the CWD, it can be used to project flooding or indicate areas
that might be affected by prolonged periods of rainfall. Moreover, if the projection of the
CWD is decreased, it would likely show the possibility of dry spell.

Figure 10 illustrates the projection of the CWD under scenario SSP245. For the near
future period (first-row panels), CMCC-CM2-SR5 and NUIST-NESM3 show that the whole
domain would likely experience a decrease in CWD, while the other three models indi-
cate a similar pattern that contains both increasing and decreasing CWD. However, the
multi-model ensemble indicates a mixture of decreases (diagonally from southwest to
northeastern parts) and increases (northwestern and southeastern parts) in the CWD in
Cambodia. For the far future projection (second-row panels), most of the models show
positive percentage changes in CWD, excluding NUIST-NESM3, which shows negative
percentage changes. Therefore, the multi-model ensemble shows the increasing CWD over
the whole domain of Cambodia.

Figure 11 indicates the projection of the CWD under scenario SSP585. In the near
future period (first-row panels), the CMCC-CM2-SR5 and NUIST-NESM3 models produced
almost identical patterns of decreasing CWD up to around 20%. Meanwhile, MIROC6
shows a significant increase in CWD with few declining spots. Likewise, the MPI-ESM1-2-
HR and MRI-ESM2-0 shared a similar pattern with a rising percentage in the western parts
of the country and a descending percentage in the eastern part. However, the multi-model
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ensemble suggests an increasing trend of the CWD with merely positive and negative
10% scrambling over the entire domain. For the far future period (second-row panels),
all models except CMCC-CM2-SR5 project a similar spatial pattern of CWD changes: an
increase in the western part and a strong decrease in the eastern part. Therefore, the multi-
model ensemble also has a similar pattern to the four models (increase in the western part
and strong decrease in the eastern part), even though CMCC-CM2-SR5 has large negative
percentage changes.
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In total, the projection of the CWD suggests an increase in the CWD under the moder-
ate scenario (SSP245) and a strong decrease in the eastern part of the country under the
unmitigated world scenario (SSP585). This can be inferred that the wet spell would happen
under the moderate scenario of climate change, but it would be the opposite under the
unmitigated world scenario (SSP585), as the number of wet days would be reduced and
then replaced with a dry spell that is consistent with the CDD projection (Figure 8).

3.5. Projection of Maximum 1-Day Precipitation

The maximum 1-day precipitation (rx1day) is a climate index that measures the highest
amount of rainfall accumulated during a day record (24 h). The projection of the rx1day
can be essential for preparing mitigation and adaptation responding to flooding events
such as flash floods or riverine floods over specific regions. The information on rx1day is
yet limited; therefore, before using it for any decision making, users must be aware of the
nature of the model bias and take advantage of multi-model information.

Figure 12 presents percentage changes in the rx1day under scenario SSP245. In the near
future period (first-row panels), the projection shows that rx1day would likely increase from
10% to more than 40%, especially for MIROC6, MPI-ESM1-2-HR, and NUIST-NESM3, while
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the other two models indicate a small decrease in the northern part of Cambodia. Even
though some models have some downfalls of rx1day percentage, the multi-model ensemble
shows positive percentage changes in the rx1day from around 10% to 30%. Most notable
is the increasing pattern of 20% spread over the central part from northwest to southeast
of the country. For the far future period (second-row panels), the rx1day projections of all
models show that percentage changes in the rx1day will be soaring from 10% to more than
40%, especially the MPI-ESM1-2-HR model that has the most remarkable change up to over
40% spread over Cambodia. However, the MRI-ESM2-0 shows a detectable rx1day decrease
for some regions, mostly the northern part of the country. Lastly, the multi-model ensemble
shows increase with a large percentage of variability spreading all over Cambodia.
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Figure 13 illustrates the projection of the rx1day under scenario SSP585. The projection
in the near future period (first-row panels) shows that MPI-ESM1-2-HR and NUIST-NESM3
have the most significant increase in the rx1day over the whole country compared to the
other three models, thus indicating a mixture of increases and decreases in the rx1day over
the country. Meanwhile, the result of the multi-model ensemble concludes that the rx1day
would likely increase from around 10% to 30%. For the far future period (second-row
panels), each model projects a similar trend, showing that the rx1day would be rising
and covering the entire domain, except for some areas of the northern part of the country,
from MIROC6 and MRI-ESM2-0 models, with decreasing values from around 10% to 20%.
Moreover, CMCC-CM2-SR5, MPI-ESM1-2HR, and NUIST-NESM3 show strong percentage
changes in the rx1day to more than 40% over Cambodia. Lastly, the multi-model ensemble
sums up the result with an increasing percentage ranging from 30% to more than 40%
(bottom right panel of Figure 12).
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In summary, the project of rx1day suggests the increase in the rx1day over most parts
of Cambodia, especially under the unmitigated world scenario SSP585 at the end of the
century. This can be inferred as the potential threat of extreme rainfall triggering floods in
the country due to climate change impact.

4. Discussion

The statistical downscaling method, BCSD, has been applied widely in different parts
of the world [9,18,23]; especially the application by the NASA team to produce the NASA
Earth Exchange Global Daily Downscaled Projections (NEX-GDDP-CMIP6) [24]. However,
this product still has a rather coarse resolution (0.25 degrees) and is still limited to exploring
climate change information in small countries, like Cambodia. In this study, we explored
the application of the BCSD method in Cambodia by using a higher-resolution observation
dataset (MSWEP) that we could use to downscale the precipitation up to 0.1 degrees over
Cambodia. We also proved the good performance of this method in regard to capturing the
spatial features of orographic precipitation in Cambodia (Figures 3–5). The downscaled
data can capture the month-to-month variation very well, especially in the areas with high
amounts of orographic rainfall (coastal area and northeast mountain hill area) (Figure 4),
but large biases were noticed in those areas instead (Figure 5). This may be caused by the
disaggregation procedure of the anomalous bias-corrected field of the climate model output
in the BCSD.

This is the first-ever application of the BCSD method to downscale climate model
output over Cambodia, in which the up-to-date climate model data of CMIP6 were used in
this study. Moreover, most of the previous studies focused on only the changes in mean
precipitation [11–13]; limited studies focus on the changes in extreme precipitation, which
is very pronounced under the impact of climate change. Therefore, a study related to
the projected changes in extreme precipitation in Cambodia based on CMIP6 models is
required to fill in this gap.

The results of the projection of the mean precipitation change, CDD, CWD, and rx1day
based on the finer-scale downscaling data in the current study conclude that the future
climate of Cambodia would likely be getting drier during the dry season and wetter
during the rainy season. The current study also suggests the potential threats of more
dry spell events related to drought and more heavy rainfall events related to floods in
most parts of Cambodia as the impact of climate change. This result is consistent with
the law of atmospheric physics that the warm air can store more water vapor for a longer
time (causing dry spell). However, when those large amounts of water vapor become rain
droplets, it would cause stronger rainfall intensity, triggering flood. Moreover, several
previous research studies indicate the same trend as our results. Climate projection over
Southeast Asia using the regional climate model done by [25] showed that the studied area
would be experiencing drier conditions with more heavy rainfall events. Additionally, our
finding shows that future climate change aligns with the IPCC, with a rise in rainfall in
the rainy season and a decline in rainfall in the dry season. Our projection on extreme
events also indicates that Cambodia is vulnerable to drought and flooding, the same as the
research carried out by [26]. Another study also shows that the flow in several streamlines
in Cambodia is predicted to decrease in the future compared to the baseline period due to
the lack of rainfall in the dry season [27]. Likewise, the projection of precipitation in the
Siem Reap province of Cambodia also suggested that rainfall will be decrease in the dry
season [13]. The current study also captures the same trend. The result of this study could
add up the confidence of projection for the future change in rainfall patterns in Cambodia
based on the newly updated climate modeling activity, CMIP6.

5. Conclusions

In this study, we explored the possibility of applying a statistical downscaling method,
BCSD, in downscaling the climate model output for the climate change study in Cambodia.
Based on the cross-validation and the statistical indicators (correlation, RMSE, and pattern
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correlation), we proved the good performance of this method by capturing the spatial
feature of orographic precipitation in Cambodia (Figures 3–5). This indicates that the BCSD
method is suitable for application in Cambodia.

The BCSD method was then applied to downscale precipitation variables from five
CMIP6 climate model outputs (Table 1) for a historical run and two climate change scenarios:
SSP245 and SSP585. The downscaled data were employed to project the precipitation
pattern change over Cambodia in terms of mean precipitation and three extreme climate
indices that link to dry spells and flood events. The results suggest that the future climate of
Cambodia would likely be getting drier during the dry season and wetter during the rainy
season. The current study also suggests the potential threats of more dry spell events related
to drought and more heavy rainfall events related to floods in most parts of Cambodia as a
result of the impact of climate change.

The application of the BCSD method is a key to assessing future climate information
with a reasonable projection on climate indices. From the current study, we can capture
images of future climate behavior depending on the climate change scenarios. On top of
that, using the BCSD method with the CMIP6 dataset can be considered a path for the
next generation of researchers to continue projecting future climate with minimal resources
that can be implemented for decision making in regard to climate change mitigation and
adaptation. Even though there are a significant number of limitations of BCSD method,
we managed to produce results that seem to follow the track of many previous studies,
making the current study a success in this regard and parallel with the hypothesis we made
before conducting this research.
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