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Abstract: High resolution satellite and reanalysis-based air temperature estimates have huge potential
to complement the sparse networks of air temperature measurements from ground stations in Africa.
The recently released Climate Hazards Center Infrared Temperature with Stations (CHIRTS-daily)
dataset provides daily minimum and maximum air temperature estimates on a near-global scale from
1983 to 2016. This study assesses the performance of CHIRTS-daily in comparison with measurements
from eight ground stations in diverse locations across Africa from 1983 to 2016, benchmarked against
the ERA5 and ERA5-Land reanalysis to understand its potential to provide localized temperature
information. Compared to ERA5 and ERA5-Land, CHIRTS-daily maximum temperature has higher
correlation and lower bias of daily, annual mean maximum and annual extreme maximum temperature.
It also exhibits significant trends in annual mean maximum temperature, comparable to those from the
station data. CHIRTS-daily minimum temperatures generally have higher correlation, but larger bias
than ERA5 and ERA5-Land. However, the results indicate that CHIRTS-daily minimum temperature
biases may be largely systematic and could potentially be corrected for. Overall, CHIRTS-daily is
highly promising as it outperforms ERA5 and ERA5-Land in many areas, and exhibits good results
across a small, but diverse set of sites in Africa. Further studies in specific geographic areas could help
support these findings.

Keywords: climate; climate data; validation; temperature estimates; gridded data

1. Introduction

The availability of high-quality, long-term temperature records is important for a
variety of applications that affect the lives and livelihoods of the population, as well as
ecosystem services. This includes for health—in the study of heat waves [1–3] and the
association between temperature and disease prevalence [4,5]; in agriculture—to under-
stand the suitability of crops and their varieties under different and changing temperature
patterns [6,7], including for crop simulation modeling [8,9]; and in understanding tem-
perature increases caused by climate change [10,11], which are expected to affect Africa
hardest [12,13].

In many cases, climate impacts are local [14,15], hence highly localized information is
required. Historically, ground station measurements have been the primary source of air
temperature data. However, Africa has the lowest density network of ground stations in
the world [16]. Moreover, station networks are unevenly distributed and generally serve
high population density areas [17], leaving many particularly rural areas lacking relevant
local climate information. This presents a challenge to understand temperature patterns
and hot extremes, thus preventing the provision of relevant strategies for adaptation and
early warning at the local level.

Climate 2022, 10, 98. https://doi.org/10.3390/cli10070098 https://www.mdpi.com/journal/climate

https://doi.org/10.3390/cli10070098
https://doi.org/10.3390/cli10070098
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/climate
https://www.mdpi.com
https://orcid.org/0000-0002-8333-9880
https://orcid.org/0000-0002-9953-9596
https://doi.org/10.3390/cli10070098
https://www.mdpi.com/journal/climate
https://www.mdpi.com/article/10.3390/cli10070098?type=check_update&version=1


Climate 2022, 10, 98 2 of 16

The recent development of satellite- and reanalysis-based estimates of air temperature
have the potential to complement the network of ground station measurements. They
provide high-resolution, long-term records that could both enhance existing station records
and provide temperature estimates in places where no historical measurements exist [18,19].
For instance, many crop simulation models require, among other elements, daily minimum
and maximum air temperature to be provided with no missing values for the length of the
study period [20,21]. These requirements can be extremely prohibitive to the adoption of
such models across the continent if station data records are the only source of data. Even
if a location of interest is near a ground station with temperature measurements, missing
values that are often present in station records will prohibit the study. When located farther
away from a station, there is a risk that results will not be applicable as climates can vary
spatially, even over small distances. Long-term high-resolution satellite- or reanalysis-based
temperature estimates could therefore enable studies that rely on complete temperature
records to be more widely and more easily conducted.

One such product for temperatures is the recently developed Climate Hazards Center
Infrared Temperature with Stations (CHIRTS-daily) dataset [18], which provides daily
minimum and maximum air temperature estimates on a near-global scale from 1983 to
2016. CHIRTS-daily combines satellite infrared data with a large network of ground
stations, as well as air temperature estimates from the ERA5 reanalysis from the European
Centre for Medium-Range Weather Forecasts Re-Analysis (ECMWF) [19]. CHIRTS-daily
is a particularly promising product for the applications mentioned because of its high
resolution, which provides estimates approximately every 5 km (0.05◦ resolution). It has
a higher resolution than other air temperatures estimates such as the Japanese 55-year
reanalysis (0.5◦) [22], ERA5 reanalysis (0.25◦) and ERA5-Land reanalysis (0.1◦) [23], and
hence offers greater potential for providing localized temperature information.

The aim of this study is to evaluate the performance of CHIRTS-daily minimum
and maximum temperature records at diverse locations in Africa through comparison
with station data records from a selection of eight locations across Africa using a number
of metrics. To benchmark the performance of CHIRTS-daily, two other high-resolution
temperature products, ERA5 and ERA5-Land, are also compared to the station data records.
The temperature estimates are evaluated on a daily basis, including some daily analysis split
by month to account for seasonal variation and by year, where annual mean of minimum
and maximum temperature, temperature extremes and trends are compared. We focus on a
small number of stations in diverse locations across Africa where high-quality temperature
records are available for 30 years or more.

While the sparsity of the station locations included in this study limits the confidence
with which claims about specific locations can be made, the results will give an indication
of performance in diverse climates across Africa and allow for evaluation of aspects of
performance that require long-term records, such as temperature trends and annual means
and extremes.

The rest of the paper is organized as follows. Section 2 describes the data and methods.
Section 3 discusses the results. Conclusions, summary remarks and suggestions on future
related research areas are presented in Section 4.

2. Materials and Methods
2.1. Study Sites

Eight sites across Africa are used in this study (see Figure 1). Although the choice
of locations was ultimately restricted by the availability of long-term, high-quality daily
temperature records, the sites represent diverse regions and climates across Africa, as
categorized by the Köppen climate classification [24]. Four sites are above the equator, with
Sadore, Niger in the Sahel having a hot semi-arid climate and the three stations in Ghana
having a tropical savanna climate. Two of these three are in the hotter and drier northern
Ghana. Kisumu, Kenya is on the equator, experiencing a tropical rainforest climate. In the
Southern Hemisphere, Dodoma, Tanzania and Livingston, Zambia have a hot semi-arid
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climate, whereas Mpika, Zambia experiences a humid subtropical climate. Two of the sites
border water bodies, with Kisumu, Kenya on the shores of Lake Victoria and Saltpond on
the south coast of Ghana bordering the Gulf of Guinea of the Atlantic Ocean.
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2.2. Station Data

Daily minimum and maximum temperature station records were obtained at the eight
sites. Station details and specifications about the temperature records are shown in Table 1.
Daily rainfall was also obtained at the eight sites. The records from Ghana, Kenya, Tanzania
and Zambia were obtained from the respective national meteorological services within
those countries and the records from Sadore, Niger were obtained from the International
Crops Research Institute for the Semi-Arid Tropics (ICRISAT).

Many of the station records begin much earlier than 1983 and some extend beyond
2016, however, only data within this period were used to coincide with the time period
of CHIRTS-daily. The station records were quality controlled prior to analysis using a
number of the consistency and statistical tests suggested by the World Meteorological
Organization [25]. The tests used were: maximum and minimum temperature consistency
(maximum > minimum), out-of-range check based on monthly climatological ranges,
rapid change check of over 10 ◦C difference to the previous value and spike test with the
same 10 ◦C difference threshold. The few values failing these quality-control checks were
replaced by missing values. Graphical methods were also used to visually inspect the data
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for further inconsistencies with no other issues found at any station. Most missing values
in the station records were due to missing records from the data provider.

Table 1. Details of the eight station sites and properties of the station temperature data records.

Country Station Latitude Longitude Data Range Used Complete Days (%)

Ghana Wa 10.05 −2.5 1 January 1983–31 December 2012 97.1
Ghana Tamale 9.55 −0.86 1 January 1983–31 December 2016 93.3
Ghana Saltpond 5.2 −1.07 1 January 1983–31 December 2016 97.6
Kenya Kisumu −0.08 34.73 1 January 1983–30 June 2014 100
Niger Sadore 13.23 2.28 1 January 1983–10 September 2014 99.5

Tanzania Dodoma −6.18 35.75 1 January 1983–31 October 2013 99.6
Zambia Mpika −11.9 31.43 1 January 1983–30 April 2016 89.7
Zambia Livingstone −17.82 25.82 1 January 1983–31 December 2016 90.8

2.3. Gridded Data

Temperature records from individual pixels of three gridded data products are com-
pared to the station data records to investigate the added value from CHIRTS-daily. An
overview of the key features of these products is given in Table 2.

The method to produce CHIRTS-daily begins by combining satellite infrared tem-
peratures with a large collection of station temperature records from across the world
to produce gridded monthly mean maximum temperatures, which are then combined
with ERA5 temperature values to produce disaggregated daily maximum and minimum
temperature values on a 0.05◦ quasi-global scale from 1983 to 2016: CHIRTS-daily [18],
hereinafter referred to as CHIRTS.

The performance of CHIRTS is benchmarked against the performance of the 2 m tem-
perature records from ERA5 and ERA5-Land reanalysis, developed by ECMWF. The ERA5
reanalysis combines global climate models with ground, ocean and satellite observations
from a variety of sources using data assimilation systems to produce hourly estimates of
a range of variables for the entire globe. ERA5 2 m temperature records are available as
hourly instantaneous values from 1979 to the present (preliminary version from 1950) at a
spatial resolution of 0.25◦ [19]. ERA5-Land is a downscaled version of ERA5’s surface vari-
ables, aiming to provide greater detail over land with an improved 0.1◦ spatial resolution
on the same hourly time scale [23].

Daily minimum and maximum temperature values were obtained from ERA5 and
ERA5-Land by calculating the maximum and minimum of the 24 hourly values over each
24 h period starting at 6 AM UTC. ERA5-Land’s inclusion adds a dataset with a closer
spatial resolution to CHIRTS to reduce the likelihood that any improved performance of
CHIRTS over ERA5/ERA5-Land can be solely attributed to its higher spatial resolution.

Table 2. Overview of gridded temperature products.

Product Spatial Resolution Temporal
Resolution Data Availability Coverage Method

CHIRTS-daily 0.05◦ (~5 km) Daily 1983–2016 Quasi-Global Merged Station,
Satellite & Reanalysis

ERA5 0.25◦ (~30 km) Hourly 1979–Present Global Reanalysis
ERA5-Land 0.1◦ (~9 km) Hourly 1981–Present Global Reanalysis

2.4. Methodology

To compare the gridded data products with station measurements, the data from the
closest grid point to each station were extracted from each of the gridded data products.
This is often referred to as point-to-pixel comparisons [26–28]. The ERA5-Land grid point
closest to the Saltpond station in Ghana partially contains sea and, hence, provides no
values, so comparison at this site is not included for ERA5-Land. This is used to give an
indication of performance at specific locations, rather than a large-scale spatial validation.
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Comparison metrics were calculated from daily values and the annual mean of mini-
mum and maximum temperatures. To analyze temperature extremes, the annual maximum
temperature, i.e., the annual maximum of daily maximum temperature, was calculated.
Potential seasonally dependent performance was accounted for by calculating comparison
metrics of daily values on a monthly basis.

Comparison metrics used in this study were the Pearson’s correlation coefficient, bias
and root mean square error (RMSE), as defined in Equations (1)–(3), respectively.

Bias =
1
n ∑n

i=1 ei (1)

RMSE =

√
1
n ∑n

i=1 e2
i (2)

Correlation (r) = ∑n
i=1(si − µs)(oi − µo)√

∑n
i=1(si − µs)

2 ∑n
i=1(oi − µo)

2
(3)

where si is gridded data value at time i, oi is the station data value at time i, ei = si − oi is
the error at time i, n is the length of the series and µs and µo are the means of gridded data
and station data, respectively.

Following the suggestion in Knoben, Freer and Woods [29], which argues for “purpose-
dependent evaluation metrics”, the metrics chosen here allow for assessing multiple aspects
of the performance of gridded products. Correlation shows the strength of agreement of
values regardless of any biases. Bias detects systematic differences and its sign indicates
long-term over- or underestimation. However, large deviations can be hidden by the bias
as positive and negative deviations can offset each other. RMSE accounts for deviations and
is therefore a measure of accuracy. We also calculate the standard deviation of the errors as
another metric to indicate the consistency of any systematic bias. Taylor diagrams are used
to summarize and compare performance in terms of pattern matching by simultaneously
display correlation, centered root mean square error and standard deviation [30].

For the station data records, annual values were only calculated for years in which
there were no more than 27 missing values and no more than 20 consecutive missing values.
This condition is an adaptation of the World Meteorological Organization’s recommen-
dations for the calculation of monthly values for climate normals [31] and was chosen
to prevent excessive missingness biasing the results, given the interannual variability of
temperature at our locations and the autocorrelation of daily temperature values.

3. Results and Discussions
3.1. Station Data

Figure 2 shows the annual cycle of monthly mean minimum and maximum temper-
atures at each station, ordered by decreasing latitude. At the four stations in Niger and
Ghana, maximum temperatures are regularly above 30 ◦C and highest in March to May,
with Sadore, Niger having average maximum temperatures above 40 ◦C in April and May.
At Kisumu, Kenya and Dodoma, Tanzania, maximum temperatures are fairly consistent
year-round at 30 ◦C, whereas at the two stations in Zambia there is more seasonality with
the highest temperatures in October and November.

Minimum temperatures exceed 20 ◦C throughout the year at the stations in Niger and
Ghana. At Saltpond, the diurnal range is lowest at an average of less than 5 ◦C in July,
whereas it is up to 15 ◦C at Sadore where minimum temperatures reach lower levels. At
Kisumu, minimum temperatures are fairly consistent at around 17 ◦C. The farther south
the stations go, the greater the minimum temperatures decrease in the winter months
of July–September, with a slight seasonal variation in Dodoma, and greater temperature
decreases at the stations in Zambia where average minimum temperatures are below 10 ◦C
in this period. The proximity to the equator affects the seasonal patterns with stations
closer to the equator (Saltpond, Kisumu and Dodoma) having less seasonal variability. The
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stations farther from the equator exhibit a bimodal temperature pattern. In west Africa,
temperatures reduce from June–September, because of the monsoon, and again in the
winter months of December and January, with a hot dry season in-between that peaks in
April. In Zambia, southern Africa, temperatures are highest in the hot dry season beginning
in August, before reducing in October/November at the onset of the rainy season, which is
then followed by a cool dry Southern Hemisphere winter. This highlights the diversity in
seasonal patterns and temperature ranges of the sites included in this study.
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3.2. Daily Comparisons

On a daily basis, the overall correlations between CHIRTS and the station data are
high (r ≥ 0.80, not shown) for both minimum and maximum temperatures, and greater
than or similar to those for ERA5 and ERA5-Land. However, the overall correlation can
be misleading when there is seasonality in the data, as high correlation values could be
achieved by values that model the seasonality well, without necessarily strong correlation
of values within seasons. Hence, we also examine daily temperature correlations calculated
by each month, i.e., 12 correlation values per site, alongside mean monthly rainfall from
the station data, as shown in Figures 3 and 4.

CHIRTS has higher minimum temperature correlations than ERA5 and ERA5-Land in
all or almost all months at each station. CHIRTS and ERA5 both have high correlations for
maximum temperatures, with ERA5-Land having similar values for the stations in Kenya,
Tanzania and Zambia and lower in those in Niger and Ghana. However, there is variation
across the locations with Kisumu, and to a lesser extent Saltpond, having noticeably lower
minimum temperature correlations than at the other stations for all three products. These
results agree with the findings from the technical validation of CHIRTS in Verdin et al. [18],
where the mean correlation with station data in Africa for the hottest three-month period
was 0.81 and 0.67, respectively, for daily maximum and minimum temperatures.

We also note that ERA5-Land does not appear to have substantially higher correlations
over ERA5 and actually has lower maximum temperature correlations at some stations.
One would expect the improved downscaling to a higher spatial resolution to provide
values that are more closely representative of point-based values.
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There appears to be a seasonality effect in the daily minimum temperature correlations
at some stations for all three products (Figure 3). At Sadore, Wa and Tamale, the minimum
temperature correlations drop between June and September, corresponding to the main
rainy season in these locations. Similarly, in the other locations, we generally also see a pat-
tern of reduced correlations in the rainiest months. Temperature variability is also reduced
during the rainy seasons, which can affect correlation. However, this does not correspond
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to higher RMSE, which is fairly consistent across months, as shown in Figure 5. The lower
correlation in these months is therefore likely due to lower variability of minimum tempera-
ture in this period since lower variability decreases correlation [32] and is not an indication
of worse performance in terms of deviations in the rainy months as the consistent RMSE
shows. For example, Figure 6 shows clearly that minimum temperatures at Sadore fall in a
narrower range from July to September, where correlations are lower, even though the sizes
of the differences are not larger than in other months. Hence, performance in estimating
absolute values does not appear to be worse in those months. This also highlights the
importance of using multiple metrics to assess different aspects of performance.
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This effect is also observed to a lesser extent for maximum temperature correlations
(Figure 4), although Dodoma, Tanzania and Saltpond, Ghana do not appear to follow
this pattern.

CHIRTS overestimates daily minimum temperatures and by larger amounts on av-
erage than ERA5 and ERA5-Land at all stations (Table 3). The bias is largest at Kisumu
(+6.4◦). The daily mean bias is also large in Zambia at Mpika (+2.9◦) and Livingstone
(+3.7◦), which has the lowest minimum temperatures of the eight sites. At the other sta-
tions, the overestimation is lower and between 0.6◦ and 2.3◦. ERA5 and ERA5-Land also
generally overestimate minimum temperatures but by less than CHIRTS at all stations.
This is consistent with the RMSE values, which are generally similar or lower for ERA5
and ERA5-Land compared to CHIRTS. Wa is the only station where the minimum temper-
ature is underestimated by CHIRTS for part of the year (November to March). CHIRTS
consistently overestimates minimum temperatures in each month at all other stations
(not shown); hence, only the overall bias values are reported. The larger bias in CHIRTS
minimum temperatures compared to the corresponding bias for maximum temperatures
was not observed in Verdin et al. [18], where mean absolute error over Africa was simi-
lar for minimum and maximum temperatures; however, these were only for the hottest
three-month period in the year.
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Table 3. Bias (◦C) between the three gridded products and the station data daily minimum and
maximum temperatures at each of the eight locations.

Minimum Temperature Maximum Temperature

Location CHIRTS ERA5 ERA5-Land CHIRTS ERA5 ERA5-Land

Sadore 1.9 1.1 0.3 0 −1 −0.6
Wa 0.6 0 −0.3 −0.5 −1.4 −0.9

Tamale 1.2 1.0 0.7 −0.6 −1.1 −0.7
Saltpond 2.3 1.2 NA 0.5 −1.5 NA
Kisumu 6.4 0.6 2.2 1.4 −4.4 −3.5
Dodoma 1.0 0.9 0.2 0.2 0 −0.6
Mpika 2.9 0.5 1.2 0.5 −2 −1.6

Livingstone 3.7 1.5 1.7 0.6 −1.7 −1.9

Although the CHIRTS minimum temperature biases are generally larger, the errors
(differences) are slightly less variable with a lower standard deviation at all stations com-
pared to ERA5 and ERA5-Land (Table 4). This is consistent with CHIRTS also having
comparable or lower RMSE at some stations (Table 4), despite the higher biases. Therefore,
the biases in the CHIRTS minimum temperatures may be largely systematic biases and,
hence, could be corrected for. This is also consistent with the Taylor diagram in Figure 7,
which shows smaller centered RMSE for CHIRTS since this considers the centered pattern
error after subtracting the means. This result is illustrated in the scatter plots in Figure 7 of
the station vs. the CHIRTS minimum temperatures at Sadore, Niger where the CHIRTS
bias is almost double that of ERA5, yet the RMSEs are the same and CHIRTS has higher
correlations. The CHIRTS data are more offset from the y = x line of perfect fit than the
ERA5 data, but also appear to fit a straight line better; hence, with an offset correction
CHIRTS values could be considered to better estimate the station data. From Figure 7 we
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also observe that the standard deviations of all products are more often less than that of
the station data, although not by large amounts, except at Kisumu. In general, the CHIRTS
points are closest to the station point in Figure 7, showing better overall performance in
these metrics.

Table 4. RMSE and standard deviation of error between the minimum temperatures of the station
data and the gridded products.

RMSE Standard Deviation of Error

Location CHIRTS ERA5 ERA5-Land CHIRTS ERA5 ERA5-Land

Sadore 2.54 2.55 2.38 1.66 2.32 2.36
Wa 1.68 1.86 1.79 1.58 1.86 1.76

Tamale 2.06 2.37 2.22 1.65 2.15 2.11
Saltpond 2.54 1.72 NA 1.15 1.26 NA
Kisumu 6.57 1.62 2.67 1.43 1.51 1.52
Dodoma 1.56 1.49 1.21 1.19 1.19 1.19
Mpika 3.28 1.84 2.15 1.54 1.77 1.79

Livingstone 4.04 2.95 3.13 1.72 2.53 2.62
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At all stations, CHIRTS has a lower bias for maximum temperature than it does for
minimum temperature (Table 3). CHIRTS biases in maximum temperatures are consistently
between −1.7◦ and 2◦ across all stations and months (Table 3). This range is even narrower
if Kisumu is excluded. While CHIRTS consistently overestimates minimum temperatures,
there is more of a mixture between under- and overestimation of maximum temperatures
(Figure 8). CHIRTS overestimates in every month at Saltpond, Kisumu, Mpika and Living-
stone, whereas it underestimates at Tamale and overestimates around the middle of the
year and underestimates otherwise at Sadore and Wa (Figure 8).

ERA5 and ERA5-Land underestimate maximum temperatures on average and the
biases are larger in size than for CHIRTS (Table 3). CHIRTS also has lower RMSE at all
stations (Table 5). This improved performance of maximum temperature by CHIRTS over
ERA5 and ERA5-Land is expected as the CHIRTS algorithm is designed to address the cool
biases observed in ERA5 [33], which are more noticeable in Africa [18].
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Table 5. RMSE between daily station maximum temperatures and the three gridded products.

Location CHIRTS ERA5 ERA5-Land

Sadore 1.52 1.82 1.87
Wa 1.50 1.92 1.94

Tamale 1.48 1.85 1.94
Saltpond 1.05 1.69 NA
Kisumu 2.16 4.73 3.89
Dodoma 1.36 1.38 1.63
Mpika 1.41 2.34 2.14

Livingstone 1.43 2.06 2.42

Reda, Liu, Tang, and Gebremicael [34] also showed that CHIRTS exhibits good per-
formance on a daily basis in comparison with records at stations in the complex terrain
of the Upper Tekeze River Basin, Ethiopia and performed better than other products.
However, it is noticeable that the average daily correlations were lower than observed in
this study and the RMSE values were higher at 3.7◦ and 4◦ for maximum and minimum
temperatures, respectively.
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The performance of CHIRTS at Kisumu, Kenya stands out as being the poorest across
all measures. This could relate to the complex local climate around Kisumu. It is on the
shores of Lake Victoria, 24 km from the equator, and is close to much cooler, higher-altitude
and mountainous areas. However, this would need further investigation in a more detailed
study focused on this area with more station records. At Saltpond, Ghana, CHIRTS also
has a relatively worse performance compared to its closest other stations, and Saltpond
also borders a water body close to the equator. However, there were also some large biases
and low correlations in some months in the two locations in Zambia, which does not have
these features.

Although it was not an objective of the study, it is somewhat surprising that the higher
resolution of ERA5-Land compared to ERA5 does not appear to improve performance in
comparison to the station data in point-to-pixel comparisons. One would have expected
temperature values to be dependent, for example, on the pixel altitude and, hence, a smaller
pixel area around the station location may be expected to compare better to the station data.
A further study to understand the spatial variability of ERA5 and ERA5-Land over Africa
could help to better understand this.

3.3. Annual Means

The CHIRTS annual mean minimum temperatures are positively correlated with
the station values. Kisumu and Dodoma have the lowest correlations values (0.26 and
0.32) (Table 6). ERA5 and ERA5-Land generally have similar or higher correlation with
the station values. The larger systematic biases observed in the daily CHIRTS minimum
temperature could be a cause for the relatively worse performance of the yearly means.

Table 6. Correlation between station and product mean minimum temperatures and station and
product mean maximum temperatures.

Mean Minimum Temperature Mean Maximum Temperature

Location CHIRTS ERA5 ERA5-Land CHIRTS ERA5 ERA5-Land

Sadore 0.65 0.83 0.84 0.73 0.44 0.61
Wa 0.56 0.59 0.63 0.72 0.6 0.74

Tamale 0.82 0.74 0.77 0.56 0.47 0.74
Saltpond 0.66 0.86 NA 0.81 0.79 NA
Kisumu 0.26 0.44 0.63 0.73 0.65 0.63
Dodoma 0.32 0.86 0.8 0.87 0.8 0.81
Mpika 0.78 0.78 0.77 0.91 0.94 0.89

Livingstone 0.61 0.65 0.48 0.93 0.92 0.81

CHIRTS annual mean maximum temperatures are highly correlated with the station
values and at each station the correlation is higher than the corresponding correlation for
mean minimum temperature. Compared to ERA5 and ERA5-Land, CHIRTS has higher
correlation, except at Tamale, where ERA5-Land has a higher correlation. The improved
performance of CHIRTS annual mean maximum temperatures is consistent with the results
of Verdin et al. [18] in the technical validation of the CHIRTS product.

The station data show trends of increasing annual mean maximum temperatures
between 0.43 and 3.07 ◦C per 100 years, which are significant at the 5% level in all stations
except Mpika (Table 7). CHIRTS shows increasing trends in mean maximum temperatures,
which are significant at the 5% level at five of these six locations, compared to three out
of six for ERA5. The significant trends in CHIRTS are fairly consistent, between 1.26 and
2.77 ◦C per 100 years, and similar to those of the station data.
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Table 7. Annual mean maximum temperature trend per 100 years (◦C) and corresponding p value for
station data and the three gridded products.

Station CHIRTS ERA5 ERA5-Land

Station Trend p Value Trend p Value Trend p Value Trend p Value

Sadore 2.81 0.004 2.77 <0.001 1.39 0.097 0.83 0.327
Wa 2.56 0.002 1.75 0.005 2.02 0.072 1.7 0.059

Tamale 0.43 0.599 1.65 <0.001 1.16 0.176 1.68 0.017
Saltpond 3.07 <0.001 1.86 0.002 2.19 <0.001 NA NA
Kisumu 1.18 0.085 1.98 <0.001 3.7 <0.001 3.75 <0.001
Dodoma 1.57 0.039 1.26 0.027 3.57 <0.001 2.8 0.002
Mpika 1.07 0.257 1.12 0.12 1.2 0.121 0.69 0.394

Livingstone 0.9 0.457 1.02 0.337 1.38 0.227 −1.14 0.416

3.4. Extremes

Compared to ERA5 and ERA5-Land, CHIRTS annual extreme maximum temperatures
are closer to the station values on average (Table 8). CHIRTS underestimates the average
annual extreme maximum temperatures in the three most-northern stations, which have
the highest extremes, by between 0.53 and 0.8 ◦C. At Saltpond and Mpika, the CHIRTS bias
is close to 0. At the other three stations, CHIRTS overestimates by 0.51 to 1.01 ◦C on average.
ERA5 and ERA5-Land generally underestimates the extreme maximum temperatures and
mostly by a larger magnitude than the CHIRTS bias. This is consistent with one of the
aims of CHIRTS to improve the cool bias of ERA5 and specifically its underestimation of
extremely hot days [18] and is also consistent with Reda, Liu, Tang and Gebremicael [34],
who found that maximum temperature extremes were better represented by CHIRTS than
other products over the Upper Tekeze River Basin, Ethiopia.

Table 8. Bias between the annual extreme maximum temperature from the station data and the three
gridded products.

Location CHIRTS ERA5 ERA5-Land

Sadore −0.7 −1.48 −1.45
Wa −0.53 −0.89 −0.6

Tamale −0.8 −0.93 −0.69
Saltpond −0.06 −2.52 NA
Kisumu 0.92 −5.08 −4.23
Dodoma 1.01 0.19 −0.57
Mpika −0.12 −2.26 −1.95

Livingstone 0.51 −1.67 −1.39

4. Conclusions

This study presents results comparing temperature data records of 30 years or more
from eight stations in Africa with the CHIRTS satellite- and station-based daily temperature
records from 1983 to 2016. The station data were also compared to ERA5 and ERA5-Land
temperatures to benchmark the CHIRTS performance. The study focused on the analysis of
a small number of diverse locations in detail, as opposed to a larger number of locations
in a dense area. While this approach limits the ability to generalize these results across
the continent, it does provide an indication of the performance of CHIRTS in a variety of
climates. The results for maximum temperature are extremely promising across measures
and locations. The minimum temperature results are more complex, but still promising in
some key measures.

The CHIRTS daily minimum temperatures generally have higher correlation with the
station data than ERA5 and ERA5-Land.

CHIRTS overestimates minimum temperatures on average across the locations, with
daily bias above 2 ◦C at four of the eight stations and highest at Kisumu, Kenya at 6.4 ◦C.
ERA5 and ERA5-Land also overestimated generally but, in contrast, the ERA5 daily bias
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was below 1.5 ◦C at all stations. The larger CHIRTS biases could be an effect of the
CHIRTS algorithm. CHIRTS minimum temperatures are calculated by subtracting the
ERA5 diurnal range from the CHIRTS maximum temperatures [18]. Since we have also
observed that CHIRTS maximum temperatures are generally increased compared to ERA5
values to account for ERA5 cool bias, a possible explanation is that this method may
have inadvertently led to increased minimum temperature overestimation. For many
applications where minimum temperature values are directly required (as opposed to
relative values), such as in the study of tropical disease transmission and epidemics [35,36]
or the occurrence and onset of frost for agriculture production [37], these biases could
be significant enough to prohibit their use directly. However, given the relatively high
correlation of daily values, for applications where only relative anomalies are required,
such as for the calculation of trends and indices [38], CHIRTS minimum temperatures may
already be fit for purpose.

Although the CHIRTS minimum temperature biases are larger, the lower standard
deviation of errors and lower RMSE values suggest the biases are more systematic than
from ERA5. This is a promising result for the use of CHIRTS minimum temperature data
where the systematic biases could be well-estimated and corrected for, such as by infilling
or extending an existing station record, or where a nearby station record is available for
calibration. Since correlations of daily values are already high, bias-adjusted CHIRTS
minimum temperature values could also be fit for purpose where direct values are re-
quired. A seasonally dependent bias correction could also be considered where the bias
varies seasonally.

CHIRTS minimum temperatures perform worse at Kisumu and Saltpond, which both
border water bodies. Performance of CHIRTS may be dependent on a number of location
specific factors and the complexity of the topography; however, this would need further
investigation in a study at more locations.

The results for maximum temperatures are good across all measures and show an
improved performance of CHIRTS compared to ERA5 and ERA5-Land. ERA5 and ERA5-
Land underestimate maximum temperatures by between 1 ◦C and 4.4 ◦C at all but one
location, whereas the CHIRTS daily bias was between −0.5 ◦C and 0.5 ◦C at all locations
except Kisumu.

On an annual basis, CHIRTS generally has higher correlations of mean maximum
temperature values than ERA5 and ERA5-Land. CHIRTS exhibits statistically significant
trends of similar magnitudes to those from the station data more consistently than ERA5 or
ERA5-Land.

CHIRTS also estimates extreme maximum temperatures well. It could be expected
that gridded data exhibits lower extreme values than point-based measurements, given
their areal nature, which naturally leads to the smoothing of extreme values. However, the
CHIRTS annual extreme maximum temperatures are comparable to those of the station
data across the locations. This is even true at Sadore, Niger, which has the highest extreme
temperatures often exceeding 45 ◦C, showing the ability of CHIRTS to accurately estimate
extremely high temperatures, which are often critical to many studies.

The fact that CHIRTS maximum temperatures show strong performance when compar-
ing daily values, annual means and extremes is very promising for the use of CHIRTS max-
imum temperatures in a wide variety of applications, both as absolute and relative values.

The results of this study show the CHIRTS dataset to be a promising addition to the set
of gridded data products that provide near-global, long-term, high-resolution air tempera-
ture estimates. CHIRTS data are based on satellite data and incorporate station data records;
hence, they complement and potentially add additional information to existing reanalysis
temperature data products when used in combination or alone. Under many measures,
CHIRTS performed similar or better than ERA5 and ERA5-Land records in comparison
with data from eight stations across Africa. CHIRTS data are also on a resolution higher
than existing temperature products, which could support better understanding of local
climates. Although the number of locations in this study is relatively small, it shows promis-
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ing findings of the accuracy of CHIRTS daily minimum and maximum temperature records
across a diverse set of climates in Africa. Further studies focusing on specific geographic
areas or certain terrains, such as carried out by Reda, Liu, Tang and Gebremicael [34] would
complement this study and could provide more detailed results about the performance of
CHIRTS under specific conditions, particularly in complex terrains.
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