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Abstract: This manuscript focuses on the need for tailoring flood assessment products to decision 

making within the humanitarian sector. Decision-makers often struggle to extract all of the infor-

mation contained in scientific products, either because they come from different fields of expertise 

or because they have different needs that are not captured in the results or the processing of the 

data. Here we define the key elements of a flood assessment product designed for the humanitarian 

sector. From a remote sensing perspective, in order to assess flooding, the measurement sampling 

properties, i.e., spatial resolution and temporal repeat, are key. We have therefore implemented a 

methodology through the processing and interpretation of the measurements from the Cyclone 

Global Navigation Satellite System (CYGNSS) mission. CYGNSS measurements are usually para-

metrized in various possible observables. Those observables are then linked to the surface charac-

teristics, such as, in this case, the presence of inundation in the CYGNSS footprint. Our methodology 

includes the variability of the pixels in landscapes with infrastructure, rivers, agricultural fields, 

rural areas, and other elements characteristic of the agricultural-urban interface. We provide an 

original methodology that uses CYGNSS mission bistatic radar measurements and an artificial in-

telligence classification algorithm based on statistical properties of the land pixels through a k-

means clustering strategy to detect and monitor flooding events, as well as to characterize the land 

surface prior to and post flooding events. The novel methodology to derive a flooding product is 

then evaluated towards the needs of the humanitarian sector by a cognizant link (a translator) be-

tween technologists or scientists and decision-makers. The inclusion of humanitarian needs into 

product development following the advice of a cognizant link is novel to the applications developed 

employing GNSS bistatic radar data. 

Keywords: flooding; urban; agricultural; remote sensing; temporal repeat; soil recovery time; soil 
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1. Introduction 

On a global scale, floods are one of the most devastating natural hazards. The term 

flood includes riverine floods, when the flooding is caused by overflown rivers; pluvial 

floods, when the primary cause is intense rain that the ground cannot absorb; flash floods, 

when flooding originates rapidly in low-lying areas; urban floods, when the cause is a 

lack of drainage in an urban area; coastal floods, which originate from seawater covering 

land areas; and glacial lake outburst floods, when the dam containing a glacial lake fails 
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[1–4]. This manuscript focuses on floods impacting the human-natural interface, directly 

and indirectly, leading to high casualty levels and causing losses of billions of US dollars 

in various sectors, including agriculture, health, energy, transportation, and communica-

tions [5]. The agricultural-urban interface, comprising urban, peri-urban, and agricultural 

areas, is affected by most types of floods, including riverine, pluvial, urban, and flash 

floods. However, the impact from different types of floods varies significantly. 

Flash floods, in particular, have a damage profile that is different from riverine 

floods, causing more sudden impacts over a variety of socioeconomic contexts [6]. Fur-

ther, compared to other types of floods, flash floods are more likely to occur outside of 

areas that are traditionally considered to be at high risk of riverine flooding, leading to a 

situation where some populations at risk may not appropriately perceive their risk, lead-

ing to challenges in developing early warning systems that influence anticipatory action 

to be taken [7]. Riverine floods occur in known floodplains when prolonged rainfall over 

several days, intense rainfall over a short period of time, or a debris jam causes a river or 

stream to overflow and flood the surrounding area. Severe thunderstorms can bring 

heavy rain in the spring and summer; or tropical cyclones can bring intense rainfall in the 

summer and fall to coastal states causing coastal floods and to inland states causing riv-

erine, urban, and pluvial floods. Key drivers of floods are rainfall intensity (rate of rain-

fall), duration (how long the rain lasts), topography, soil conditions, and ground cover. 

Some of the floods that have occurred in recent years are summarized in Table 1. 

Table 1. Selection of impactful floods from 2017–2021. 

Event Year Cost Deaths 

California floods 2017 1.2B 5 

Midwest Spring Floods 2017 1.7B 20 

Hurricane Harvey 2017 125B 89 

Peru floods 2017 9B 113 

Hurricane Florence 2018 24B 54 

Japan floods 2018 8B 225 

Kerala Floods 2018 5.5B 483 

Midwestern US floods 2019 2.9B 3 

Mozambique Floods 2019 2B 761 

Indian Monsoon Floods 2019 7.4B 1600 

China Floods 2020 32B 219 

European Floods 2021 11.8B 243 

The fast-changing conditions that increase flood risk are difficult to monitor with 

most of the existing satellite remote sensing instruments primarily due to limitations in 

temporal and spatial resolution, cloud cover, shadows and repeat cycle [8]. Adequate 

characterization of floods at the agricultural-urban interface requires moderate to high 

spatial resolution (~1 km) and daily to sub-daily measurements [9]. There are several mi-

crowave remote sensing systems that have the potential to fulfil those requirements and, 

in addition, can see the surface regardless of almost any type of weather, day or night 

conditions, such as L-band radar, synthetic aperture radar and radiometers [10]. In gen-

eral, the signals from microwave sensors can penetrate through the medium, up to some 

degree dependent on the frequency of operation of the instrument and therefore have the 

potential to detect flooded conditions underneath the vegetation canopy [10]. Current op-

erational microwave capabilities to characterize flooding rely on either scatterometers or 

radiometers, such as the Special Sensor Microwave Imager (SSM/I, K- and Ka-band, [11]), 

the Soil Moisture Ocean Salinity (SMOS, L-band, [12]) and the SMAP (L-band, [13]), that 

provide observations with a 3-day repeat cycle at coarse scales (~25–50 km), or SAR’s, such 
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as Sentinel-1 (C-band, [14]) or the Phased Array L-band Synthetic Aperture Radar (PAL-

SAR-2, L-band, [15]) that provides high resolution (< 100 m) imagery at lower repeat cycles 

of 12 to 14 days. None of those missions fully satisfy all the requirements for implementing 

a flood product, much less a flash flood product, whose characteristics are even more 

challenging: sudden, quicker, and occurring in unexpected areas. In general, the detection 

of features rapidly evolving would benefit from the availability of measurements with 

high repeat. L-band GNSS bistatic radar signals are an ideal set of measurements to com-

plement the limitations of the above-mentioned instruments and are key to assessing rap-

idly evolving features. There are some operational products for global flood prediction 

and warning based on weather prediction coupled with increasingly accurate satellite ob-

servations and hydrological models, such as [16] based on models and precipitation meas-

urements from the Rainfall Measuring Mission (TRMM, [17]) Multi-satellite Precipitation 

Analysis (TMPA), or operational products for global flood mapping and damage assess-

ment based on observed satellite time series records of flood events and modelling, such 

as the Near Real Time (NRT) Moderate Resolution Imaging Spectroradiometer (MODIS) 

Flood Mapping [18] based on MODIS-based algorithm developed in [19] or, as another 

example, the Advanced Rapid Imaging and Analysis (ARIA, [20]) project based on Senti-

nel 1 A/B, space-based geodetic measurement from Interferometric Synthetic Aperture 

Radar (InSAR), and Differential Global Positioning System (DGPS). Data from the 8 satel-

lites that form CYclone Global Navigation Satellite System (CYGNSS) mission’s constel-

lation [21,22] have also been employed in several spatial assessment studies, such as [23] 

that provides an assessment of recently updated products to feature a novel calibration 

approach that includes the capability to exploit data collected from the zenith front-end 

to account for the variability of available GPS power. The study in [24] showed an image 

processing algorithm leveraging the surface reflectivity signal to produce a water mask of 

inland waterbodies at 0.01° × 0.01° spatial resolution. Research has been conducted 

demonstrating the technical and scientific merit of the CYGNSS dataset for flood detec-

tion. For example, measurements taken from CYGNSS during the 2017 Atlantic hurricane 

season suggested that the flooding event occurring in Texas from Hurricane Harvey was 

well captured by the GNSS-R signals. The effect of both Hurricane Irma affecting Cuba 

and Hurricane Harvey affecting Texas was clearly noted by the CYGNSS measurements 

[25]. CYGNSS data is averaged over a certain grid pre-event (1 July to 20 August 2017) 

and during the whole storm period (25 August–15 September 2017). The observed change 

in surface reflectivity is classified as inundation by simple thresholding. Similarly, authors 

in [26] analyze CYGNSS data over China, proving the ability of those measurements to 

capture the dynamics of flood inundations caused by six typhoon events from July to Sep-

tember 2017. 

The characterization of flooding at the agricultural-urban interface, including detec-

tion and monitoring of its dynamics on a daily basis, would provide an important source 

of information and a step towards better decision-making strategies from risk manage-

ment agencies, helping protect population and infrastructure, and would promote disas-

ter risk reduction policies as noted in the Sendai Framework [27]. 

This manuscript is structured as follows: Section 2 provides the background for the 

relevance of the collaboration between technology, science, and the humanitarian sectors. 

Section 3 provides the main body of the manuscript where we explain the methodologies 

employed in our flood product and test it over two case studies: 

• The Mozambique floods in 2019, caused by two consecutive tropical cyclones (Idai 

and Kenneth), leading to casualties, however, the majority were not caused by the 

storm surge flooding, but rather by both inland riverine flooding and urban/peri-

urban flash flooding days after landfall [28]; 

• The Midwest spring floods in 2017, an example of pluvial floods where the primary 

cause was recurrent intense rain that the ground could not absorb.  
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Section 4 provides a description of the humanitarian components. Section 5 provides 

discussions on the usefulness of signals-of-opportunity for the flood application and on 

the benefits of multi-sensor information. Section 6 provides the conclusions for the work 

presented. 

2. The Collaboration between Technology, Science, and the Humanitarian Sectors 

Many products that indicate flood extent or flood risk are currently produced, but 

those products are usually not tailored to the needs of decision-makers on the ground. In 

order to make those products effective, communicating the scientific information to deci-

sion-makers in the humanitarian sector requires appropriate tailoring and brokering to 

increase the likelihood of the data being integrated into policy development or decision-

making [29]. To accomplish this, the humanitarian sector needs to be involved in the de-

velopment of such products so they can be adapted to specific events and to the specific 

needs of decision-makers [30]. 

Universities or research centers are one of the sources of flood product development, 

but given the nature of those types of institutions, many lack the mandates and incentive 

structures to support operational decision making in the humanitarian and development 

sector. Promoting structured and mutually beneficial collaboration between research and 

humanitarian communities is a critical element in developing a comprehensive flood 

product that can inform flood preparedness, response, recovery, and resilience [31]. Doing 

so will contribute to a better understanding of the floods and their socioeconomic impact, 

in particular flash floods—which have been historically difficult to assess [32]. Further, 

from a disaster management and preparedness perspective, outputs could have a signifi-

cant impact on the humanitarian sector-wide movement towards anticipatory action be-

fore a flood disaster occurs, as they can be considered as candidate datasets during trigger 

development [33]. Strategic collaboration between institutions will also benefit from direct 

connections to the humanitarian sector, which will help towards developing better strat-

egies to improve decision-makers’ understanding of floods and how to prioritize the pop-

ulations at highest risk of flood impact [34,35]. The presented work helps to better charac-

terize the dynamics of the Earth’s surface, improving the capability to assess and respond 

to floods, and contributes towards the use of Earth system science research for societal 

benefit [36,37]. Our work uses space-based bistatic radar measurements to provide flood-

related information, not fully characterized by other remote sensing instruments, and 

more generally, to open the integration of these signals into retrieval algorithms, easing 

the analysis of their impact. 

3. The Technological and Science Component 

In this section, we focus primarily on the methodologies employed to build our flood 

detection and monitoring algorithms to generate the flood product. We have developed 

the algorithms, shaping them to satisfy the needs of the humanitarian sector. These needs 

were informed by a translator, an entity that understands decision-makers’ needs and has 

enough background to translate those needs to scientists and technologists, and therefore 

is able to provide a number of specific requirements: 

• Temporal resolution in the order of 1 day. This is key to capturing fast-occurring 

events, such as flash floods. 

• Spatial resolution in the order of 500 m to 1 km. This is key to capturing flooding 

events at a local scale. 

• Selecting measurement directly linked to the presence of standing water. 

• Analyze the landscapes in terms of their unique characteristics. 

• Use the feedback from the humanitarian sectors to flag false positives from the TSH 

flood product. 

• Provide the number of pixels flooded in a certain area. 

• Correlate the inundated pixels with precipitation events in the area. 
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• Provide a way to understand how the soil is recovered from a flood. 

The sub-sections describe the bistatic radar data, the primary dataset allowing to 

comply with the above requirements. We analyze both spatial and temporal resolution of 

the data. The algorithm is defined and explained in detail followed by the processing done 

over different areas in two case examples, showing the ability of the algorithm to detect 

and monitor floods, as well an example of validation analysis. 

3.1. Technology: The Bistatic Radar Dataset 

Sampling needs for pluvial floods are even more demanding than what is sufficient 

for other types of flooding, such as wetlands or coastal flooding, where the events can be 

observed during weeks or months (wetlands) and occupying 100s of kilometers (massive 

events due to hurricanes). Currently, the bistatic radar measurements from the CYGNSS 

[21,22] mission are the most suitable for short duration pluvial floods. CYGNSS is a con-

stellation of 8 satellites with capability of receiving the signals from the Global Positioning 

System (GPS) as those bounce of the Earth’s surface. CYGNSS tracks up to 4 specular 

points per receiver resulting on 32 simultaneous measurements per second. The number 

of measurements per second gathered by CYGNSS provides a coverage and a sampling 

repeat that surpasses any other GNSS bistatic radar measurement currently available. 

CYGNSS measurements are usually parametrized in various possible observables which 

are then linked to the surface characteristics, such as in this case, the presence of inunda-

tion in the CYGNSS footprint. This intrinsic aspect of the bistatic radar observable makes 

CYGNSS data ideal to satisfy one of the key requirements set by the translator; the meas-

urement directly linked to the presence of standing water. The specific observables se-

lected in our methodology are further described in Section 3.2. Aside from CYGNSS there 

is no current bistatic radar mission that can provide similar performance. Table 2 shows 

the TechDemoSat-1 mission (TDS-1, [38]) and SMAP radar receiver or SMAP Reflectome-

ter [39–42].  

Table 2. Bistatic Radar Missions. 

Mission Time Span Area Revisit Coverage Flood Detection—Suitable? 

CYGNSS [21,22] 2017–present 1 day +/− 37° lat, sufficient Ideal 

SMAP Reflectometer [39–42] 2015–present Monthly Global, sparse Non-feasible 

TechDemoSat-1 [38] 2014–2019 1 day Global, medium Good, but decommissioned 

Previous works have made assumptions on the scattering area size of GPS signals 

bouncing off inundated areas. When signals are scattered from inundated areas, where 

the surface is near flat, the coherent scattering component dominates the signal reflection 

and the area where the signals are scattered from can be ideally assumed to be that of the 

first Fresnel zone. The first Fresnel zone is defined as and ellipse whose semi-minor and 

semi-major axis are a function of the distances between the transmitter, the receiver, and 

the specular point, as well as the wavelength of the scattered signal, and it is oriented with 

its semi-major axis in the transmitter-to-receiver direction. In [43], the authors provided 

the calculations for the size of the scattering area for CYGNSS reflections accounting for 

the integration time. Those calculations indicate the scattering area at each specular point 

has a size between [0.6 km × 6.6 km] and [1 km × 8.8 km] or [6.6 km × 0.6 km] and [2.8 km 

× 7 km], for the [cross track × along track] direction, depending both on the incidence angle 

and the relative orientation of the first Fresnel zone, with its semi-major axis oriented to-

wards the transmitter-to-receiver direction, and the along-track direction. In reality, the 

scattering area of inundated areas extends beyond the first Fresnel zone, causing the 

above assumption to introduce errors. To infer the scattering area size of individual meas-

urements, the authors in [41] provide the true spatial resolution of CYGNSS-like measure-

ments. As it was shown in [41], for wetlands, the spatial resolution could reach up to 2.8 

km, as both the presence of vegetation and surface winds have an impact on the scattering 
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[44]. In addition, CYGNSS has modified the raw data processing to reduce the integration 

time to 0.5 s which reduces the elongation of the ellipses due to the integration time, i.e., 

the scattering area from where reflections are coming from, to 3 km. The spatial resolution 

assigned to CYGNSS measurements should be revised respect to those generally assumed 

in order studies, such as in [41,43]. 

Summarizing, CYGNSS data obtained at 0.5 s integration time is the only available 

dataset that can be obtained at a temporal resolution of 1 day with a spatial resolution in 

the order of 1 to 3 km. This specification is over what the decision-makers would desire, 

but given its temporal repeat over the flooded areas, CYGNSS data continues to be key. 

To comply with both requirements set by the translator, temporal resolution in the order 

of 1 day and spatial resolution in the order of 500 m to 1 km, CYGNSS data can be merged 

to synthetic aperture radar data (revisit of 14 days and ~100 m resolution), optical imagery 

data (limited by clouds), and soil moisture data (3 day revisit and 9 km resolution from 

Soil Moisture Active Passive—SMAP—mission) to generate a merged product with spa-

tial resolution below 500 m and daily temporal repeat. This is not within the scope of our 

current work and will be addressed in future investigations. 

For our approach, in order to compute the approximate spatial resolution of each 

measurement, we applied the methodology of Rodriguez-Alvarez et al. 2019 [41]. The spa-

tial resolution of GNSS-R observations is variable and depends on the scattering surface, 

the incidence angle, and the integration time. The methodology applies to CYGNSS meas-

urements, regardless of the scattering surface and incidence angle [41]. The measurement 

obtained from a GNSS-R receiver is a delay–Doppler map (DDM), [45,46], which repre-

sents the power scattering of the GPS signal over the Earth’s surface collected at different 

values of delay and Doppler. The general approach to map the DDM information to its 

native spatial resolution [47–50] is defined in Appendix A. 

3.2. Science: The Bistatic Radar Signal Processing 

We first define the selected measurement observables, i.e., trailing edge slope (TES) 

and peak reflectivity, computed from the measured delay–Doppler map [45,46]. Then we 

specify the main considerations and steps of the classification algorithm, including grid-

ding, averaging, and classification steps. Then we dedicate a subsection to explaining the 

main element used for the classification of pixels, which is a k-means clustering [51] algo-

rithm based on grouping samples by their mean as a representation of the properties of 

the pixels within the scene. Our strategy benefits from the observation of a clear link be-

tween the measurement and the presence of standing water in the pixels, i.e., robust to the 

reflectivity variations typical of the agricultural–urban interface, and analyzes the land-

scapes in terms of their unique characteristics. 

3.2.1. GNSS-R Observables 

The GNSS-R measurement obtained from CYGNSS is the delay–Doppler map 

(DDM), [45] and [46]. We assume coherency over flooded areas and, as a first approxima-

tion, we assume the expression of the coherent reflected power provided in [52] as:  

𝑃𝑟𝑥 = Γ
𝑃𝑇𝑋𝜆2𝐺𝑇𝑋𝐺𝑅𝑋

(4𝜋)2(𝑅𝑇𝑋 +  𝑅𝑅𝑋)2
 (1) 

where 𝑅𝑇𝑋 is the distance between the transmitter and the specular point, 𝑅𝑅𝑋 is the dis-

tance between the specular point and the receiver, 𝐺𝑅𝑋  is the gain of the receiver antenna 

in the specular direction,𝐺𝑇𝑋 is the gain of the GPS transmitter antenna in the specular 

direction, 𝑃𝑇𝑋 is the transmitted power of the GPS, 𝜆 is the wavelength of the GPS signal 

computed as the speed of the light over the GPS frequency 1.57542 GHz, and Γ is the 

reflectivity of the surface from where the GPS signals scatter. 

The CYGNSS mission provides a number of documents describing the calibration 

levels and the equations applied. In this study, we have utilized the bistatic radar cross-



Climate 2022, 10, 77 7 of 28 
 

 

section variable available in the CYGNSS Level 1 version 2.1 dataset (brcs variable in the 

dataset, 𝑃𝐿1𝑏), whose expression is defined in [53], and can be used in combination with 

eqn.1 to compute the reflectivity DDM (Γ) as a function of 𝑃𝐿1𝑏 as: 

Γ =  
(𝑅𝑇𝑋 +  𝑅𝑅𝑋)2𝑅𝑃𝐿

(4𝜋)
𝑃𝐿1𝑏 (2) 

The data was filtered following the same quality flag selection as defined in [43,54], 

and shown for completeness in Appendix C in Table A2. 

From Γ several observables can be computed. A description of observables used in 

this study to retrieve geophysical parameters is provided: 

• The peak value of the reflectivity, which ideally corresponds to the maximum value 

of the reflectivity and is related to the dielectric properties of the surface. 

• The trailing-edge slope (TES), which describes the shape of the reflectivity DDM and 

is computed as the slope to the right of the maximum value of the reflectivity DDM 

integrated in the Doppler domain (referred to as Integrated Doppler Waveform 

(IDW) or simply delay-waveform in the literature). 

TES observable is selected as primary indicator, instead of the peak value alone, be-

cause the averaging is limited to 1 day of measurements over a small area, where no more 

than four observations for the same pixels are expected. Errors on the computed signal 

power become more relevant when averaging is not enough to produce a statistically sig-

nificant data ensemble. TES is a more robust observable since it is related to the shape of 

the measurements: the scattering of the signal from inundated surfaces is significantly 

different from that of non-inundated surfaces and the shape is evident into the measure-

ments, becoming steeper for inundated surfaces. In other words, the TES observable is 

linked to the nature of the scattering, coherent or incoherent, and it is less affected by small 

calibration effects. In terms of flood detectability, using an observable linked to the nature 

of the scattering will result in more positive detections (less probability of error) and there-

fore will result in a better capability to detect short duration floods, which occupy a small 

area within the CYGNSS footprint and need to be detected in a single pass of the satellites. 

Figure 1 shows an example of the waveforms measured under different flood conditions. 

 

Figure 1. Example of waveforms obtained from the area under observation for different flooding 

conditions. Each waveform has a dashed-line representing the trailing edge marked in the same 

color. Three pixels in a scene were selected randomly: one (blue) within an area where inundation 

was reported and two within an area to the north-west of Arkansas where no reports were received 

(red and green). 

In Figure 1, red and green dotted curves represent the scattering from non-inundated 

surface conditions, while blue represents inundated surface conditions. As it can be seen 

the slope of the dark blue line is steeper if compared to both the red and the green. Red 
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and green waveforms do not show strong differences in slope but green shows an in-

creased power close to that of the blue waveform. This could lead to classification errors 

if the algorithm was based on peak information alone. The increase in power is not neces-

sarily related to small calibration issues or noise, rather it may be the result of the inho-

mogeneity of the observed surfaces. In order to detect flooding of surfaces, it is necessary 

to have an observable that reflects the variability of the scene. In other words, the proba-

bility of positive detections increases if the distinctive nature of the scattering from stand-

ing water is captured in the observable. The particularity of the floods affecting the agri-

cultural-urban interface is that they happen in a matter of 6 h and last 2 to 7 days, there-

fore, we cannot integrate data over several days. To detect those, the selection of the ob-

servables is key and adds more challenging requirements than the sensitivity provided by 

peak reflectivity alone. 

Within these constraints, we have developed an algorithm that includes both peak 

reflectivity and TES observables by pre-classifying the pixels of the scene according to 

their statistical properties. Our flood product is able to comply with another of the re-

quirements identified by the translator in which the landscape characteristics must be in-

corporated into the signal processing to better interpret the bistatic radar returns, elimi-

nating the variability of the scene. 

3.2.2. Considerations and Steps of the Classification Algorithm 

Various assumptions and considerations were adopted leading to the algorithm be-

ing summarized as: 

1. A gridding strategy is designed where each measurement is mapped onto the surface 

with its particular spatial resolution and then re-gridded into a grid cell of 3 km × 3 

km, averaging overlapped areas within the same grid pixel. 

2. CYGNSS data is averaged at 1 s incoherent time, as the new 0.5 s data was not yet 

available. 

3. Each 3 km × 3 km pixel within the area under observation is considered independent. 

4. A 1 or 0 value is assigned to each pixel, being 1 = flooded and 0 = non-flooded. 

5. The best indicator is assumed to be the shape of the waveform, as discussed in Section 

3.2.1, but still signal strength is used in combination. The selected observables are 

therefore TES and the peak SNR. When an SNR increase is observed with respect to 

previous measurements over the same area, it is indicative of the potential presence 

of standing water. Therefore, as long as peak SNR is referenced to the previous state, 

it will remain a good contributor to flooding detection. Steeper (increased) TES indi-

cates an increased likelihood of standing water, and thus being indicative of flooding. 

Measurements coming from an area producing increased coherent scattering will po-

tentially contain scattering signatures of the standing water. This observable also be-

comes stronger when referenced to values of the same area at previous instants of 

time. 

6. SNR is calibrated using eqn. (2). TES is produced from non-normalized waveforms 

considering the power increase along with the slope. We discarded normalization to 

avoid equalizing the inhomogeneity of the scene. 

7. On a daily basis, 2-D maps in latitude and longitude coordinates of SNR and TES 

values are created for the area under study. 

8. The 2-D SNR and 2-D TES maps in latitude and longitude coordinates are then ana-

lyzed during a whole year to classify the variety of pixels involved in the scene. For 

this, we use a k-means algorithm [51] that takes in the pixel’s values of the area under 

study for one whole year and classifies them. The selected number of classes is 6. 

9. For each class we compute the mean and the standard deviation and set a threshold, 

computed as the mean plus two sigma, 2-D threshold maps for both SNR and TES 

variables. This step provides reference values to inform decisions on whether peak 

SNR increase or TES steepness originates from the presence of standing water. 
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10. The 2-D SNR and 2-D TES maps are then subtracted from the corresponding 2-D 

threshold maps. Positive values are assigned to flooded pixels and negative values 

are assigned to non-flooded pixels, generating 2-D maps in latitude and longitude 

coordinates of flooded and non-flooded pixels. 

Following the steps described from (1) to (10), 2-D TES and 2-D SNR maps are created 

for the areas under study, covering a whole year. GNSS-R measurements from CYGNSS 

have the ability to not only detect short-duration and localized floods but also monitor the 

soil conditions before and after, until the soil conditions are back to their original state 

(before the floods occurred). Further, beyond the scope of this work, the seasonality of soil 

conditions requires an annual assessment of what the baseline signals for inundation are 

in some areas, thus enabling the possibility to find flood risk indicators and flood impact 

indicators [55]. Additionally, roughness maps, land type, and vegetation information can 

be added as ancillary data to correct the variability in CYGNSS signals, together with 

SMAP soil moisture information, TRRM rainfall information, and topographic infor-

mation. Doing so allows for potential added value to understand which soil conditions 

are more likely to cause flooding than others. Other studies, such as [53] for wetlands 

detection or [56] for dew distribution analysis, included different methods than the one 

here presented. For example, in the case of [53], a potential flooded wetland area mask 

was created based on the elevation difference between a digital elevation model (DEM) 

pixel and the nearest pixel that is part of the drainage network. In [56], satellite data was 

compared with meteorological data for precipitation, evaporation, and air temperature, 

and a very precise grid of 1 × 1° of longitude and latitude was created for dew distribution. 

3.2.3. The Flood Classification Algorithm Main Element: K-Means Clustering 

The classification algorithm is built around the exploration of both the SNR and TES 

observables’ samples for the whole observational period. The data analyzed is hetero-

genous and contains scattering variability due to the multiple sources within the scene. 

The main goal is to classify pixels into flooded/non-flooded conditions. The inundation 

signature on the shape of the waveform is strong enough to be able to be separated from 

any other source of variability. We employ a k-means clustering [51] strategy in order to 

divide our samples into six groups of samples whose mean represents the properties of 

each pixel within the scene. Pixels within each class are then analyzed in terms of mean 

value and standard deviation, which will be used to set the thresholds for each class. Both 

SNR and TES observable maps are then analyzed against the threshold maps and the pix-

els are classified into non-inundated/inundated. We have applied the k-means algorithm 

individually to pixels that share the same statistical properties, obtaining a map of thresh-

olds rather than a unique threshold describing the whole area. 

Therefore, the core of the classification algorithm is the k-means clustering [51] of the 

SNR and TES samples for each pixel using the data from the whole year 2019, which al-

lows the identification of the statistical properties of each pixel and its classification into 

one of the six classes. K-means clustering, also known as Lloyd’s algorithm, is an iterative, 

data-partitioning algorithm that assigns the vector of observations to the number of indi-

cated clusters, with each cluster defined by a centroid. We provided a total of two clusters 

since we aimed to classify the samples into two groups with dominant characteristics: 

inundated and non-inundated pixels. This algorithm: (1) selects k = 6 centroids, randomly; 

(2) finds the distances of each observation to the selected centroids; (3) assigns each sam-

ple to one of the centroids; (4) computes the average of the observations in each cluster to 

obtain k = 6 new centroid locations; and (5) re-iterates from steps 2 to 4 until cluster as-

signments do not vary. 

An example of this can be seen in Figure 2, for Mozambique during the year 2019. 

Mozambique is one of the study cases selected that will be described in Section 3.3. Once 

pixels are separated into classes, we analyze them independently, computing the mean 

value (𝜇) and standard deviation (𝜎) of the samples. We found that the optimal threshold 
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(Th) that best separates the samples within each class is 𝑇ℎ = 𝜇 + 2𝜎 for each correspond-

ing class 𝜇 and 𝜎 values.  

 

Figure 2. K-means clustering [51] classification obtained for each pixel after analyzing 1-year of data 

for TES values over Mozambique in 2019. 

Classifying individual pixels according to their statistical properties reduces varia-

bility in the scenes and avoids confusing SNR variations originating from the natural scat-

tering of heterogeneous land scenarios with changes in flooding conditions. This initial 

pixel class characterization is recommended in order to treat independent pixels with dif-

ferent initial states, or background values. This initial step is key as an arid area will pre-

sent a threshold much lower than a moist area around a delta, for example. Once these 

thresholds are obtained, the SNR and TES values are analyzed on a daily basis, classifying 

the pixels into inundated versus non-inundated based on the typical mean and standard 

deviations of the pixels of the same class. From there, 2D flooding maps are generated. If 

the assumption is right and the main characteristic of the dataset is dominated by inun-

dation conditions, the algorithm is expected to classify the pixels as inundated just for the 

period the flooding occurred, including recovery time, i.e., the period of time from initial 

flooding until return to normal. Next, we show the methodology applied to two case stud-

ies, as summarized in Table 3. 

Table 3. Case studies. 

Event Year Cause Area of Extension 

Mozambique floods 2019 Cyclone Idai and Cyclone Keneth 3000 km2 

US Midwest Spring 

Floods 
2017 Recurrent thunderstorms 400 km2 

3.3. Case Study 1: Results for 2019 Mozambique Floods 

3.3.1. Background 

In 2019, two tropical cyclones impacted Mozambique in the course of a few weeks, 

with impacts demanding a humanitarian response (Figure 3). Cyclone Idai made landfall 

near Beira city on 14 March 2019 with Cyclone Kenneth following soon after when making 

landfall near Pemba on 25 April 2019. 

 
(a) 
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(b) 

Figure 3. Images from (a) Cyclone Idai: Flooded homes are seen after Cyclone Idai in Buzi district 

outside Beira, Mozambique, 21 March 2019. REUTERS/Siphiwe Sibeko/File Photo; and (b) Cyclone 

Kenneth: Flooding in Mozambique northern Cabo Delgado province following Cyclone Kenneth 

landfall on Thursday, April 25 © UNDP Mozambique/Emidio Josine. 

Cyclone Idai led to hundreds of deaths and massive destruction of property and 

crops, however, it was the extreme rainfall driven floods, rather than the wind, which led 

to the majority of impact [8,57]. Less than six weeks later, on April 25, Cyclone Kenneth 

impacted northern Mozambique, approximately 600 miles north of Idai’s primary impact 

zone. While the close succession of the events led to amplified and compounding impacts, 

forecasts were available each for the track, rainfall, flooding, and winds. Additionally, 

longer timescale forecasts on the seasonal scale had been indicating a heightened risk of 

El Niño developing. Under these premises, through January–February there were deci-

sions made to anticipate drought in Southern Africa. In early March, Cyclone Idai was 

forecast, presenting the need to react by taking anticipatory actions to decrease the risk of 

flood and wind impact, rather than drought—leading to complications in prioritizing 

what types of actions were halted, revised, and commenced. Idai, a wetter storm than 

expected had far-reaching impacts inland to Malawi and Zimbabwe, areas that are less 

prepared to anticipate impact from tropical cyclones. 

While flood maps were produced for this event, such as those derived from Sentinel-

2 and ALOS-2 [58,59], our method would have provided an additional approach which 

could have led to improved decision-making during response and recovery activities. 

3.3.2. Data Analysis 

To assess the ability of our method to detect flooding during this event, we focus on 

a daily time step. For example, one of the inputs is the monthly means of TES and SNR, 

which are computed from the daily maps for each month over the year to see the evolution 

of soils. Figure 4 shows the monthly means from January to June 2019 for the TES observ-

able. 

  
(a) (b) 

  
(c) (d) 
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(e) (f) 

Figure 4. TES monthly means obtained from CYGNSS data for (a) January, (b) February, (c) March, 

(d) April, (e) May, and (f) June 2019. 

Through the TES monthly means we can assess the status of the soil for that particular 

month. Indicators that the soil is starting to become moister would appear as increased 

TES mean values. This provides an indicator of flooding but is also critical to assess the 

potential impact of cyclone events. For our case study, this can be seen in Figure 4c, the 

monthly TES means for March were increased as expected due to the flooding that oc-

curred and that extended into April. Consequently, the monthly means for May and June 

returned back to initial levels, like the ones in January, indicating the recovery of the soil. 

Basically, the six maps in Figure 4 explain the flooding event from its origin to its recovery. 

Figure 5 shows the monthly means of SNR. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 5. SNR monthly means obtained from CYGNSS data for (a) January, (b) February, (c) March, 

(d) April and (e) May, and (f) June 2019. 

Similarly, through the SNR monthly means, we can assess the status of the soil for 

that particular month. The TES value is expected to be a better flooding indicator since it 

is related to the shape of the measurements, i.e., the scattering of the signal from inun-

dated surfaces is significantly different from that of non-inundated surfaces and the shape 

is evident in the measurements. This may explain why SNR does not capture little soil 

moisture changes, but the monthly SNR means for March were still able to capture the 
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expected increase in surface reflectivity due to the flooding, and it can also be seen how it 

extends to April. May and June monthly SNR means return back to initial levels, like the 

ones in January and February, indicating the recovery of the soil. Equally daily SNR and 

TES maps can be produced over time frames of interest. For example, in Figure 6 we show 

the TES and SNR daily values for 2019-03-18 to 2019-03-20, providing a more detailed 

insight and a more focused time scale to analyze a particular event. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 6. Daily means obtained from CYGNSS data for SNR observable (left column: (a,c,e)) and for 

TES observable (right column: (b,d,f)), for days: 2019-03-18 (a,b), 2019-03-19 (c,d), and 2019-03-20 

(e,f). 

The algorithm will then proceed by analyzing a certain amount of data. For this case 

study, we used a whole year, but it would be possible to use a shorter time as long as the 

seasonality and statistical properties of the scenes are captured. The amount of data used 

prior to the event for the analysis allows the classification of the pixels according to their 

statistical properties (Figure 7). 

  
(a) (b) 

Figure 7. Pixel classification obtained for the area under study using 1 year of data for (a) SNR 

observable and (b) TES observable. 



Climate 2022, 10, 77 14 of 28 
 

 

As it can be seen in Figure 7, both observables provide consistent results, which 

makes the approach robust since the k-means algorithm [51] employs the statistical prop-

erties of the surfaces under consideration. Indeed, the k-means algorithm we have devel-

oped represents a new methodology for land classification applications. It is possible that 

if we chose an elevated number of classes, we would observe more variability as the SNR 

is more sensitive to differences in reflectivity. Note that this information can also be key 

in learning more about the surface properties and how, for example, soil moisture tends 

to accumulate in some areas more than others. Then, the pixels in each class are analyzed 

in terms of mean and std and the following threshold maps are obtained for each class, 

Figure 8. 

  
(a) (b) 

Figure 8. Threshold classification maps obtained for the area under study using 1 year of data for 

(a) SNR observable and (b) TES observable. 

Threshold maps are then used to assign each pixel a binary value of flooded or non-

flooded for specific days. Figures 9 and 10 show the flooding maps obtained for 2019-01-

15, 2019-03-19, 2019-03-25 and 2019-05-15, using SNR and TES information respectively. 

  
(a) (b) 

  
(c) (d) 

Figure 9. Flooding maps obtained from CYGNSS data using SNR observable for (a) 2019-01-15, (b) 

2019-03-19, (c) 2019-03-25 and (d) 2019-05-15. 

  
(a) (b) 
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(c) (d) 

Figure 10. Flooding maps obtained from CYGNSS data using TES observable for (a) 2019-01-15, (b) 

2019-03-19, (c) 2019-03-25 and (d) 2019-05-15. 

According to the translator specifications, another relevant output that can be pro-

vided to decision-makers is the temporal evolution of the number of observed inundated 

pixels. Figure 11 shows the results for both SNR and TES observables. 

 
(a) 

 
(b) 

 
(c) 

Figure 11. Time series of the observed % flooded pixels for 1-year of data, using (a) SNR observable 

and (b) TES observable. The daily rainfall averaged over all pixels of the Mozambique area under 

study during 2019 is shown in (c), where data has been obtained from TRMM (TMPA-RT) Near 

Real-Time Precipitation L3 1 day 0.25 degrees × 0.25 degrees V7 (TRMM_3B42RT_daily) at GES 

DISC, through the NASA Earth Data website [60]. 

Figure 11 shows the % of inundated pixels, per day, normalized to the total number 

of pixels measured within the area under study in order to account for the difference in 

coverage from one day to the other. As it can be seen, plots in Figure 11a,b show similar 

behavior, although SNR observable displays more variability on the number of pixels clas-

sified as flooded. As the algorithm is avoiding most of the confusion caused by the varia-

bility of the scenes, ensuring pixels are classified within the same statistical properties, the 

flooding detected by SNR brings added information to the one detected by TES observa-

ble. In fact, looking at the temporal series obtained for the SNR observable we can see a 
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double bounce between 14 March 2019 and 30 April 2019, which corresponds to the re-

spective impacts of Cyclone Idai on 14 March 2019 and Cyclone Kenneth on 25 April 2019. 

Those are also apparent on the TES-based results, but much smoother since the roughness 

of the waters would reduce the steepness of the TES observable. In conclusion, the com-

bination of both observables is key to fully understanding the events. Figure 11a,b pro-

vides insight into the recovery time of the soils. Similar images can be produced at the 

pixel level or focused in certain areas to better understand the recovery times of the whole 

area under study, producing maps of the estimated time of recovery for each pixel. Rain-

fall (Figure 11c) has a higher degree of correlation with SNR results in Figure 11a which 

indicates that the SNR observable is more affected by the moisture of the soil being altered 

by precipitation than TES is.  

3.4. Case Study 2: The US Midwest Spring Floods—Northeast Arkansas 

3.4.1. Background 

In this case example, we perform the analysis of the inundation dynamics caused by 

the Midwest spring floods over north-east (NE) Arkansas in 2017. This event is different 

from the Mozambique case, as floods were caused by recurrent thunderstorms rather than 

tropical cyclone related rainfall and subsequent riverine flooding. The USGS river status 

maps [61] reported rivers above flood stage in NE Arkansas between 28 April 2017 and 8 

May 2017 coincident with the Midwest spring floods event. Therefore, the spring floods 

in NE Arkansas, driven by heavy rainfall, were the result of both riverine and pluvial 

floods together with urban floods (Figure 12). From the USGS river level reports (Figure 

12d), the area affected within CYGNSS coverage (from 37 S to 37 N in latitude) is north-

east (NE) Arkansas. Note that latitude 37 N is just over Arkansas’ northern state line. A 

box corresponding to 34.88 deg. and 36.42 deg. latitude and −91.69 deg. and −90.36 deg. 

longitude was selected for our analysis, encompassing the areas of Newport, Jonesboro, 

Paragould, Pocahontas, and Walnut Ridge. 

  
(a) (b) 

  
(c) (d) 

Figure 12. Two images (a,b) extracted from an aerial video and distributed by KATV News of the 

flooding and levee breaks near Pocahontas. Levee breaches were confirmed along the Black River, 

resulting in massive flooding on the east side of Pocahontas, Arkansas, and the surrounding area. 

Video can be found at [62]. Image (c) shows Pocahontas (Randolph County) and surrounding areas 

were inundated with water from an overflowing Black River (and failed levees along the river) on 
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5 March 2017. (d) River map information during the Midwest spring floods river above stage pro-

duced by the U.S. Geological Service for 30 April 2017 [61]. 

3.4.2. Data Analysis 

We applied our algorithm and obtained the flood classification results in Figure 13, 

which are based on TES observable, i.e., the same result as for Figure 10 in the Mozam-

bique case. 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

  
(g) (h) 

Figure 13. Examples of flood detection maps for the area under study on (a) 15 April 2017, (b) 20 

April 2017 before the Midwest spring floods occurred, then (c) 30 April 2017, (d) 1 May 2017, (e) 4 

May 2017 and (f) 5 May 2017 during the floods, and (g) 5 August 2017 and (h) 10 August 2017 

months after the floods occurred. Note that flooded pixels are shown in blue, while non-flooded 

pixels are displayed in pale orange. 
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Flood detection maps corresponding to days during the Midwest spring floods, in-

cluding riverine, pluvial, and urban types of floods, i.e., 30 April, 1 May, 4 May, and 5 

May 2017, show an elevated number of flooding detections (the blue pixels in Figure 13). 

For other days selected randomly before the storm, 20 April 2017, and after the storm, 10 

August 2017, the classification algorithm did not detect flooded pixels (pale orange). There 

are some false positives that could be caused by either the presence of a river in the 

CYGNSS footprint or classification errors. For Figure 13c–f, the number of flooded pixels 

increases in areas where river levels above flood stage were reported by the USGS, Figure 

12d, corresponding to areas around the Current River, Black River, and the White River 

from Pocahontas–Jonesboro–Paragould southwards toward Little Rock in Pulaski County 

and Lonoke County. 

Next, we explore the capability of the method to define the recovery period of flood-

ing events, as we did for the Mozambique case. To do so, we performed an analysis of the 

number of flooding pixels per day, normalized to the total number of pixels measured 

within the area under study in order to account for the difference in coverage from one 

day to the other. In addition, we inspected the correlation with the rain events that hap-

pened in the area under observation (Figure 14). 

 
(a) 

 
(b) 

Figure 14. Flooding monitoring plots. (a) Percentage of flooded pixels normalized to the number of 

measured pixels for the area under study during a period covering April to August 2017. The black 

stem lines are actual measurements, the blue line corresponds to active flooding period, and the 

orange line corresponds to recovery period. (b) Averaged daily rainfall in NE Arkansas area under 

study obtained from [60]. 

Figure 14a shows a daily analysis of the number of flooded pixels with respect to the 

number of measured pixels within the area under study. Figure 14a includes data whose 

observations for one day cover in mean 40% of the total area under study. Looking at 

Figure 14a, it is clear that during the Midwest spring floods period that affected NE Ar-

kansas, the number of detected flooded pixels increased dramatically, starting 28 April 

and with the peak on 30 April 2017. Figure 14a also shows the recovery period, i.e., the 

period of time that elapses until soil conditions are back to their initial state (before flood-

ing happened). Additional rain events during the recovery time may aggravate the soil 

conditions and therefore will cause longer recovery times. Therefore, the recovery time 

depends on initial soil conditions as well as recursive rain events during the recovery pe-

riod. 

Precipitation data in Figure 14b corresponds to the daily accumulated precipitation 

product generated from TRMM_3B42RT_daily product [60]. The values provided in the 

TRMM dataset correspond to the summation of hourly valid retrievals in each of its grid 

cells for one day, and they are provided in mm units. Soil conditions are likely to be satu-

rated after recent flooding, and a new storm can aggravate the conditions of the soil and 
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cause recurrent floods, or areas not being able to absorb the falling rain. The flooding 

event was caused by a series of convective storms with over 125 mm on 30 April. A later 

storm, on 27 May 2017, added 80 mm precipitation. However, the second storm caused 

the soil conditions to stay saturated until 10 June 2017, when recovery towards normal 

conditions began, a total of 68 days. 

3.4.3. Validation of Floods in Arkansas 

The Global Flood Monitoring System (GFMS, [16, 63, 64]) can be used as a source to 

validate our methods. GFMS is a NASA-funded experimental system using real-time 

TRMM Multi-satellite Precipitation Analysis (TMPA) and Global Precipitation Measure-

ment (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG) precipitation infor-

mation [65] as input to a quasi-glob–l (50° N–50° S) hydrological runoff and routing 

model. Flood detection/intensity estimates are based on 13 years of retrospective model 

runs with TMPA input, with flood thresholds derived for each grid location using surface 

water storage statistics (95th percentile plus parameters related to basin hydrologic char-

acteristics). This product is therefore not based on actual measurements of the surface 

conditions, but it provides an assessment of probability occurrence based on 13 years of 

data. To compare the assessments from our flood product, we have looked into a dataset 

from the GFMS dataset for the same area and timeframe of the US Midwest spring floods 

in NE Arkansas. This case study represents a more localized area affected by a type of 

flood more challenging to detect from space, than those of hurricanes. We have obtained 

the validation data from the GFMS website at [64]. In Figure 15 we display the flooding 

maps produced by the GFMS, for the same days displayed in Figure 13. 

Flooded pixels (depth above threshold in mm) are detected in maps Figure 15c to 

Figure 15f, (30 April, 1 May, 4 May, and 5 May) as our k-means based GNSS-R classifica-

tion estimated. The results obtained with our GNSS-R classification algorithms (Figure 

15), i.e., surface measurement-based method, are compared to the results of the GFMS 

flooding product (Figure 15), i.e., memory model-based with precipitation information. A 

total of 93.7% of the pixels classified by our algorithm as flooded were also identified as 

flooded by the GFMS product (6.3% discrepancy). Only 68.46% of the pixels classified as 

non-flooded were also identified as non-flooded by the GFMS product (a discrepancy of 

31.54% between the two products). This 31.54% discrepancy between the GNSS-R non-

flooded classifications and the flooded GFMS product has different origins (Table 4). 

Table 4. Discrepancy distribution for non-flooded pixels for the two products. 

Reference 

(Depth Above Threshold in mm) 
Discrepancy (%) 

0.001–10 18.08 

10–20 3.01 

20–50 4.42 

50–100 1.72 

100–200 1.18 

>200 3.12 

Total 31.54 



Climate 2022, 10, 77 20 of 28 
 

 

 

Figure 15. GFMS flood maps for the area under study on (a) 15 April 2017, (b) 20 April 2017 before 

Midwest spring floods occurred, then (c) 30 April 2017, (d) 1 May 2017, (e) 4 May 2017 and (f) 5 May 

2017 during the floods, and (g) 5 August 2017 and (h) 10 August 2017 months after the floods oc-

curred. The area under study is marked with a black box. The units are in depth above threshold in 

mm. 

The highest values of discrepancy are found in areas where the depth above thresh-

old was between 0.001 and 10 mm, which indicates shallow inundation. Looking at Figure 

15b–f it can be seen from where the discrepancy source originated. The green area show-

ing shallow inundation 0.001 mm to 10 mm was not reported by the NWS or the USGS 

sources at any moment during the Midwest spring floods, therefore implying green areas 

in Figure 15 overestimate the amount of flooding. Note that the GFMS maps are based on 

model predictions mixed with actual precipitation and therefore do not represent an ac-

tual measurement of the surface conditions. It is also possible that the TES threshold se-

lected by our k-means clustering estimator is not accurate enough, as our k-means classi-

ficatory and threshold estimator is designed to account for the differences originating in 
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the landscape at a pixel level. GFMS product is used because it covers the whole duration 

of the flooding event, as opposed to SAR-derived products such as the one obtained from 

Sentinel satellites, with a cadency of 6 days for the 2017 Midwest spring flood event. GFMS 

products allow therefore a day-to-day comparison with our product estimations. 

4. The Humanitarian Component 

4.1. The Translator Role 

The translator role, in this context, allows for the opportunity for the decision-maker 

to provide input to the scientist to allow for a more efficient and effective data develop-

ment and dissemination process, [10,66,67]. For example, the scientist will likely have a 

perception of what types of data, and in what form, would be useful for decision-makers. 

However, this perception could be incorrect, leading to a situation where data and derived 

products lead to less efficient and more complex decision-making processes [68]. Spatial 

and temporal scales are elements whereby translators can be aware of the limitations and 

opportunities presented by the data, interacting with the decision-makers from a trusted 

position [69]. The translator would approach the discussions with decision-makers from 

a perspective whereby they can assess qualitatively the limitations and constraints of the 

decision-making context, and repackage that information into data points (such as mini-

mum standards for lead time, appropriate temporal range, and acceptable spatial scale) 

to the scientists. This could be critical in terms of efficiency of the scientists disseminating 

data as even the reduction of one iteration could save days of time which, in a humanitar-

ian emergency, can lead to a significant saving of life, livelihoods, and property [70,71]. 

4.2. The Decision-Maker Role 

The decision-maker may have limited connection with the data scientist writing the 

codes, however some interaction, if and when facilitated by the translator, could be bene-

ficial, especially in terms of building trust between the three actors, which could poten-

tially lead to increased perceived ‘trustworthiness’ of the data. It is important to avoid the 

creation of a hierarchy of importance around the three actors. One way to avoid doing this 

could be to elevate the ‘data’ generated by the decision-maker to the same level of value 

as the data generated by the data scientist. For example, the traditional framing of data 

produced by a scientist to allow for improved decision making can be reversed, in framing 

the data collected by the decision-maker, such as the quantitative data of the amount of 

time it takes to execute an action, as also a data point and as allowing for the scientists’ 

data outputs to reach a higher level of quality, relevance and trust [72,73]. This framing 

should be employed from the earliest possible stages of engagement/projects possible. 

5. Discussion 

5.1. On the Usefulness of Signals-of-Opportunity 

The results shown in this study demonstrate the great potential of signals-of-oppor-

tunity to detect flooding at the human-natural interface. One challenge with the detection 

of floods driven by heavy precipitation leading to localized flooding is cloud cover. Hav-

ing a source of signals at L-band, that can see through cloud cover and day/night condi-

tions, makes the measurements ideal. We have demonstrated that CYGNSS offers meas-

urements from minutes to hours apart of the same area, evidencing that both floods and 

flash floods at the human-natural interface can be detected and monitored in some con-

texts. Particular flash floods could still be missed if the events occur in the order of a few 

kilometers or sub-kilometers with a rapid onset and short duration. In addition to the L-

band signals used in this study, it would add value to incorporate other measurements, 

such as SMAP-R, when available. Also, it would be beneficial to incorporate P-band meas-

urements from other sources of opportunity. For example, if a constellation of satellites 

was able to provide combined measurements at L-band and P-band from multiple sources 

of opportunity (i.e., GNSS for L-band and Mobile Use Objective System for P-band [74,75]) 



Climate 2022, 10, 77 22 of 28 
 

 

the amount of information collected would very much benefit the sampling repeat and 

the coverage over more localized areas. We note a direct correlation between the number 

of signals collected and the increased accuracy of flood detection and therefore advocate 

for increased attention to the development of missions that will produce this data. With 

the increased accuracy, especially related to events occurring on very limited spatiotem-

poral scales, the disaster risk community will likely have an increased understanding of 

opportunities to develop flash flood-specific early warning early action strategies. Flash 

floods that exist on extremely small spatial and temporal scales would then be possible to 

assess in near-real-time. In addition, the combined L-band/P-band information would 

represent complementary data through the different penetration depths, increasing the 

understanding of why certain areas are at higher flood risk than others as well as the cur-

rent conditions of soil layers. 

5.2. On the Benefit of Multi-Sensor Information 

Adding CYGNSS information to model-based predictions could improve accuracy. 

In addition, signals-of-opportunity could be combined with other sensors such as radiom-

eters and synthetic aperture radars (SAR) or radars to obtain optimum information and 

produce an enhanced product. Measurements from the Sentinel-1A C-band SAR or the 

phased array type L-band SAR 2 (PALSAR-2) would benefit from GNSS-R measurements 

as a complement to fill in the gaps due to the measurement’s cadency. Also, the multi-

spectral imagery from MODIS or Sentinel-2A/B, limited by cloud and dust in the atmos-

phere and day/night conditions, would be greatly enhanced by CYGNSS measurements 

at L-band—not affected by any type of weather or day/night condition. For example, for 

the case under study, the 2019 Mozambique floods, GNSS-R could help fill in the gap 

between Sentinel available data, and generate a combined product with a higher revisit 

time. The inclusion of an L-band radiometer into the mix brings added information on the 

soil moisture conditions and even though current missions, such as SMAP offer very 

coarse information on the order of 36 km with an enhanced product at 9 km, the infor-

mation is very relevant to understand the condition of the soils pre-, during and post-

flood event. Combined with CYGNSS information alone, or with the merging of a SAR, 

CYGNSS and multispectral information, a product as SMAP soil moisture is key. The ad-

dition of ancillary information such as precipitation from TRMM, as well as roughness 

and digital elevation models would create a very comprehensive pool of information and 

would allow for the development of an advanced algorithm leading the way to a flood 

risk assessment product. 

5.3. On the Co-Development of Comprehensive Flood Risk Products 

This manuscript has shown an initial approach designed to bring together techno-

logical and scientific capabilities and humanitarian specific needs with the goal of creating 

a flood product. The ultimate goal of the research we are conducting and the path we will 

follow is to develop a flood risk product that is meaningful to decision-makers and can 

therefore have a real impact on the disaster management of underserved communities 

and areas prone to flooding. The described collaboration between scientists, translators, 

and agents from local entities will bring novelty to this research field, as flood product co-

development with these actors has been extremely limited. 

Current flood preparedness and response capabilities include satellite observations, 

data systems, and modelling capabilities through a number of operational products 

shown in the introduction (i.e., GFMS, NRT MODIS Flood Mapping, or ARIA). In terms 

of technological and scientific capabilities, those developments lack the combined high 

spatial resolution and temporal repeat of the reflectometry data from the CYGNSS mis-

sion. CYGNSS data provides insight into the flooding events as no other sensor or mission 

can see them, and employing this data results in suitable flood products to characterize 

rapid events. 
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In terms of humanitarian and flood risk reduction capabilities more broadly, no has 

been co-developed between an academic institution, active in addressing humanitarian 

needs, and a research facility with long expertise in Earth science data, and in that sense, 

this type of collaboration will pioneer these new initiatives. Our presented work enhances 

ongoing collaboration where we have demonstrated an original methodology that uses 

CYGNSS mission bistatic radar measurements and an artificial intelligence classification 

algorithm based on statistical properties of the land pixels through a k-means clustering 

strategy to detect and monitor flooding events, as well as to characterize the land surface 

prior to and post flooding events. 

6. Conclusions 

This manuscript helps define the roles required in the development of a technologi-

cal, scientific, and humanitarian flood product: scientist/technologist, translator, and de-

cision-maker. 

On the technological/scientific side, we have provided an original methodology to 

detect and monitor flooding events as well as to characterize the land surface prior and 

post flooding events, using CYGNSS mission bistatic radar measurements and an artificial 

intelligence classification algorithm based on the statical properties of the land pixels. We 

employ a k-means clustering [51] strategy, dividing our samples into six groups of sam-

ples whose mean represents the properties of each pixel within the scene. Pixels within 

each class are then analyzed in terms of mean value and standard deviation, which will 

be used to set the thresholds for each class. Both GNSS-R SNR and TES observable maps 

are then analyzed against the threshold maps and the pixels are classified into non-inun-

dated/inundated. In the second stage, therefore, we re-apply the k-means algorithm indi-

vidually to pixels that share the same statistical properties, obtaining a map of thresholds 

(uniquely defined for each pixel in the scene). 

We have demonstrated that the CYGNSS constellation has the very unique capability 

to capture flood events over considerable areas, such as the 2019 Mozambique floods, but 

also smaller flood events, such as the inundation in Arkansas during the 2017 U.S. Mid-

west spring floods. We have proved the capability to measure at a daily rate, which is key 

to capturing flash flood events. We have found that by employing the novel methodology, 

the highest values of discrepancy are found in areas where the depth above threshold was 

between 0.001 and 10 mm, which indicates shallow inundation. For depts over 10 mm, the 

discrepancy is always below 4.5%. Also, we have shown that CYGNSS data is not only 

sensitive to flood state but also to varying soil moisture conditions, proving that the meth-

odology used is also a valuable asset to track soil state until conditions are back to normal, 

therefore providing valuable information about the recovery of the affected areas. 

Even though CYGNSS provides a very good temporal revisit of the areas, it is im-

portant to note once more that, ideally, a better spatial resolution in the order of meters is 

preferable. Next steps should be directed towards merging both optical imagery and syn-

thetic aperture data with the CYGNSS dataset to be able to provide a substantial improve-

ment in the spatial resolution for a better flood product. 

On the translation side, we have established the actions and products that need to be 

generated in order to interface with the decision-maker. Also, we have identified some 

specific examples of decision-maker needs that have been presented in the form that a 

decision-maker understands, passed through the translator, and delivered to the technol-

ogist/scientist to incorporate or to help shape the original maps. The approximation to the 

problem developed in this study brings novelty to the standard applications previously 

developed with CYGNSS data by incorporating the humanitarian component through the 

translator component to be able to develop a product tailored to the specific needs of the 

end-users. 
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Appendix A 

The following describes the general approach to map the DDM information to its 

native spatial resolution [44–47] as presented in [38]: 

1. A power threshold is applied to the DDM in order to estimate the area from which 

the scattering signal is coming from. In order to set a threshold, most of the area rep-

resenting the total power needs to be accounted for. We select a threshold that gath-

ers the N% of the total power, N being an arbitrary number. According to the results 

in [34], a threshold of 80% is recommended. 

2. Map the delay and Doppler values into the surface, drawing the iso-delay and Dop-

pler lines. Both delay and Doppler provide the exact area of the scattering considered. 

For the sake of simplicity, we use the delay value alone, which translates to an ellipse 

in the surface. Therefore, the delay gathering 80% of the power is transformed into 

an ellipse of constant delay on the surface (iso-delay line). The size of the scattering 

area is set to the semi-major axis of the computed ellipse to represent the scattering 

area of that particular measurement. The summary table provided in [38] is annexed 

here in Appendix B, Table A1, for completeness. 

3. The ellipse is centered in the specular point and is rotated to the scattering plane 

formed by the receiver and transmitter geometries, with the semi-major ellipse axis 

aligned with the scattering plane and the semi-minor axis perpendicular to it. 

4. The ellipse is then elongated by the distance obtained by multiplying the integration 

time by the velocity of the satellite in the along-track direction. 

5. The final elongated ellipse is mapped onto the surface with a fine enough grid that 

allows the delineation of the shape of an ellipse. 

Steps 1 to 5 are repeated for all measurements. 
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Appendix B 

A study performed in 2018 used SMAP-Reflectometry data to provide a table of spa-

tial resolution of GNSS-R measurements, [38]. We make this table available here for com-

pleteness. 

Table A1. Variable spatial resolution of GNSS-R measurements from SMAP-Reflectometer. 

Scenario 
N = 80%  N = 75% N = 70% N = 65% N = 60% 

𝝁 (𝐤𝐦) 𝝈 (𝐤𝐦) 𝝁 (𝐤𝐦) 𝝈 (𝐤𝐦) 𝝁 (𝐤𝐦) 𝝈 (𝐤𝐦) 𝝁 (𝐤𝐦) 𝝈 (𝐤𝐦) 𝝁 (𝐤𝐦) 𝝈 (𝐤𝐦) 

Sea Ice 2.8 0.9 2.4 0.8 2.1 0.6 1.8 0.3 1.8 0.25 

Lake 2.7 0.8 2.6 0.9 2.3 0.7 1.5 0.25 1.5 0.26 

Wetland 9.6 2.8 3.3 1.4 2.8 0.5 2.4 0.34 2.1 0.28 

Arid Land 13.3 5.8 6.4 4.2 5.3 2.6 4.9 2.3 4.3 2.4 

Low Vegetation 20.2 6.6 12.5 5.6 12.1 4.2 11.9 3.9 8.6 3.3 

High Vegetation 43.1 7.3 38.9 6.5 26.6 4.5 26.2 4.1 23.5 8.5 

Ocean 45.3 8.4 44.8 7.9 44.6 7.6 42.3 6.8 41.1 6.4 

Values produced for ocean scenarios in [38] Table A1 are not applicable to CYGNSS 

because we observe the effect of the SMAP high gain antenna filtering the scattered signals 

into its main beam width of 40 km. The rest of the values presented in the table are ex-

pected to be in the same order. Particularly for wetlands, arid land, and low vegetation as 

in agricultural fields, the values are well characterized. High vegetation may be different 

as it gets closer to the SMAP antenna footprint. 

Appendix C 

CYGNSS data has been filtered using the quality flags shown in Table A2. 

Table A2. CYGNSS L1 data quality flags used in this study, same as [43,54]. 

Quality Flag Flagged in Analysis 

Poor Overall Quality No 

S Band Powered Up Yes 

Small Spacecraft Attitude Error No 

Large Spacecraft Attitude Error Yes 

Blackbody DDM Yes 

DDMI Reconfigured Yes 

Space wire CRC Invalid Yes 

DDM is Test Patten Yes 

Channel Idle Yes 

Low Confidence DDM Noise Floor No 

SP Over Land No 

SP Very Near Land No 

SP Near Land No 

Large Step Noise Floor No 

Direct Signal in DDM Yes 

Low Confidence GPS EIRP Estimate Yes 

RFI Detected Yes 

BRCS DDM SP Bin Delay Error No 

BRCS DDM SP Bin Doppler Error No 

Negative BRCS Value Used for NRBCS No 

GPS PVT SP3 Error No 

SP Non-Existent Error Yes 

BRCS LUT Range Error No 
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Antenna Data LUT Range Error No 

Blackbody Framing Error Yes 

FSW Comp Shift Error No 
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