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Abstract: Drought is a meteorological and hydrological phenomenon affecting the environment,
agriculture, and socioeconomic conditions, especially in arid and semi-arid regions. A better under-
standing of drought characteristics over short and long timescales is therefore crucial for drought
mitigation and long-term strategies. For the first time, this study evaluates the occurrence, du-
ration, and intensity of drought over the Republic of Djibouti by using a long-term (1961–2021)
rainfall time series at Djibouti Airport, completed by the CHIRPS precipitation product and local
records from 35 weather stations. The drought is examined based on the Standardized Precipitation–
Evapotranspiration Index (SPEI) and the Standardized Precipitation Index (SPI) at 3-, 6-, 9-, 12-,
and 24-month timescales, so as to document short-, medium-, and long-duration events. The SPEI
and SPI showed a significant drying tendency for the indices computed over 12 and 24 months at
Djibouti Airport. The eastern coastal region of the Republic of Djibouti was the most affected by the
increased drought incidence in recent decades, with more than 80% of the extremely and severely dry
events occurring within the period 2007–2017. In contrast, the western regions recorded a positive
trend in their SPIs during the period 1981–2021, due to the dominance of the June–September (JJAS)
rains, which tend to increase. However, in the last few decades, the whole country experienced the
droughts of 2006/2007 and 2010/2011, which were the longest and most intense on record. Large-
scale climate variability in the Indo-Pacific region partially affects drought in Djibouti. The SPI and
SPEI are significantly positively correlated with the Indian Ocean Dipole during October–December
(OND), while for JJAS the SPI and SPEI are negatively correlated with Nino3.4. The wet event in
2019 (OND) causing devastating floods in Djibouti city was linked with a positive IOD anomaly. This
study provides essential information on the characteristics of drought in the Republic of Djibouti for
decision-makers to better plan appropriate strategies for early warning systems to adapt and mitigate
recurrent droughts that put the country’s agro-pastoral populations in a precarious situation.

Keywords: drought characteristics; SPI; SPEI; CHIRPS; rainfall variability

1. Introduction

Drought is a complex phenomenon that affects natural environments and socioeco-
nomic systems around the world, and is characterized by abnormally dry weather over a
period of time long enough to cause a serious hydrological imbalance [1]. It usually consists
of a reduction in soil moisture content, groundwater levels, and volumes of surface runoff,
and may induce crop failure, food shortages and, in the worst cases, famine, epidemics,
and mass migration.

In East Africa (EA), where extensive regions experience arid or semi-arid conditions,
drought manifests itself as a natural endemic phenomenon [2,3]. This region exhibits some
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of the largest interannual rainfall variations in the world, resulting in large-magnitude
droughts [4,5]. Drought has been one of the main causes of socioeconomic instability in
various nations, including Somalia, Kenya, and Ethiopia [6]. There have been a number
of drought-related events that have occurred in the EA region in recent decades, resulting
in massive crop failures, livestock deaths, and human casualties [7,8]. During the past
few decades, the frequency of droughts in EA has increased from once every six years
to once every three years and become widespread [6,9]. There have been eight boreal
spring droughts in the EA region in the last 16 years. Over 13 million people in EA were
affected by the drought from 2008 to 2010 [10]. Recent catastrophic events in the area were
brought on by the Horn of Africa drought that lasted from 2010 to 2011 [11,12]. In 2022,
due to several consecutive failed rainy seasons, it is forecasted that 16 million people will
be in need of immediate food assistance—particularly in Somalia, where the situation is
catastrophic [13].

Like most countries of East Africa, the Republic of Djibouti faced an unprecedented
chronic drought during 2007–2011, resulting in high rates of cattle mortality, food insecurity,
and severe water and food shortages [14]. More than 120,000 people in rural areas (i.e.,
50% of the rural population and 15% of the total population) are estimated to be victims of
drought hazards in Djibouti [14]. This drought also caused an estimated 3.9% loss in the
gross domestic product of the country [14,15]. On the other hand, drought is one of the main
factors of migration for rural agro-pastoral nomads towards urban areas in Djibouti [16].
However, the long-term spatial and temporal evaluation of drought occurrences remains
unexplored. This has resulted in poor preparedness and uninformed strategies for drought
management in the country. Ozer and Mahamoud [17] analyzed changes in extreme
precipitation between 1980 and 2011 in Djibouti based on annual statistics from the single
station of Djibouti Airport. They found a strong decline in precipitation (73%) during
2007–2011 compared to the total average rainfall. Recently, Assowe et al. [18] evaluated the
spatiotemporal variability of rainfall over the Republic of Djibouti by using monthly data
from 14 weather stations and high-resolution long-term satellite rainfall products. These
two studies analyzed overall rainfall variability and trends in Djibouti, but no known study
has ever attempted to assess the countrywide pattern of drought incidence. Therefore,
there is a need for a critical investigation of long-term historical spatiotemporal patterns of
droughts over the Republic of Djibouti.

Numerous indices have been established to measure drought events and their features.
The Standardized Precipitation Index (SPI) [19] and the Standardized Evapotranspiration–
Precipitation Index (SPEI) [20] are the most frequently employed drought indicators for
keeping track of meteorological, agricultural, and hydrological drought. The SPI requires
only precipitation data, while the SPEI requires additional potential evapotranspiration
(PET) data to assess drought. Both indices can be computed over periods of time of varying
lengths, enabling researchers to account for both short-term droughts (mostly meteoro-
logical droughts) and long-term events (generally of major hydrological and ecosystemic
significance). Thus, the key aim of this research is to study meteorological drought and its
characteristics using the SPI and SPEI drought indices over the Republic of Djibouti.

In addition, to the best of our knowledge, the large-scale climate variability associated
with the occurrence of drought in Djibouti has not been specifically evaluated to date.
El Niño–Southern Oscillation (ENSO)—one of the prominent natural modes of climate
variability originating from the tropical Pacific Ocean—impacts rainfall variability over East
Africa [3]. Many studies have demonstrated that ENSO partly controls the June–September
(JJAS) interannual rainfall variations in Ethiopia and that ENSO was the ultimate cause of
most drought years in Ethiopia [21–23]. Other studies [24,25] based on different datasets in
the East Africa region showed a strong connection between rainfall variability during the
October–December (OND) season and the Indian Ocean Dipole (IOD)—a seesaw in sea
surface temperature (SST) anomalies between the western and the eastern Indian Ocean.
However, there is still an absence of any systematic analysis on the part of Djibouti’s
drought variations explained by climate drivers such as ENSO and the IOD. Based on this
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fact, this study also examined the link between seasonal and annual drought occurrence in
the Republic of Djibouti and SST indices associated with global-scale climate variations.

The present study is therefore the first to comprehensively document the spatial and
temporal variation of drought characteristics (i.e., frequency, severity, and intensity) in
the Republic of Djibouti by using long-term (1961 to 2021) observed rainfall time series
combined with a merged (i.e., satellite and observed) precipitation product (CHIRPS). The
drought occurrences were examined based on the SPI and SPEI at 3-, 6-, 9-, 12-, and 24-
month timescales, so as to document short-, medium-, and long-duration events. Seasonal
and annual trends of drought were described to assess whether there was any long-term
change in drought characteristics in the country, as suggested by several studies indicating
a decrease in the boreal spring (March–May) rains over parts of East Africa since the
1980s [3,9,26]. The next aim was to determine the drought-prone regions and to assess
whether droughts occurred simultaneously in the different parts of the Republic of Djibouti.
The teleconnections between the global SSTs (e.g., IOD and ENSO) and seasonal and
annual drought indices were also considered. The results of this study could greatly help
concerned decision-makers to understand the spatiotemporal variation of droughts and,
subsequently, to design appropriate drought mitigation and early warning systems in the
Republic of Djibouti.

This study is organized as follows: Section 2 provides a description of the study area,
data, methods, and drought indices. Section 3 presents the detailed results of the spatial and
temporal variability of drought on the seasonal and annual scales. Finally, our conclusions
and recommendations are presented in Section 4.

2. Study Area and Data Collection
2.1. Study Area

The Republic of Djibouti is geographically located in the Horn of Africa, facing the
Red Sea and the Gulf of Aden (Figure 1). It is located within latitude 11–12.5◦ N and
longitude 42–43.5◦ E. The neighboring countries are Eritrea to the north, Ethiopia to the
west and south, and Somalia to the southeast (Figure 1). Its coastline extends to about
372 km distributed between the Gulf of Aden (80 km), the Red Sea (38 km), and the Gulf
of Tadjoura (254 km) [27]. Elevation in the country ranges from 150 m below sea level
(Assal Lake) to over 2000 m above sea level (northern mountainous regions), while the east
is lowland.

The Republic of Djibouti records low amounts of precipitation, with the mean annual
rainfall ranging from 60 to 300 mm [18]. The local climate is regulated by the complex
topographical features of the country and the proximity of the Indian Ocean. Rainfall
variations in Djibouti are embedded in large-scale climate variability—particularly that
associated with El Niño–Southern Oscillation and the Indian Ocean Dipole (IOD) [18].
Djibouti has two predominating seasons: a cool season (winter) from October through
April, and a hot season (summer) from May through September [28]. In winter, the climate
is characterized by northeasterly trade winds coming from the eastern Arabian Peninsula
and the Gulf of Aden and an average temperature between 20 ◦C and 30 ◦C. In summer,
westerly winds associated with the African–Asian monsoon circulation dominate [29], and
average temperatures range from 30 ◦C to 45 ◦C. The potential evapotranspiration rate is
very high, amounting to 2000 mm per year [30].
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2.2. Data Sources

The availability of climate data in the Republic of Djibouti is limited. Monthly precipi-
tation from the “Agence Nationale de la Météorologie (ANM)” is recorded at 35 stations
distributed across the country (Table 1). These are mainly concentrated in the southeast of
the country, while the northwest (complex and rugged terrain) is less covered (Figure 1).
Most records started around 1961 and are analyzed here until 2021, but contain many
gaps, and no data at all are available between 1991 and 2012 except at the Djibouti Airport
station, which contains the most complete meteorological data available in the country—
uninterrupted for the whole period of study (1961–2021). The monthly minimum and
maximum temperatures were acquired from the ANM for the airport station during 1961–
2021. Figure 1 shows the administrative boundaries, elevation, and meteorological stations
used in this study.

The most fundamental barrier that hinders regional studies in fields such as drought
monitoring is the long-term recording and quality of climatic data. Most ground observa-
tions in the Republic of Djibouti contain a long gap in the 1990s and 2000s. Accordingly, it is
difficult to analyze the spatial distribution of drought and climatic trends. For this purpose,
our study used a satellite-based rainfall estimate from Climate Hazards Group Infrared Pre-
cipitation with Stations (CHIRPS version 2.0) [31]. CHIRPS is a quasi-global (ranging from
50◦ S to 50◦ N) precipitation dataset mainly designed for monitoring droughts and other
global environmental changes in data-scarce regions such as East Africa [31]. It merges
satellite data from multiple sources with ground precipitation records, used to calibrate
the satellite estimates on a monthly timescale. The product is available at a high spatial
resolution of 0.05◦ (~5 km) and on multiple timescales (e.g., daily to monthly) from 1981
to present. In a previous study of Djibouti’s rainfall variability, CHIRPS was compared to
other satellite rainfall estimates and reanalysis datasets, as well as against rain gauge data,
and the results revealed the good performance of CHIRPS compared to other datasets [18].
Ayugi et al. [32] also recommended CHIRPS for the examination of long-term precipitation
trends and for drought analysis in Kenya. On the other hand, CHIRPS datasets are among
the most used products for East Africa and display the longest time series to date [33–35].
Overall, the CHIRPS datasets can be employed as an alternative to in situ datasets in
regions characterized by scarcity of ground-based datasets for drought characterization.
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Table 1. Meteorological gauge station characteristics. All stations have data within the periods
1961–1991 and 2013–2021, with the exception of Djibouti Airport, which has complete data for
1961–2021.

Sites Location Latitude
(◦N)

Longitude
(◦E)

Elevation
(m)

Average Annual
Rainfall (mm)

S1 Adaylou 11.97 42.74 1130 140.7

S2 Ali-Sabieh 11.16 42.71 715 130.1

S3 Arta 11.52 42.84 705 181.6

S4 Assamo 10.99 42.83 809 136.5

S5 As-Eyla 11.00 42.10 350 144.7

S6 Asa Gayla 12.18 42.63 615 111.7

S7 Alaili Dadda 12.42 42.90 374 83.4

S8 Balho 12.06 42.20 340 75.6

S9 Bondara 11.02 42.33 488 144.9

S10 Dasbio 11.25 42.80 770 140.9

S11 Day 11.79 42.63 1456 161.0

S12 Dikhil 11.11 42.37 500 138.9

S13 Djibouti Airport 11.55 43.15 8 146.6

S14 Djibouti-
Serpent 11.60 43.15 3 117.3

S15 Dorra 12.15 42.48 295 101.8

S16 Doudoub Bolole 11.25 42.67 549 132.8

S17 Galafi 11.60 41.80 519 90.1

S18 Gourabbous 11.28 42.22 310 110.2

S19 Goubetto 11.42 43.00 336 147.0

S20 Guelile 11.08 42.69 816 128.6

S21 Guisti 11.02 42.96 445 113.9

S22 Holl-Holl 11.31 42.93 470 165.7

S23 Kabah kabah 11.25 43.08 274 138.3

S24 Khor Angar 12.39 43.34 7 57.6

S25 Lac Assal 11.53 42.45 313 113.9

S26 Loyada 11.46 43.25 3 88.6

S27 Medeho 11.95 43.04 500 123.1

S28 Mouloud 11.17 42.50 3 129.0

S29 Moulouhleh 12.59 43.20 3 43.9

S30 Obock 11.96 43.29 20 70.5

S31 Omar Jagaa 11.38 42.76 571 139.4

S32 Randa 11.85 42.66 920 221.0

S33 Tadjourah 11.79 42.88 15 150.9

S34 Waddi 12.10 43.05 305 109.9

S35 Yoboki 11.51 42.11 23 132.3
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2.3. Methodology
2.3.1. Drought Analysis Procedures

Drought indices with specific timescales are important elements for drought mon-
itoring and management planning systems [36]. The Standardized Precipitation Index
(SPI; [19]) and the Standardized Precipitation–Evapotranspiration Index (SPEI; [20]) are
useful to assess drought events in arid-dominated regions such as East Africa [37]. In this
study, the SPI and SPEI drought indices were used to identify the anomalous dry and wet
conditions in the Republic of Djibouti.

The SPI was developed to describe long-term meteorological drought. It is one of the
most commonly used drought indices and compares the normalized rainfall with average
rainfall to express the deficit and excess of rainfall for a particular time period and climate.
The SPI is globally recommended by the World Meteorological Organization (WMO) for
drought assessment [38]. The SPI was calculated based on long-term rainfall data for
Djibouti Airport station and CHIRPS regional rainfall indices with the gamma distribution
estimation method. The SPEI is an improved index for regional drought monitoring because
of its ability to identify the effects of temperature on dryness conditions [39]. The SPEI is
mainly used to evaluate the role of temperature through its influence on potential evapo-
transpiration (PET), which relates to global warming and the occurrence of drought [40].
The SPEI is quantified using precipitation (P) and potential evapotranspiration (PET) as
input variables, resulting in an index describing the water balance. PET can be calculated
using various parameters, i.e., temperature, relative humidity, solar radiation, air water
vapor, and sensible and latent heat flux. Due to the limited availability of data, the present
study used the Hargreaves technique, which only requires precipitation, maximum and
minimum temperature datasets, and the latitude of the meteorological station [41]. Com-
parative studies examining the suitability of different PET estimation methods have found
a satisfactory performance of the PET derived from the Hargreaves equation [42]. SPEI
values were estimated by fitting historical observations into log-logistic distribution. More
details on the mathematical equations behind the calculations of the SPEI and SPI can be
found in [41].

The present study adopts SPEI and SPI ≤ −1.0 to represent dry conditions, while SPEI
and SPI ≥ +1.0 denote wet events over the study area. Dry events are divided into three
main categories: extreme (SPI/SPEI ≤ −2.00), severe (−1.50 > SPI/SPEI > −1.99), and
moderate (−1.00 > SPI/SPEI > −1.49). Similarly, wet events are categorized as follows:
extreme (SPI/SPEI ≥ +2.00), severe (+1.50 > SPI/SPEI > +1.99), and moderate (+1.00 >
SPI/SPEI > +1.49). These values for the SPI/SPEI define the characteristics of dry and
wet conditions in terms of severity, intensity, and the duration of occurrence. A similar
approach has been employed in a recent study to examine the spatiotemporal evolution of
drought over East Africa [35,43].

2.3.2. Evaluating Drought Characteristics

In order to examine the impact of drought events in the Republic of Djibouti, this
study considers the drought components of drought duration (D), drought frequency (F),
and drought intensity (I). These parameters were used to detect the potential effects of
climate change on drought characteristics in the context of global warming.

To determine how frequently there are droughts (drought frequency of occurrence, F)
in a given area, the following formula can be used [44]:

F (%) =
n
N

× 100 (1)

where n is the number of drought months and N is the total number of months over the
study period. Following the dryness categorization as indicated in Table 2, drought months
were defined as having an SPI (or SPEI) ≤ −1.0, whereas SPI (or SPEI) ≥ +1.0 represented
wet events over the study domain.
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Table 2. Classification of the severity of drought (or wet) events based on the calculation of
SPI/SPEI [19].

SPI/SPEI Values Categories

≤−2.0 Extremely Dry
−1.99–−1.5 Severely Dry
−1.49–−1.0 Moderately Dry
−0.99–0.99 Near-Normal

1.0–1.49 Moderately Wet
1.5–1.99 Severely Wet
≥2.0 Extremely Wet

The average drought duration (D) is the length of a drought episode (months) during
which the drought index is consecutively above or below a truncation value. It can be
calculated as follows [45]:

D =
∑n

i=1 di

n
(2)

where di is duration of the ith dry event and n is the total number of dry events.
The intensity (I) of drought can be defined as follows:

I =
1
n

n

∑
i=1

SPIi or I =
1
n

n

∑
i=1

SPEIi (3)

where n is the number of drought months (i.e., with SPI (or SPEI) < −1) and SPIi (or SPEIi)
represents the actual values of the precipitation indices for these months.

Additionally, one of the most significant benefits of SPI and SPEI is that they can be
computed at various timescales, allowing us to factor in the influence of the variable’s
previous values in the computation. To assess and characterize meteorological drought in
the Republic of Djibouti, we studied both short-term SPI/SPEI (3 and 6 months) and long-
term SPI/SPEI (12 and 24 months). According to [19], dry and wet levels were classified
according to the seven ranges of SPI and SPEI of values presented in Table 2. These drought
severity classes were used to compute time series of drought indices (i.e., SPI and SPEI)
based on monthly, seasonal, and annual timescales.

In order to analyze the drought occurrence over the different regions, hierarchical
agglomerative clustering (HAC) was applied on mean monthly rainfall at the 35 stations
over the period 1961–2021. HAC enables the stations to be grouped step-by-step according
to predefined distance metrics and a clustering algorithm (e.g., simple and complete mean
links or Ward’s methods) [46,47]. In this work, we used Euclidean distance and Ward’s
algorithm applied to standardized monthly precipitation in order to define clusters of
stations with the most similar precipitation regimes. Based on the clustering, homogeneous
regions were defined in which the precipitation indices were computed, enabling us to
assess the spatial patterns of drought occurrence and trends in the country. Given the fact
that the station data had a lot of gaps, CHIRPS was used to compute these regional indices.
In the absence of temperature data at this regional scale, only the SPI was computed.

The temporal variations of drought and wet events were examined based on the SPI
and SPEI at monthly and seasonal time steps. Long-term linear trends of the SPI and SPEI
were computed at different timescales to assess their spatial patterns. The teleconnections
between global SSTs (e.g., the IOD and ENSO) and seasonal drought indices were also
considered. A summary of the research framework is shown by the flowchart presented in
Figure 2.
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3. Results
3.1. Mean Climatological Patterns

First, the spatial rainfall variability, which is the key parameter influencing the occur-
rence of drought events, was analyzed. Based on the 35 rain gauge stations, the annual
rainfall amount over the Republic of Djibouti is presented in Figure 3. Rainfall in Djibouti
is generally erratic and infrequent, and extreme wet and dry events can be observed in
some years [48]. The rainfall amounts display high spatial variability, which is largely
associated with the altitudinal variation within the country. Orographic effects appear
most prevalent in the highlands, where the rainfall gradient broadly follows the terrain.
The highest rainfall is found along a north–south discontinuous ridge (150 mm to 250
mm), while in the southeast and southwest of the country the annual rainfall is between
100 mm and 150 mm. On the other hand, the northeastern coastal regions receive less than
100 mm annually.
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Figure 3. Spatial distribution of mean annual rainfall over the Republic of Djibouti based on 35
meteorological stations.

As a preliminary step to identify spatial patterns of dryness, a clustering method—i.e.,
hierarchical agglomerative clustering (HAC)—was applied on the mean monthly rainfall
at the 35 stations over the period 1961–2021 (Figure 4a). The spatial variability of rainfall
regimes in Djibouti reveals the existence of two regions: a coastal region (EAST) and a
continental region (WEST). This regionalization (Figure 4b) is further used to study the
spatial variation of drought over the whole country in Section 3.4.
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Figure 5 shows the mean monthly precipitation regimes in the EAST and WEST regions
for 1961–2021 (Figure 5a,b). The mean monthly rainfall and temperature at Djibouti Airport
station, which is part of the EAST region, are presented in Figure 5c,d, respectively. A
bimodal rainfall regime is found in the EAST region. Substantial rainfall is recorded during
the MAM (March–May) season, with a peak in April and a decline by the end of May
(Figure 5a,c). The whole country receives roughly the same amount of rainfall during this
season, with an average of ~15–20 mm in April for both regions. A second peak is found in
November in the eastern part of the country. This region receives higher amounts of rainfall
than the western part during OND (October–December) and JF (January–February). MAM
and OND are also the two main wet seasons in many parts of East Africa [44,49,50]. As
indicated by Camberlin [51], the equatorial regions and most of the Indian Ocean coastal
plains have double-peak regimes with rains in the transition seasons (i.e., MAM and OND).
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Figure 5. Monthly climatology over the Republic of Djibouti for the period 1961–2021: Panels (a,b)
indicate the mean monthly precipitation regimes in the EAST and WEST regions, respectively, as
presented in Figure 4. The mean monthly rainfall and mean air temperature at the airport station are
presented in panels (c,d), respectively.

The western part of the country singularizes by the JJAS (June– September) season.
Starting with a very dry month (June is the driest month across the country), this becomes
the wettest period in the western part of the country, with rains lasting from July to
September and a peak in August. In contrast, the eastern area receives a small amount of
rain in July–August (Figure 5a,c). The July–September rainy season is more widespread
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in neighboring Ethiopia and shows a steep gradient from northwest to southeast close to
Djibouti [52].

The minimum and maximum air temperatures at the airport station are presented
in Figure S1 in the Supplementary Materials. Average monthly temperatures range from
25.2 ◦C in January to 36.8 ◦C in July (Figure 5d).

3.2. Temporal Variations in the SPI and SPEI

The assessment of the short- and long-term variations in the SPI issued from Djibouti
Airport station exhibited the existence of dry and wet events throughout the study period
(Figure 6). The temporal variations in the SPEI for the different timescales were broadly
similar and are presented in Figure S2 in the Supplementary Materials. As expected, the
drought events were more frequent and with shorter durations for the 3-month and 6-
month SPI compared to the 9-month, 12-month, and 24-month SPI (Figure 6). During
1961–2006, few drought events were recorded in Djibouti. For instance, moderate-to-
severe drought conditions were observed in 1971, 1981, and 1986. Droughts were more
severe and persistent during 2007–2018 than those during other periods, as revealed
by both indices (Figure 6 and Figure S2). It was evident that the incidence of drought
events increased, especially after 2007, with high intensity and duration (Figure 6d). As
indicated in [53], droughts at the SPEI-12/SPI-12 or larger timescales tended to persist
much longer (Figure 6d,e and Figure S2d,e). The SPEI results detected the same periods
of drought, but the intensity was much higher with the SPEI than the SPI (Figure S2d,e in
the Supplementary Materials). This difference between the SPEI and SPI is related to the
fact that the SPEI takes into account evapotranspiration, which makes it more sensitive
to the combined effects of temperature and rainfall changes. The results further showed
that the most intense drought (SPI = −2.19) based on SPI-3 occurred between October and
December 1981. For the 12-month SPI, the most intense drought (SPI = −1.65) occurred
between January and December 2013. On the other hand, based on SPI-12 and SPI-24 (as
well as SPEI-12 and SPEI-24), the 2010–2011 and 2013–2015 drought events were the most
severe experienced in Djibouti (Figure 6d,e and Figure S2d,e). These drought events were
found to have large-scale impacts on the environment and society in the Horn of Africa [54].
The 2010–2011 Horn of Africa drought caused a wide-ranging food insecurity situation
in the region [11,12,55], and rainfall was at least 50–75% below average in the Horn of
Africa region.
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Drought duration, intensity, and frequency are important properties for the character-
ization of droughts. Table 3 presents the mean duration, frequency, and intensity of dry
and wet events at various timescales over the Djibouti Airport station during 1961–2021 for
both the SPI and SPEI. The duration of dry and wet events tended to increase with the SPI
and SPEI timescales. The average drought durations were 2.77 and 6.93 months for SPI-3
and SPI-12, respectively, and 2.40 and 5.63 months for SPEI-3 and SPEI-12, respectively.
The SPI revealed a higher frequency of dry events than the SPEI (for instance, 26.01% and
20.59% for SPI-24 and SPEI-24, respectively; Table 3). The average drought intensity varied
from −1.60 for SPI-3 to −1.28 for SPI-12. This suggests that drought intensity decreases
with the timescale.
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Table 3. Characterization (duration, frequency, and intensity) of dry and wet events at Djibouti
Airport station over the period 1961–2021.

Dry Wet

Duration Frequency Intensity Duration Frequency Intensity

SPI-3 2.77 24.89 −1.60 2.40 18.16 1.32
SPI-6 3.34 20.53 −1.32 3.62 20.12 1.38
SPI-9 4.85 22.1 −1.28 5.62 20.17 1.39
SPI-12 6.93 21.62 −1.28 8.03 20.16 1.39
SPI-24 20.33 26.01 −1.30 12.23 23.45 1.23
SPEI-3 2.40 19.04 −1.39 2.94 19.73 1.45
SPEI-6 3.56 19.12 −1.38 5.32 20.51 1.42
SPEI-9 4.29 18.37 −1.37 7.43 21.55 1.41
SPEI-12 5.63 18.72 −1.34 8.72 21.78 1.41
SPEI-24 9.73 20.59 −1.35 11.69 21.44 1.36

Figure 7 shows the long-term temporal variation in the occurrence of dry and wet
conditions in the district of Djibouti-ville—the country’s capital—where the meteorological
station at Djibouti Airport, which contains the most comprehensive meteorological data in
the country, is located. Based on Table 2, dry and wet events were classified as moderate,
severe, or extreme at the 3-month timescale (Figure 7 and Figure S3). Analysis of SPI-3 at
Djibouti Airport revealed that changes occurred in the frequency of drought events during
the period 1961–2021 (Figure 7a). Moderate and severe drought cases were found between
1961 and 2000, but only three extreme dry events occurred in this period (1962, 1980, and
1997). However, the incidence of extreme drought was more frequent after 2003, yielding
critical situations in Djibouti. Twelve extreme drought events were identified between 2003
and 2021 accounting for more than 80% of the total extreme dry events in Djibouti since
1961. In contrast, no severe wet conditions were recorded between 2003 and 2017, and the
incidence of moderate wet events was also low, indicating a significant decrease in rainfall
in this period (Figure S3). The analysis of SPEI-3 showed moderate-to-severe drought in
Djibouti but did not clearly indicate the existence of extreme dry events (Figure 7b). The
number of wet years remained the same for both the SPEI and SPI values (Figure S3), but
the wet severity of the SPEI was higher than that of the SPI.
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Figure 7. Temporal variation of SPI (a) and SPEI (b) at a 3-month timescale for moderate, severe, and
extreme drought events at Djibouti Airport from 1961 to 2021.

3.3. Annual and Seasonal Variations in Drought

In this section, we analyze the SPI and the SPEI on a seasonal scale to assess whether the
drying up of Djibouti in recent decades is associated with a specific season (Figure 8). The
seasonal and annual variations in the SPEI are presented in Figure S4 in the Supplementary
Materials. The analysis of the SPI and SEPI values at a seasonal scale clearly shows the
existence of severe and extreme drought events in any season, although with the index
being standardized it cannot be used to compare the severity of droughts between seasons.
Several extreme dry events have occurred during the JF (January–February) season since
2009, indicating a strong decline in rainfall during this season (Figure 8a). The SPEI and
SPI indices for the MAM season showed that moderate wet periods started from the
year 1981 until 1988 (Figure 8b and Figure S4b in the Supplementary Materials). The
most severe wet event was observed in 1989, which was the wettest year ever registered
in Djibouti, with the annual rainfall exceeding 450 mm [18]. This period was followed
by alternating wet and dry MAM seasons, and then an extensive, almost uninterrupted
drought period from 2006 to 2017. On the other hand, the OND season experienced a more
regular alternation between severe dry events and wet events (Figure 8d and Figure S4b in
the Supplementary Materials). Two extreme dry events occurred during OND in 2012 and
2016. However, as for MAM, moderate-to-severe dry events occurred from 2006 to 2017
in the OND season (Figure 8b–d and Figure S4b–d in the Supplementary Materials). This
period was characterized by a persistent decline in rainfall during these seasons, which
both contributed to the prolonged drought conditions, as displayed above in the monthly
SPI. The MAM and OND seasons are actually the wettest seasons in the eastern parts of
Djibouti [18]. Limited precipitation in both the October–December 2010 and March–May
2011 rainy seasons was the main cause of the 2010–2011 droughts in the Republic of Djibouti
(Figure 8b–d).
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In the larger East African region, the MAM long rains season is the primary rainy
season [9,56]. Nicholson [9] indicated that the greatest changes in drought appear to have
occurred during the long rains (MAM). As agriculture in the region is largely dependent
on rainfall, the decline in the MAM rainy season has had major consequences for food
insecurity [9,11,24].

Some similarities between the JF, MAM, and OND seasons are found in the temporal
variations in the SPI, but the JJAS season shows a strongly different evolution. The JJAS
season experienced the longest recurrent drought events during the 1970s and 1980s
(Figure 8c). The SPEI also indicates this long period of dryness in JJAS, but the intensity
is lower than in the SPI (Figure S4c in the Supplementary Materials). Williams et al. [57]
documented a decline in JJAS rainfall in the Horn of Africa from 1970 to 1989, which
they attributed to the warming of the southern tropical Indian Ocean. This was followed
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by wetter conditions, interrupted by some dry events (e.g., 1996–1997, 2004, 2011, 2018).
However, a consistent decline in rainfall occurred between 2005 and 2017 (Figure 8e).

3.4. Trends and Spatial Patterns of Drought Since 1981

In view of the increased drought conditions in Djibouti in recent decades, we focused
on the period 1981–2021 using both observed (Djibouti Airport station) and CHIRPS data.
The aim was to quantify the linear trends of the SPI and SPEI computed at different
timescales and to assess their spatial patterns by considering the two subregions defined in
Section 3.1 (Figure 9 and Figure S5; Table 4). Due to the interrupted data records during
1991–2012 in all stations of the country (except for Djibouti Airport station), CHIRPS
datasets were used to evaluate the spatial variability of drought and its trends over the
whole country.
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Table 4. Linear trend values of the SPI and SPEI (3, 6, 9, 12, and 24 months) at Djibouti Airport station
(observed and CHIRPS data) and in the two subregions over the 1981–2021 period.

3-Month 6-Month 9-Month 12-Month 24-Month

SPEI-Airport
(Observation)

Trend 0.12 −0.10 −0.36 −0.56 −1.00
p-Value 0.73 0.79 0.4 0.04 0.03

SPI-Airport
(Observation)

Trend −0.56 −0.76 −1.16 −1.32 −1.56
p-Value 0.04 0.03 0.01 0.00 0.00

SPI-Airport
(CHIRPS)

Trend −0.19 −0.35 −0.52 −0.52 −1.09
p-Value 0.49 0.3 0.21 0.23 0.03

SPI-EAST
(CHIRPS)

Trend −0.08 0.02 −0.08 −0.11 −0.40
p-Value 0.75 0.96 0.85 0.80 0.45

SPI-WEST
(CHIRPS)

Trend 0.44 0.56 0.8 0.96 1.32
p-Value 0.11 0.11 0.04 0.02 0.01

Note: trends that are significant at the 5% level are marked with bold font.

At Djibouti Airport, the annually averaged SPI values generally showed increasingly
negative values, suggesting drying trends. The observed data depicted a significant in-
creasing drought trend (p < 0.01) for all of the SPI timescales (i.e., SPI-3, SPI-6, SPI-9, SPI-12,
and SPI-24). However, CHIRPS showed an insignificant drying tendency for SPI-3 and
SPI-12 but a significant trend for the long-term SPI-24 index. The SPEI results indicated
a non-significant decreasing trend for SPEI-6 and SPEI-9. However, the SPEI displayed a
significant decreasing trend for the long-term indices (i.e., SPEI-12 and SPEI-24) (Figure
S5 in the Supplementary Materials). The stronger trends found for the longest SPEI and
SPI timescales indicate that while there was only a moderate increase in short-duration
droughts, there has been a marked increase in prolonged drought events.
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Figure 10 shows the time series of the SPI at 3-, 6-, 9-, 12-, and 24-month timescales for
the eastern and western regions during 1981–2021. At the 3-month timescale, moderate-
to-severe droughts were observed for both climate zones. The SPI-12 and SPI-24 showed
the most prominent drought years in the Republic of Djibouti. At a national scale, the
analysis of the SPI-3 time series showed a non-significant decreasing trend in the eastern
parts of Djibouti (Table 4; Figure 10). Likewise, the SPI-12 and SPI-24 time series exhibited
a non-significant drying tendency over the eastern regions. This seems to indicate that the
coastal region may be the driest area in Djibouti. This absence of significant trends is due
to the fact that while there has been a prolonged drought between about 2002 and 2016,
more recent years have recorded much wetter conditions (Figure 10). Using the CHIRPS
high-resolution dataset, Gebrechorkos et al. [34] found increasing drought in large parts of
the East Africa region by analyzing the long-term trends in the 3-, 6-, and 12-month SPI,
but their study was restricted to the period ending in 2016 and, therefore, did not include
some wetter years that occurred later on.
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In the western part of the country, unlike the eastern subregion, the SPI trends over
1981–2021 were positive and even significant (p < 0.05) for SPI-9, SPI-12, and SPI-24 (Table 4).
This is due to the fact that the 1980s were particularly dry years (Figure 10), as in much of
Ethiopia, Sudan, and the Sahel region. Droughts reoccurred frequently between 2003 and
2016. This correlates well with the extended drought period found in the eastern subregion,
but the droughts in the west were interrupted by periods of higher rainfall. Drought
conditions actually seem to affect the whole country at the same time (e.g., 1984, 2006, 2009,
2013, and 2015), but the severity is higher in the eastern part on a regional scale. In addition,
drought durations are much longer in the east than in the west, as demonstrated by SPI-24.

The contrasting trends for the eastern and western subregions are partially related to
their different rainfall regimes, because the JJAS rains play a dominant role in the west,
while in the east the OND and JF rains have a greater share of the annual rainfall. At
Djibouti Airport, a significant negative trend (i.e., drier conditions) was observed with the
SPI during the JF and MAM seasons (Table 5). The SPEI indicated non-significant negative
trends in JF and MAM. CHIRPS also showed a negative trend in these seasons, but this was
only significant (p < 0.05) in the JF season. For the eastern and western indices, consistent
negative trends were similarly found in both JF and MAM, but none were significant.
JJAS was the only season experiencing a positive trend (i.e., wetter conditions) for both
the observation (SPI) and CHIRPS. This was statistically significant (p < 0.05) in both the
western and eastern subregions, as was the SPEI at Djibouti Airport. The JJAS season is the
main rainy season in the northern and northeastern parts of East Africa [58]. Teshome and
Zhang [59] found a positive trend over the period 1980–2015 over most parts of Ethiopia,
thereby indicating that the occurrence of drought is decreasing in the JJAS season. Using
CHIRPS to compute drought indices, Brown et al. [60] found that, over the period 1982–
2014 in northeastern Ethiopia (near Djibouti), there were strong but contrasting trends
between March–June (increasing drought) and June–September (increasing precipitation).
These mimic the trends found over the Republic of Djibouti. The greater share of the
JJAS rains in the west (which had a positive trend) with respect to the MAM and JF rains
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(generally showing a negative trend) indicates that this region does not show the same
overall evolution of the SPI as the eastern region.

Table 5. Seasonal trends of the SPI and SPEI at Djibouti Airport station (observed and CHIRPS data)
and in the two subregions over the 1981–2021 period.

JF MAM JJAS OND

SPEI-Airport
(Observation)

Trend −0.72 −0.76 1.32 0.31
p-Value 0.18 0.16 0.01 0.56

SPI-Airport
(Observation)

Trend −1.96 −1.51 1.02 −0.37
p-Value 0.00 0.00 0.06 0.51

SPI-Airport
(CHIRPS)

Trend −1.37 −0.74 0.47 0.19
p-Value 0.01 0.18 0.41 0.73

SPI-EAST
(CHIRPS)

Trend −0.85 −0.72 1.44 0.32
p-Value 0.11 0.19 0.01 0.56

SPI-WEST
(CHIRPS)

Trend −0.56 −0.65 1.72 0.60
p-Value 0.29 0.22 0.00 0.26

Note: trends that are significant at the 5% level are marked with bold font.

3.5. Relationship between Droughts and SST Indices

To understand the large-scale climate conditions associated with the occurrence of
drought events, teleconnections with global SST (e.g., Nĩno3.4 and IOD) were analyzed us-
ing the Hadley Centre Global Sea Ice and Sea Surface Temperature (HadISST1.1) dataset [61].
Many studies [62–66] have demonstrated that the variability of large-scale climate oscilla-
tions in the Indo-Pacific region (e.g., the IOD and ENSO) is responsible for the occurrence
of droughts in East Africa by modulating the rainfall patterns. Analyzing the correlation be-
tween SSTs and drought indices allows researchers to depict whether there is a relationship
between the occurrence of dry and wet years in Djibouti and the IOD and Nino3.4. The
correlations between seasonal (JJAS and OND) precipitation indices (both observation and
CHIRPS for the SPI; observation only for the SPEI) and the IOD and Nino3.4 indices during
1981–2021 are presented in Figure 11 and Table 6. Drought indices in the OND season
showed a positive correlation with both SST indices (Table 6). However, the IOD appeared
to have the largest influence, with significant correlation values of 0.44, 0.36, and 0.41 for
the SPEI, observed SPI and CHIRPS-SPI, respectively. For example, the wet event in 2019
(OND), which caused devastating floods in the city of Djibouti, was linked with a positive
IOD anomaly (Figure 11). During MAM, there was a significant negative correlation (−0.33)
between observed SPI and the IOD, although the correlation was moderate. The correlation
obtained for the SPEI was also negative but statistically insignificant, while CHIRPS-SPI
had non-significant correlations with both SST indices. The significant positive correlation
of OND with the IOD was observed in both the eastern and western regions (Table 6).
These results are consistent with the findings of previous studies showing a strong forcing
of the OND seasonal rains further south in Equatorial East Africa by ENSO and the IOD,
while the MAM rains were only weakly related to Indo-Pacific SST anomalies. Changes
in SST gradients between the Tropical Warm Pool area and nearby equatorial oceans have
often been suggested to explain the protracted drought that affected East Africa in the
early period of the 21st century during MAM (including the Djibouti area, as demonstrated
above), but there is still much uncertainty as to its real cause(s) [3,24,67,68].
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Table 6. Correlation coefficient (CC) between seasonal SPEI/SPI and the SST indices (i.e.,
IOD/Nino3.4) over the 1981–2021 period. Statistically significant correlation (p < 0.05) is indicated
in bold.

JF MAM JJAS OND

SPEI-Airport
(Observation)

Nino3.4 CC
(p-Value) 0.24 (0.11) 0.040 (0.81) −0.18 (0.23) 0.24 (0.12)

IOD CC
(p-Value) −0,14 (0.36) −0.16 (0.3) −0.149

(0.32) 0.44 (0.00)

SPI-Airport
(Observation)

Nino3.4 CC
(p-Value) 0.30 (0.05) −0.12 (0.43) −0.27 (0.08) 0.19 (0.28)

IOD CC
(p-Value) −0.34 (0.03) −0.33 (0.03) −0.06 (0.64) 0.36 (0.02)

SPI-Airport
(CHIRPS)

Nino3.4 CC
(p-Value) 0.46 (0.002) 0.10 (0.54) −0.55 (0.00) 0.22 (0.15)

IOD CC
(p-Value) −0.01 (0.93) −0.20 (0.21) 0.06 (0.70) 0.41 (0.00)

SPI-EAST
(CHIRPS)

Nino3.4 CC
(p-Value) 0.47 (0.02) 0.16 (0.42) −0.43 (0.00) 0.19 (0.09)

IOD CC
(p-Value) 0.08 (0.67) −0.18 (0.34) 0.102 (0.52) 0.40 (0.00)

SPI-WEST
(CHIRPS)

Nino3.4 CC
(p-Value) 0.46 (0.01) 0.15 (0.25) −0.43 (0.01) 0.25 (0.17)

IOD CC
(p-Value) 0.02 (0.42) −0.15 (0.26) 0.04 (0.51) 0.41 (0.01)

During JJAS, the SPEI and SPI were negatively correlated with Nino3.4, suggesting the
influence of El Niño events on the occurrence of drought in this season. CHIRPS indicated
a significant negative correlation (−0.55) between Nino3.4 and the SPI at the airport station
and the two subregions (−0.43). For instance, the drought incidence in 2015 (JJAS) was
associated with an El Niño year (Figure 11). Droughts driven by El Niño were found to have
large-scale impacts in the East African countries that record rains in boreal summer [54,69].
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Recently, Anose et al. [39] indicated that the JJAS Kirmet season droughts in Ethiopia
were highly correlated with global climate indices such as Nino3.4. Getachew [70] also
reported that the recent El-Niño-induced drought of 2015/2016 has led to severe impacts in
Ethiopia’s pastoralist areas. The fact that Djibouti’s rainfall is influenced by such large-scale
climate drivers offers scope for the development of predictive models to better anticipate
persistent droughts or devastating floods in the country.

4. Conclusions

This study provides the first description of the temporal and spatial variation of
drought in the Republic of Djibouti for the period of 1961–2021. The dryness and wetness
patterns were assessed by characterizing the trends, intensity, duration, and frequencies at
seasonal and interannual scales through the SPI and SPEI at 3-, 6-, 9-, 12-, and 24-month
timescales. Based on hierarchical agglomerative clustering, two subregions with different
seasonal rainfall regimes were identified from east to west. The most important results of
this work can be summarized as follows:

- The temporal evolution of the SPI and SPEI indicates the existence of moderate and
severe drought incidents between 1961 and 2000 at the 3-month timescale. However,
12 extreme drought events have been detected by SPI-3 since 2003, representing more
than 80% of the total extreme droughts in Djibouti since 1961.

- As expected, drought events of shorter duration (detected by the 3-month SPI) are
more frequent. However, the very long drought periods detected by the 12-month
and 24-month indices may have more adverse effects. The longest and most intense
dry period was 2007–2017 based on both the SPI and the SPEI. Within this period, the
whole country experienced the droughts of 2010–2011 and 2013–2015, but the severity
of droughts was much higher in the eastern region than in the western region.

- The SPI for all timescales showed significant decreasing linear trends, while the SPEI
indicated a significant decreasing trend only for the 12- and 24-month timescales at the
airport station. Non-significant decreasing trends were observed with CHIRPS-SPI in
the eastern subregion. Conversely, in the western part of the country, the CHIRPS-SPI
trends were positive and even significant (p < 0.05). The contrasting trends for the
eastern and western subregions are partially related to their different rainfall regimes,
because the JJAS rains—which did not undergo the strong drying trend characteristic
of the other seasons—play a dominant role in the west. The analysis also showed that
the main drought events of the recent decades have tended to mainly affect the MAM
and OND rainy seasons.

This study on drought in the Republic of Djibouti, which is the first of its kind, would
be very useful to the country’s policy- and decision-makers as well as to the UN Resident
Coordinator in Djibouti to help better understand the drought cycles in the country for
a better coordination of efforts to help the victims of these droughts. This is especially
relevant, as there is an urgent need to consider the development of a drought early warning
system for better drought mitigation in the country, as well as the implementation of
long-term strategies for better resilience of the agro-pastoral communities most affected by
recurrent droughts in this part of the world. In addition, a devastating drought is currently
affecting the Republic of Djibouti and the Horn of Africa, with more than 13 million people
already affected by the drought. Therefore, this first study of drought in the Republic of
Djibouti will contribute very strongly to the national strategy for resilience to recurrent
droughts that is being developed.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/cli10100148/s1, Figure S1: Minimum (a) and maximum (b) mean
air temperature at the airport station during 1961–2021. Figure S2: Temporal variation of dry events
(red) and wet events (blue) for the short-term and long-term SPEI during the period 1961–2021:
(a) SPEI-3, (b) SPEI-6, (c) SPEI-9, (d) SPEI-12, and (e) SPEI-24. Figure S3: Temporal variation of
SPI-3 and SPEI-3 for moderate, severe, and extreme flood events at Djibouti Airport from 1961 to
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2021, as presented in Figure 7. Figure S4: Seasonal ((a) JF, (b) MAM, (c) JJAS, and (d) OND) and (e)
annual variability of the SPEI over the period 1961–2021 at the Djibouti Airport station. Figure S5:
Interannual variations and linear trends of the annual mean of the SPEI (3, 6, 9, 12, and 24 months) at
the Djibouti Airport observation station during 1981–2021.
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