
Appendix to: Semiparametric Estimation of a Credit Rating

Model

Abstract

In this Appendix, I prove the two asymptotic theorems in the paper. Lemma

2.1 - 2.4 establish various convergence rates for the employed “recursive differencing”

estimator. Lemma 2.5 establishes the convergence rate for the Hessian matrix associ-

ated with the log-likelihood function. Lemma 2.9 proves a “residual property” of the

semiparametric probability derivative, which I use in conjunction with the recursive

differencing estimator to reduce bias. These intermediate lemmas are instrumental in

establishing the asymptotic property of the index parameter estimator.
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1 Proofs of Asymptotic Results

1.1 Proof of Theorem B1

Proof. To show consistency, recall that θ maximize the estimated average log-likelihood

function Q̂(θ). From Lemma C.3, supθ|Q̂(θ) − Q̃(θ)| p→ 0, where Q̃(θ) is obtained from

Q̂(θ) by replacing all estimated functions with their probability limits. From standard

argument, Q̃(θ) converges uniformly to its expectation E[Q̃(θ)]. Then, consistency would

follow as long as E[Q̃(θ)] is uniquely maximized at θ0.
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To show θ0 uniquely maximize E[Q̃(θ)], I apply the law of iterated expectation on

E[Q̃(θ)] by conditioning on the true index Vi(θ0) = (Fiθ
F
0 , Biθ

B
0 ,MFOIi):

E[Q̃(θ)] =
1

N
EVi{E

N∑
i=1

7∑
k=1

Y k
i Ln(P̂ k(Vi(θ)))|Vi(θ0)} (1)

=
1

N
E

N∑
i=1

7∑
k=1

P k0iLn(P̂ k(Vi(θ))), P k0i ≡ E[Y k
i |Vi(θ0)] (2)

If θ0 maximize Li(θ) ≡
∑7

k=1 P0iLn(P̂ k(Vi(θ))) for each i, it will clearly maximize E[Q̃(θ)].

Let Pk(θ) denote the estimated rating probability inside this quantity, P̂ k(Vi(θ)). For each

k from 1 to 7, take the derivative of Li(θ) with respect to Pk gives

∇kLi(θ) =
P k0i
Pk(θ)

−
1−

∑
j 6=k P

j
0i

1−
∑

j 6=k Pj(θ)
, k = 1, 2, · · · , 7 (3)

When P̂ k(Vi(θ)) = P ki0, it can be seen that ∇kLi(θ) = 0 for all k from 1 to 7. From

Theorem 1 and 2 in Klein and Spady (1993), P̂ k(Vi(θ)) = P ki0 ⇐⇒ θ = θ0.

1.2 Proof of Theorem B2

Proof. From a Taylor expansion of the estimated gradient on θ̂ and the fact that the

estimated gradient is zero evaluated at θ0, we have

√
N(θ̂ − θ0) = −Ĥ(θ+)−1

√
NĜ(θ0) θ+ ∈ (θ0, θ̂) (4)

where Ĝ(θ) = ∇θ′Q̂2(θ), Ĥ(θ) = ∇θ′θQ̂2(θ) for any θ in its support. Under the condition

of Lemma 2.5, Ĥ(θ+) converges in probability to H0 ≡ E[H(θ0)]. We let Pki ≡ P k(Vi) to

simplify the notation,

√
NĜ(θ0) ≡

√
N

N

N∑
i=1

τ̂iv
∑
k

Y k
i

P̂ ∗ki

∂P̂ ∗ki
∂θ
|θ=θ0 (5)

=

√
N

N

N∑
i=1

τ̂iv
∑
k

Y k
i − P̂ ∗ki
P̂ ∗ki

∂P̂ ∗ki
∂θ
|θ=θ0 (6)

=

√
N

N

N∑
i=1

τ̂iv[
Y 1
i − P̂ ∗1i
P̂ ∗1i

∂P̂ ∗1i
∂θ
|θ=θ0 +

Y 2
i − P̂ ∗2i
P̂ ∗2i

∂P̂ ∗2i
∂θ
|θ=θ0 + . . . ] (7)
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Noting that
∑

k Y
k
i = 1 and

∑
k∇θPki = 0 for all i. The first equality above follows from

the fact that
∑

k
∂P̂ ∗ki
∂θ =

∂
∑

k P̂
∗
ki

∂θ = ∂1
∂θ = 0. As the first term in (7) and all remaining terms

have the same structure, it suffices to analyze the first term. From standard argument in

Pakes and Pollard (1989) and Klein and Spady (1993), the estimated trimming function

τ̂iv can be replaced by the truth asymptotically. For any k ∈ {1, 2..., 7}, with ŵki ≡
τiv

∂P̂ ∗ki
P̂ ∗ki∂θ

|θ=θ0 , a representative term in the estimated gradient is:

√
N

N

N∑
i=1

[Y k
i − P̂ ∗ki]ŵki =

√
N

N

N∑
i=1

[Y k
i − Pki]ŵki︸ ︷︷ ︸
D1

−
√
N

N

N∑
i=1

[P̂ ∗ki − Pki]ŵki︸ ︷︷ ︸
D2

(8)

=

√
N

N

N∑
i=1

[Y k
i − Pki]wki︸ ︷︷ ︸
D∗1

+

√
N

N

N∑
i=1

[P̂ ∗ki − Pki]wki︸ ︷︷ ︸
D∗2

(9)

+ (D1 −D∗1) + (D2 −D∗2) (10)

By making use of the fact that the residual Y k
i − Pki has zero conditional expectation,

D1 − D∗1 ≡ N−1/2
∑

i(Y
k
i − Pki)(ŵki − wki) = op(1) through a mean-square convergence

results similar to Klein and Spady (1993). For the convergence of double-sum in Lemma

2.7, D2 −D∗2 = op(1).

Recall from D.4 that the recursive differencing estimator has the form:

P̂ ∗k(v) ≡
1

N−1

∑
j [Y

K
j − ∆̂j(v)]Kh(Vj − v)

1
N−1

∑
j Kh(Vj − v)

= f̂/ĝ (11)

with ĝ being and estimated density derivative and ∆̂k
j (v) = P̂K(Vj)− ÎK(v) is an estimate

of the localization error. Note that

D∗2 =

√
N

N

N∑
i=1

[P̂ ∗ki − Pki]
ĝi
gi
wki +

√
N

N

N∑
i=1

[P̂ ∗ki − Pki][1−
ĝi
gi

]wki︸ ︷︷ ︸
op(1) from Lemma 2.7

(12)

=

√
N

N

N∑
i=1

[P̂ki − Pki]
ĝi
gi
wki (13)

≡
√
NUN (14)
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where P̂ki is the standard Nadaraya Watson estimator: P̂ki =
1

N−1

∑
j Y

k
j Kh(Vj−Vi)

1
N−1

∑
j Kh(Vj−Vi)

= f̂/ĝ

Lemma 2.8 establishes the equivalence between (12) and (13). In below, we show that this

term is a degenerate U−statistic. Let

UN ≡ 1

N

N∑
i=1

(P̂ki − Pki)wki
ĝi
gi

=
1

N

N∑
i=1

(f̂i − Pkiĝi)
wki
gi

(15)

With f̂i = 1
N−1

∑
j Y

k
j Kh(Vj − Vi) and ĝi = 1

N−1

∑
j Kh(Vj − Vi),

UN =
1

N

N∑
i=1

(
1

N − 1

∑
j

Y k
j Kh(Vj − Vi)− Pki

1

N − 1

∑
j

Kh(Vj − Vi))
wki
gi

(16)

=
1

N(N − 1)

N∑
i=1

∑
j 6=i

[Y k
j − Pki]Kh(Vj − Vi)

wki
gi

(17)

=
2

N(N − 1)

N∑
i=1

∑
j 6=i

ρ∗ij (18)

with ρij ≡ [Y k
j − Pki]Kh(Vj − Vi)

wki
gi

(19)

and ρ∗ij =
ρij + ρji

2
(20)

Note that by construction, ρ∗ij is now symmetric with respect to i, j. After applying the

standard approximation theory of U-statistics (Powell et al., 1989, Serfling, 2009), we obtain√
N(UN − ÛN ) = op(1) where ÛN is a “projection” of UN :

√
NÛN ≡

√
N

N∑
i=1

(E[ρji|Vi] + E[ρij |Vi])/N = T1 + T2 (21)

Each term in T2 is zero from the law of iterated expectation and the residual property of
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wki:

E[ρij |Vi] = E[(Y k
j − Pki)Kh(Vj − Vi)

wki
gi
|Vi] (22)

= E[(Y k
j − Pki)Kh(Vj − Vi)τiv

1

Pkigi

∂Pki
∂θ
|θ=θ0 |Vi] (23)

= EVj{E[(Y k
j − Pki)Kh(Vj − Vi)τiv

1

Pkigi

∂Pki
∂θ
|θ=θ0 |Vi, Vj ]} (24)

= (Y k
j − Pki)Kh(Vj − Vi)τiv

1

Pkigi
EVj{E[

∂Pki
∂θ
|θ=θ0 |Vi, Vj ]︸ ︷︷ ︸

=0 from Lemma 2.9

} (25)

= 0 (26)

It can be shown that for each term in T1:

E[termi] ≡ EVi{E[ρji|Vi]} = E[ρji] = EVj{E[ρji|Vj ]} = 0 (27)

V ar[termi] = O(1) (28)

T1 is therefore op(1) from standard sample mean property. Since
√
NÛN converges in

probability to zero,
√
NUN and therefore D∗2 are both op(1). As such, the only term

remain in the gradient expression in (8) is D∗1 =
√
N
N

∑N
i=1[Y k

i − Pki]wki, so

√
NĜ(θ0) =

√
N

N∑
i=1

τiv
Y k
i − P ki
P ki

∂P ki
∂θ

/N + op(1) (29)

Then, referring to the expression in (4),
√
N(θ̂ − θ0) has an asymptotic linear form:

√
N(θ̂ − θ0) =

√
N

N∑
i=1

H−1
0 Gi(θ0)/N + op(1) (30)

Gi(θ0) ≡
7∑

k=1

τiv
Y k
i − P k

P k
∂P k

∂θ
|θ=θ0 (31)

We apply the Lindberg-Levy CLT and obtain:

√
N(θ̂ − θ0)

d→ N(0, H−1
0 E[Gi(θ0)G′i(θ0)]H−1

0 ) (32)
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2 Intermediate Lemmas and Proofs

Lemma 2.1 (Uniform Convergence of Estimates to Expectations). Let w be a K dimen-

sional vector and assume that m(w) is a sample average of terms m(w; zi), where zi are

i.i.d. Assume that with h →0, we have uniformly over N:

hr+1|m(w; zi)| < c, r + 1 > 0 and hs|∂m(w; zi)/∂w| < c, s > 0

Let E[m(w)] be the expectation of m(w) taken over the distribution of zi. Then, with w in

a compact set and for any α > 0:

N (1−α)/2hr+1sup|m(w)− E[m(w)]| p→ 0 a.s.

Proof. See the proof of Lemma 2.1 on pp 411 in Klein and Spady (1993). The proof utilizes

important implication in Hoeffding (1963) and Bhattacharya (1967).

Lemma 2.2 (Convergence Property for Density Estimator and Its Derivatives). Let ĝ

be the estimated index density defined in D.3 and ∇rθĝ be the r-th density derivative with

respect to θ, when r = 0, 1, 2, then:

(2.2.1) supv,θE{(∇rθĝ(v)− E[∇rθĝ(v)])2]} = Op(
1

Nh2r+3 )

(2.2.2) supv,θ|E[∇rθĝ(v)]−∇rθg(v)| = Op(h
2)

Proof. The order of bias and variance for estimated kernel density and density derivatives

are fairly standard in the literature, see Hansen (2009) for an discussion.

Lemma 2.3 (Convergence Properties of Estimated Probability after Recursive Differenc-

ing). The following convergence properties hold for the conditional probability estimator

defined above:

(1) supvE{(ĝ(v)[P̂ ∗k (v)− E[P̂ ∗k (v)])2}|θ=θ0 = Op(
1

Nh3
)

(2) supv|E[ĝ(v)(P̂ ∗k (v)− P k(v))]|θ=θ0 = Op(h
4)

(3) supv,θ∇tθ|P̂ ∗k (v)− P k(v)| = Op(aN ), where aN = ( lnN
Nh3+2t )1/2 + h4 with t = 0, 1, 2.

Proof. See Theorem 1 and Lemma 11 in Shen and Klein (2019) for the proofs of part (1)

and (2). In particular, they demonstrated that a lower order of bias can be achieved after
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implementing the recursive differencing strategy, without causing the order of variance to

go up. As illustrated in the first two results, the order of the variance here is the same

compared to that with a regular kernel in Lemma 2.2, while a lower order bias is obtained

(h4 vs h2). For the uniform convergence rate in (3), the first component of aN is derived

following Lemma B.1 of Newey (1994) whereas the second component comes from the

bias.

Lemma 2.4 (Mean-square Convergence of Estimated Probability). For recursive differenc-

ing estimator P̂ ∗k (v) defined in the main text, for h = 0.97σN−r and under the conditions

of Lemma 2.1- 2.3,

1

N

∑
i

(P̂ ∗ki(v)− Pki(v))2 = Op(N
−1h−3) +Op(h

8) (33)

Proof. With f̂∗i (v) ≡ ĝi(v)P̂ ∗ki(v), note that

1

N

∑
i

(P̂ ∗ki(v)− Pki(v)) =
1

N

∑
i

(
f̂∗i (v)

ĝi(v)
− Pki(v)) (34)

≤ sup(
1

ĝi
)

1

N

∑
i

(f̂∗i (v)− Pki(v)ĝi(v)) (35)

Since we use the trimming function defined in D.5 to keep ĝi away from zero, 1/inf(ĝi) is

bounded from above. Due to the recursive differencing structure in f̂∗(v) that is explained

in Lemma 2.3, for some constant B = O(1),

1

N

∑
i

(P̂ ki (v)− P ki (v))2 ≤ B2 1

N

∑
i

(f̂∗i − P ki (v)ĝi)
2 (36)

= B2 1

N

∑
i

(f̂∗i − E[f̂∗i ] + E[f̂∗i ]− P ki (v)ĝi)
2

= B2 1

N

∑
i

(f̂∗i − E[f̂∗i ])2

︸ ︷︷ ︸
variance of f̂∗i

+B2 1

N

∑
i

(E[f̂∗i ]− Pki(v)ĝi)
2

︸ ︷︷ ︸
squared bias of f̂∗i

+ B2 2

N

∑
i

(f̂∗i − E[f̂∗i ])(E[f̂∗i ]− P ki (v)ĝi)︸ ︷︷ ︸
op(1)

= O2
p(1)(Op(N

−1h−3) +Op(h
8)) (37)
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Lemma 2.5 (Convergence of Hessian). Assume the kernel bandwidth h = 0.97σN−r and

1/16 < r < 1/7. Then, under the conditions of lemma 2.1 and with θ+ ∈ [θ̂, θ0],

Ĥ(θ+)−1 p→ H0 = E[H(θ0)]

Proof. Given that the Hessian is a continuous function on θ, the desired argument Ĥ(θ+)
p→

E[H(θ0)] would follow if (a) θ+ p→ θ0 and (b) sup|Ĥ(θ) − E[H(θ)]| p→ 0. Condition (b)

implies that Ĥ(θ0)
p→ E[H(θ0)]. If (a) holds, then by the continuous mapping theorem we

have Ĥ(θ+)
p→ Ĥ(θ0)

p→ E[H(θ0)]. Condition (a) directly follows from consistency because

θ+ is some intermediate point between θ0 and θ̂. To show (b), note that:

sup|Ĥ(θ)− E[H(θ)]| ≤ sup|Ĥ(θ)−H(θ)|+ sup|H(θ)− E[H(θ)]| (38)

≤ T1 + T2 (39)

T2
p→ 0 from Lemma 2.1. Note that the Hessian, by definition, is the second derivative of

the quasi-log-likelihood function:

H(θ0) ≡ 1

N

∑
i

(
Y k
i

Pk,i
∇θ′θPk,i −

Y k
i

P 2
k,i

∇θPk,i)

To make T1 uniformly converge to 0, we need ∇tθP̂ ki uniformly converge to its associated

estimand for t = 0, 1, 2, with the rate at t = 2 being the slowest. From Lemma 2.2, for

the case of t = 2, the bandwidth parameter r must be chosen in a way that lnN
N1−7r = o(1).

From the L’Hôpital’s rule, lim ln(N)
Na = 0 for any positive a. Therefore, r < 1/7 is sufficient

to guarantee the convergence of Hessian: Ĥ(θ+)−1 p→ H0 = E[H(θ0)]

Lemma 2.6 (Double Convergence). Let ai,bi be some iid quantity, and âi, b̂i be their

estimator respectively. If 1
N

∑
i(âi − ai)2 = Op(N

−α1), 1
N

∑
i(b̂i − bi)2 = Op(N

−α2), then
1
N

∑
i(âi − ai)(b̂i − bi) = Op(N

−α2−α1)

Proof. The proof follow directly from the Cauchy-Schwarz:

1

N

∑
i

(âi − ai)(b̂i − bi) ≤
√

1

N

∑
i

(âi − ai)2

√
1

N

∑
i

(b̂i − bi)2 (40)
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Lemma 2.7 (Convergence rate for double sums). Let h = 0.97σN−r, 1/12 < r < 1/8 and

the recursive differencing estimator P̂ ∗ki defined in the main text. For M̂i being (i) ĝi or

(ii) ŵki ≡ τiv
∂P̂ ∗ki
P̂ ∗ki∂θ

|θ=θ0 for all k,

√
N

1

N

∑
i

(Pki − P̂ ∗ki)(Mi − M̂i) = op(1)

Proof. Apply Lemma 2.6,

√
N

1

N

∑
i

(Pki − P̂ ∗ki)(Mi − M̂i) ≤
√
N

√
1

N

∑
i

(P̂ ∗ki − Pki)2

√
1

N

∑
i

(M̂i −Mi)2 (41)

To show (i), replace Mi with gi. From Lemma 2.2 that

1

N

∑
i

(ĝi − gi)2 ≤ 1

N

∑
i

(ĝi − E[gi] + E[gi]− gi)2 (42)

≤ supv,θ|E{ĝ(v)− E[g(v)]}2|+ sup2
v,θ|E[g(v)]− g(v)| (43)

= Op(
1

Nh3
) +Op(h

4) (44)

Note from Lemma 2.4 that

1

N

∑
i

(P̂ ∗ki − Pki)2 = Op(
1

Nh3
) +Op(h

8) (45)

As such,

√
N

1

N

∑
i

(Pki − P̂ ∗ki)(gi − ĝi) ≤
√
N(Op(

1

Nh3
) +Op(h8))(Op(

1

Nh3
) +Op(h4)))

= op(N
−1/2) given that 1/12 < r < 1/6 (46)

To show (ii), from Lemma 10 in Shen and Klein (2019),

1

N

∑
i

(w − ŵ)2 = O(h8) +O(1/Nh5) (47)
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Therefore the double sum will be op(1), if

{
[Op(h

4) +Op(1/N
1/2h3/2)]×

[Op(h
4) +Op(1/N

1/2h5/2)]

}
= op(N

−1/2).

This condition is satisfied with 1/16 < r < 1/8.

Lemma 2.8. With P̂ki being a standard Nadaraya-Watson estimator defined in D.4 and

D∗2 =
√
N
N

∑N
i=1[P̂ ∗ki − Pki]

ĝi
gi
wki defined in Theorem 2, D∗2 − D∗∗2 = op(1) where D∗∗2 =

√
N
N

∑N
i=1[P̂ki − Pki] ĝigiwki.

Proof. We proceed by first defining two intermediate objects that will simplify the analysis:

f̂0(v, θ0) ≡ ĝiP̂ki =
1

N

∑
j

Y k
j Kh(Vj − v) ≡ 1

N

∑
f0j(v, θ0)

f̂1(v, θ0) ≡ ĝiP̂ ∗ki =
1

N

∑
j

[Y k
j −∆k

j (v)]Kh(Vj − v) ≡ 1

N

∑
j

f1j(v, θ0)

To establish the equivalence result, it is sufficient to show that for each k:

D∗2 −D∗∗2 =

√
N

N

∑
i

[ ̂f0(vi, θ0)− ̂f1(vi, θ0)]wi

≤
√
N sup

v
|[f̂0(v, θ0)− f̂1(v, θ0)]wi| = op(1) (48)

Using a “residual property” of ∇θEki |θ=θ0 provided in Lemma 2.9, it can be shown that

E[f0j(v, θ0)wi] = E[f1j(v, θ0)wi] = 0. Therefore, with Gn(v) as the empirical CDF and

G(v) the true cumulative density of the index Vj at θ0, we have

[f̂0(v)− f̂1(v)]wi = f̂0(v)wi − E[f̂0(v)wi]− f̂1(v)wi + E[f̂1(v)wi]

=

∫
Vj

f0j(v, θ0)wid[Gn(v)−G(v)]−
∫
Vj

f1j(v, θ0)wid[Gn(v)−G(v)]

=

∫
Vj

[(f0j(v, θ0)− f1j(v, θ0))wi][dGn(v)− dG(v)] (49)

=

∫
Vj

[∆k
j (v)Kh(Vj − v)wi][dGn(v)− dG(v)] (50)

= ∆k
j (v)Kh(V ∗ − v)w(v)[Gn(v)−G(v)]|V ∗∈∂Ω (51)

−
∫
Vj∈Ω

[Gn(v)−G(v)]d[∆k
j (v)Kh(Vj − v)w(v)] (52)

The last step follows from integrating-by-parts. From A.5, the support of the index Vj is
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compact. Let ∂Ω denotes the boundary of this compact support. The first boundary term

vanishes because the kernel function Kh(V ∗ − v) decays very fast when V ∗ is evaluated at

boundary and v is a fixed point. For the second term, one can factor supv |Gn(v)−G(v)|1

outside of the integral. Then, since
∫
Vj∈Ω d[∆k

j (v)K(Vj−v)w(v)] is op(1), the result claimed

in (48) follows. That is, supv|(f̂0(v, θ0)− f̂1(v, θ0))τiwi|| = op(N
−1/2).

Lemma 2.9 (Residual Property). Under the index assumption: Pr[Y k
i = 1|Xi] = Pr[Y k

i =

1|Vi(θ0)], we have E[∇θPr[Y k
i = 1|V (θ)|θ=θ0 ]] = 0.

Proof. This property is stated and proved in page 401-403 in Klein and Spady (1993), and

the authors thank Whitney Newey for mentioning a key idea in a private communication.

For what it is worth, I reiterate the proof using the notation employed in this paper.

For notational convenience, let V (θ) = [F1 +F ′θF , B1 +B′θB,MFOI] denote the index

value at θ and G(·|v; θ) as the distribution of x = [F,B,MFOI] conditional on V (θ) = v.

We write the conditional rating probability Pk as a function of θ,

Pk(v; θ) ≡ Pr[Y k = 1|V (θ)] (53)

=

∫
Hk(v; θ0)dG(x|v; θ) (54)

where Hk(v; θ0) ≡ Pr(Y k = 1|x) = Pr(Y k = 1|V (θ0)) (55)

With δ(x; θ) ≡ v(x; θ0) − v(x; θ), differentiate Pk(v; θ) with respect to θ when v = v(t; θ)

for fixed t,

∇θPk(v(t; θ); θ) =
∂

∂θ

∫
Hk(δ(x; θ) + v(x; θ))G(x|v(t; θ); θ) (56)

When evaluated at θ = θ0, based on the law of total differentiation,

∇θPk(v(t; θ); θ)|θ=θ0 = D1 +D2 (57)

D1(t; θ0) ≡ ∂

∂θ
[

∫
Hk(δ(x; θ0) + v(x; θ))G(x|v(t; θ); θ)]|θ=θ0

D2(t; θ0) ≡ ∂

∂θ
[

∫
Hk(δ(x; θ) + v(x; θ0))G(x|v(t; θ); θ)]|θ=θ0

1This term is Op(N
−1/2) according to Nadaraya (1965) and Eddy and Hartigan (1977).
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For D1(t; θ0), since δ(x, θ0) = 0,

D1(t; θ0) =
∂

∂θ
[

∫
Hk(v(x; θ))G(x|v(t; θ); θ)]|θ=θ0

=
∂

∂θ
[

∫
Hk(v(t; θ))G(x|v(t; θ); θ)]|θ=θ0

=
∂

∂θ
[Hk(v(t; θ))

∫
G(x|v(t; θ); θ)]|θ=θ0

=
∂

∂θ
Hk(v(t; θ)|θ=θ0 (58)

For D2, note that δ(x, θ0) = 0, so ∂δ
∂θ = −∂v(x,θ)

∂θ . We may differentiate within the integral

to obtain

D2(t; θ0) = [

∫
∂

∂θ
Hk(δ(x; θ) + v(x; θ0))G(x|v(t; θ); θ)]|θ=θ0

= −E[D1(x; θ0)|v(x; θ0) = v(t; θ0)] (59)

where the above expectation is taken with respect to x conditioned on v(x; θ0) = v(t; θ0).

From (57-59),

E[∇θPk(v(t; θ); θ)|v(t; θ0)] = E[D1(t; θ0)|v(t; θ0)]− E[D1(t; θ0)|v(t; θ0)] = 0 (60)
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