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Abstract: For typical sample sizes occurring in economic and financial applications, the squared bias 
of estimators for the memory parameter is small relative to the variance. Smoothing is therefore a 
suitable way to improve the performance in terms of the mean squared error. However, in an 
analysis of financial high-frequency data, where the estimates are obtained separately for each day 
and then combined by averaging, the variance decreases with the sample size but the bias remains 
fixed. This paper proposes a method of smoothing that does not entail an increase in the bias. This 
method is based on the simultaneous examination of different partitions of the data. An extensive 
simulation study is carried out to compare it with conventional estimation methods. In this study, 
the new method outperforms its unsmoothed competitors with respect to the variance and its 
smoothed competitors with respect to the bias. Using the results of the simulation study for the 
proper interpretation of the empirical results obtained from a financial high-frequency dataset, we 
conclude that significant long-range dependencies are present only in the intraday volatility but not 
in the intraday returns. Finally, the robustness of these findings against daily and weekly periodic 
patterns is established. 
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1. Introduction 

After Mandelbrot (1971) had discussed the possibility that the strength of the statistical 
dependence of stock prices decreases very slowly, several researchers investigated this issue 
empirically. For example, Greene and Fielitz (1977) found indications of long-range dependence 
when they applied a technique called range over standard deviation (R/S) analysis (Hurst 1951; 
Mandelbrot and Wallis 1969; Mandelbrot 1972, 1975) to daily stock return series. This technique is 
based on the R/S statistic 𝑄 , which is defined as the range of all partial sums of a time series of length 
n from its mean divided by its standard deviation. For a large class of short-range dependent 
processes, 𝑄 /𝑛  converges to a non-degenerate random variable if 𝐻 = 0.5. An analogous result 
with 𝐻 ≠ 0.5  holds for long-range dependent processes. The parameter H is called the Hurst 
coefficient and is used as a measure of long-range dependence. However, Lo (1991) pointed out that 
the results obtained with this technique may be misleading because of the sensitivity of 𝑄  to short-
range dependence (see also Davis and Harte 1987; Hauser and Reschenhofer 1995) and proposed, 
therefore, a Newey and West (1987) type modification for the denominator of the R/S statistic, which 
is appropriate for general forms of short-range dependence. Contrary to the findings of Greene and 
Fielitz (1977) and others, he found no evidence of long-range dependence in daily and monthly index 
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returns once the possible short-range dependence was properly taken care of. A disadvantage of Lo’s 
(1991) modified R/S analysis is its dependence on an important tuning parameter, namely the 
truncation lag q, which determines the number of included autocovariances. The general conditions 
that ensure the consistency of the Newey and West estimator provide little guidance in selecting q in 
finite samples. Additionally, Andrews’s (1991) data-dependent rule for choosing q is based on 
asymptotic arguments. 

Long-range dependence can not only be characterized by a Hurst coefficient 𝐻 ≠ 0.5 but also 
by a slowly decaying autocorrelation function 𝜌  or a spectral density f that is steep in a small 
neighborhood of frequency zero, i.e., 𝜌(𝑘)𝑘  →  𝑐 𝑎𝑠 𝑘 → ∞, 𝑐 > 0, 𝑑 ≠ 0, (1) 

and: 𝑓(𝜔) ~ 𝑐𝜔 , 𝜔𝜖(0, 𝜀), 𝑐 > 0, 𝑑 ≠ 0, (2) 

respectively. The parameter d is called a memory parameter (or fractional differencing parameter) 
and is related to H by 𝑑 = 𝐻 − 0.5. It can be estimated by replacing the unknown spectral density f 
in (2) by the periodogram (Geweke and Porter-Hudak 1983) or a more sophisticated estimate of f 
(Hassler 1993; Peiris and Court 1993; Reisen 1994), taking the log of both sides, and regressing the log 
estimate on a deterministic regressor. Robustness against short-range dependence can be achieved 
by using only the 𝐾 = 𝑛  lowest Fourier frequencies in the regression. A popular choice for the 
tuning parameter 𝛼 is 0.5. For the purpose of testing, the asymptotic error variance is used. Applying 
the log periodogram regression method of Geweke and Porter-Hudak (1983) to the daily returns of 
the 30 components of the Dow Jones Industrials index and several indices, Barkoulas and Baum 
(1996) found no convincing evidence in favor of long-range dependence, which is not surprising in 
light of the finding of Mangat and Reschenhofer (2019) that the test based on the asymptotic error 
variance has very low power. Unfortunately, using the standard variance formula of the least squares 
estimator of the slope in a simple linear regression instead of the asymptotic error variance is also 
problematic because it leads to overrejecting the true null hypothesis (see Mangat and Reschenhofer 
2019). 

The negative results of Lo (1991) and Barkoulas and Baum (1996) are in line with the results 
obtained by Cheung and Lai (1995) with both modified R/S analysis and log periodogram regression 
for stock return data from eighteen countries and by Crato (1994) with fractionally integrated ARMA 
(ARFIMA) models (Granger and Joyeux 1980; Hosking 1981) for stock indices of the G-7 countries. 
Using not only the log periodogram regression with the asymptotic error variance but additionally 
also nonparametric techniques such as R/S analysis and modified R/S analysis as well as parametric 
techniques, Grau-Carles (2000) also found little evidence of long-range dependence in index returns 
but strong evidence of persistence in volatility measured as squared returns and absolute returns, 
respectively, which corroborates earlier findings of Crato and de Lima (1994) and Lobato and Savin 
(1998). In general, results obtained with ARFIMA models must be treated with caution. Firstly, the 
true model dimension is unknown in practice and reliable inference after automatic model selection 
is illusory. Secondly, Pötscher (2002) has shown that the problem of estimating the memory 
parameter d falls into the category of ill-posed estimation problems when the class of data generating 
processes is too rich. For example, Grau-Carles (2000) considered all ARFIMA(p,q) processes with 𝑝 ≤ 3 and 𝑞 ≤ 3, which is possibly an unnecessarily large class for return series. 

While the bulk of empirical research focused on major capital markets, Barkoulas et al. (2000) 
examined an emerging capital market, namely the Greek stock market, with the log periodogram 
regression and obtained significant estimates of d in the range between 0.20 and 0.30 for values of the 
tuning parameter 𝛼 between 0.5 and 0.6. However, their sample period is relatively short and the 
sampling frequency is weekly rather than daily. Even less confidence-inspiring are the positive 
results obtained by Henry (2002) with monthly data from several international stock markets. Clearly, 
methods that have been designed for large samples should not be applied to small and medium 
samples. Recently, small-sample tests for testing hypotheses about the memory parameter d have 
been proposed (Mangat and Reschenhofer 2019; Reschenhofer and Mangat 2020). When applied to 
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asset returns, these tests produced negative results throughout. Cajueiro and Tabak (2004), Carbone 
et al. (2004), Batten and Szilagyi (2007), Batten et al. (2008), Souza et al. (2008), Batten et al. (2013), and 
Auer (2016a, 2016b) observed time-variability of the Hurst exponent in stock returns, currency prices, 
and the prices of precious metals, respectively. These apparent changes were occasionally interpreted 
as indications of changing market efficiency or even used for the construction of trading strategies. 
Although it cannot be ruled out that some erratic estimator for the memory parameter d catches 
signals that are useful for trading purposes even when in fact there is no long-range dependence, 
there still seems to be a need for a more efficient estimator that actually allows to get some 
information about the true nature of the data generating process. 

In general, there is always a trade-off between bias and variance. Estimators for the memory 
parameter d that are based on a smooth estimate of the spectral density have typically a smaller 
variance and a larger bias than those based on the periodogram (Chen et al. 1994; Reschenhofer et al. 
2020), which is advantageous in situations where the squared bias is small relative to the variance. 
However, in the case of high-frequency financial data, there are usually gaps between the individual 
trading sessions, which make it necessary to estimate d separately for each trading session and 
compute the final estimate by averaging the individual estimates. Here, the variance decreases with 
the number of trading sessions but the bias remains fixed; hence, conventional smoothing methods, 
which achieve a reduction in the variance at the expense of an increase in the bias, are of no use. The 
goal of this paper is therefore to introduce a new method of smoothing that does not systematically 
have a negative impact on the bias. This method will be described in detail in the next section. Section 
3 presents the results of an extensive simulation study, which compares the performance of various 
estimators for the memory parameter in terms of bias, variance, and root-mean-square error (RMSE). 
Using limit order book data obtained from Lobster, Section 4 searches for indications of long-range 
dependence both in the intraday volatility and in the intraday returns. Section 5 provides a 
conclusion. 

2. Methods 

2.1. Log Periodogram Regression 

Fractionally integrated white noise satisfies the difference equation: 𝑦 = (1 − 𝐿) 𝑢 ,  (3) 

where L is the lag operator and 𝑢  is white noise with mean zero and variance 𝜎  (Adenstedt 1974). 
Its spectral density is given by: 𝑓(𝜔) = 1 − 𝑒 =  sin . (4) 

The memory parameter d, which represents the degree of long memory if 𝑑 ≠ 0, can be estimated by 
regressing the log periodogram of the time series 𝑦 , … , 𝑦  on a deterministic regressor (Geweke and 
Porter-Hudak 1983). Indeed, we have: 𝐿 = log 𝐼 𝜔 = 𝑐 + 𝑑𝑥 + 𝑣 ,  (5) 

where: 𝐼(𝜔) = ∑ 𝑦 𝑒 .  (6) 

is the periodogram, 𝜔 = 2𝜋𝑗/𝑛, 𝑗 = 1, … , 𝐾 ≤ 𝑚 = [(𝑛 − 1)/2],  (7) 

are the first K Fourier frequencies between 0 and π, 𝑥 = −2 log sin    (8) 

is a deterministic regressor, 
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𝑐 = log(𝜎 /(2  𝜋)) (9) 

is a constant, and 𝑣 = log(𝐼(𝜔 )/𝑓(𝜔 )).  (10) 

are random perturbations. Choosing 𝐾 ≪ 𝑚 rather than 𝐾 = 𝑚 is advisable when it is suspected 
that not only long-term dependencies are present but also short-term dependencies, e.g., when the 
data come from an ARFIMA process: 𝑦 = 1 − 𝜙 𝐿 − ⋯ − 𝜙 𝐿 (1 − 𝐿) (1 + 𝜃 𝐿 + ⋯ + 𝜃 𝐿 )𝑢  (11) 

(Granger and Joyeux 1980; Hosking 1981), where the parameter 𝑑  takes care of the former 
dependencies and the parameters 𝜙 , … , 𝜙 , 𝜃 , … , 𝜃  take care of the latter. It is assumed that 𝑑 <0.5  (stationarity condition), 𝑑 > −0.5  (invertibility condition), and all roots of the lag operator 
polynomials Φ(𝐿) = 1 − 𝜙 𝐿 − ⋯ − 𝜙 𝐿  and Θ(𝐿) = 1 + 𝜃 𝐿 + ⋯ + 𝜃 𝐿  lie outside the unit circle 
(causality condition and invertibility condition, respectively). 

In the special case of 𝑑 = 𝑝 = 𝑞 = 0 and Gaussianity, the ratios 𝐼(𝜔 )/𝑓(𝜔 ) are independent 
and identically distributed (i.i.d.) standard exponential and 𝑣 , … , 𝑣  are, therefore, i.i.d. Gumbel 
with mean −γ and variance 𝜋 /6, where γ = 0.57721… is Euler’s constant. The variance of the Geweke 
Porter-Hudak (GPH) estimator 𝑑  is then identical to the variance of the ordinary least squares 
(OLS) estimator for the slope in a simple regression model, i.e., 𝑣𝑎𝑟 𝑑 = = ,  (12) 

where: 𝑆 = ∑ (𝑥 − �̅�) .  (13) 

In a neighborhood of frequency zero: sin(𝜔) ≈ 𝜔, (14) 

Hence: 𝑆 ≈ 4 ∑ log (𝑡) − log (𝑡) .  (15) 

Furthermore: 

log (𝑡) − log(𝑡) = 𝐾 log (𝐾) − 2𝐾 log(𝐾) + 2(𝐾 − 1) 

− 𝐾 log(𝐾) − (𝐾 − 1)  =  𝐾 + 𝑜(𝐾).  

(16) 

Indeed, we have: 𝑠 = 4(𝐾 + 𝑜(𝐾))  (17) 

If: 𝐾 log(𝐾)/𝑛 → 0 (18) 

(see Hurvich and Beltrao 1993), hence, the variance formula (10) becomes: 𝑣𝑎𝑟 𝑑 ≈   (19) 

in line with the asymptotic result: √𝐾 𝑑 − 𝑑 → 𝑁 0,   (20) 

derived by Hurvich et al. (1998) under the assumption that 𝐾 = 𝑜(𝑛 / ) and log (𝑛) = 𝑜(𝐾) for a 
class of stationary Gaussian long-memory processes with spectral densities of the form: 
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𝑓(𝜔) = 1 − 𝑒 𝑓∗(𝜔),  (21) 

which includes all stationary ARFIMA processes. 
If 𝑑 ≠ 0, the ratios 𝐼(𝜔 )/𝑓(𝜔 ) are neither independent nor identically distributed, not even 

asymptotically (Robinson 1995). The problem is the irregular behavior of the spectral density in the 
neighborhood of frequency zero, i.e., 𝑓(𝜔) → ∞ as 𝜔 → 0 if 𝑑 > 0 and 𝑓(𝜔) → 0 as 𝜔 → 0 if 𝑑 <0 . Robinson (1995), therefore, proposed to remove the lowest Fourier frequencies from the log 
periodogram regression. Künsch (1986) showed that in the case of ARFIMA processes, the ratios 𝐼(𝜔 )/𝑓(𝜔 ), 𝑗 = 𝐻 + 1, … , 𝐻 + 𝐾 are indeed asymptotically i.i.d. standard exponential provided that (𝐻 + 1)/√𝑛 → ∞ and (𝐻 + 𝐾)/𝑛 → 0. However, Reisen et al. (2001) and Mangat and Reschenhofer 
(2019) found that even the removal of only the first Fourier frequency already has a negative effect 
on the performance of the estimator 𝑑 . 

2.2. Smoothing the Periodogram 

An obvious possibility to further develop the estimator 𝑑  is to smooth the periodogram 
before it is used in the regression (5) (Hassler 1993; Peiris and Court 1993; Reisen 1994). In order to 
illustrate the effect of smoothing, we consider the simple case of K/3 non-overlapping averages: 𝐼 𝜔 + 𝐼 𝜔 + 𝐼 𝜔 /3, 𝑗 = 2,5,8, … , 𝐾 − 1.  (22) 

In this case, the sample size is divided by three but at the same time the variance of the error term 
decreases approximately from: var log ≈   (23) 

to the variance of the log chi-square distribution with 6 degrees of freedom because: var log  ≈ var log + + .  (24) 

Noting that the mean (first cumulant) and the variance (second cumulant) of the log chi-square 
distribution with k degrees of freedom are given by: 𝜅 = log(2) + 𝜓(𝑘/2) (25) 

and: 𝜅 = 𝜓 (𝑘/2), (26) 

respectively. we obtain for 𝑘 = 6 , 𝜅 = 1.615932  and 𝜅 = 0.3949341 . Here, ψ is the digamma 
function and 𝜓  is its first derivative. Overall, the (approximate) variance of the least squares 
estimator of the memory parameter d decreases from = 1.644934   (27) 

to 𝜓 (3) / = 1.184802 , (28) 

where we have assumed that 

/ ∑ (𝑥 − �̅�), ,… ≈ ∑ (𝑥 − �̅�) ≈ 4. (29) 

The little practical relevance of asymptotic results such as (20) can be seen when the asymptotic 
values are confronted with the actual values obtained by simulations. In the simplest case of Gaussian 
white noise, we do not have to safeguard against short-range dependence and can therefore choose 
a value of 𝛼 slightly below 4/5. Choosing 𝛼 = 0.7 and 𝐾 ≈ 𝑛 , we obtain 0.00857 (27) and 0.00617 
(28) vs. 0.01148 and 0.00885 (simulated) for 𝑛 =  250 and 𝐾 = 48, 0.00326 and 0.00235 vs. 0.00381 
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and 0.00282 for 𝑛 =  1,000 and 𝐾 = 126, 0.00065 and 0.00047 vs. 0.00068 and 0.00050 for 𝑛 =  10,000 
and 𝐾 = 630 , and 0.00021 and 0.00015 vs. 0.00021 and 0.00015 for 𝑛 =  50,000  and 𝐾 = 1947 . 
Obviously, huge sample sizes are required for good agreement. In the case of a nontrivial ARFIMA 
process, this problem will become even more serious because a smaller value of 𝛼 must be chosen. 

More sophisticated further developments of the estimator 𝑑  are obtained by using more 
than three periodogram ordinates, allowing for overlaps, and introducing weights, or, equivalently, 
by using a lag-window estimator of the form: 𝑓 𝜔 = ∑ 𝑤(𝑠/𝑚)𝛾(𝑠)𝑒 , 𝑗 = 1, … , 𝐾, (30) 

where 𝛾(𝑠) denotes the sample autocovariance at lag s and the lag window 𝑤 satisfies 𝑤(0) = 1, |𝑤(𝑠)| ≤ 1 , and 𝑤(−𝑠) = 𝑤(𝑠)  (see Hassler 1993; Peiris and Court 1993; Reisen 1994). A 
disadvantage of these estimation procedures is that they require the specification of a second tuning 
parameter, namely the length of the weighted averages in the former case and 𝑚 ≤ 𝑛 − 1 in the latter 
case, in addition to K. Of course, suitable weights and a suitable lag window, respectively, must be 
chosen too. Carrying out an extensive simulation study to compare various frequency-domain 
estimators for d, Reschenhofer et al. (2020) found that too strong smoothing, e.g., caused by choosing 
a too small value for m, entails an extremely large bias. Hunt et al. (2003) derived an approximation 
for the bias and observed generally a good agreement between their approximation and the 
corresponding value obtained by simulations when 𝑑 > 0. However, the practical relevance of this 
approximation is limited because of its dependence on characteristics of the data generating process, 
which are unknown in practice. 

2.3. Using Subsamples 

A simple method of smoothing without introducing a bias is to average estimates obtained from 
different subsamples. Assume, for example, that the final estimate 𝑑 is obtained by averaging over 
N preliminary estimates 𝑑 , … , 𝑑  obtained from independent subsamples 𝑦 , … , 𝑦 , …, 𝑦 , … , 𝑦 ; then, the variance of 𝑑 vanishes as N increases while the bias remains unchanged. Of 
course, artificially splitting a long, homogeneous time series into non-overlapping subseries does not 
necessarily have a positive effect. For illustration, consider the simplest case where the time series 𝑦 , … , 𝑦  is split into two disjoint subseries 𝑦 , … , 𝑦 /  and 𝑦 / , … , 𝑦  of equal length. To allow a 
fair comparison, the frequency range (0, 𝜔 ], is kept constant, which implies that in the case of the 
two subseries the number of used Fourier frequencies is 𝐾/2 . Under the simplistic and mostly 
unrealistic assumption that the two subseries are independent, the (approximate) variance of the 
mean of the two GPH estimators based on the two subseries is given by: 

/ + / =  (31) 

which is, therefore, of the same size as that of the original estimator, which is based on the whole 
time series. However, there is still room for improvement. A reduction in the variance may be 
achieved by allowing for overlaps between the subseries, e.g., with a rolling estimation window or a 
combination of different partitions. 

At first glance, the idea of improving an OLS estimator by averaging the OLS estimators 
obtained from the whole sample and the first and second halves, respectively, seems to be at odds 
with the Gauß-Markov theorem because the combined estimator is still linear. However, the crucial 
point here is that only the observations are partitioned and not the log periodogram, which is used 
as dependent variable in the regression and is obtained from the observations through nonlinear 
transformations. For illustration, consider an estimator of the form: 𝑑 = (1 − 2𝜆)𝑑 + 𝜆𝑑 + 𝜆𝑑 , (32) 

where 𝑑 , 𝑑 , 𝑑  are the OLS estimators for d based on the log periodograms 𝐿 , 𝐿 , 𝐿  of the 
whole sample and the first and second halves, respectively. In the special case of Gaussian white 
noise with variance 2𝜋, the constant 𝑐 in the regression (3) vanishes, and we may, therefore, use the 
simpler estimators: 
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𝑑 = ∑∑ ≈ ∑ 𝑥 𝐿 , (33) 

and: 𝑑 = ∑ /∑ / ≈ ∑ 𝑥 𝐿/ , 𝑠 = 1,2,  (34) 

where 𝑥 = 𝑥 − �̅�. For the variances of the simplistic estimators 𝑑  and: 𝑑 = (1 − 2𝜆)𝑑 + 𝜆𝑑 + 𝜆𝑑 , (35) 

we obtain approximately: 𝑣𝑎𝑟 𝑑 ≈ ∑ 𝑥 ≈   (36) 

and: 𝑣𝑎𝑟 𝑑 ≈ 𝜋24𝐾 ((1 − 2𝜆) + 4𝜆 ) + 4𝜆(1 − 2𝜆)𝑐𝑜𝑣(𝑑 , 𝑑 ) 

≈ 𝜋24𝐾 (1 − 2𝜆) + 4𝜆 + 4𝜆(1 − 2𝜆)(𝜌 + 𝜌 )  ≈ 0.69 , if 𝜆 = , 

(37) 

respectively, where we have used that 𝑐𝑜𝑣 𝑑 , 𝑑 = 𝑐𝑜𝑣(𝑑 , 𝑑 ) and 𝑐𝑜𝑣 𝑑 , 𝑑 = 0 as well as 
the rough approximations: ∑ 𝑥 ≈ ∑ 𝑥 𝑥 ≈ ∑ 𝑥 𝑥 ≈ 2𝐾, (38) 

𝑐𝑜𝑟 𝐿 , 𝐿 ≈ 𝜌 = 0.35, 𝑖𝑓 2𝑘 = 𝑗,𝜌 = 0.13, 𝑖𝑓 |2𝑘 − 𝑗| = 1, 0, 𝑒𝑙𝑠𝑒  (39) 

(see Table 1), and: 

𝑐𝑜𝑣(𝑑 , 𝑑 ) ≈ 18𝐾 𝑐𝑜𝑣( 𝑥 𝐿 + 𝑥 𝐿 , 𝑥 𝐿 ) 

≈ 18𝐾 𝑥 𝑥  𝑐𝑜𝑣 𝐿 , 𝐿 + 𝑥 𝑥  𝑐𝑜𝑣 𝐿 , 𝐿  

≈ 18𝐾 𝜌 𝜋6 𝑥 + 𝜌 𝜋6 𝑥 𝑥  

≈ 𝜋24𝐾 (𝜌 + 𝜌 ) 

(40) 

For a further reduction of the variance, we may consider more general estimators of the form: 𝑑 = 𝑑 + ∑ (𝑑 + … + 𝑑 ) , (41) 

which are based on k partitions. The next section examines whether this possible reduction actually 
materializes and whether it is accompanied by an increase in the bias. All computations are carried 
out with the free statistical software R (R Core Team 2018). 
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Table 1. Sample correlations between 𝐿 , 𝑗 = 1, … ,20, and 𝐿 , 𝑘 = 1, … ,10, obtained from 10,000,000 
realizations of Gaussian white noise (𝑛 = 400). 

 1 2 3 4 5 6 7 8 9 10 
1 0.1475 0.0186 0.0072 0.0044 0.0027 0.0014 0.0013 0.001 0.0008 0.0005 
2 0.3541 0.0002 −0.0001 −0.0004 0 0.0003 −0.0003 0.0002 0.0002 0.0005 
3 0.1364 0.133 0.0154 0.006 0.0032 0.0025 0.0009 0.001 0.0007 0.0003 
4 −0.0001 0.3541 −0.0001 −0.0002 0.0002 0.0008 −0.0005 −0.0002 −0.0004 −0.0003 
5 0.0164 0.1316 0.1307 0.0144 0.005 0.0027 0.0019 0.0016 0.0008 0.0008 
6 −0.0001 −0.0003 0.354 0.0002 0.0002 −0.0004 0.0004 0.0001 −0.0005 0.0005 
7 0.007 0.0147 0.1311 0.1308 0.014 0.0043 0.0025 0.0021 0.0013 0.0011 
8 0 0.0001 0.0004 0.3541 0.0004 0.0001 −0.0001 −0.0002 −0.0001 −0.0002 
9 0.0035 0.0054 0.0143 0.1302 0.1302 0.0139 0.0051 0.003 0.0016 0.0009 

10 −0.0003 0 −0.0001 0.0004 0.3539 −0.0003 0.0003 0.0001 −0.0005 0.0003 
11 0.0023 0.0033 0.0047 0.0138 0.1301 0.13 0.0133 0.0054 0.0025 0.0014 
12 −0.0004 −0.0001 −0.0004 −0.0001 0.0003 0.3542 0.0001 −0.0001 0.0002 0 
13 0.0013 0.002 0.0032 0.0053 0.0137 0.1305 0.1309 0.0147 0.004 0.003 
14 −0.0004 0.0001 0.0003 0.0004 0.0008 0.0002 0.3544 −0.0002 0.0005 −0.0002 
15 0.0011 0.0016 0.002 0.0025 0.0059 0.014 0.1304 0.1297 0.0141 0.0055 
16 −0.0006 0.0001 −0.0004 0 0.0002 −0.0001 −0.0001 0.354 0.0002 0.0002 
17 0.0011 0.0009 0.0009 0.0021 0.0025 0.0049 0.0138 0.1305 0.1304 0.0137 
18 0.0003 −0.0002 0 −0.0001 −0.0006 −0.0004 −0.0002 −0.0004 0.3541 −0.0001 
19 0.0008 0.0005 0.0011 0.0015 0.0019 0.0026 0.0046 0.0138 0.1306 0.1302 
20 −0.0001 0.0005 0.0001 0.0002 0.0008 0.0001 0.0007 −0.0003 −0.0005 0.3541 

3. Simulations 

In this section, we compare the new estimator 𝑑  (41) for 𝑘 = 2, 3, 5, 10 with Geweke Porter-
Hudak’s (1983) estimator 𝑑 , which is based on the log periodogram regression (5), and the 
estimators 𝑑  and 𝑑 , which are obtained by replacing the periodogram ordinates in (5) by 
simple moving averages of neighboring periodogram ordinates and lag-window estimates of the 
form (30) with truncation lags 𝑚 = 𝑛 , 𝛽 = 0.5, 0.7, 0.9,1, respectively. In the latter case, the Parzen 
window is used, which is given by: 

𝑤(𝑧) =  1 − 6𝑧 + 6|𝑧| , |𝑧| < ,2(1 − |𝑧|) , ≤ |𝑧| ≤ 1.   (42) 

With a view to the later application of the estimators to 1-min intraday returns in Section 4, the 
sample size 𝑛 = 390 is chosen for our simulation study because there are 390 min in a regular trading 
session for U.S. stocks, which starts at 9:30 a.m. and ends at 4:00 p.m. The number K of Fourier 
frequencies included in the log periodogram regression is defined by setting 𝐾 = 20 ≈ [𝑛 ], 𝛼 = 0.5. 
For 𝑘 = 2, the first 𝐾/𝑘 = 10 Fourier frequencies of the two disjoint subseries of length 𝑛/𝑘 = 195 
are given by 𝜔 , 𝜔 , … , 𝜔 , and for 𝑘 = 10, the first 𝐾/𝑘 = 2 Fourier frequencies of the 10 disjoint 
subseries of length 𝑛/𝑘 = 39 are given by 𝜔 , 𝜔 . Clearly, we cannot go beyond 𝑘 = 10 because at 
least two frequencies are required to carry out the log periodogram regression. Additionally, using 
frequencies outside the interval (0, 𝜔 ] is not an option because this would amount to an unfair 
advantage, particularly when there are no short-term dependencies which have to be taken into 
account. 

With the help of the R-package ‘fracdiff’, 10,000 realizations of length 𝑛 = 390 of ARFIMA(1,d,0) 
processes with standard normal innovations and parameter values 𝑑 = −0.25, −0.1, 0, 0.1, 0.25 and 𝜙 = −0.25, −0.1, 0, 0.1, 0.25, respectively, are generated using a burn-in period of 10,000. For each 
realization, the estimators 𝑑 , 𝑑 , 𝑑 , 𝛽 = 0.5, 0.7, 0.9,1, 𝑑 , 𝑘 = 2, 3, 5, 10, are employed for 
the estimation of the memory parameter d. The competing estimators are compared with respect to 
bias (Table 2), variance (Table 3), and RMSE (Table 4). Table 3 shows that 𝑑  has indeed a smaller 
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variance than 𝑑 = 𝑑 . The variance keeps decreasing as the number of partitions increases from 
two to 10. Table 2 shows that this improvement does in general not come at the cost of a greater bias. 
In contrast, the reduction in the variance achieved in the case of the estimator 𝑑  by increasing the 
degree of smoothing from 𝛽 = 0.9 to 𝛽 = 0.5 is for 𝑑 ≠ 0 accompanied by a dramatic increase in 
the bias. Overall, in terms of the RSME, the best results are obtained with 𝑑 .  for small values of d 
and with 𝑑 .  for larger value of d. However, this is only relevant in the standard case where only 
a single time series is available. When a large number of time series are examined simultaneously (as 
in the empirical study of Section 4), the bias is the decisive factor and the new estimators 𝑑  are 
therefore more appropriate than the conventional estimators 𝑑 . 

Since values of 𝛽 such as 0.5, 0.7, or 0.9 are usually chosen to minimize the MSE for a single 
sample, we may suspect that the estimator 𝑑  becomes more competitive in the case of multiple 
samples when the averaging is taken into account. This can be done by further reducing the degree 
of smoothing. Unfortunately, there is a limit to what can be achieved by increasing the value of 𝛽. 
Table 2 shows that large biases are still obtained with the maximum possible value of 𝛽, i.e., 𝛽 = 1. 
This is due to the fact that global smoothing inevitably causes local distortions and cutting off higher-
order sample autocovariances is not the only source of smoothing. Downweighting the sample 
autocovariances with the Parzen window also has a strong smoothing effect, even when all sample 
autocovariances are used. 

Table 2. Bias of the estimators 𝑑  (log periodogram regression), 𝑑  (simple smoothing), 𝑑 , 𝛽 = 1, 0.9, 0.7, 0.5  (smoothing with Parzen window and truncation lag 𝑚 = [𝑛 ] ), and 𝑑 , 𝑘 =2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: 𝑛 = 390, number of used Fourier 
frequencies: 𝐾 = 20 ) of Gaussian ARFIMA(1,d,0) processes with 𝑑 = −0.25, −0.1, 0, 0.1, 0.25  and 𝜙 = −0.25, −0.1, 0, 0.1, 0.25. 𝒅 𝝓𝟏 𝒅𝑮𝑷𝑯 𝒅𝒔𝒎 𝒅𝒔𝒎𝑷𝟏  𝒅𝒔𝒎𝑷𝟎.𝟗  𝒅𝒔𝒎𝑷𝟎.𝟕  𝒅𝒔𝒎𝑷𝟎.𝟓  𝒅𝟐 𝒅𝟑 𝒅𝟓 𝒅𝟏𝟎 

−0.25 −0.25 0.0074 −0.0001 −0.0073 −0.0099 0.0345 0.1609 0.0087 0.0084 0.0098 0.0107 
 −0.1 0.0050 0.0002 −0.0083 −0.0107 0.0345 0.1625 0.0080 0.0084 0.0087 0.0092 
 0 0.0042 −0.0031 −0.0098 −0.0124 0.0337 0.1641 0.0065 0.0065 0.0076 0.0086 
 0.1 0.0097 0.0036 −0.0049 −0.0073 0.0380 0.1664 0.0126 0.0120 0.0128 0.0140 
 0.25 0.0151 0.0110 0.0006 −0.002 0.0436 0.1717 0.0165 0.0179 0.0201 0.0216 

−0.1 −0.25 0.0002 −0.0029 −0.0211 −0.0280 −0.008 0.0570 0.0008 0.0016 0.0006 0.0002 
 −0.1 0.0015 −0.0028 −0.0212 −0.0286 −0.0085 0.0578 −0.0001 0.0005 0.0001 −0.0001 
 0 0.0039 0.0017 −0.0184 −0.0251 −0.0053 0.0601 0.0038 0.0052 0.0060 0.0057 
 0.1 0.0014 0.0007 −0.0197 −0.0263 −0.0056 0.0612 0.0024 0.0028 0.0039 0.0037 
 0.25 0.0055 0.0059 −0.0148 −0.0215 −0.0003 0.0666 0.0086 0.0099 0.0093 0.0101 

0 −0.25 −0.0043 −0.0035 −0.0282 −0.0376 −0.0321 −0.0107 −0.0038 −0.0039 −0.0048 −0.0049 
 −0.1 −0.0011 0.0006 −0.0258 −0.0353 −0.0299 −0.0096 −0.0004 −0.0007 −0.0004 −0.0010 
 0 −0.0011 −0.0001 −0.0265 −0.0361 −0.0305 −0.0087 −0.0016 −0.0004 −0.0006 −0.0006 
 0.1 −0.0001 0.0009 −0.0235 −0.0333 −0.0278 −0.0063 0.0016 0.0025 0.0019 0.0025 
 0.25 0.0040 0.0064 −0.0214 −0.0309 −0.0250 −0.0022 0.0033 0.0060 0.0053 0.0073 

0.1 −0.25 0.0009 0.0057 −0.0274 −0.039 −0.0475 −0.0762 0.0009 −0.0003 0.0008 −0.0001 
 −0.1 0.0016 0.0056 −0.0277 −0.0396 −0.0478 −0.0754 −0.0003 0.0002 −0.0007 −0.0006 
 0 −0.0005 0.0043 −0.0277 −0.0396 −0.0479 −0.0745 −0.0012 −0.0012 −0.0012 −0.0010 
 0.1 0.0029 0.0059 −0.0250 −0.0374 −0.0458 −0.0727 0.0020 0.0028 0.0038 0.0034 
 0.25 0.0097 0.0149 −0.0186 −0.0305 −0.0392 −0.0685 0.0088 0.0096 0.0114 0.0115 

0.25 −0.25 0.0006 0.0102 −0.0314 −0.0451 −0.0690 −0.1748 0.0021 0.0018 0.0009 0.0006 
 −0.1 0.0016 0.0112 −0.0314 −0.0453 −0.0689 −0.1744 0.0006 0.0011 0.0014 0.0010 
 0 0.0044 0.0140 −0.0281 −0.0420 −0.0656 −0.1730 0.0032 0.0037 0.0040 0.0039 
 0.1 0.0049 0.0162 −0.0269 −0.0408 −0.0649 −0.1718 0.0049 0.0065 0.0061 0.0060 
 0.25 0.0079 0.0229 −0.0228 −0.0364 −0.0600 −0.1682 0.0105 0.0120 0.0130 0.0137 
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Table 3. Variance of the estimators 𝑑  (log periodogram regression), 𝑑  (simple smoothing), 𝑑 , 𝛽 = 1, 0.9, 0.7, 0.5 (smoothing with Parzen window and truncation lag 𝑚 = [𝑛 ]), and 𝑑 , 𝑘 =2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: 𝑛 = 390, number of used Fourier 
frequencies: 𝐾 = 20 ) of Gaussian ARFIMA(1,d,0) processes with 𝑑 = −0.25, −0.1, 0, 0.1, 0.25  and 𝜙 = −0.25, −0.1, 0, 0.1, 0.25. 𝒅 𝝓𝟏 𝒅𝑮𝑷𝑯 𝒅𝒔𝒎 𝒅𝒔𝒎𝑷𝟏  𝒅𝒔𝒎𝑷𝟎.𝟗  𝒅𝒔𝒎𝑷𝟎.𝟕  𝒅𝒔𝒎𝑷𝟎.𝟓  𝒅𝟐 𝒅𝟑 𝒅𝟓 𝒅𝟏𝟎 
−0.25 −0.25 0.0330 0.0328 0.0201 0.018 0.0106 0.0011 0.0287 0.0259 0.0254 0.0238 

 −0.1 0.0334 0.0339 0.0207 0.0185 0.0110 0.0012 0.0297 0.0266 0.0261 0.0245 
 0 0.0342 0.0337 0.0209 0.0185 0.0108 0.0011 0.0296 0.0267 0.0262 0.0248 
 0.1 0.0327 0.0330 0.0202 0.0180 0.0107 0.0011 0.0287 0.0262 0.0257 0.0240 
 0.25 0.0323 0.0325 0.0199 0.0178 0.0106 0.0011 0.0287 0.0260 0.0258 0.0242 

−0.1 −0.25 0.0333 0.0327 0.0211 0.0187 0.0114 0.0011 0.0295 0.0268 0.0264 0.0250 
 −0.1 0.0332 0.0317 0.0209 0.0186 0.0114 0.0011 0.0291 0.0264 0.0260 0.0250 
 0 0.0334 0.0330 0.0212 0.0189 0.0115 0.0012 0.0298 0.0271 0.0267 0.0251 
 0.1 0.0330 0.0315 0.0208 0.0185 0.0112 0.0011 0.0289 0.0262 0.0258 0.0246 
 0.25 0.0328 0.0320 0.0209 0.0185 0.0112 0.0011 0.0291 0.0266 0.0263 0.0248 

0 −0.25 0.0333 0.0322 0.0212 0.0191 0.0120 0.0012 0.0296 0.0268 0.0263 0.0250 
 −0.1 0.0328 0.0320 0.0212 0.0191 0.0120 0.0012 0.0293 0.0268 0.0261 0.0252 
 0 0.0335 0.0319 0.0214 0.0192 0.0119 0.0012 0.0297 0.0271 0.0266 0.0254 
 0.1 0.0338 0.0323 0.0217 0.0195 0.0122 0.0012 0.0299 0.0271 0.0270 0.0260 
 0.25 0.0332 0.0324 0.0213 0.0192 0.0120 0.0012 0.0300 0.0273 0.0269 0.0255 

0.1 −0.25 0.0332 0.0327 0.0218 0.0198 0.0130 0.0012 0.0299 0.0274 0.0271 0.0260 
 −0.1 0.0327 0.0321 0.0218 0.0199 0.0130 0.0012 0.0294 0.0269 0.0262 0.0252 
 0 0.0328 0.0317 0.0214 0.0194 0.0127 0.0012 0.0293 0.0264 0.0263 0.0250 
 0.1 0.0331 0.0321 0.0215 0.0195 0.0129 0.0012 0.0295 0.0269 0.0267 0.0256 
 0.25 0.0326 0.0321 0.0217 0.0197 0.0130 0.0012 0.0293 0.0268 0.0263 0.0254 

0.25 −0.25 0.0333 0.0315 0.0220 0.0202 0.0145 0.0013 0.0300 0.0271 0.0271 0.0260 
 −0.1 0.0327 0.0323 0.0222 0.0205 0.0148 0.0013 0.0302 0.0278 0.0275 0.0265 
 0 0.0328 0.0312 0.0219 0.0202 0.0146 0.0012 0.0297 0.0268 0.0264 0.0255 
 0.1 0.0333 0.0325 0.0226 0.0207 0.0147 0.0013 0.0301 0.0274 0.0274 0.0262 
 0.25 0.0339 0.0319 0.0226 0.0208 0.0150 0.0012 0.0302 0.0275 0.0272 0.0261 

Table 4. RMSE of the estimators 𝑑  (log periodogram regression), 𝑑  (simple smoothing), 𝑑 , 𝛽 = 1, 0.9, 0.7, 0.5  (smoothing with Parzen window and truncation lag 𝑚 = [𝑛 ] ), and 𝑑 , 𝑘 =2, 3, 5, 10 (k partitions) obtained from 10,000 realizations (length: 𝑛 = 390, number of used Fourier 
frequencies: 𝐾 = 20 ) of Gaussian ARFIMA(1,d,0) processes with 𝑑 = −0.25, −0.1, 0, 0.1, 0.25  and 𝜙 = −0.25, −0.1, 0, 0.1, 0.25. 𝒅 𝝓𝟏 𝒅𝑮𝑷𝑯 𝒅𝒔𝒎 𝒅𝒔𝒎𝑷𝟏  𝒅𝒔𝒎𝑷𝟎.𝟗  𝒅𝒔𝒎𝑷𝟎.𝟕  𝒅𝒔𝒎𝑷𝟎.𝟓  𝒅𝟐 𝒅𝟑 𝒅𝟓 𝒅𝟏𝟎 
−0.25 −0.25 0.1818 0.1811 0.1421 0.1344 0.1084 0.1643 0.1697 0.1612 0.1595 0.1545 

 −0.1 0.1827 0.1840 0.1442 0.1365 0.1104 0.1661 0.1724 0.1634 0.1618 0.1567 
 0 0.1851 0.1837 0.1449 0.1368 0.1092 0.1674 0.1721 0.1635 0.1621 0.1578 
 0.1 0.1812 0.1816 0.1423 0.1343 0.1103 0.1698 0.1700 0.1623 0.1607 0.1555 
 0.25 0.1803 0.1807 0.1412 0.1335 0.1119 0.1751 0.1701 0.1621 0.1619 0.1571 

−0.1 −0.25 0.1825 0.1808 0.1466 0.1396 0.1070 0.0663 0.1717 0.1636 0.1624 0.1581 
 −0.1 0.1823 0.1782 0.1460 0.1394 0.1072 0.0669 0.1705 0.1625 0.1611 0.1580 
 0 0.1829 0.1816 0.1467 0.1398 0.1072 0.0691 0.1727 0.1647 0.1636 0.1585 
 0.1 0.1817 0.1775 0.1454 0.1386 0.1061 0.0698 0.1699 0.1618 0.1607 0.1569 
 0.25 0.1811 0.1789 0.1451 0.1378 0.1059 0.0745 0.1707 0.1634 0.1625 0.1578 

0 −0.25 0.1826 0.1796 0.1481 0.1431 0.1142 0.0360 0.1721 0.1639 0.1624 0.1583 
 −0.1 0.1812 0.1790 0.1479 0.1426 0.1137 0.0359 0.1713 0.1638 0.1615 0.1588 
 0 0.1831 0.1785 0.1486 0.1433 0.1132 0.0351 0.1723 0.1646 0.1630 0.1593 
 0.1 0.1837 0.1796 0.1491 0.1435 0.1139 0.0351 0.1729 0.1647 0.1645 0.1611 
 0.25 0.1824 0.1801 0.1475 0.1418 0.1123 0.0345 0.1731 0.1653 0.1640 0.1599 

0.1 −0.25 0.1822 0.1810 0.1502 0.146 0.1237 0.0837 0.1728 0.1657 0.1646 0.1612 
 −0.1 0.181 0.1793 0.1502 0.1464 0.1237 0.0831 0.1715 0.1639 0.1617 0.1588 
 0 0.181 0.1781 0.1490 0.1448 0.1226 0.0820 0.1711 0.1624 0.1622 0.1582 
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 0.1 0.1819 0.1792 0.1489 0.1446 0.1223 0.0805 0.1717 0.1641 0.1633 0.1599 
 0.25 0.1808 0.1799 0.1485 0.1437 0.1206 0.0768 0.1713 0.1640 0.1626 0.1596 

0.25 −0.25 0.1824 0.1778 0.1517 0.1493 0.1390 0.1784 0.1733 0.1648 0.1647 0.1612 
 −0.1 0.1809 0.1800 0.1522 0.1502 0.1398 0.1780 0.1738 0.1666 0.1657 0.1629 
 0 0.1810 0.1772 0.1505 0.1483 0.1375 0.1765 0.1723 0.1636 0.1626 0.1598 
 0.1 0.1824 0.1809 0.1526 0.1495 0.1377 0.1754 0.1737 0.1657 0.1657 0.1621 
 0.25 0.1842 0.1799 0.1522 0.1487 0.1363 0.1718 0.1740 0.1663 0.1654 0.1623 

4. Empirical Results 

In this section, we employ the estimators discussed in the previous sections for the search of 
possible long-range dependencies in intraday returns and absolute intraday returns. For this 
purpose, the limit order book data from 27 June 2007 to 30 April 2019 (2980 trading days) of the 
iShares Core S&P 500 ETF (IVV) are downloaded from Lobster (https://lobsterdata.com). In the 
process of data cleaning, 27 early-closure days (the day before Independence Day, the day after 
Thanksgiving, and Christmas Eve) are removed as well as 9 January 2019 because of a large number 
of missing values. For each of the remaining days, the first mid-quotes (midpoints of the best bid and 
ask quotes) in each minute and the last mid-quote in the last minute are computed and subsequently 
used to obtain 1-min log returns. Finally, another three days are omitted because of extreme returns, 
namely 19 September 2008, 6 May 2010, and 24 August 2015, which leaves 2949 days for our analysis. 
Estimates are computed for each day, divided by the number of days, and plotted cumulatively; 
hence, the last values correspond to the averages of the estimates. The validity of these values is 
reinforced by the striking linearity of the curves. This linearity also implies that the possible long-
range dependence is not changing over time; hence, there appears to be no such thing as fractal 
dynamics. Figure 1a suggests that d is close to zero in case of the 1-min log returns. The large negative 
values obtained with 𝑑 .  and 𝑑 .  as well as the comparatively inconspicuous values obtained 
with 𝑑 .  can be explained with the help of the results of our simulation study. According to Table 
2, they are indicative for 𝑑 = 0. In contrast, there is strong evidence of long-range dependence in the 
volatility (see Figure 1b). Most estimators suggest that the memory parameter d is approximately in 
the range between 0.3 and 0.4. Only the estimator 𝑑 . , which is severely downward biased in case 
of positive d (see Table 2), favors a smaller value. 

Visual significance of the differences between certain estimates can be ascertained just by 
observing the large differences between the slopes of the corresponding lines in Figure 1 and noting 
the striking stability of these lines over time. However, we still might want to augment our visual 
analysis with a formal statistical test. A simple way to accomplish that is to calculate the difference 
between two estimates separately for each trading day and compare the number of positive 
differences to the number of negative differences (sign test). Not surprisingly, the resulting p-values 
are infinitesimal. For example, even in the case of the two neighboring lines corresponding to 𝑑  
and 𝑑  in Figure 1b, the p-value is less than 2.2 × 10 . It is still less than 9.7 × 10  when we omit 
most of the trading days and use only Wednesdays in order to ensure approximate independence of 
the subsamples. Note that there are 4 × 390 = 1560 1-min returns between the last 1-min return of 
some Wednesday and the first 1-min return of the next Wednesday plus five overnight breaks and a 
whole weekend. Even for a relatively large value of the memory parameter such as 𝑑 = 0.3, the 
autocorrelation of an ARFIMA(0,d,0) process at lag 𝑗 = 1561 is quite small, i.e., 𝜌(𝑗) = ( ) ( )( ) ( ) = ∏ ≈ 0.023. (43) 

Finally, in order to check the robustness of our findings against daily and weekly periodic 
patterns, we repeat the graphical analyses with suitably transformed data. Replacing the 1-min log 
returns 𝑟 (𝑠), 𝑠 = 1, … ,390 , by the daily differences 𝑟 (𝑠) − 𝑟 (𝑠)  and the weekly differences 𝑟 (𝑠) − 𝑟 (𝑠), respectively, ensures that any daily or weekly periodic patterns are erased while long-
range dependencies remain unaffected. Figure 1c,e are very similar to Figure 1a, which shows that 
the insights gained from Figure 1a are genuine. Analogously, comparing Figure 1d,f with Figure 1b, 
we see that the same is true for the absolute returns 



Econometrics 2020, 8, 40 12 of 15 

 

 
Figure 1. Cumulative plots of the estimates obtained by applying  𝑑  (blue), 𝑑  (darkgreen), 𝑑  (green), 𝑑 .  (gold), 𝑑 .  (red), 𝑑 .  (orange),  𝑑  (pink), 𝑑  (magenta),  𝑑  (turquoise), 𝑑  (yellowgreen) to the (a) 1-min intraday log returns 𝑟 (𝑠), 𝑠 = 1, … ,390 , (b) absolute 1-min 
intraday log returns |𝑟 (𝑠)|, (c) 𝑟 (𝑠) − 𝑟 (𝑠), (d) |𝑟 (𝑠) − 𝑟 (𝑠)|, (e) 𝑟 (𝑠) − 𝑟 (𝑠), (f) |𝑟 (𝑠) −𝑟 (𝑠)|. 

5. Discussion 

In this paper, we have introduced a new estimator for the memory parameter d, which is based 
on running a log periodogram regression repeatedly for different partitions of the data. In contrast 
to conventional smoothing methods, which manage to achieve a reduction in the variance at the 
expense of an increase in the bias, our approach does not systematically have a negative impact on 
the bias, which makes it particularly useful for applications where the bias is the decisive factor. For 
example, intraday returns are usually only available during trading hours and estimation must 
therefore be carried out separately for each trading day. When the individual estimates are eventually 
combined by averaging, the variance decreases as the sample size increases, but the bias does not 
change. The results of an extensive simulation study confirm the good performance of the new 
estimator. It outperforms all of its competitors when both bias and variance are taken into account, 
but the bias is weighted more heavily. 

The importance of results obtained with the help of simulations is due to the fact that reliable 
inference on the memory parameter 𝑑 is not possible under general conditions. Some asymptotic 
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results can be obtained under very restrictive conditions though. Unfortunately, convergence is 
typically very slow (recall the discussion in Section 2.2). Indeed, Pötscher (2002) showed that many 
common estimation problems in statistics and econometrics, which include the estimation of 𝑑, are 
ill-posed in the sense that the minimax risk is bounded from below by a positive constant 
independent of 𝑛 and does, therefore, not converge to zero as 𝑛 → ∞. In particular, he found that 
for any estimator 𝑑  for 𝑑  based on a sample of size 𝑛 from a Gaussian process with spectral 
density 𝑓: sup∈ℱ 𝐸 𝑑 − 𝑑 ≥ > 0, (44) 

where 1 ≤ 𝑟 < ∞ and ℱ is the set of all ARFIMA spectral densities (𝑝 ≥ 0, 𝑞 ≥ 0), ARFI spectral 
densities (𝑝 ≥ 0, 𝑞 = 0), or FIMA spectral densities (𝑝 = 0, 𝑞 ≥ 0). Furthermore, he showed that for 
every 𝑓 ∈ ℱ, (44) holds also “locally,” when the supremum is taken over an arbitrarily small 𝐿 -
neighborhood of 𝑓 . Finally, he established that confidence intervals for 𝑑 coincide with the entire 
parameter space for 𝑑 with high probability and are therefore uninformative. Nevertheless, it may 
be possible to formally derive the statistical properties of our new estimator for a rather narrow class 
of processes such as low order ARFI processes. However, this is left for future research. The current 
paper provides just a proof of concept. 

In our empirical investigation of high-frequency data of an index ETF, we have applied the 
competing estimators to 1-min log returns and absolute 1-min log returns separately for each day. 
The results are quite stable over time and across estimation methods. The few deviations are due to 
conventional smoothing methods and can easily be explained by the size of their bias as shown in 
Table 2. We may, therefore, safely conclude that significant long-range dependencies are present only 
in the intraday volatility but not in the intraday returns. These findings are genuine and not just due 
to daily or weekly periodic patterns because similar results are obtained when daily and weekly 
differences are investigated instead of the original intraday returns. 
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