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Abstract: The Poisson regression model remains an important tool in the econometric analysis of count
data. In a pioneering contribution to the econometric analysis of such models, Lung-Fei Lee presented a
specification test for a Poisson model against a broad class of discrete distributions sometimes called the
Katz family. Two members of this alternative class are the binomial and negative binomial distributions,
which are commonly used with count data to allow for under- and over-dispersion, respectively. In this
paper we explore the structure of other distributions within the class and their suitability as alternatives
to the Poisson model. Potential difficulties with the Katz likelihood leads us to investigate a class of point
optimal tests of the Poisson assumption against the alternative of over-dispersion in both the regression
and intercept only cases. In a simulation study, we compare score tests of ‘Poisson-ness’ with various
point optimal tests, based on the Katz family, and conclude that it is possible to choose a point optimal
test which is better in the intercept only case, although the nuisance parameters arising in the regression
case are problematic. One possible cause is poor choice of the point at which to optimize. Consequently,
we explore the use of Hellinger distance to aid this choice. Ultimately we conclude that score tests remain
the most practical approach to testing for over-dispersion in this context.

Keywords: Katz family of distributions; binomial distribution; negative binomial distribution; point
optimal test; regression; score test; Hellinger distance

JEL Classification: C12; C25; C46

1. Introduction

The well-known Pearson family of continuous distributions, originally explored by Pearson (1895),
is comprised of any solution to a particular differential equation. In his PhD thesis, Katz (1945) explored
a family of discrete distributions that are solutions to a difference equation analogous to the Pearson
differential equation.1 The Pearson family is a collection of four-parameter distributions and specializations

1 An abstract to this thesis appeared in Katz (1946).
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thereof. Katz (1965, p.175) observes that certain specializations ‘produce simpler and more manageable
classes’ and restricts attention to a set of one- and two-parameter distributions. In particular, his restrictions
result in a family of distributions that nest the two-parameter binomial and negative binomial (or Pascal)
distributions, together with the one-parameter Poisson distribution.2 A defining characteristic of these
distributions is that they arise when certain parameters, or parameter ratios, take integer values and so
represent a set of measure zero in respect of the set of family members, which are defined in terms of
real-valued parameters. The Katz family of distributions has proved important in the analysis of count
data. It provides a framework within which practitioners can extend simple Poisson models to models
that allow for individual heterogeneity, using the Poisson regression model (PRM). The PRM can, in turn,
be extended to models that allow for either over-dispersion, using the negative binomial regression model
(NBRM), or under-dispersion, using the binomial regression model. We shall, for the most part, defer
consideration of under-dispersion to another time.

The problems of modelling and testing for over-dispersion have proved important in the count data
literature. Essentially concurrently, papers by Cameron and Trivedi (1986); Lee (1986) and Lawless (1987ab)
made substantial contributions to the literature on inference in the PRM, the NBRM, and testing for
over-dispersion, with both Cameron and Trivedi (1986) and Lee (1986), in particular, couching substantial
parts of their analysis within the context of the Katz family of distributions. This class of distributions
is interesting because the binomial and negative binomial distributions are alternative specifications
to the Poisson that allow under- and over-dispersion, respectively. Subsequent contributions to this
literature include Dean and Lawless (1989); Dean (1992); Qu et al. (1990) and Fang (2003). Collectively
they have explored likelihood ratio (LR), Lagrange multiplier (LM), and Wald tests, together with tests
based on generalised method of moments (GMM) estimators, for over-dispersion in the PRM. Fang (2003)
concludes that his preferred GMM test is that based on the fewest over-identifying assumptions offering
essentially the same power as tests based on more over-identifying restrictions but having the greatest
ease of calculation.3 Interestingly, this preferred test is that originally proposed by Katz (1965), on an ad
hoc basis.

In this paper, we investigate a new family of tests for over-dispersion in the PRM by exploring point
optimal tests where the alternative hypothesis lies in the Katz family of distributions. An analysis of the
Katz likelihood reveals that maximum likelihood estimation may be problematic in the over-dispersed
case, suggesting that the use of point optimal tests may have value. For overviews of the use of point
optimal tests in econometrics see King (1987) and King and Sriananthakumar (2015). To the best of our
knowledge they have not previously been used in the context of testing for over-dispersion.

This paper can be thought of as being comprised of three main parts. The first part provides a very
brief description of the family of distributions introduced by Katz (1965), the second explores the role that
these distributions can play in extending the PRM to allow for over-dispersion and, finally, we introduce a
new class of point-optimal tests for over-dispersion. Specifically, in Section 2 we explore the Katz family of
distributions, although most of the analysis is relegated to the Appendix while Section 3 explores the PRM
and NBRM. In particular, we highlight that the typical treatments of the NBRM really have little to do with
what might be thought of as the canonical negative binomial distribution. Section 4 then focuses on the

2 This family of distributions, and extensions to it, have proved important in the actuarial modelling of claims; see, for example,
Hess et al. (2002); Panjer (1981); Sundt and Jewell (1981); Willmot (1988), and Pestana and Velosa (2004). Johnson et al. (1993,
Chapter 2) provides an extensive discussion of both the Katz family and various other, often related, families of discrete
distributions. Although, in respect of the Katz family of distributions alone, the treatment in Johnson and Kotz (1969, Chapter
2.4) is more complete; see also Gurland (2006) for a more recent treatment.

3 The one caveat to this observation is that the use of higher order moments may provide some power against models which share
low order moments, thereby creating a class of implicit null hypotheses (Davidson and MacKinnon 1987).
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problem of testing for over-dispersion and the structure of the Katz likelihood. It is here that we introduce
our family of point optimal tests and explore their small sample characteristics relative to some existing
tests via a simulation study. We find that it is possible to choose a point optimal test which is better in the
intercept only case, although the regression case proves problematic. One possible source of weakness
in our point optimal tests is the choice of ‘point’ at which to optimize. In Section 5 we explore the use
of Hellinger distance as a device to assist in choice of point. Although exact calculation of the Hellinger
distance in this context is not tractable, it is straight-forward to obtain bounds on the distance. Using the
upper bound, we find that the implied optimal points are extremely close to zero, implying that use of the
score test is close to the optimal strategy in this context and so our advice to practitioners is to continue to
use score tests to test for over-dispersion in this context. Section 6 concludes.

2. The Katz Family of Distributions

Among his many and varied interests, Karl Pearson was concerned with the problem of modelling
(possibly) asymmetric empirical distributions. To this end, he developed a four-parameter family of
skewed continuous distributions as solutions to a particular differential equation (Pearson 1895). The idea
being that the distributions might be fitted to any data set using the method of moments approach that he
had developed earlier (Pearson 1894). Perhaps surprisingly, the motivation for the choice of differential
equation came from a difference equation that could be used to generate the hypergeometric distribution
(Pearson 1895, pp.360–361); that is, from a discrete distribution. If we let p(y) ≡ P[Y = y] denote the
probability that the discrete random variable Y takes a value y ∈ Y, where Y denotes the support of the
distribution of Y, then the form of this difference equation was

p(y)− p(y− 1)
p(y− 1)

=
a− y

b0 + b1y + b2y2 , (1)

with a, b0, b1, and b2 denoting the various parameters of the distribution. We note that this expression is of
the form

p(y)/p(y− 1) = P(y)/Q(y),

where P and Q are polynomials in y, and remark in passing that the sequence of probabilities so-defined
are hypergeometric in that the ratio of adjacent terms in the sequence can be expressed as a ratio of
polynomials in the index y.

Pearson did not pursue a discrete analogue to his family of distributions. Indeed, apart from some
incidental investigations along these lines, Katz (1945) provided the first detailed analysis of the family of
distributions arising from (1) although, apart from some abstracts (Katz 1946 1948), it was not until Katz
(1965) that this material was published. In the event, Katz (1965) focussed on a two-parameter special case
of (1),4 which he expressed in the form

p(y + 1)
p(y)

=
λ + yγ

y + 1
, λ ∈ Λ ⊆ R, γ ∈ Γ ⊆ R, (2)

4 Numerous extensions soon followed; see, for example, Bardwell and Crow (1964); Crow and Bardwell (1965); Ord (1967ab); Staff
(1964 1967) and Kemp (1968). Here we only briefly sketch some key ideas. For a more complete treatment of such families of
distributions see, for example, any of Johnson et al. (1993, Chapter 2.3), Ord (1972, Chapter 5), or Dacey (1972).
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with y ∈ Y ⊆ Z0, where Z0 denotes the set of non-negative integers and subject to the usual axiomatic
properties of probability:

0 ≤ p(y) ≤ 1 (3)

∑
y∈Y

p(y) = 1. (4)

As we demonstrate in the appendix, there are circumstances where both Λ and Γ may include values
that are positive, negative, or zero.

Although Katz himself included zero in Y , subsequent literature has not always done so, choosing
instead to focus on the difference equation (2), whilst still referring to the resulting distributions as
members of the Katz family; see, for example, Sundt and Jewell (1981); Willmot (1988) and Miller (1998).
We too shall proceed in this latter manner, focussing on the what we call left-truncated Katz distributions,
that include the original definition of Katz (1965) as the special case of no left-truncation. We relegate the
technical analysis of these distributions to the appendix, which also gathers a number of other properties
of this family of distributions.

Two members of this family that will be of particular interest to us are the Poisson and negative
binomial distributions, which are commonly encountered in the modelling of counts and the possibility of
over-dispersion. The probability mass functions (pmfs) of these distributions are the form:

p(y) =


λye−λ

y!
, γ = 0,

(1− γ)λ/γγy
(

λ
γ

)
y

y!
, 0 < γ < 1,

y ∈ {0, 1, 2, . . .}, (5)

respectively.5 Evidently, when γ = 0, p(y) is the pmf of the Poisson distribution. When γ > 0, if λ/γ = r
is integer then p(y) yields a standard representation of the negative binomial pmf, where the probability
of success in any given trial is π = 1− γ. Even if λ/γ = τ is not integer, p(y) is still the pmf of a negative
binomial distribution — see, for example, (9) — although the interpretation of λ/γ differs between the
two cases.6 We shall, hereafter, denote the Poisson distribution with parameter λ, P(λ), and the negative
binomial with parameters τ and π, NB(τ, π).

Before moving on, let us consider the well-known Poisson approximation to the negative binomial.
A common statement of this result is NB(τ, π)→ P(λ) as τ → ∞ provided λ = τ(1− π) remains fixed.
That is, π → 1 at the same rate as τ diverges. One advantage of the parameterization adopted in (5) is
that the somewhat convoluted requirement on how the parameters evolve in the approximation readily
reduces to γ→ 0+ for fixed λ.7

5 Observe that the Pochhammer symbol (r)y = Γ(y + r)/Γ(r), where y is a non-negative integer. Note that r can be negative. If r
is a negative integer then (r)y = 0 for all y > r. If r is a positive integer then (r)y = (y + r− 1)!/(r− 1)!.

6 When λ/γ is integer the resulting pmfs are sometimes referred to as those of Pascal distributions, with the term negative binomial
reserved for the more general case of λ/γ not necessarily integer.

7 Similarly, the Poisson approximation to the Binomial reduces to γ→ 0− for fixed λ, which is also a more intuitive statement of
how parameters must evolve for the approximation to work than is typically encountered.
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3. The Poisson, Negative Binomial, and Katz Regression Models

3.1. The Poisson Regression Model

The PRM extends the Poisson distribution to allow for individual heterogeneity. It has played an
important role in the analysis of count data in both econometrics and statistics — early references include
Gart (1964); Jorgenson (1961), and Haight (1967, Chapter 5) — and is readily available in standard software
such as MATLAB, Stata, and R. The use of the PRM in econometrics became increasingly widespread
following the significant contributions of Gilbert (1979; 1982) and Hausman et al. (1984). Recent summaries
can be found in Greene (2007); Winkelmann (2008) and Cameron and Trivedi (2013).

The PRM is obtained from the Poisson distribution by replacing the fixed parameter λ with a function,
denoted λi say, of the k-vector of characteristics xi that can vary across individuals. Specifically, in the
language of generalized linear models (GLIMs), we have the link function

ln λi = x>i β, (6)

with regression coefficients β. The work of Nelder and Wedderburn (1972) and Frome et al. (1973) shows
how iterated least squares methods can be used to obtain maximum likelihood estimates of β; see also
McCullagh and Nelder (1989).

One shortcoming of the PRM is the implied equality of mean and variance that is characteristic of the
Poisson distribution. Specifically, on replacing λ with λi in (A8), we obtain8

E [Yi | λi] = V [Yi | λi] = λi. (7)

This is at odds with the observation that variability typically exceeds location in real world data, a
feature known as over-dispersion. A common response to concerns about over-dispersion has been to
explore extensions to the Poisson model that allow for different means and variances. To the extent that
the Poisson regression model can be nested in such generalizations, this approach provides a framework
within which one might test for either over-dispersion or underdispersion, although we will not explore
this latter case here.

The fundamental characteristic of the PRM is that it is a function of the linear index, x>i β, only through
the ‘parameter’ λi, as per (7). In the next two sub-sections we will consider different extensions to this
model, the first being the classical NBRM and the second being what we dub the Katz regression model
(KRM). Both models extend the PRM by nesting it within a richer model with an additional ‘parameter’.
An important distinction between the NBRM and the KRM is the role of λi. In the case of the NBRM, λi
remains the conditional mean of the count Yi, whereas this is not the case in the KRM. A second distinction
between the models is that the additional ‘parameter’ is typically treated as being a function of the linear
index in the NBRM whereas in our treatment of the KRM it is not, it is a genuine parameter, although it is
easy to envisage extensions where that requirement is relaxed.

8 We shall persist with the abuse of notation inherent in expressions like E [Yi | λi ] rather than, say, a more complete notation along
the lines of E [Yi | β; xi ], for the sake of the notational economy it affords.
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3.2. The Classical Negative Binomial Regression Model

There are numerous paths leading to what might reasonably be called a negative binomial regression
model.9 This is due, at least in part, to the variety of ways in which one might generate a negative binomial
distribution. For example, Boswell and Patil (1970) provide 15 different derivations and, of course, there
is a variety of parameterizations of the negative binomial distribution that can also lead to differences.
Below we explore a fairly commonly adopted approach and consider some of its implications.

Our starting point is the following observation, originally due to Greenwood and Yule (1920). Suppose
that Y | θ ∼ P(θ), where θ is a random variable whose distribution is gamma with shape (τ) and rate (η)
parameters, written θ ∼ G(η, τ), so that the corresponding density function is,10

g(θ; η, τ) = ητθτ−1 exp{−θη}/Γ(τ), τ > 0, η > 0, θ > 0, (8)

with E [θ] = τ/η and V [θ] = τ/η2.11 Then, we obtain an unconditional distribution for Y on averaging
with respect to θ > 0, so that

Prob (Y = y | η, τ) =
∫

θ>0
f (y | θ) g(θ; η, τ)d θ

=
Γ(y + τ)

y! Γ(τ)

(
1

1 + η

)y ( η

1 + η

)τ

. (9)

If one imposes the restriction τ ≡ r ∈ N+, where N+ denotes the set of positive integers (or the
natural numbers), then this is simply a form of the negative binomial (Pascal) pmf, with π = η/(1 + η),
see (A5). Note that

E [Y] = τ/η = λ (say),

the same as for the gamma distribution (8), and that

V [Y] =
τ

η
+

τ

η2 = E [Y] + τ−1(E [Y])2 = λ + τ−1λ2.

One posible path to a NBRM is to extend the analysis of Greenwood and Yule (1920) to allow for
individual heterogeneity; we follow the treatment of Cameron and Trivedi (1986, p.32). Specifically, we
replace θ by θi, where

ln θi = x>i β + εi, (10)

with εi a disturbance term reflecting unobservables. Cameron and Trivedi (1986) then assume that either εi,
or ‘equivalently’ θi, have a gamma distribution, conditional on the regressors. Their analysis then proceeds
under the latter assumption, which is completely analogous to the developments of Greenwood and Yule
(1920). Specifically, letting θi | xi ∼ G(ηi, τi) yields

9 The NBRM was explored in Adamidis (1999); Greene (2008); Lawless (1987ab), and Raschke and Greene (2010). Hilbe (2011) and
Hilbe (2014) provide useful recent surveys of the NBRM.

10 Common variants of this argument include: (i) Lee (1986), who specifies the gamma distribution in terms of the shape and scale
(or inverse rate) (ξ = 1/η) parameters, that is, θ ∼ G(1/ξ, τ), and (ii) Cameron and Trivedi (1986), who use the so-called index
form of the gamma distribution, which is specified in terms of the shape and mean (φ = τ/η) parameters, that is, θ ∼ G(τ/φ, τ).
Cameron and Trivedi (1986) call the shape parameter (τ) the index or precision parameter.

11 Moments for the gamma distribution specifications given in Footnote 10 follow immediately on making the appropriate
substitution for η.
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Prob (Yi = y | xi; ηi, τi) =
Γ(y + τi)

y! Γ(τi)

(
1

1 + ηi

)y ( ηi
1 + ηi

)τi

. (11)

Moreover,

E [Yi | xi; ηi, τi] =
τi
ηi

= λi (say), (12)

and

V [Yi | xi; ηi, τi] =
τi
ηi

+
τi

η2
i
= λi + τ−1

i λ2
i . (13)

It is immediately obvious that, in the final analysis, the functional form of (10) is a complete irrelevance,
with only the parameters of the mixing Gamma distribution of any importance and we have made no
assumptions about them beyond allowing the possibility of varying at the individual level. From here,
Cameron and Trivedi (1986) argue that a variety of models are available on defining

τi = α−1(E [Yi | xi] ; ηi, τi)
k (14)

for α > 0 and arbitrary constant k, so that

V [Yi | xi; ηi, τi] = E [Yi | xi; ηi, τi] + α(E [Yi | xi; ηi, τi])
2−k.

Special cases of importance are then the Negbin I model (obtained when k = 1) and the Negbin II
model (k = 0),12 of which the latter is probably the more popular in the literature. This model nests the
PRM as a limiting case where α→ 0 from above, a testable proposition, which is equivalent to τi diverging
to ∞ for all i.

The specification (10) becomes more relevant if, instead, we assume that hi = eεi | xi ∼ G(ηi, τi) rather
than θi. Define δi = exp{x>i β}, so that θi = δihi. Thus, conditional on xi, θi is a scaled Gamma random
variate which is, itself, a Gamma random variate. From the properties of the Gamma distribution we have
immediately that θi|xi ∼ G(ηi/δi, τi). Moreover, analogs of results (11)–(13) are immediately available in
this case on replacing ηi by ηi/δi. In short, the differing distributional assumptions are ‘equivalent’ in that
the structure of the results is the same in both cases, however, it is only in this latter case that (10) has any
relevance, through the presence of δi in the various expressions.

The attraction of the formulation (11)–(13) of Cameron and Trivedi (1986) is its close resemblance to
a GLIM, which simplifies estimation.13 As noted above, the null of a PRM obtains as τi → ∞, however,
results in a relatively odd PRM with a potentially unbounded mean, unless ηi is diverging to infinity at
the same rate as is τi. Moreover, there is a Davies-type problem relating to the separate identification of
both τ and η when the null is true. Greene (2008) camouflages this difference by imposing the restriction
η = τ.14 He refers to this restriction as being mean preserving, by which is meant that when η = τ,
E [Yi | xi; η, τ] = δi, as would be the case in the PRM. We should note that, in order to generate the same
class of models as do Cameron and Trivedi (1986), Greene (2008) also allows τ to be replaced by τi, as

12 Other values of k yield the Negbin P, or NBP, model. (Greene 2008)
13 Strictly, it is not a generalized linear model as it stands but, conditioning on one of the parameters allows it to be treated so.

This parameter can then be estimated conditional on the remaining parameters, which yields a two-step iterative estimation
procedure. See, for example, either Hilbe (2011) or Hilbe (2014) for a discussion of the steps involved.

14 This latter model, of course, corresponds to the Negbin II model of Cameron and Trivedi (1986), and so provides a somewhat
stronger theoretical basis for that model, which may explain some of its popularity in the literature.



Econometrics 2020, 8, 9 8 of 36

defined by (14), but this means that η must be replaced by τi too.15 Of course, the restriction that τi = ηi
reduces the two parameter mixing gamma distribution to a single parameter distribution with the loss of
modelling flexibility that implies. However, without this restriction, the conditional mean of Yi is other
than δi.

3.3. The Katz Regression Model

The fundamental difference between the NBRM, as described in the above, and what we refer to as
the Katz regression model (KRM) lies in the generation of the underlying distribution. Specifically, the
Katz family of distributions is not generated via a mixing argument and so, in contrast to the NBRM, the
probabilistic quantities of interest (pmfs and moments) are not functions of the parameters of the mixing
distribution; see (11)–(13). In this sense, the parameterization of the Katz family is more natural than
that of the NBRM. Directly analogously with the PRM, the KRM can be generated from (A6) simply by
replacing λ by λi, as per (6), which is analogous to our earlier development of the PRM.16 Equally, one
might explore models that see γ replaced by functions of regressors, γi say, although we will not. Note that
the conditional mean and variance of this distribution are given by (A8), with λ replaced by λi. Contrast
this structure with that for the NBRM described above. There we saw that the conditional mean of the
dependent variable was not varying with γ, being a function of the linear index x>i β alone. Similarly, by
construction, the variance exceeded the mean of the dependent variable, but the reduction to a Poisson
model requires the shape parameter τ of the mixing gamma distribution to be unbounded, which yields a
degenerate distribution for given rate parameter η.

It is clear that it is not necessarily desirable to preserve the mean, in Greene’s sense of equating τi and
ηi (Greene 2008), because, as γ increases, the mean for both the NBRM and the KRM should be decreasing
relative to that of the PRM.

We note in passing that this is the model that underlies the generalized event count (GEC) model
of King (1989); this model was also considered by Ghahfarokhi et al. (2008). That they obtained more
complicated models than that proposed here, resulting in the models being less popular than the NBRM in
practice, stems from the fact that they did not have (A6) as the pmf implied by (2), which in part is due to
working with (2) rather than (A1).

15 Specifically, Greene (2008) discusses the broader class of models obtained when k is allowed to take values other than 0 or 1 in
(14). He dubs this broad model the NBP model, seemingly because his notation uses p rather than the k used by Cameron and
Trivedi (1986) (and here).

16 Alternatively, using similar averaging arguments to those seen previously for the NBRM, if we average P(θ) with respect to
G
(
θ; π

1−π , n
)
, where π = 1− γ and n = λ/γ, then we obtain a more common form of the negative binomial pmf.

Prob (Y = y | λ, γ) =
∫

θ>0
P(θ) g

(
θ;

1− γ

γ
,

λ

γ

)
d θ, λ > 0, 0 < γ < 1

=
(1− γ)λ/γ

y! γλ/γ Γ(λ/γ)

∫
θ>0

θy+λ/γ−1e−θ/γ d θ

=
(1− γ)λ/γ γy (λ/γ)y

y!
.

Note that the mean and variance of this distribution are given by (A8). In contrast with the developments of (11), there is nothing
in this model that requires that both the parameters of the mixing gamma distribution vary with the index i. Nor need they be
linked in any restrictive way. Specifically, if we were to follow the developments of Greene (2008) who equates the parameters of
the mixing distribution, we find that

1− γ

γ
=

λ

γ
=⇒ λ = 1− γ,

which constrains 0 < λ < 1 and, as λ = exp{x>i β}, this implies that x>i β < 0. As a general statement, this would appear to be a
very odd restriction to want to impose.
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4. Testing for Over-dispersion in Poisson Regression model

There is a vast literature addressing the problem of over-dispersion and how to test for it. We will not
attempt to provide a comprehensive survey of this literature, focussing instead on a few key contributions,
although it should be noted that most of the references cited so far will have some discussion of the
problem. We shall break our discussion into two parts. First, we shall restrict attention to the case where
the only regressor in the model is an intercept, so that λi = λ is a constant. Then we will extend the
analysis to allow for additional regressors. In each case, the null hypothesis will be that the data have been
generated by the PRM. We investigate the performance of tests whose preferred alternative is, variously,
that the data have come from one of the Negbin I, Negbin II, or Katz regression models.17

4.1. The Katz Likelihood

For any positive real number n = λ/γ, with λ > 0 and 0 < γ < 1, the Katz pmf is given by

Prob (Y = k) = n(n + 1)(n + 2) . . . (n + k− 1)
γk(1− γ)n

k!

and hence

L (y1, . . . , yN | λ, γ) =
N

∏
i=1

[
n(n + 1)(n + 2) . . . (n + yi − 1)

γyi (1− γ)n

yi!

]

=

[
N

∏
i=1

yi−1

∏
s=0

(n + s)

]
(1− γ)Nn γ∑N

i=1 yi

[
N

∏
i=1

yi!

]−1

, (15)

where products of the form ∏
yi−1
s=0 = 1 for yi = 0. In textbook cases, where n is known, the first and last

terms in (15) are functions of the data only and ∑N
i=1 yi is sufficient by the factorization theorem. But in the

current context, when n is not known, there is no reduction to a fixed dimensional sufficient statistic. Even
if λ is known there is no sufficiency reduction; the ratio n is required. Only the entire sample (or the order
statistics) are sufficient but even they are are not complete so that different parameter configurations may
give rise to the same data. We may surmise this from the likelihood (15) since any combination of λ and
γ that preserves n gives the same likelihood. Adopting the convention that ∑

yi−1
s=0 log(n + s) = 0 when

yi = 0, the log likelihood is

log L =
N

∑
i=1

yi−1

∑
s=0

log (n + s) +
N

∑
i=1

log
(

γyi

yi!

)
+

N

∑
i=1

log
(
(1− γ)n)

=
N

∑
i=1

yi−1

∑
s=0

log (λ + sγ) + N log (1− γ)
λ
γ −

N

∑
i=1

log (yi!) , (16)

where the second line follows by substituting for n and simplifying.
In fact, (nonlinear) maximum likelihood estimators for n do not exist when the sample variance is

less than the mean, that is, s2
y ≤ ȳ (see Al-Khasawneh (2010) and the references therein). Note that, even

when drawing from a negative binomial, which by definition is over-dispersed, many individual samples

17 We note that Yang et al. (2007) and Yang et al. (2009) pursue a similar exercise against variants of the generalized Poisson
distribution, see the discussions in Consul (1989) and Joe and Zhu (2005), although we shall not pursue these models further.
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will exhibit under-dispersion. We can see the difficulty explicitly by looking at simple moment estimates
for λ and γ, that is, solve (A8) to get

λ̂ = ȳ (1− γ̂)

γ̂ = 1−
(

ȳ/s2
y

)
.

Hence, problems arise when s2
y ≤ ȳ since then γ̂ ≤ 0, which is illegtimate when investigating

over-dispersion. Even if s2
y ≥ ȳ, convergence issues arise if the difference is not great. This suggests that

test procedures that use maximum likelihood estimates, such as Wald or Likelihood Ratio tests, can be
problematic and that there may be a role for point optimal approaches.

4.2. Point Optimal Tests

Point optimal tests have had a long and varied career in econometrics; see King (1987) and King
and Sriananthakumar (2015) for an overview. These tests optimize power at a particular parameter value
under the alternative, the idea being to have good power at a point where incorrectly accepting the null
really matters. This is in contrast to, say, a score test that is locally best, in that it has the steepest power
function local to the null hypothesis. Although not an undesireable property in any way, the practical
difference between a null model and some other model local to the null is often, although not always,
vanishingly small. So, optimizing the ability to distiguish between such null model and another local
to it is not necessarily all that desireable a property. Moreover, there is implicit in such an approach the
notion that the power function will be monotonically increasing, which ideally it should be, and that it
will remain near the power envelope as the data generating process diverges from the null. In many cases
this is indeed what happens, although we know that power functions are likely to cross, as otherwise the
test would be uniformly most powerful, which is a very rare property indeed. The divergence between the
power function of a score test and the power envelope is then something that requires exploration on a
case by case basis and we will explore this below.

The log likelihood ratio of the Katz− NB alternative to the Poisson (P) null is written

LLR (λ1, λ0, γ) =
N

∑
i=1

yi−1

∑
s=0

log (λ1 + sγ) + N log (1− γ)
λ1
γ

−
(

log λ0

N

∑
i=1

yi − Nλ0

)
.

Assuming that both distributions are fully specified (with λ = λ0 = λ1), the Neyman-Pearson Lemma
states that the UMP test of γ = 0 versus γ = γ1 is given by LLR (λ, λ, γ1). Hence assuming λ known, the
so-called power envelope is determined by computing LLR (λ, λ, γ) over a range of values of γ ∈ (0, 1).
A PO test is constructed by choosing a fixed γ = γPO to be a ‘representative" value under the alternative
Katz− NB distribution, giving LLR (λ, λ, γPO). It is desirable that γPO be chosen so that the power of the
test LLR (λ, λ, γPO) is as close as possible to the power of the family of tests LLR (λ, λ, γ), γ ∈ (0, 1). That
is, ideally, γPO is chosen so that the power function of the resulting test is as close to the power envelope
as possible.

4.3. Score Test

A common alternative to likelihood ratio approaches, which does not require maximum likelihood
estimation of the parameter of interest, is to construct optimal tests local to the null γ = 0. The so-called
eficient score tests, or simply score test, are derived by differentiating the log likelihood with respect to γ
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and then setting γ = 0. Such score tests are easily found for the Katz family using (16); see, for example,
Katz (1965) and Lee (1986). Specifically, the score test is

S (λ) =
1

2λ

N

∑
i=1

[
yi (yi − 1)− λ2

]
. (17)

This test was originally proposed by Katz (1965) on heuristic grounds and by Lee (1986) as a formal
score test.18,19

4.4. Simulation Experiments

4.4.1. The Unconditional Model

In this section we simulate the powers of the point optimal and score tests and compare them to
the benchmark power envelope. First we give details for the power envelope and this is followed by a
description of the operational tests. We present results for a sample size of N = 50 throughout.

In Figures 1–3 below, we consider a range of values for λ ∈ (0, 8) and γ ∈ (0, 1) and look at the relative
performance of the PO and S tests and the power envelope. For each (λ, γ) pair we generate samples from

the Katz family, K(λ, γ). This is efficiently accomplished using p(0) = (1− γ)
λ
γ along with the defining

recurrence p(y + 1) = (λ + γy)/(y + 1)p(y) and then sampling from the inverse cumulative distribution
function. Setting γ = ε, for some very small positive ε, effectively simulates from the Poisson null. The
null critical values are computed by simulation to avoid asymptotic approximations. This means that the
sizes of tests are accurate (up to simulation error) and hence that the power comparisons are meaningful
in smaller sample sizes.

For the power envelope, we simulate from the null P(λ) = K(λ, ε) distribution, compute 10, 000
values of LLR(λ, λ, γ) and extract the 95% quantile as a critical value, cv. The DGP is the Katz family
K(λ, γ) and we simulate 10, 000 replicates from the DGP and count the percentage of times the PO statistic,
LLR(λ, λ, γ), exceeded the cv to calculate the power envelope.

The operational PO test estimates λ0, λ1 and fixes γ at γPO. To do this, we use simple moment
based estimators, that is, compute λ̂NB = λ̂P(1− γ̂NB), where λ̂P = ȳ and γ̂NB = 1−

(
ȳ/s2

y

)
using

the mean and variance of the data at hand. Should γ̂NB stray negative, we truncate and set γ̂NB = ε.
The PO test is computed as LLR

(
λ̂P, λ̂NB, γPO

)
while the score test, using (17), is S

(
λ̂P
)
. The null is

Poisson P(λ) = K(λ, ε) and we simulate from the null, computing LLR
(
λ̂P, λ̂NB, γPO

)
and S

(
λ̂P
)

for
each realization, to get 5% cv’s. We calculate the power by simulating from the DGP K(λ, γ).

18 Strictly, Katz (1965) adopted an approach more in keeping with a method of moments test. Specifically, he looked at the difference
between estimators for the mean and variance, which should be equal under the null and then scaled this difference appropriately
to obtain a distribution under the null. In any event, the statistic so obtained is the same as the one proposed by Lee (1986) that
we consider here.

19 Lee (1986) proposed other tests than the one considered here, although he did not compare them numerically The results recorded
in Miller (1998) suggests that those involving third order moments may have better power properties. For now we are primarily
concerned with proof of concept and do not explore these other tests in light of the simplicity of (17).
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Figure 1. Difference in Power of the Envelope and the PO test as well as the Difference between the PO and Score Tests at γPO = 0.1
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Figure 2. Difference in Power of the Envelope and the PO test as well as the Difference between the PO and Score Tests at γPO = 0.3
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Figure 3. Difference in Power of the Envelope and the PO test as well as the Difference between the PO and Score Tests at γPO = 0.5
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It is helpful to view Figures 1–3 in the light of the cross sections displayed in Figure 4. It is clear that,
for small values of γ, no test can be expected to perform well close to the null. Equally, for large values
of γ, with high degrees of over-dispersion, all reasonable tests can be expected to be powerful. Thus, for
small and large degrees of over-dispersion we expect to see little difference in the performance of the
envelope and the PO test as the left panel of Figure 1 attests. For moderate values of γ, the power of the
PO test can be significantly smaller than the envelope as the coloured scale suggests. In the left panel the
difference in power between the PO and score tests is plotted for γPO = 0.1. The differences are not large
but the PO test uniformly dominates as the scale indicates. Figure 2 plots the same surfaces for γPO = 0.3
and the interesting feature is that both tests perform similarly but none dominates the other. In Figure 3,
γPO = 0.5 and the score test dominates by a small margin except where the DGP corresponds to γPO.

Since the shapes of the surfaces are quite smooth over λ, we plot a cross-section at λ = 5 to look at
absolute performance. There are three panels in Figure 4 each corresponding to a value of γPO = 0.1, 0.3,
0.5. The power envelope is shown in red, with those of the PO test in blue and the Score test in orange.
Also shown (vertically) is the PO point γPO.

The power envelope reaches unity at around γ = 0.2. This corresponds to a degree of over-dispersion,
in the Katz − NB distribution, of σ2/µ = 1/ (1− γ) = 1.25. For the tests to reach equivalent power
requires γ = 0.6 with σ2/µ = 2.5, roughly, and γ = 0.9 is required at σ2/µ = 10. So, neither test can match
the envelope unless the degree of over-dispersion is quite large. For γPO less than 0.3 the PO test performs
better uniformly, at 0.3 they perform equally well and for γPO > 0.3 the score test is better. Thus, a choice
of γPO which is small will uniformly dominate.

4.4.2. The Katz Regression

In practice, the analysis of over-dispersion often takes place when covariates need to be taken into
account. As explained in Section 3 there are many ways in which this may be approached. We work
directly from the definition of the Katz family rather than mix over a kernel Poisson distribution. The log
of the likelihood takes the form

LL =
N

∑
i=1

yi−1

∑
s=0

log(λi + sγ) +
N

∑
i=1

log(1− γ)
λi
γ ,

with λi = exp(β1xi) varying and γ fixed. This gives E [Yi|xi] = µi = λi/(1− γ) and V [Yi|xi] = λi/(1−
γ)2.
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Figure 4. Cross Section of the Power Envelope Surface and Power Surfaces of the Score and Point Optimal tests at λ = 5.
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The PO test, using γPO, is based on the log likelihood ratio,

LLR(λ0, λ1, γPO) =
N

∑
i=1

yi−1

∑
s=0

log(λ1,i + sγPO) +
N

∑
i=1

λ1,i

γPO
log(1− γPO)

−
(

N

∑
i=1

yi log λ0i −
N

∑
i=1

λ0i

)

and the PO test needs to estimate the parameters ˘0 and ˘1. Estimating λ1,i = exp (β1xi) may be problematic
as trying to fit a NB regression when the data is Poisson can lead to identification/convergence problems,
exacerbated by the fact that fitting these types of regressions requires nonlinear maximum likelihood
estimation. We avoided this issue in the last sub-section by using Katz moment estimators. Here, we use a
regression version of the same idea. First, estimate a Poisson regression P

(
µ∗i (xi)

)
(including a constant)

which will return the mean estimate exp (b0 + b1xi). Noting that we can write µi = exp (β1xi) / (1− γ) =

exp (β0 + β1xi), where β0 = − log (1− γ), we can set β̂1 = b1 and hence λ̂1i = exp
(

β̂1xi
)

to give the
vector ˆ̆1. To get λ̂0,i we fit the Poisson without the constant term which returns the estimate exp (b2xi),
which gives λ̂0,i = exp (b2xi), and hence LLR

(ˆ̆0, ˆ̆1, γPO
)
.

As a comparator to the PO statistic, in the regression setting, we use the score test of Dean and
Lawless (1989), which avoids the potential difficulties associated with maximum likelihood estimation.
Thus, we estimate the Poisson regression P (µ (xi)) (with a constant) to get the vector of predictors µ̂i and,
using zi = (yi − µ̂i)

2 − yi, the test S (ˆ̄) is computed as the t-statistic in the regression of zi on µ̂i.20 Again
critical values are computed by simulation. The null is generated as P (λi), with λi = exp (β1xi) used to
keep the means of the counts low. We used xi ∼i log (P (2) + 1) and the xi are kept fixed under replication.
We generate simulated critical values, based on 10, 000 replications, for the tests S (ˆ̄) and LLR

(ˆ̆0, ˆ̆1, γPO
)
.

To compute powers, the DGP K (λi, γ) = NB(ni, p) is used, where ni = λi/γ and γ takes a selection of
values in (0, 1). As usual, π = 1− γ. The results are presented in Figure 5.

The PO test performs badly for very high degrees of over-dispersion when γPO is less than 0.5
approximately and is dominated by the score test for γPO greater than 0.5. However, the choice γPO = 0.5
does lead to superior PO performance albeit by not a great margin.

4.4.3. Summary

Our experimental results are mixed. In the unconditional model, the point optimal tests appeared to
work best when γ was small, with their performance deteriorating relative to the score test as γ increased.
In the regression model, the score test outperformed the point optimal tests suggesting that the null
distribution of the score tests was more robust to the presence of nuisance parameters than was that of
the point optimal tests, with none of the test statistics being pivotal. However, these rankings were also
sensitive to the choice of point. This begs the question as to whether or not we are choosing the ‘point’ for
the point optimal tests in a sensible way. It is to this question that we turn in the next section.

20 We also considered an alternative test based on the t-statistic in the regression of zi on a constant but there was little difference in
performance. These tests correspond to the Negbin I and II cases above.
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Figure 5. Powers of the Regression Score and Point Optimal tests.
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5. Hellinger Distance

The reasoning behind the use of point optimal tests is to put power where it is of greatest practical use.
The immediate problem facing the use of point optimal tests is where to place the ‘point’. Sometimes the
testing problem suggests a solution. Other times the choice is less clear and is often based an the outcome
from a simulation study ‘run-off’, making the results somewhat ad hoc. The attraction of point optimal
test in the context of testing for over-dispersion is that the parameter space of interest, namely that of γ,
is bounded and so there is some hope of finding an appropriate point. One way of defining appropriate
in this context is where the distribution under the alternative starts to depart from that under the null in
some substantial way. The questions then reduces to one of how we might measure such a departure. In
this section we explore the use of Hellinger distance (H) for this purpose. We think that this is a novel
use of such a distance measure and is of independent interest. We do not, however, assert that Hellinger
distance is the only choice or even the best choice in this context, but it does yield some interesting results.

To begin, various definitions of Hellinger distance are available.21 Originally proposed in an integral
form by Hellinger (1909), we will work with the following discrete variant:

Definition 1 (Hellinger Distance for Discrete Random Variables). The squared Hellinger distance between
these two discrete distributions P and Q is

H2 =
1
2

k

∑
j=1

(√
pj −

√
qj

)2
= 1−

k

∑
j=1

√
pjqj, (18)

where P = (p1, . . . , pk) and Q = (q1, . . . , qk).

We note in passing that the Hellinger distance is bounded, 0 ≤ H ≤ 1 =⇒ 0 ≤ H2 ≤ 1. H = 1 iff P
assigns zero probability to anywhere that Q assigns positive probability and H = 0 iff P = Q.

5.1. The Poisson Distribution

By way of example, to illustrate the basic idea and to help calibrate the procedure, suppose that we
choose as our base case a Poisson distribution with parameter λ0 so that the implied standard deviation is√

λ0. Writing Prob (X = x | λ) ≡ P(λ), we are going to explore the behaviour of H as we compare P(λ0)

with P(λ1) for various (λ0, λ1). When comparing Poisson distributions, the squared Hellinger distance is
readily shown to

H2 = 1− exp
{
−1

2

(√
λ1 −

√
λ0

)2
}

. (19)

Figure 6 provides some insight into the sensitivity of Poisson pmfs to changes in parameter values
when the parameters are small and includes examples that are variously skewed to the right, (roughly)
symmetric, and skewed to the left. Observe that, here we have used λ = 1 as the base case and that, as λ

increases, it is by one standard deviation each time and so these changes are quite dramatic.
In Figure 7 we present values for H for various λ0 and λ1. The dashed and dotted lines correspond to

Hellinger distances of 0.1 and 0.05, respectively.

21 See, for example, https://en.wikipedia.org/wiki/Hellinger_distance.

https://en.wikipedia.org/wiki/Hellinger_distance
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Figure 6. Selected Poisson Probability Mass Functions
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Figure 7. Hellinger Distances (H) Between P(λ0) and P(λ)

We observe that H is asymmetric in λ for all λ0 considered, which reflects the skewed nature of
Poisson distributions. Note that, as λ0 increases, so too does standard deviation of the base distribution.
As this happens a given value of H will admit great differences between λ0 and λ1. For example, when
λ0 = 1 a Hellinger distance of 0.1 or greater is achieved for any 0.8 ≈ L ≤ λ1 ≤ U ≈ 1.3. In contrast, when
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λ0 = 9, H ≤ 0.1 for all 8.2 ≈ L ≤ λ1 ≤ U ≈ 9.9, which is a much wider interval than the previous case.
Given that we are seeking to construct point optimal tests that compete with locally best tests, these results
suggest that we need to be looking at points for which the Hellinger distance is quite small.

5.2. The Katz Distribution

We will take the Poisson (γ = 0) as our base model. Moreover, as Poisson-ness, or otherwise, is
completely determined by the value of γ, we will hold λ fixed across models. Here the support under
both null (equi-dispersion) and alternative (over-dispersion) is y ∈ Y = {0, 1, 2, . . .} and so

H2 = 1−
∞

∑
y=0

√√√√ e−λλy

y!

(
λ
γ

)
y

γy(1− γ)λ/γ

y!

= 1−
[
e−1(1− γ)1/γ

]λ/2 ∞

∑
y=0

1
y!

√(
λ

γ

)
y
(λγ)y.

Although not amenable to direct solution we notice that

(
λ

γ

)
y

γy = γy
y−1

∏
j=0

(
λ
γ + j

)
=

y−1

∏
j=0

(λ + jγ) > λy, for all 0 < γ < 1. (20)

Therefore,

H2 > 1−
[
e−1(1− γ)1/γ

]λ/2 ∞

∑
y=0

1
y!

√√√√[(λ

γ

)
y

γy

]2

= 1− e−λ/2(1− γ)−λ/(2γ) = h2
L, (say). (21)

We can solve this non-linear equation for γL numerically for given λ and hL. Some results are reported
in Table 1.

Table 1. Values for γL Obtained From (21) For Given hL and λ (scaled by a factor of 1012).

hL\λ 1 2 3 4 5

0.02 0.0348 0.0493 0.1261 0.1556 0.0147
0.04 0.0019 0.0121 0.0131 0.0250 0.0148
0.06 0.0032 0.0014 0.0115 0.0109 0.0136
0.08 0.0008 0.0033 0.0018 0.0061 0.0140
0.1 0.0027 0.0006 0.0022 0.0057 0.0072

We see that all values of γL are positive, albeit extremely to zero. Alternatively, from (20) we also
have the result

H2 < 1−
[
e−1(1− γ)1/γ

]λ/2 ∞

∑
y=0

λy

y!
= 1− eλ/2(1− γ)λ/(2γ) = h2

U , (say). (22)

Solutions to (22) for various λ and hU are given in Table 2.
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Table 2. Values for γU Obtained From (22) For Given hU and λ.

hU \ λ 1 2 3 4 5

0.02 0.0016 0.0008 0.0005 0.0004 0.0003
0.04 0.0064 0.0032 0.0021 0.0016 0.0013
0.06 0.0143 0.0072 0.0048 0.0036 0.0029
0.08 0.0252 0.0127 0.0085 0.0064 0.0051
0.1 0.0391 0.0198 0.0133 0.0100 0.0080

We see that γU is monotonically increasing in hU but monotonically decreasing in λ. That is, once λ

becomes sufficiently large, even small departures of the hellinger distance from zero are consistent with
γ > 0.

All of the above said, however, the over-riding conclusion is that the optimal ‘points’ are going to
be sufficiently close to zero that it is not clear that there is much benefit over just using the the score
test, which is essentially point optimal at γ = 0. The main reason for such a conclusion is our earlier
results indicating that, in the regression context, the score test is much less subject to the influence of the
regression coefficients, which are nuisance parameters in this testing problem.

6. Conclusions

At a fundamental level, this paper explores the use of point optimal tests in the problem of testing for
over dispersion. Our basis of comparison is the score test of Lee (1986), which is the same as the earlier
method of moments test proposed by Katz (1965). Our findings are somewhat disappointing and we are
unable to recommend that practitioners change their current practices as the performance of the point
optimal tests is, at best, mixed. It may be possible to improve the performance of the point optimal tests
by a more refined analysis of (i) the problem of nuisance parameters and (ii) the construction of p-values,
along the lines suggested by King and Sriananthakumar (2015). This we leave for further work.

Along the way, the paper has made two other contributions. First, in the appendix we have provided
a reasonably exhaustive treatment of the family of distributions consistent with the difference equation of
Katz (1965). To the best of our knowledge this treatment extends all known earlier results by allowing for
arbitrary points of left truncation. This expands the class of distributions originally considered by Katz
(1965), which can be characterized as including zero in the support of the count variable. The treatment is
closest to that of Willmot (1988), although there are differences in the mode of analysis and he restricts
attention to extensions where only zero is omitted from the support of the count variable. We note in
passing that right truncation is a much easier problem to deal with as it neither expands nor contracts the
members in the family, in the way that left-truncation does. Its only consequence is the introduction of a
scale factor equal to 1− R, where R denotes the upper tail probability that has been truncated.

The other contribution that we have made is to introduce the use of Hellinger distance as a metric by
which one might settle on the ‘points’ characterizing point optimal tests. This is novel and allows a more
systematic treatment than the grid searches that have characterized such choices in the past.
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Appendix A. On Left-Truncated Katz Distributions

Certain properties of the family of distributions defined by (2)–(4) are available on inspection.
In particular, the support of Y is, in certain circumstances, parameter dependent. Here we characterize
those circumstances.

To begin, let us establish some notation. Our count variable is Y ∈ YL ≡ {L, L + 1, L + 2, . . . , n} ⊆ Z0,
where n may be either infinitely large or some finite integer and L is a non-negative integer integer. We
will restrict L < n because the case where L = n yields a probability mass function degenerate at L, which
is statistically uninteresting and shall, hereafter, be ignored. Next, write (2) as

p(y + 1) =
(λ + yγ) p(y)

(y + 1)
, y ∈ YL. (A1)

This latter formulation has the advantage of being untroubled by the prospect of p(y) = 0. It will
also prove convenient to be able to express all probabilities in terms of p(L), which we can do via back
substitution in (A1). Thus, for all y ∈ {L + 1, . . . , n},

p(y) =
p(L)∏

y−1
j=L (λ + jγ)

∏
y
k=L+1 k

=
p(L)L!

y!

y−1

∏
j=L

(λ + jγ). (A2)

Moving forward we shall break up our observations into three categories: (i) those relating to the
support of the random variable and the parameter space of the associated distributions, (ii) statements
of the probability mass functions belonging to the family, and (iii) certain properties of the various
distributions. The results are ultimately the same as those of Willmot (1988) in the special case where L = 1,
although our mode of analysis is different and we extend his results by allowing for arbitrary L > 0.22

Appendix A.1. Support and Parameter Spaces

From (A2), we see that the sequence of probabilities generated by the difference equation (A1) is
governed by p(L) and by the terms (λ + jγ), j = L, L + 1, . . . , y, as the ratio of factorials L!/(y + 1)! is a
scale factor in the interval (0, 1]. Our subsequent analysis revolves around the behaviour of these quantities
and the implications for p(y + 1) of these behaviours. With the exception of [1], we shall hereafter assume
that p(y) > 0.

[1] 0 < p(L) < 1
From (A1) we see that if p(y) = 0 for any y ∈ YL then p(y + r) = 0 for all r ∈ N. In particular, if
p(L) = 0 then p(y) = 0 for all y ∈ YL. But this leads to violation of (4), that is, probabilities do not
sum to unity, and so we exclude p(L) = 0 from further consideration. Equally, if p(L) = 1, so that
the pmf of Y is degenerate at L, which is a case that we have already excluded from further analysis.
Hereafter, we assume that 0 < p(L) < 1.

22 In their extensions to this class of distributions, Panjer (1981); Sundt and Jewell (1981) and Willmot (1988) adopt a slightly
different parameterization, specifically py − (a + b/y)py−1 = 0, y ∈ {2, 3, 4, . . .}. Equivalence with (A1) is seemingly established
on setting a = γ and b = λ− γ, although there are differences in the support of the resulting variables. In particular, Y = 0 is
specifically excluded from this definition and hence many of the probability distributions claimed to satisfy the recursion in this
form are not completely defined by it.



Econometrics 2020, 8, 9 24 of 36

[2] γ = 0 =⇒ λ > 0 and n = ∞

If p(y) > 0 and γ = 0 then we have a pmf degenerate at L unless λ > 0, which will be assumed
hereafter. In this case there is no implied restriction on the upper bound of YL, that is, n = ∞.
Of course, the concern when generating an infinite sequence of probabilities is to ensure that the
associated series, ∑y∈Y p(y), converges. This can be examined by considering the quantity

ry(γ) =
p(y + 1)

p(y)
=

λ + yγ

y + 1
=

γ + λ/y
1 + 1/y

and noting that

R(0) = lim
y→∞

ry(0) = 0.

From the limit version of d’Alembert’s ratio test we see that the series converges because R(0) < 1.
[3] L = 0 =⇒ λ > 0

Similar in effect to the previous case, if L = 0 then λ + Lγ = λ. Given p(L) > 0, as assumed above,
p(L + 1) > 0 if and only if λ > 0 which will be assumed, hereafter, for all cases where L = 0.

[4] λ > 0, γ > 0 =⇒ 0 < γ < 1 and n = ∞

Because y ≥ L ≥ 0, if λ > 0 and γ > 0 we see that λ + yγ > 0 for all y ∈ {L, L + 1, . . .} and so here
the support of the pmf of Y is unbounded from above and independent of the values taken by λ and
γ. Again, we can establish convergence of the corresponding series. Here

R(γ) = lim
y→∞

ry(γ) = lim
y→∞

γ + λ/y
1 + 1/y

= γ > 0.

Appealing again to the limit version of d’Alembert’s ratio test we see that the series converges if
γ < 1, diverges if γ > 1, but the test is inconclusive if γ = 1. Expanding the denominator of ry(1) in
power series yields

ry(1) =
1 + λ/y
1 + 1/y

= (1 + λ/y)
∞

∑
j=0

(
−1

y

)j
= 1− 1− λ

y
+ O(y−2).

Applying Gauss’s test,23 we see that the series will converge absolutely if and only if 1− λ > 1 but
will otherwise diverge. Here we have assumed that λ > 0 and so 1− λ < 1. Hence, the series is
divergent for γ ≥ 1.

[5] λ < 0, γ < 0
In this case there is no value of y that satisfies λ+ yγ > 0 and so y+ 1 cannot belong to YL. Moreover,
this statement remains true even if y = L. Consequently, in this case, the pmf of Y is degenerate at L,
a situation that we have chosen to exclude from further consideration.

[6] λ and γ of different sign
In this case we see that λ + yγ can change sign as y increases, unlike the situation of the previous
two cases. Let n denote the smallest value of y such that λ + yγ ≤ 0. Then n is the largest value in
YL. There are only two cases to consider here (having treated that of γ = 0 above): (i) λ ≥ 0, γ < 0,
and (ii) λ ≤ 0, γ > 0.

23 See, for example, Weisstein (2019).
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(a) λ ≥ 0, γ < 0 =⇒ n = d−λ/γe
If λ ≤ −Lγ then the pmf of Y will be degenerate at L which, as explained above, is statistically
uninteresting and a situation that we will assume away. That is, if γ < 0 then we will assume
that λ > −Lγ. In particular, if L = 0 then this requirement reduces to λ > 0. As y increases,
λ+ yγ will approach zero from above. That value of y for which λ+ yγ is first less than or equal
to zero is the largest value of y in YL and shall be denoted by n, so that p(n) is well-defined but
p(n + 1) is not.24 That is, n is the smallest integer greater than or equal to −λ/γ. This is the
definition of the so-called ceiling function, written n = d−λ/γe. In summary, if γ < 0 then we
see that the upper bound on the support of the pmf of Y is a function of the parameters λ and
γ, with the space of λ subject to the constraint λ > −Lγ.

(b) λ ≤ 0, γ > 0 =⇒ λ > −Lγ, L > 0, n = ∞, and 0 < γ ≤ 1
Here λ + yγ is an increasing function of y but the pmf of Y is non-degenerate at L if and only
if λ > −Lγ. As we have already excluded from further consideration pmfs degenerate at L
we here assume this to be the case. In particular, when L = 0 we have a contradiction as we
are assuming both λ > 0, which is required when L = 0 (see [3]), and λ ≤ 0; we conclude
that λ ≤ 0 and γ > 0 can only arise when L ≥ 1. As λ + ψγ > 0 for all y ∈ Y, YL will be
unbounded from above provided that the series of probabilities so formed is convergent. Using
the analysis outlined in [4], applying the ratio test we find convergence for all −Lγ < λ ≤ 0
provided that 0 < γ < 1. Moreover, if γ = 1, Gauss’s test gives convergence provided that λ is
strictly negative, that is, −Lγ < λ < 0.

We summarize these findings in Table A1 and note in passing that, when L = 0, the only valid
parameter configurations are those found in the row λ > 0.

Table A1. Parameter Configurations When L > 0.

λ \ γ γ < 0 γ = 0 0 < γ < 1 γ = 1

−Lγ < λ < 0 n/a n/a n = ∞ n = ∞
λ = 0 n/a n/a n = ∞ n/a
λ > 0 n = d−λ/γe n = ∞ n = ∞ n/a

Appendix A.2. Probability Mass Functions and Their Properties

Having established the various restrictions on the parameter space and the support for the family
of distributions generated by (A1), we now turn attention to the resulting pmfs and their properties. To
begin, we will distinguish between two classes of distributions: (i) L = 0, the class originally explored by
Katz (1965), and (ii) L > 0, which has subsequently been explored by others. In order to explore these
pmfs, our first task is to evaluate p(L) which forms part of the normalizing constant in (A2).

24 In essence, this is the same as adopting the convention that any negative probabilities are set to zero. It might be argued that this
is at odds with Katz’s original assumptions and should be excluded. Our justification for the inclusion in our analysis of these
distributions where λ/γ is non-integer, is that Katz himself included them.

The class of distributions so defined includes the Poisson distributions, the two-parameter binomial (Bernoulli)
distributions, and the two-parameter negative binomial (Pascal) distributions. Aside from these, the class contains
only the mild generalizations obtained for the latter two of these types by permitting the parameter n (number of
“trials” in direct sampling) and the parameter r (number of failures in inverse sampling) to take any positive real
values. (Katz 1965, p.175)
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Appendix A.2.1. L = 0

In the previous section we established that, when L = 0, we require λ > 0. Moreover, we also
required that γ < 1, with YL unbounded from above if 0 ≤ γ < 1 but that an upper bound of n = d−λ/γe
exists if γ < 0. Summing the right-most side of (A2) over all y ∈ YL and adding p(0) yields

1 = p(0) +
n

∑
y=1

p(0)0!
y!

y−1

∏
j=0

(λ + jγ) = p(0)

[
1 +

n

∑
y=1

1
y!

y−1

∏
j=0

(λ + jγ)

]

= p(0)

[
n

∑
y=0

1
y!

y−1

∏
j=0

(λ + jγ)

]
.

where we have adopted the convention of

b

∏
j=a

x(j) = 1, b < a. (A3)

Recall that if γ ≥ 0 then n ≡ ∞, otherwise n = d−λ/γe. Thus, p(0)S(n) = 1 =⇒ p(0) = [S(n)]−1,
where

S(n) =



∞

∑
y=0

λy

y!
= eλ, γ = 0,

∞

∑
y=0

(λ/γ)y γy

y!
= (1− γ)−λ/γ, 0 < γ < 1,

n

∑
y=0

(λ/γ)y γy

y!
, γ < 0,

where we have used the Pochhammer symbol (a)n to denote the rising factorial function

(a)n = a(a + 1)(a + 2) . . . (a + n− 1) = Γ(a + n)/Γ(a),

a polynomial of order n (n a non-negative integer) in a, with (a)0 = 1 (including (0)0 = 1), and where Γ(a)
denotes the usual Gamma function.25 Note that the argument of the Pochhammer symbol can be negative
and is in certain cases considered below. In the event that ‘a’ is a negative integer, the Pochhammer symbol
will equal zero for all n > a. The resulting pmfs are

p(y) =



e−λλy

y!
, γ = 0 (Poisson),

(λ/γ)y γy(1− γ)λ/γ

y!
, 0 < γ < 1 (Negative Binomial),

(λ/γ)y γy/y!

∑n
j=0 (λ/γ)j γj/j!

, γ < 0,

(A4)

25 A useful collection of results on Pochhammer symbols can be found in Slater (1966, Appendix I).
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There are two simplifications that arise when λ/γ is integer. First, if one restricts attention to the case
where λ/γ is integer, r say, and 0 < γ < 1 then

(r)y

y!
=

(r + y− 1)!
(r− 1)! y!

=

(
r + y− 1

y

)
.

On setting π = 1− γ, the pmf reduces to

p(y) =
(

r + y− 1
y

)
(1− π)yπr. (A5)

This form of the negative binomial distribution, also known as the Pascal distribution, admits an
inverse sampling interpretation is available. Specifically, Y can be interpreted as a count of the number of
failures in a sequence of independent Bernoulli trials, each with probability of success π, before the rth
success is observed. Interestingly, we note that

lim
γ→0

(1− γ)λ/γ = e−λ,

and so the negative binomial representation in (A4) can be thought of as valid for all cases γ ≥ 0,
recognizing that the case γ = 0 must be thought of as a limit. Finally, when λ/γ is non-integer, the pmf
in (A4) still gives the probability that Y = y given the parameters λ and γ, it just no longer admits the
inverse sampling interpretation usually ascribed to a count variable with a negative binomial distribution.

Second, if γ < 0 and n = λ/γ is a negative integer, so that d−λ/γe = −λ/γ, then

(λ/γ)y γy

y!
=

(−n)y γy

y!
=

n!(−γ)y

(n− y)! y!
,

so that

S(n) =
n

∑
y=0

n!(−γ)y

(n− y)! y!
= (1− γ)n

and

p(y) =
(

n
y

)
(−γ)y(1− γ)−n.

On setting π = −γ/(1− γ), so that γ = −π/(1− π), we can recognize the resulting pmf

p(y) =
(

n
y

)
πy(1− π)n−y

as that of a binomial random variable where, again, π denotes the success of a single Bernoulli trial
and p(y) gives the probability of y successes in a sequence of n independent Bernoulli trials. That is,
Y ∼ Binomial(n, π). These findings are summarized in Figure A1.
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(A1)

y = 0

λ = 0

uninteresting

λ > 0

feasible

y ≥ 0, λ > 0

γ < 0

∃y : λ + γy ≤ 0

Y = {0, 1, . . . , n}, n = d−λ/γe

γ ≥ 0

λ + γy > 0

Y = {0, 1, 2, 3, . . . , ∞}

λ < 0

infeasible

Figure A1. Restrictions on Parameters and Support Implied by (A1).

The Poisson, Pascal, and Binomial distributions, being those cases where λ/γ is integer, were the
cases originally explored in Katz (1965). Figure A2, which is a variant of Katz (1965, Figure 1), provides a
graphical representation of these distributions.
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The set of permissible parameter combinations is represented by rays radiating from the origin, a
subset of which are depicted, all other possibilities are ignored. The dashed lines are not included
within this set. The area shaded light grey represents the boundary of the set of impossible parameter
configurations.

Figure A2. Parameter Space for the Katz Family in Special Cases.

Kemp (1968) observed that the family of distributions depicted in Figure A2 could all be expressed in
terms of hypergeometric functions on noting that

(1− γ)−λ/γ = 1F0

(
λ

γ
; γ

)
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and that, specifically,

lim
γ→0 1F0

(
λ

γ
; γ

)
= eλ,

so that

p(y) =

(
λ
γ

)
y

γy

y! 1F0

(
λ
γ ; γ

) , y ∈ Y, γ < 1, λ > 0, (A6)

subject to the requirement that λ/γ is integer if γ < 0. This characterization of the probability function
makes two things clear. First, the restriction that γ < 1 follows immediately from the standard convergence
criteria for hypergeometric functions; see, inter alios, Abadir (1999, p.292). Second, it is clear that, for
γ > 0, the restriction that λ/γ be integer is completely unnecessary as the probability function is perfectly
well defined for non-integer values of this ratio.26

It is straight-forward to show that the probability generating function for this family of distributions
is of the form

G(t) =
∑n

y=0

(
λ
γ

)
y
(tγ)y

y!

∑n
j=0

(
λ
γ

)
j
γj

j!

.

In the special cases where either γ ≥ 0 or where −λ/γ is a positive integer, G(t) reduces to

G(t) = 1F0

(
λ

γ
; tγ
)

/ 1F0

(
λ

γ
; γ

)
.

Moments for all members of the family can be calculated directly from (A1), without reference to the
exact form of the pmf. A slight re-arrangement of (A1) allows us to sum over Y, the support of Y, thus

∑
y∈Y

(y + 1)p(y + 1) = ∑
y∈Y

(λ + yγ)p(y). (A7)

The left-hand side of (A7) can be written

∑
y∈Y

(y + 1)p(y + 1) = 0× p(0) + ∑
y∈Y

(y + 1)p(y + 1)

= ∑
y∈Y

yp(y) = E [Y] = µ (say).

The right-hand side becomes

λ ∑
y∈Y

p(y) + γ ∑
y∈Y

yp(y) = λ + γµ.

Solving for µ yields

E [Y] =
λ

1− γ
= µ (say), (A8a)

26 We note that Katz (1965) was perfectly well aware of the possibility of non-integer values of λ/γ, see the quote in Footnote 24.
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and similar arguments lead to

V [Y] =
λ

(1− γ)2 = σ2 (say). (A8b)

From Katz (1965, p.176) we have the following inverse parametric relationships

λ =
µ2

σ2 and γ = 1− µ

σ2 ,

which yields a potentially useful alternative parameterization of the distributions in terms of mean and
variance rather than the somewhat more nebulous λ and γ. Observe that if γ = 0 then E [Y] = V [Y],
a situation termed equi-dispersion. If 0 < γ < 1, then V [Y] > E [Y], which is called over-dispersion
and, if γ < 0 then V [Y] < E [Y], which is called under-dispersion. Importantly, if we consider the ratio
V [Y] /E [Y] = 1/(1− γ) then we see that under-dispersion, equi-dispersion, and over-dispersion are
determined by the value of γ alone, and so λ is a nuisance parameter for the testing problems of interest in
this paper. Finally, observe that E [Y] is an increasing function of γ. Specifically,

E [Y]


< λ, if γ < 0,

= λ, if γ = 0, and

> λ, if 0 < γ < 1.

Appendix A.2.2. L > 0

This case differs from that of L = 0 in two key ways: (i) there are three more cases to consider, all
related to λ ≤ 0 and, obviously, (ii) zero is no longer in YL. To begin the analysis, let us first determine
p(L) by summing over (A2). Noting that n may be infinite (depending on parameter configuration) and
adopting the convention (A3), we see that

1 =
n

∑
y=L

p(y) = p(L) +
n

∑
y=L+1

p(L)L!
y!

y

∏
j=L

(λ + jγ),

so that

p(L)L! =

[
n

∑
y=L

1
y!

y−1

∏
j=L

(λ + jγ)

]−1

= I−1, say.

The exact definition of p(L), as noted above, is parameter dependent. Hence,

(i) if γ = 0, λ > 0 then

I =
∞

∑
y=L

λy−L+1

y!
=

eλ

λL−1

(
1− e−λ

L−1

∑
j=0

λj

j!

)
;

(ii) if 0 < γ < 1, λ > 0 then, on noting that (λ/γ + L)y−L = (λ/γ)y / (λ/γ)L,

I =
1(

λ
γ

)
L

γL

∞

∑
y=L

(
λ
γ

)
y

γy

y!
=

(1− γ)−λ/γ(
λ
γ

)
L

γL

1− (1− γ)λ/γ
L−1

∑
j=0

(
λ
γ

)
j
γj

j!

 ;
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(iii) if γ < 0, λ > 0 then

I =
1(

λ
γ

)
L

γL

dλ/γe
∑

y=L

(
λ
γ

)
y

γy

y!

=
∑
dλ/γe
k=0

(
λ
γ

)
k

γk/k!(
λ
γ

)
L

γL

1−
∑L−1

j=0

(
λ
γ

)
j
γj/j!

∑
dλ/γe
m=0

(
λ
γ

)
m

γm/m!

 .

These first three results correspond to those examined in the L = 0 case and they have the same
simplifications for λ/γ integer as mentioned in that case.27 The structure of the result is clear, with the
normalizing constant scaled by a factor of 1− Prob (Y < L), so that the resulting probabilities are simply
left-truncated versions of those encountered previously. In particular, we see that, for L > 0 and λ > 0,

p(y) =



e−λλy

y!
(

1− e−λ ∑L−1
j=0

λj

j!

) , γ = 0,

(λ/γ)y γy(1− γ)λ/γ

y!
[

1− (1− γ)λ/γ ∑L−1
j=0

(
λ
γ

)
j
γj/j!

] , 0 < γ < 1,

(λ/γ)y γy/y!

∑n
k=0 (λ/γ)k γk/k!

1−
∑L−1

j=0

(
λ
γ

)
j
γj/j!

∑n
m=0

(
λ
γ

)
m

γm/m!

 , γ < 0, n = dλ/γe.

(A9)

Before moving it is worth reminding ourselves of cases that we need not consider further. If L > 0
and γ ≤ 0 then the only case leading to valid, non-degenerate distributions are those where λ > 0. The
next three cases have no corresponding result when L = 0.

(iv) If 0 < γ < 1, λ = 0 then

I =
∞

∑
y=L

(y− 1)!γy−L

(L− 1)! y!

= −∑∞
y=1(−1)y+1(−γ)y/y

γL(L− 1)!

[
1−

∑L−1
j=1 (−1)j+1(−γ)j/j

∑∞
y=1(−1)y+1(−γ)y/y

]

= − ln(1− γ)

γL(L− 1)!

[
1−

∑L−1
j=1 (−1)j+1(−γ)j/j

ln(1− γ)

]
,

where the final equality follows on recognising the Mercator series and

p(y) = − γy

y ln(1− γ)

[
1 +

∑L−1
j=1 γj/j

ln(1−γ)

] . (A10)

27 The condition λ/γ integer obviously requires γ 6= 0.
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In the special case L = 1, the quantity in the square brackets reduces to unity and

p(y) = − γy

y ln(1− γ)
,

which is the pmf of a logarithmic distribution. If L > 1 then (A10) is recognizable as a left-truncated
logarithmic distribution.

(v) If 0 < γ < 1,−Lγ < λ < 0 then

I =
1(

λ
γ

)
L

γL

∞

∑
y=L

(
λ
γ

)
y

γy

y!
=

∑∞
k=0

(
λ
γ

)
k

γk/k!(
λ
γ

)
L

γL

1−
∑L−1

j=0

(
λ
γ

)
j
γj/j!

∑∞
k=0

(
λ
γ

)
k

γk/k!


=

1(
λ
γ

)
L

γL(1− γ)λ/γ

[
1− (1− γ)λ/γ

L−1

∑
j=0

(
λ
γ

)
j
γj/j!

]

and

p(y) =

(
λ
γ

)
y

γy(1− γ)λ/γ/y!

1− (1− γ)λ/γ ∑L−1
j=0

(
λ
γ

)
j
γj/j!

.

A comparison of this expression with that at (A9) reveals a remarkable similarity to the case where
γ < 0 and λ > 0. As in the earlier case we see that (i) the ratio λ/γ is negative, (ii) there is a scale
factor reflecting left-truncation, with the only substantial difference being that whereas here we have
a series reducing to the term (1− γ)−λ/γ, in the earlier case we had a sum that only offers a similar
simplification when λ/γ is integer.

(vi) The final case to consider is that where γ = 1 and −L < λ < 0. Here

I =
∞

∑
y=L

(λ)y

(λ)L y!
=

1
(λ)L

[
1F0(λ; 1)−

L−1

∑
j=0

(λ)j /j!

]

=
1

(λ)L

[
(1− 1)−λ −

L−1

∑
j=0

(λ)j /j!

]
= − 1

(λ)L

L−1

∑
j=0

(λ)j

j!

where the third equality is valid because λ < 0, and

p(y) = −
(λ)y /y!

∑L−1
j=0 (λ)j /j!

, y = 1, 2, 3, . . .

This somewhat surprising result reduces to that of Willmot (1988) when L = 1, in which case the
denominator reduces to unity.

We will not go through all the properties considered in the case L = 0, although we note in passing
that y = 0 contributes nothing to any of the expectations used to calculate either the mean or variance of Y
and so the expressions provided remain valid, except in the special case of γ = 1 where finite moments do
not appear to exist. We can, however, update Figure A2 to reflect what we have learned in these cases



Econometrics 2020, 8, 9 33 of 36

where {0} 6∈ Y , see Figure A3.28 In essence, the major change is that the parameter space now admits non
positive values of λ, provided that they exceed −Lγ and 0 < γ < 1, but only when {0} 6∈ Y .
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The set of permissible parameter combinations is represented by rays radiating from the origin, a
subset of which are depicted, all other possibilities are ignored. The dashed lines are not included
within this set and rays ending in a circle do not include the point depicted by the circle, specifically,
if γ = 1 then λ > −L. The area shaded light grey represents the boundary of the set of impossible
parameter configurations.

Figure A3. Parameter Space for the Extended Katz Family For L ≥ 0

References

Abadir, Karim M.. 1999. An introduction to hypergeometric functions for economists. Econometric Reviews 18(3), 287–330.
Adamidis, Konstantinos. 1999. An EM algorithm for estimating negative binomial parameters. Australian & New Zealand

Journal of Statistics 41(2), 213–221. doi:10.1111/1467-842X.00075.
Al-Khasawneh, Mohanad F.. 2010. Estimating the negative binomial dispersion parameter. Asian Journal of Mathematics &

Statistics 3, 1–15. doi:10.3923/ajms.2010.1.15.

28 Note that Sundt and Jewell (1981, Figure 1) provide a similar diagram although, as noted by Willmot (1988), they miss the
possibility of γ = 1.

https://doi.org/10.1111/1467-842X.00075
https://doi.org/10.3923/ajms.2010.1.15


Econometrics 2020, 8, 9 34 of 36

Bardwell, George E. and Edwin L. Crow. 1964. A two-parameter family of hyper-Poisson distributions. Journal of the
American Statistical Association 59(305), 133–141.

Boswell, M. T. and Ganapati P. Patil. 1970. Chance mechanisms generating the negative binomial distributions. In G. P.
Patil (Ed.), Random Counts in Models and Structures, Volume 1, Chapter 1, pp. 3–22. London: University Press.

Cameron, A. Colin and Pravin K. Trivedi. 1986. Econometric models based on count data: Comparisons and applications
of some estimators and tests. Journal of Applied Econometrics 1(1), 29–53.

Cameron, Adrian Colin and Pravin K. Trivedi. 2013. Regression Analysis of Count Data (Second ed.). Econometric Society
Monographs No. 53. Cambridge: Cambridge University Press.

Consul, Prem C.. 1989. Generalized Poisson Distribution: Properties and Applications. Statistics: Textbooks and Monographs
99. New York: Marcel Dekker Inc.

Crow, Edwin L. and George E. Bardwell. 1965. Estimation of the parameters of the hyper-Poisson distributions. In
G. P. Patil (Ed.), Classical and Contagious Discrete Distributions. Proceedings of the International Symposium held at
McGill University, Montreal, Canada, August 15–August 20, 1963, pp. 127–140. Statistical Publishing Society, Calcutta;
Pergamon Press, Oxford.

Dacey, Michael F.. 1972. A family of discrete probability distributions defined by the generalized hypergeometric series.
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