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Abstract: Functional data is a common and important type in econometrics and has been easier
and easier to collect in the big data era. To improve estimation accuracy and reduce forecast risks
with functional data, in this paper, we propose a novel cross-validation model averaging method for
generalized functional linear model where the scalar response variable is related to a random function
predictor by a link function. We establish asymptotic theoretical result on the optimality of the weights
selected by our method when the true model is not in the candidate model set. Our simulations
show that the proposed method often performs better than the commonly used model selection and
averaging methods. We also apply the proposed method to Beijing second-hand house price data.

Keywords: generalized functional linear model; cross-validation; model averaging; asymptotic
optimality

1. Introduction

In recent years, functional data have been increasingly popular in many scientific areas. A common
question for the functional data is how to quantify the relationship between functional covariates and
scalar responses. Functional linear model (FLM) and generalized functional linear model (GFLM)
can take account of some associations between the response and the different points in the domain of
the functional covariates, and therefore are two useful tools in many studies for functional data.
These two models have now been widely used to solve practical problems, such as exploring
the relationship between the growth and age in the life sciences, analyzing the weather data in
different areas, recognizing the handwriting data, and conducting the diffusion tensor imaging studies.
Functional data analysis usually represents functional covariates and coefficient functions by some
linear combinations of a set of basis functions, such as a prespecified basis system like B-splines,
Fourier and wavelet bases (James 2002), and data-adaptive basis functions from functional principal
component analysis (FPCA) (Yao et al. 2005). We are concerned with the GFLM because it can estimate
the flexible and nonlinear relationships between the functional covariates and scalar responses for
many types of data such as binary response data, Poisson response data, and multivariate discrete
response data. See, for example, James (2002), who expanded generalized linear models to generalized
functional linear models with the functional principal component methodology and demonstrated
that this approach can be performed for linear, logistic and censored regressions in simulations and
real data analysis.

In econometrics, the relationship between time series and scalar response is often of interest. We
can use GFLM instead of generalized linear model to handle the case where a time series with the
dependence at different time points is used as the explanatory variables with dimension toward to
infinity. On the other hand, prediction is often the main goal in econometric data analysis. Several
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approaches have been proposed to select some important principal components in FPCA such as
AIC, BIC, and leave-one-out cross-validation (Miiller and Stadtmiiller 2005). However, as we will
demonstrate, the model selection alone, such as AIC, is not an optimal approach for the purpose of
estimation and prediction. in one model selected by AIC or BIC may lead to the loss of information
from other models. Different models often capture different data characteristics and therefore model
averaging generally gets higher estimating or predicting accuracy, which has received extensive
attention in recent years.

Model averaging has two research directions: Bayesian Model Averaging (BMA) and Frequentist
Model Averaging (FMA). We will focus on the latter in this paper. A key problem with the FMA is the
choice of weights assigned to different models. In this regard, various approaches have been developed.
See, for example, smoothed AIC, smoothed BIC (Buckland et al. 1997), smoothed FIC (Hjort and
Claeskens 2003; Claeskens and Carroll 2007; Zhang and Liang 2011; Zhang et al. 2012; Xu et al. 2014),
Adaptive method (Yang 2001), MMA method (Hansen 2007; Wan et al. 2010), OPT method (Liang et al.
2011), JIMA method (Hansen and Racine 2012, Zhang et al. 2013), and leave-subject-out cross-validation
method (Gao et al. 2016), which apply to independent, or time series, or longitudinal data.

For functional data, some model averaging methods have been studied. Zhu et al. (2018)
proposed a model averaging estimator based on Mallows’ criterion for partial functional linear models
whose response is a scalar and the predictors are a random vector and some functional variables.
Zhang et al. (2018) proposed a Jackknife model averaging for fully functional linear models whose
response and predictor are both functional processes. For generalized functional linear model designed
for the case where the scalar response is nonlinearly dependent on functional explanatory variables,
model averaging is a good alternative to model selection that may lead to instability in variable
selection or coefficient estimation caused by randomness of the data collection and so on.

In this article, we consider model averaging methods for GFLM to capture the nonlinear
characteristics hidden in the data and to reduce the prediction errors and risks. The contributions of
this article are threefold: We first adopt FPCA to reduce the dimensions as it provides a parsimonious
representation of functional data, and then present a novel model averaging procedure based on
leave-one-out cross-validation criterion (CV). Second, we prove the consistency of parameter estimator
under the misspecified model with some mild conditions. The dimension of the parameter can be
divergent. Third, we establish the asymptotic optimality of our method in the squared loss sense for
generalized linear model with a diverging number of parameters. Our work relaxes the condition that
the expectations of estimators need to exist.

The rest of the article is organized as follows. In Section 2, we introduce our proposed model
averaging method for GFLM. We then establish the asymptotic property of the proposed method
in Section 3. Simulation studies and a real data example of second-hand house price in Beijing are
presented in Section 4. Section 5 concludes. Proofs of theoretical results are provided in Appendix A
and B.

2. Model Averaging for Generalized Functional Linear Model

2.1. The Generalized Functional Linear Model

The data we collected for the ith subject or experimental unit are ({X;(t),t € T},y;),i=1,...,n.
We assume these data are generated independently. The predictor variable X(t) (t € T) is a random
curve corresponding to a square integrable stochastic process on a real interval T. The response
variable is a real-valued random variable that may be continuous or discrete. For example, in a binary
regression, one would have y € {0,1}.

Suppose that the given link function g(-) is a strictly monotone and twice continuously
differentiable function with bounded derivatives and is thus invertible. This assumption is common
in generalized linear model. See, for example, (Chen et al. 1999; Miiller and Stadtmdiller 2005; Ando
and Li 2017). Moreover, we assume a variance function o (-), which is strictly positive with upper
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bound defined on the range of the link function. The generalized functional linear model or functional
quasi-likelihood model is determined by a parameter function B(-), which is square integrable on its
domain T, in addition to the link function g(-) and the variance function ().

Given a real measure dw on T, we define linear predictors

7=+ /5(t)Xi(t)dw(t), i=1,...n,

and conditional means y; = g(7;), where E (y;|X; (t),t € T) = p;, and Var (y;|X;(t),t € T) =
0?(u;) = &2(y;) with the function #(17;) = 02(g(7;)). In a generalized functional linear model,
the distribution of y; would be specified with the exponential family. Thus, we should consider a
functional quasi-likelihood model

vi=g (uc + /,B(t)Xi(t)dw(t)) +e, i=1,...n, 1)

where E (¢;|X;(t),t € T) = 0and Var (¢;| X;(t),t € T) = 0(u;) = ¢2(17;). Note that a is a constant, and
the inclusion of an intercept allows us to require E (X;(t))

= 0 for all t. We assume the errors ¢; are
independent with the same variance. It is easy to obtain E(¢;) = 0 and

Var(e;) = Var {E(e;| X;(t),t € T)} + E{Var(¢;|X;(t),t € T)} = E {(”72(171-)} =02
Following Miiller and Stadtmidiller (2005), we choose an orthonormal basis {p]-,i =1,2.. } of the

function space L2(dw), that is [1.p;(t)ox(t)dw(t) = ik, Where 8 = 0 for j # kand 6 = 1for j = k.
Then, we can expand the predictor process X(t) and the parameter function B(t) as

X(5) = Y ejpy0)
j=1

and

B(1) = flﬁjpj(o,
L

[in the L?(dw) sense] with random variables ¢; and coefficients Bj given by e; = [ X(t)p;(t)dw(t)
and Bj = [ B(t)pj(t)dw(t), respectively. By the previous assumptions that X(t) and p(t) are square
integrable, we get ;22 /3]2 <coand Y2, Es? < oo.

From the orthonormality of the basis function p; and setting

iy = [ Xibpj(Dda(t),

it follows immediately that
m=at [ BOXi(Ddo(t) =a+ ) ey
j=1

It will be convenient to work with standardized errors
e =ei/o(u;) =ei/o(n;),

in which E(¢}|X;(t)) = 0, E(¢}) = 0, and E(e/?) = 1. Then, it will be sufficient to consider the following
model,

Yi=g <Dé+ Z:Bjsi,j> —|—€:5’ (a—i- Z,iji@j) , 1i=1,...,n, (2)
=1 =1
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where the function g(+) is known.

The number of parameter in model (2) is infinite. We address the difficulty caused by the infinite
dimensionality of the predictors by approximating model (2) with a series of models where the number
of predictors is truncated at p = p,, and the dimension p, can be a constant as large as possible with
pn < n. A heuristic truncation strategy is as follows. For the ith sample, a p-truncated linear predictor
Mip is

P
77i,p =a+ Z ,B]‘Ei,]‘.
j=1

The approximating model we use is

4 4
yi:g<“+2ﬁj8i,j>+€;6(“+Z,Bj€i,j>/ i=1,...,n.
j=1 j=1

Now, we consider the estimation for generalized functional linear model. First, we use FPCA to
get a set of orthogonal eigenfunctions as the basis functions in the space L?(dw). Then, we consider a
series of candidate models. The number of candidate models is M. For the mth candidate model, we
adopt the first p,, functional principal components to build the approximating model,

Pm Pm
vi=g (tx(m) + gﬁ](m)si,]) + el (tx(m) + 2‘3](-1")8,‘,]‘) , i=1,...,n 3)
7= =

We assume that p; < p, < --- < py. That is, the candidate models are nested. Denote ¢; ¢ = 1
and [Bém) = a(™), then we estimate the unknown parameter vector g(") = (,B(()m), ﬁlm), . ,ﬁ;ﬁ))T by
solving the following estimating or score equation

g/(ﬂi,pnz) P

(m)y — .
Uy, (B™) 2 (1t ) (i,pm

|-
.M:

I
—

[yi - g(ﬂﬁpmﬂ ) - 0/ (4)

1

where#; ,, = Z]’-’l’o ﬂ](m)ei, jande(ip,.) = (€0, ---, si,pm)T. Let A(") be the solution of the score equation
Unm(B™) =0,1e,

2 1y . 8 (Aipu)
Un,m(ﬁ(m)) = ;[]/i - 8(’7i,pn1)]m€(i,pm) =0. ®)

2.2. Model Averaging Estimation

For each candidate model, we get the estimator of the unknown parameter vector by (4). Let

M
wean{we[o,l}M: Zwm:1},
m=1

then we obtain the model averaging estimator of #;:
M
Ai(w) = Y Wnflip,, ©)
m=1

where 7; ,, = Efl’o ,3]<m)ei j- Thus, a model averaging estimator of the conditional mean y; is given by

M
fii(w) =g (Z wmﬁi,pm> : ?)
m=1
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Let B(_";) be the estimator of 8(") from (4) without the jth observation, that is,

n i 1. Z ‘ [vi — &8(ip,.)] we =0. (8)

nm, ](/3 ) e U2(Hz‘,pm) (i,pm)

For the observation j, the leave-one-out truncated linear estimator of 77; under the mth model is

_ gmT
=p"

T]j,pm ‘C’(]',Pm)’

and the leave-one-out model averaging estimator of y; is
~ M .
]’l](w> =8 (Zm:] wm;?jrprn) :

Thus, we propose the following leave-one-out criterion for choosing weights in the model averaging
estimator given by (7)

(vi — fis(w))* = Y [yi -8 (Zf:l wmﬁi,p,,l)]z- )

n
1 i=1

M-

CV(w) =

1

Let

W =arg J}‘relgl CV(w)

be the weight vector from CV(w) criterion. Then, plugging @ into (7), we obtain the final model
averaging estimator f;(@),i = 1,2,...,n.
3. Asymptotic Property for Model Averaging Estimator

In this section, we will establish the optimal property of cross-validation model averaging for
generalized functional linear model. We allow the dimension of each candidate model to be divergent
as n tends to co.

Notations and Conditions

We denote the first and second derivatives of the function g(-) by ¢'(... ) and g (. ..), respectively,
the diagonal matrix A with diagonal elements a4, a5, ...,a; by A = diag(aq,ay,..., aq), the minimum
singular value of matrix A by Amin {A}, and

(m)T _(m)
& &
/\n,m = /\min {nnn} ’

with .
(m) _
En = <£(1,pm),£(2,pm), . '£(n,pm)) .

For any (") € RP»+1, ;1 € N*, define

(8 (B e (i) — 1] LT (10)

1 7 (s (B i)

We assume [¢’(+)] < ¢ < coand |¢”(-)| < ¢1 < o0, and (") is strictly positive with bound 0 < d; <
cﬂ)<@<wmﬂﬂ%w<@<w
Consider the squared loss function

-

ug (6) =

S|

g(ilpﬂl) :
1

Lu(w) = |u = fi(w)[?,
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where jt = (i1, i2, .., i)' and fi(w) = (fi1(w), fio(w), ..., fin(w))" are the two n x 1 vectors, and
|| - ||I? is Euclidean norm. Denote

i=1

n M 2
Ry(w) =Y [g(ni) -3 ( ) wme{i,pnl)ﬁﬁm))] :

and
= inf R ,
C” wlan n(w)
where ‘By”) is the pseudo true parameter, which, like Flynn et al. (2013) and Lv and Liu (2014), is
defined as the solution to the following score equation,

ug) (5 =,

and is a theoretical target under the mth candidate model with misspecification. We assume that such

a solution is existent and H/%im) H2 / (pm +1) < Cp < c0. &, represents the minimal bias between the
true model and the final model generated by model averaging, which is an alternative to the risk
based on L,(w). In this work, we do not require the expectation of L,(w) to exist, which is more
relaxed than the common requirement on jackknife model averaging methods for generalized linear
model. See, for example, Zhang et al. (2016) and Ando and Li (2017). In the following, we assume that
Xi(t),i =1,2,...,n are non-random with sup; |1;| < C; < co.

Condition 1. For some compact set O, in RpPmtl

n——+00
holds.
Condition 2. (i) {e;},i =1,...,n are mutually independent.

(ii) Ee; = 0.
(iii) C; = sup, Ee? < oo.

2
Condition 3. sup, S(i’p"’)H / (pm+1) < G < oo

Condition 4. \/np?/&, — Qwith p = maxpy, and p*/n=o(1).

Condition 5. Y , (ﬁi,pm - ﬁi,pm)z =0, (ph).

Condition 6. Ay, {aﬁa(m> u,ﬁ"}n) (‘3("1))} > Cp > 0.

Condition 1 is a requirement for generalized model to guarantee the existence of solutions to (4).
In general, the existence and consistency of roots obtained by solving (4) have to be checked, so we list
Condition 1. The similar condition can be found in Balan and Schiopu-Kratina (2005). In the special
case where the link function is g(x) = x, the solution of (4) is a generalized least squares estimator of
B™ and Condition 1 is easy to satisfy.

Condition 2 is common for generalized linear model. See, for instance, Chen et al. (1999) and
Ando and Li (2017). The least squares estimator for linear regression models is strongly consistent
under Condition 2. This condition is less restrictive than (A1) of Ando and Li (2017) for proving the
optimality of the weight selection procedure.
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Condition 3 is similar to (2.3) of Theorem 1 in Chen et al. (1999) and is due to the nonlinearity.
A counterexample is given to show that (") may not be consistent when Condition 3 (i) is dropped in
Chen et al. (1999).

Condition 4 means that the speed of &, tending to co should be faster than that of /np?.
This condition also implies that the true model is not in the candidate model set, which is a condition
commonly used for optimal model averaging. It is easy to satisfy when the true model is an infinite
dimensional model. This condition is an alternative to Condition C.3 of Zhang et al. (2016) and (A3) of
Ando and Li (2017).

Condition 5 implies n~' Y1ty (7, — ﬁi,pm)z = oy (1) with p,/n = 0 (1). By Lemma A3 in the
Appendix A and Condition 3, we have

n n

Y- (i — 5@,;:",)/3&”1))2 <)

i=1 i=1

B == 0 (41).

‘ E(i,pm)

Then, with the following standard condition for the application of cross-validation,

217'1:1 (ﬁi,pm o S%irpm)ﬁ&m))z —1
Yita (ﬁi,i’m - 8@!’"1)[55(?”))2

=0p(1),

which says that as n gets large, the difference between the ordinary and leave-one-out estimators of #;
under the mth candidate model gets small, it can be seen that

% i = ) <23 (B =) 423 (g =l 87)" =03 (51).

which means Condition 5 is reasonable. For the one-parameter natural exponential family models,
Ando and Li (2017) showed under some regularity conditions that }-/" ; (7 p,, — ﬁi,pm)2 =0, (p2,/n)
satisfying our Condition 5. For the linear models where g(x) = xand 02 () = 1, 2ty (7 p, — ﬁi,pm)z =
Op (p2,/n) under the assumption that E(Ti,pm) (e%m)Teslm)) - €(i,pm) < CPm/n for some constant ¢ < oo,
which is commonly used to ensure the asymptotic optimality of cross-validation. See, for example,
Condition (5.2) of Li (1987), Condition (5.2) of Andrews (1991), Condition (A.9) of Hansen and Racine
(2012), Condition (C.2) of Zhang (2015), and Condition (C.3) of Zhao et al. (2018). In general, our
Condition 5 is more relaxed than those in literature for the complex candidate models.

Condition 6 is to ensure that the pseduo true parameter ﬁ(*m) is unique. The consistency of the

estimator of ﬁ(*m) can also be derived by this condition. See Lemma A3 in the Appendix A. In addition,
the one-parameter natural exponential family considered in Theorem 1 of Ando and Li (2017) is an

example with
9 gy g\ Ly [ Ty (gim) )
i { gt (8) = i { e (87) 7},

(m)\ _ 4; 1 (T (m) 1 (T (m) 1 (T (m)

r (/3 ) = diag (g (S(l,Pm)ﬁ ) /8 (S(z,pm)ﬁ ) yoor 8 (E(H,Pm)ﬁ )) .

By the commonly used assumption that A, ;,; > ¢y > 0 for some constant ¢y < o, and the assumption
(4.3) in Ando and Li (2017), this example satisfies Condition 6.

where

Theorem 1. Assume that Conditions 1-6 hold, then @ is asymptotically optimal in the sense that

Ly (ZAU) P
om0, 11
infye g, Ln(w) (1)



Econometrics 2020, 8, 7 8 of 35

where L5 means convergence in probability.
Proof. See the Appendix B. O
Remark 1. When the dimensions of the candidate models are fixed, condition 4 can be relaxed to n/&% — 0.

Remark 2. It is easy to see that if we do not require that the weights sum to one, then we can use M instead of 1
as the upper bound of Y-"_, w?, in our proof. Thus, all the proofs are still valid for the fixed M. This implies that
Theorem 1 remains true if we remove the constraint that the weights sum to one. In addition, as the candidate
models are not necessarily nested in the proof, this theorem still holds when the candidate models are non-nested.

4. Numerical Examples

4.1. Simulation I: Fixed Number of Candidate Models

In this section, we conduct simulation experiments to compare the finite sample performance
of our model averaging methods and some commonly used model selection and model averaging
methods. For model selection, we consider three methods: AIC, BIC, and FPCA. FPCA is an efficient
and common method in functional data analysis, which determines the final model by the cumulative
contributions of the functional principal components. For model averaging, we consider the following
methods, S-AIC (smoothed AIC), S-BIC (smoothed BIC), and our cross-validation model averaging,
which is denoted as CV1 if we restrict the sum of weights to be 1 as before, and CV2 if no constraint on
the sum of weights is imposed.

The data generating process is as follows: the predictor variable is

/
Xi(t) = 21 eijpj(t),
iz

and the parameter function is
/
B(t) =} Bjpj(t),
j=1

where p;(t) is a basis function with ¢ € [0,1], and j > 1 and ] is the number of the basis functions. Here,
we use B-spline base and Fourier base. For B-spline base, we choose the order of the basis functions to
be 2, and the number of the basis functions to be 20. As for Fourier base, we choose the number of the
basis functions as 21 and the first basis to be a constant function.

In our simulation, the following four cases are considered.

Case1 For1 < j <10, B;are generated from the standard normal distribution N (0, 1); for 10 < j < 20,
B; = 0. The basis functions {p;(t),t € [0,1],1 < j < 20} are B-spline functions with parameters
as mentioned above.

Case2 For1 < j < 20, Bj = j 2 The basis functions {p;(t),t € [0,1],1 < j <20} are B-spline
functions with parameters as mentioned above.

Case 3 For1 < j <11, B;are generated from the standard normal distribution N (0, 1); for 11 < j < 21,
Bj = 0. The basis functions {pj(t),t €0,1,1<j< 21} are Fourier functions with parameters
as mentioned above.

Case4 For1l < j < 21, B; = j~2. The basis functions {pj(t),t €[0,1],1 < j <20} are Fourier
functions with parameters as mentioned above.

We set the term g to be independently generated from N(0, R%/ jZ), where R = 1,2,...,10.
The response variable y; is generated from binomial distribution Binomial(p(X;(t)),1) with the

probability p(X;(t)) being g ( fol X;(t)B(t) dt). We consider three types of link function g(-): logistic
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link function exp(-)/(1 + exp(-)), Probit link function, and Poisson link function. For the Poisson
model, we only consider the simulations with R = 1 for Cases 1-4.

In the simulation, we use FPCA to obtain the nested candidate models. Each candidate model
contains the first p;, principal components. The number of candidate models is 18 for Cases 1-2 and
19 for Cases 3—4. Then we adopt the weighted iterated least squares algorithm which is a common
approach in generalized linear model to get the estimates for each model. For the weights, we use the
"fmincon’ function in Matlab to get the solution of CV criterion.

The sample size is set as n = 60,200, 500. We use the 80% data as the training data {Y;, X; } with
size n1, and the remaining data as the test data {Y5, X, } with size n,. Then, we compare the prediction

errors. We calculate the prediction accuracy (||Y> — Y2||2 /my), fitting accuracy (||V1 — Y HZ /ny),

2
predictor coefficient prediction accuracy (Hﬁ(2> —17(2) H /ny ), and predictor coefficient fitting accuracy

(Hﬁ(l) — 1) H2 /11 ). We repeat this process 1000 times, and then obtain mean, median, and variance
of these prediction errors for each method. To save space, we present only the results on the prediction
accuracy. The results on the other type accuracies are available from the authors upon request. We
only report the results for logistic link function due to space limitations. Other link function results are
also available from the authors.

For Case 1, the prediction errors are summarized in Tables A1-A3. From Table A1, it is seen that
with R varying from 1 to 10, the prediction errors are decreasing, because the difference of probability
between the two groups (one group whose response is 1 and the other group whose response is 0)
becomes larger. Our methods (CV1 and CV2 in the tables) always obtain the minimum error means
(Mean in the tables), medians (Median in the tables), and variances (Var in the tables). However, there
is no clear tendency between CV1 and CV2, which perform similarly in most of situations. When R
is small, BIC is always better than AIC, and S-BIC is always better than S-AIC. This may be due to
less parameters being useful for smaller R values, and in this case, a bigger penalty on the number of
parameters in the model is preferred. Moreover, when the candidate models differ significantly, AIC
or BIC performs similarly to S-AIC or S-BIC, respectively. As R becomes larger, the difference between
AIC and BIC or S-AIC and S-BIC becomes smaller. FPCA is always superior to AIC, BIC, S-AIC, and
S-BIC, and their differences become larger as R increases. Now, we turn to Tables A2 and A3. With
the sample size n increasing from 60 to 200 and 500, we can see that the prediction errors decrease for
each fixed R. The median and variance of prediction errors also become smaller. AIC and BIC behave
increasingly similarly. CV1 and CV2 are still the best among all the methods, and followed by FPCA.

For Case 2, the prediction errors are given in Tables A4-A6. As shown earlier, CV1 and CV2
perform the best, and followed by FPCA. Likewise, S-AIC or S-BIC is better than AIC or BIC,
respectively. For Table A4, with R varying from 1 to 10, the prediction errors are decreasing except
FPCA method, which gets the minimum at R = 7 with a small fluctuation. CV1 and CV2 perform
equally well for different R values and sample sizes. The difference between AIC and BIC becomes
small with the sample size increasing. The similar phenomenon is observed for S-AIC and S-BIC.

For Case 3, the prediction errors are provided in Tables A7—-A9. For n = 60 (Table A7), CV1 or
CV2 is the best when R is between 1 and 5. However, when R is between 6 and 10, the two model
selection methods—AIC and BIC—are the best. The similar conclusions can be found in Table A8 with
n = 200 and Table A9 with n = 500, although in the latter case, CV1 actually performs the best for
all of R values. The error rates of all methods become smaller with R increasing from 1 to 6 and then
bigger with R varying from 7 to 10.

For Case 4, the prediction errors are presented in Tables A10-A12. For n = 60 in Table A10, CV1,
CV2, and BIC are the best, and followed by AIC . In this design, S-AIC or S-BIC is not better than AIC
or BIC. For n = 200 in Table A11, BIC is the best, and followed by AIC. For n = 500 in Table A12, CV1
always performs the best, and followed by BIC.

In summary, for out-of-sample prediction, our methods CV1 and CV2 perform the best in most of
cases and have smaller variances and medians of errors. Furthermore, CV1 and CV2 often perform
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equally well. This indicates that removing the restriction on the sum of weights may not lead to a
better model averaging estimates.

4.2. Simulation II: Divergent Number of Candidate Models

We consider the situations where the number of candidate models tends to oo as the sample size
increases. We set the sample size n to be 200, 400, and 1000, and the the number of candidate models to
be 91/100 (So M=18,36, and 90 for the three sample sizes). The data generating process is as before: the
predictor variable is X;(t) = EJI’:1 €;,jpj(t), and the parameter function is B(t) = 2}21 Bjoj(t), where
p;(t) is a 2-order B-spline basis function, t € [0,1],j > 1,and ] = n/10. For1 < j < ], B; = j V2
We set the term &; jto be independently generated from N (0, R%/ jl/ 2), where R =1, 3,7. The response
variable y; is generated from binomial distribution with the logistic link.

The candidate models are nested. The algorithms used in the calculations are the same as that
described in Section 4.1. For the simulation results, we report the errors of seven methods considered
as Section 4.1. From Tables A13-A15, our methods—CV1 and CV2—perform the best in most of
cases, and followed by FPCA, and SAIC. The difference between AIC and BIC, or SAIC and SBIC is
decreasing with increasing R .

4.3. Application: Beijing Second-Hand House Price Data

We apply our method to the Beijing second-hand housing transaction price data, which is captured
from the internet collected by the Guoxinda Group Corporation. Most of the data pass through the
manual check. This data include the second-hand housing prices and the surrounding environment
variables of the 2318 residential areas in Beijing. The second-hand housing prices data are monthly
data from January 2015 to December 2017 for each residential area.

Our aim is to predict the increase level in house prices in next year. We are concerned about
the relationship between price level to rise and the past housing price curves. We use the median of
listing online prices of houses in a residential area as the house price for this residential area. We use
the price curve of each residential area from January 2015 to December 2016 as a predictor variable.
The response variable is a binary variable, which takes 1 if the rising ratio is high, and 0 otherwise.
Here, we define the rising ratio for each district as the ratio of the average monthly price in 2017 to
the average monthly price in 2016. The 25%, 50%, and 75% quantile ratios are 1.31,1.37, and 1.44,
respectively. We focus on the residential areas whose housing prices are rising rapidly, and so if the
ratio is higher than 75% quantile ratios of all residential areas, the response variable of this residential
area takes 1 as its value, and 0 otherwise. Of the n = 2318 residential areas, 568 are rising fast, and
1750 are not.

For simplicity, we standardize all the price data. For each group, we plot the housing price
trajectories in Figure 1. Failure to visually detect differences between the groups could result from
overcrowding of these plots with too many curves, but when displaying fewer curves (lower panels of
Figure 1), the same phenomenon remains. With a few exceptions, no clear visual differences between
the two groups can be discerned. On the whole, the trajectories of per year from 2015 to 2016 are not
much different. Therefore, the discrimination task at hand is difficult.

We randomly select 75% of all residential areas as the training set with size 1739, and the rest
as the testing data with size 579. We use logistic link and B-spline functions to fit the house price
curves. The number of the basis functions is 6, and the order of the B-spline basis functions is 2. Then,
we adopt functional principal component analysis (Yao et al. 2005) to built the data-adaptive basis
functions to reduce the dimension and deal with the correlations in house price time series.
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Y=0 Y=1

Time Time

(c) (d)

Figure 1. Predictor trajectories, corresponding to slightly smoothed monthly price curves. The low
rising residential areas are in the upper left (a). The high rising residential areas are in upper right
(b). Randomly selected profiles from the panels above are shown in the lower panels (c) and (d) for 20
districts.

We compare the out-of-sample prediction errors of the seven methods in Section 4. We repeat
every method 20 times. The results are summarized in Tables 1 and 2. It can be observed from the
tables that the error of CV1 or CV2 method is lower 10% on average than those of other methods, and
overall, CV1 and CV2 behave similarly. As shown in the simulation above, this indicates the constraint
that the sum of weights equals 1 makes sense in practical cases. AIC and BIC perform equally well, as
both choose the largest model in most cases. We also find that FPCA is better than AIC or BIC. FPCA
always selects the smallest model because the cumulative reliability of the first principal component is
~98%. Further, it is clear that the fitting error and prediction error of FPCA are similar. For the other
methods, the fitting errors are always a little smaller than the prediction errors.
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Table 1. Error of prediction.

Rounds | AIC BIC FPCA S-AIC S-BIC CVl CV2
inel | 0301 0301 0275 0301 0301 0.221 0.221
210292 0292 0247 0292 0292 0.178 0.176
31029 029 0242 029 029 0.187 0.187
410280 028 0233 0280 0280 0176 0.174
510276 0276 0233 0276 0276 0.147 0.149
6| 0316 0316 0233 0316 0316 0.183 0.188
710269 0269 0244 0269 0269 0.164 0.164
810294 0294 0225 0294 0294 0.174 0.174
90316 0316 0235 0316 0316 0.187 0.187
10 | 0.282 0282 0242 0282 0282 0.174 0.173
11 | 0292 0292 0240 0292 0292 0.162 0.162
12 | 0285 0285 0261 028 0285 0.188 0.188
13 | 0282 0282 0219 0282 0282 0.150 0.149
14 | 0264 0264 0280 0264 0264 0.188 0.188
15 | 0282 0282 0247 0282 0282 0.187 0.187
16 | 0295 029 0269 0295 0295 0.18 0.185
17 | 0328 0328 0252 0328 0.328 0.204 0.202
18 | 0301 0301 0245 0301 0.301 0.187 0.187
19 | 0278 0278 0209 0278 0278 0.150 0.150
20 | 0.311 0311 0249 0311 0311 0.183 0.183
Table 2. Error of fitting.
Rounds | AIC BIC FPCA S-AIC S-BIC CVl CV2
inel | 0287 0.287 0235 0287 0287 0.166 0.165
21028 028 0244 0289 0289 0.181 0.180
31029 029 0246 0290 029 0.174 0.173
410293 0293 0249 0293 0293 0.182 0.182
5102% 029 0249 029 0296 0.190 0.190
6| 028 028 0249 028 0285 0.175 0.175
710297 0297 0246 0297 0297 0.184 0.183
80292 0292 0252 0292 0292 0179 0.179
9028 0283 0248 0283 0283 0.174 0.173
10 | 0291 0291 0246 0291 0291 0.182 0.181
11 | 0291 0291 0247 0291 0291 0.184 0.186
12 | 0294 0294 0240 029 0294 0.175 0.175
13 | 0293 0293 0254 0293 0293 0.190 0.187
14 | 0295 0295 0233 0295 0295 0.175 0.175
15| 0293 0293 0244 0293 0293 0.176 0.177
16 | 0.288 0288 0237 0288 0.288 0.179 0.178
17 | 0282 0282 0243 0282 0282 0.173 0.173
18 | 0290 0290 0245 0290 0290 0.178 0.177
19 | 0294 0294 0257 0294 0294 0.186 0.187
20 | 0285 0285 0244 028 028 0179 0.179

5. Concluding Remarks

12 of 35

In this paper, we proposed a model averaging approach under the framework of the generalized
functional linear model. We showed that the weight chosen by the leave-one-out cross-validation
method is asymptotically optimal in the sense of achieving the lowest possible squared error in a class
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of model averaging estimators. It can be seen from the theoretical proof that our method is also valid for
the non-nested candidate model set. Numerical analysis shows that for generalized functional linear
model, cross-validation model averaging is a powerful tool for estimation and prediction. A further
work is to develop model averaging inference procedures based on generalized functional linear
model. In addition, how to combine other covariates into generalized functional linear model is also
an interesting problem.
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Appendix A. Lemmas and Proofs

The following Definition A1 and Lemma A1 can be found in Kahane (1968), Hoffmann (1974),
Hoffmann and Pisier (1976), Zinn (1977), and Wu (1981).

Definition A1. A linear map v : D — F is of type 2 if Y ' | €jv(s;) converges in F a.s. for all sequences
{si} S D such that Y, ||si||f, < oo, where D and F are Banach space, {&;}>, are independent random
variables such that P (e; = 1) = P (¢; = —1) = 1/2, and a.s. means converges almost surely. A Banach space
G is said to be type 2 if the identity map on G is type 2.

Let (S,d) be a compact metric space and C(S) be the Banach space of real-valued continuous
functions on S with the supremum norm

[Vlloo = stpses [v(s)],

for any v € C(S). Denote a d-continuous metric p on S. Let N (S, p, €) denote the minimal number of
p-balls of radius less than or equal to e which cover S, and set

H(S,p,e) =1ogN (S,p,¢).

We let

N , _ [v(s1) — v(s2)]
Lip(p) = {1/ €eC(S):A(v) —s;ljzpesw < oo)},

and for v € Lip(p), we define
[vlly = AW) +v(sT)],

where s* is some fixed point in S. In addition, assume that {v;:j > 1} C Lip(p) and {¢;:j > 1}
are independent real-valued random variables. Then, {ujej} are independent Lip(p)-valued random
variables.

Lemma A1l. Let (S,d) denote a compact metric space. Suppose that p is a d-continuous metric on S with

6
/ HY2(S,p,u)du < co  forsome &> 0. (A1)
0

Then we have A < oo such that for all n,
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n
E[Xi+ X+ + Xully, <A Y B[], (A2)
j=1

where X1, Xo, ..., Xy, are independent Lip(p)-valued random variables with mean zeros.

Lemma A2. Forany ™) € ©,,, define

Under Condition 3, we have

v; (/3<m))

sup 1

&
/3(m)€®m

= Op (v/11Pm) (A3)

i,pm)Ci

i€[1,n]

Proof of Lemma A2. First note that for any / € [0, py,|, we have

U )
A (Pm + 181'1)
B v; (ﬁ%’”)) i (ﬁ;m))‘ lei,]
B (m) Su(nl?) +1) x (m) p(m)
B £B," €O (Pm ) xp By, By
== su vi (ﬁgm)) v ('BSH))‘ ‘S{i/pm)ﬁgm) B S{i'r’m)ﬁém)’
I B =l B (o + 1) p (B, 5
P #By €Om (ipm)"1 (i,pm)F2 Pm P 1 7F2
/ T m) _ T (m)
= swp { §" (vi) x 0% (i) — &' (71) 0* (%‘)| " ‘S(i,pm)ﬁl €ipm P2 |€‘z|}
ﬁgm)#ﬁ(zm)€®m ot (r)/l) (pm + 1) X p (‘BgM),‘Bgﬂ)) ,
where the last step is by the mean-value theorem and 7; is a point betweeen e, ﬁgm) and

(ier)
E(TI- ) ,Bgm) From the assumptions that g(-) is a twice continuously differentiable function with

bounded derivatives |¢/()] < ¢ < oo and |¢”(-)] < ¢1 < oo, and ¢?(-) is strictly positive with
bound 0 < d; < 0?(-) < dy < o and ‘(72/(-)‘ < dj < oo, we see that there is a constant ¢’ > 0 such that

|v;(+)] < ¢’ < o0, and
v
Al —¢.
(Pm "’181'1)

< sup ¢’ x i €3] }
B #py" €O { (1) xp (81" 85"

e
< sup {c’ X ;9:1)1 ’51‘,1‘}

,B(lm) ?é.B;m) €O,

lei]

€ (i,Pm)

pm+1

=c !81',1| ,

where the second inequality is by Cauchy-Schwarz inequality. Therefore, we obtain
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v; vj Vi (ﬁ(m)*)
gipl| = A g | + €
pm+1" ) pm+1" pm+1 !
E(i,pm) ‘ 1
pm1 T T e
, €(i,pm) +1
= 1 [l
m
< o0,

As @, is a compact subset of RP»*1, and p( :31 (m)) is the Euclidean metric in RP»*1, (A1) is satisfied.
Thus, by Lemma A1, there is a constant A > 0 uniformly for all / such that for any C > 0, we have

v; (/3(m)>
pm+1

2

P<J sup > Cn

Bm Oy

€16
ie[1,n]

2
0;

}m > Cn

=P €jje;

i€[ln
[e9)

2

€16

0
2]pm+1

ie[l,n

1 n
<CnA{Z

)
)

pm+1

(o]
2
0;
} sup Eelz.
i

pm+1

S——

Notice

2
Pm

< 2 sup
1=0 ﬁ("’)e@m

o; (B0
")

o P+ 1

IB(m)e(.Dm

€(i,pm)Ci €€

ie[1,n]

i€(1,n]

Therefore, for any € > 0, letting C = Ac’ 2 (\/ Cy + 1)2 C,Cq /€&, we obtain
2

P sup
ﬁ(m) €O,

i€[1,n]

Pm

<P 2 sup
1=0 | ptm co,,

ie[ln]
v; (ﬁ(m))

2

< ZP sup > Cn

=0 | pmeeo, pmt+1

Pm n 2

Z Z sup Ee?
~ :

S o pm—|—1 Crt (pm + 1) Z{H’ (i.pm) “} H (ipm)

A? (VG +1)2CC . &)

C 7

€ 1€;

i€[1,n]

81l

Pm+1

2
} sup Ee?
i

//\
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which implies (A3). O

Lemma A3. Under Conditions 1-3 and 6, we have

3
aim) _ p(m||* _ Pin
H’B P H O ( n >' (A5)
where ") belonging to ®,, is the root of (4).

Proof of Lemma A3. By the definition of ﬁim) and Condition 6, then we have

Jubsd (6" = o () = i (62

2
Uy (m) _ p(m)
; m) _ A6
B | (B —5") (46)
112
>c} g -,
where B(m) is a point between (") and ,B(*m) Recalling that
. 1 ) g (Mip)
Upm (B == i~ i e
% (ﬁ ) n 1221 []/ g (17 ,Pm)] 0_2 (g (Ui,pm)) (l,Pm)
1 1 g/ (ﬁi,l’m)
- +€1 - /Pm 7/\8 i, m
= e 8 )] G gy
_ (m) A(m) 1 u g (ﬁirpm)
u + € -
o ()4 212 (g 1)) O
:0,
we obtain
n ! (5
om) (gom) ZL g, & ()
U = e; = €(ipy
o () w5 (5 () O
1 a(m
:Esnm)TVVl (’B( )) e,
am)) _ g: 8 (ipm )
where V,, ([3( )) = diag ((72 (szpm )>1<i<n. From (A6), we get
{wist (6) | < ooy < ([l —p" ] <o, o0 47

By Condition 1, for any x > 0, there is an Nj such that for all n > Nj, we have

From (A7), it can be seen that

= {There isa B& € Oy, such that (m) Vi (Agﬁm)) = Unnfﬂ) (3 )}

{ () w} o -] <)
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3
Then for any C > 0 and n > Ny, letting 6 = Cy/ w, we have

p{ o - g < S22

21—K—P{ sup |ley ' Vy (l[;(m)) EH >C0C\/ﬁ(pm+1)3/2}
M) €@,y

2 (VG +1)° GG
22

>1—x—

C/
c3ce’

>1—x—

where C' = Ac'? ( VG + 1)2 C2C; and the second inequality is derived by (A4). As a result, for any
x > 0, we can select C = C\\ﬁ[ such that

P

for sufficiently large n, thus

o=t o0 ()
O

Lemma A4. Under Conditions 1-4 and 6,

sup
weH,

- 1’ = 0,(1). (A8)

Proof of Lemma A4. Write A;(w) = g(17;) — & (Z%Zl wm‘s{i pm)ﬁ(*m)). From the definition of L, (w),
we have

‘ o gm) o T glm) 3 i
= Z {g(’?i) -8 ( ). Wt (j ) Bx ) +8 (Z WiiE (jp,, ) P ) —& <Z_:1 wmﬁi,Pnz>:|

M 2

(foets) ()
M T (m) M T m)

g(ni) —g (Zl Wine(; p,) Px )} [8 ( ; Wit i p,,) P ) (Z Wn, m)} }

n n M
= Z A2 (w) + Lﬁzz)(w) + Y 2Ai(w) [g < 21 wmg(Ti,pm)ﬁ(*m)> —g (mz:l wmﬁi,pm>}
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We note that
2 3
L) = Rofw) _ [ @ 87 @] @) i wl
Ry () Ry () = vt \ Ru(w) Ra(w) |
Then, (A8) is valid if
2)
Ly, (w
sup ( )‘ o, (A9)

weH, Rn(w)

Let 77} be the point between s{ ) ,B(*m) and #j; ,,, for fixed M,

ip

L) = ) lg (

weH, i=1m=1 m=1

which, together with Condition 4, leads to (A9). O

Appendix B. Proof of Theorem 1

T, and

Let fi(w) = (fia(w), fiz(w), .. ., fin(w))
Lu(w) = |u— ().
Asin Li (1987) and Ando and Li (2014), we know that

CV(w)
= Jlell* + Lu(w) +2 (e, p — i(w))

_ Ly(w) | 2(e,p— f(w))
= ||e||2—|—Ln(ZU) <Ln(w) + Ln(w) ) .

(A10)

As @ minimizes CV(w) over w € Hy, it also minimizes CV(w) — ||e||2 over w € Hy. Therefore, the

claim I (@
L@ py
infye g, Ln(w)
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is valid if N
L
sup (w) 4|2 (A11)
weH, L"(w>
and _
sup 7@’” — H(w)) L) (A12)
weH, L"(w)
hold. In fact, if we denote w* = arg miny,cp, L, (w), then

= 1
infye g, Ln(w)  Lp(w*) = 77

so we only need to prove

Ly (@)
<144,
Ly (w*) "

where 6, > 0forn = 1,2,... ,and J, 0. According to the definition of @, we have CV,(®) <
CVy(w*). Then, by (A10), we obtain

el + L (o) @@ + 2<€'£“W’)>> < el + L) (z:w*) " 2<€'”‘f‘(w*)>),

which is equivalent to

Ly () (Zn<w>+z<e,u—ﬁ<w>>> < Ln(@*) |, 2(ep— ("))
L, (w*) D L ‘

and

— sup
weH,

2 (e, — i(w)) D

Ln(w)

Therefore,
1 1-—6,
= — 1,
)/ Ly(w*) = 146y

S

Ln(
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with L, (@) /L, (w*) > 1, and

20 of 35

o | D@ | (20e s — i)
on = well-?,l Ln(w) I wel}i)n Ln(w) ‘ .
Thus, we obtain )
L,(®) p
Ln(w*) -1
In the following, we prove (A11) and (A12).
Appendix B.1. Proof of (A11)
Notice that
L) ~ Lo(w)| = | L) = L +2 L s ) (o)
_ 21 () — i) — 2 flﬁz(w)z +2iﬂi<w>uz<w> +ziui (:(0) — ()]
- 2 () — i) +2 21 i — ()] [1(w) — ()]
= [l17i(w) = (@) I +2 (e — fi(w), fiaw) = fi(ew))|

< fi(w) = fi(w)|* + 24/ Lu(w) [|fi(w) — fi(w)]|.

So,
Ly (w) Lu(w) = Ly(w)|
Liw |7 L@
@) = (@) +2/Lu(@) ||A(w) — i(w)]|
b Ly (w)
_ i) — @) 2||aG) — )|
Ly (w) Ly (w) '
Therefore, to prove (A11), it suffices to verify
Ifi(w) — f(w) | »
b A

By Lemma A4, we need only to show

-~ _ 2
wp JE@) =@ »
weHy, Rn(w)

Lety;, be the point between 7j; ,,, and 7]; ;. Then, for any J > 0, we have

fi(w) — fi(w)|?
P{;sgw g ‘5}

<P{mmHﬁ@0—ﬁWNf>5@}

weH,

(A13)



Econometrics 2020, 8, 7 21 of 35

2
> 5§n}

M 2
~ [ (771 Pm) <Z Winlfi,p,, — ;1 wmﬁi,pm>] > 55;1}

2
> 5§n}

n
Il‘:l) 2 E ;71 Pm ;71 Pm > (Sgi’l}

i=lm=

sup ) [1i(w) — pi(w)]* > m}

£ e (om0 ) o (F )

max
1<i<n,weH,

, n M
8 (771'*,;77,,) ’ sup Z [Z Wi (ﬁi/lﬂm - ﬁi/lﬂm)

wEH = m=1

<P

max ‘
1<i<n,weHy 8 (; ”m

=P max

1<i<n,weH,

;71 pm

Il

=
52
SalaS]
m:

n M )
2 Z (fiirpm - ﬁi,Pnf) > 561’1} ’
i=1m=1

which, together with the assumption that g(+) is a twice continuously differentiable function with
bounded derivatives implying max;<j<, wer, g (7 pm>|2 < ¢? < o0, leads to

weH, i=1m=1

~ ~ 2 n M
w) — pu(w _ .
P sup () = p@)I” 5\ < p Y S (Fop — g ) /o > 0.
Ry (w)
Thus, to prove (A13), it suffices to show

’71 Pm ﬁi/Pm)z /gn = OP(l)' (A14)

HME

LY

By Condition 5, for fixed M, we obtain

n M ~ . 2 M .
2 Z (Tlirpm - Wi,pm) =0p Z Pm |-
i=1m=1 m=1

which, together with Condition 4, leads to (A14), and thus (A13) holds.

n M
; e [g(m) -8 ( ; wmﬁi,pmﬂ ‘ ,

n M
sup |} e [8(171') -8 (Zl wmﬁ,-,pm)] ‘ /Ru(w) L 0.
i=1 m=

weH, |i=

Appendix B.2. Proof of (A12)
As

(e, p = pi(w))| =

it is sufficient to show

It is readily seen that



Econometrics 2020, 8, 7 22 of 35

)Ziﬂa[gwo-—g(2%21Wm%mm)H

sup Ro(w)
Yiyer [g0n) — g (TN wnel, B0
_ 5;1}121 ‘ 1 { ]Sn(w)l (i,pm) )”
e o (S0 wme?, ) — g (S0 wnip, )|
- sup R ,,
e [3 (S wne],,, A7) — g (EHs v )]
- R ,,
2 sup AV (w) + sup AP (w) + sup A (w).
wecH, weHy weHy,

sup Asll)(w) 2o, (A15)
weH,
sup A,(f)(w) LN 0, (Al6)
weEH,

and
sup AP (w) & 0. (A17)
weH,

The proof of (A15) is similar to that of Wu (1981). We denote a metric

pw,w') = ||w—w'

7

which is on Hy. Let (Hy, p) be a compact metric space. Then C (H,,) is the Banach space of real-valued
continuous functions on H,, with the supremum norm

[Alleo = supwen, [A(w)]-

Let N (Hy, p, €) denote the minimal number of p-balls of radius less than or equal to e which cover Hy,
and set

H (Hy,p,€e) =1logN (Hy,p,€) .
We let
Lip(p) = {A € C(Hy):A(A) = sup [a(w) = ()| < oo},
and for A € Lip(p), we define
1Al = A(A) +[A(@T)],
where w* is some fixed point in Hj,.

Recalling that A;(w) = g(1;) — & (an\le wme(Ti,pm)ﬁim)), we have

AA

A 1

(P+1)
e |Aj(w) — Ay(w')]
- /

w#w'€Hy, (P+1) p(w,w)

M wpel B -y M el gl

= sup g (70,4)] % ‘ - Gen) )

w#w' €Hy (p + 1) p(w, w/)
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s wnef,,, B — T whel, B
<cXx  sup S
w#w' €Hy (P + 1) p(w,w )

where 7 ; is a point between Zﬁf:l wme(Tip ) ﬁi”” and 2%21 winszip ) ,B(*m) From the assumption

2
m) H / (pm+1) < Cp < o0, and Condition 3, we obtain

sup A (A;) < Cg < co. (A18)

i

As for ‘ Alwr) | using Lagrange theorem, we have

p+1

=i g (%) ﬂi_mglwms(i,pm)ﬁ*

A (”i_szi,pm) im))z

<c 3 ,
m=1 (P"‘l)

‘Ai(W*)
p+1

2
where {; is a point between 7; and Y2 | w;g{l pm):B(*m) (m) H / (pm+1) <

Cp < o0, and the assumption sup; |17;| < C; < oo, we obtain

sup |Aj(w*)| < C < oo (A19)

For (A15), we have
P{ sup A,(})(w) > (5}
weH,
{ sup Zel ’71 ( 2 wms(z Pm WZ))
weHy,

i=
= sup én
weH, P +1

Zez
i=
< (p+1)*E [sungigz\zl 16 p(f{)HZ

> 5¢§n}

2
(P +1) ’E sz 1 61p+1 H
5222 ’

where § > 0 is an arbitrary constant. Since Hj, is a compact subset of RM, and p(w, w') is the Euclidean
metric in RM, (A1) is satisfied. Therefore, by Lemma A1, we see that there is a constant A < oo such
that for all n,
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where the last equality is because of (A18), (A19) and sup; Ee;- < o0, Therefore,

2
P{ sup Ag,l)(w) > (5} =0 <(p+21)n> — 0,
weH, Cn
and (A15) holds.

Denote A; = ¢ (Z%Zl wel, (m)> -9 (2%21 wmﬁ,«/pm). For (A16), we have
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From Lemma A3 and Condition 3 , we see that

n

—_

i=1m= i=1m=

Therefore, limy,— y P {supwE H, A,(f) (w) > (5} = 0, that is, (A16) is valid.
Write A; = g (Z —1 wms(T i )ﬁ(’”)> -9 (Zﬁf:l wmﬁi/pm). For (A17), we have

55 (o = 1) =1 1 [el) (87 = 5] =0 L 1
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P{ sup A,(f)(w) > 5}
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<P sup
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From Condition 5, we see that
(T 2 g
m -
2 2 (S(i,pm)lB - 771',Pm> = OP( Z Pm)
i=1m=1 m=1

Therefore, lim,,_, 1 o P {supwe H, A,(f’) (w) > 6 } = 0, that is, (A17) is valid.

Appendix C. Simulation Results in Section 4.1

Table Al. Prediction errors with n = 60 in Case 1.

R AIC BIC FPCA S-AIC S-BIC Cvli CV2
Mean 0432 0408 0.404 0433 0408 0394 0.393
1 | Median | 0.417 0417 0417 0417 0417 0375 0417
Var 0.023 0.023  0.020 0.023  0.024 0.023 0.021
ine | Mean 0312 0294 0.249 0.311 0292 0225 0.226

2 | Median | 0.333 0333  0.250 0.333  0.333 0.250 0.250
Var 0.013 0.013  0.016 0.013  0.013 0.013 0.013
ine | Mean 0273 0262  0.226 0273 0260 0.188 0.189

3 | Median | 0.250 0250  0.250 0250 0250 0.167 0.167
Var 0.017 0.017  0.015 0.017  0.017 0.016 0.015
ine | Mean 0256 0.243  0.183 0256  0.247 0.162 0.163

4 | Median | 0.250 0250 0.167 0250 0250 0.167 0.167
Var 0.018 0.017  0.011 0.018  0.017 0.013 0.013
ine | Mean 0.203 0.196  0.148 0203 0193 0.133 0.134

5 | Median | 0.167 0.167 0.167 0.167  0.167 0.083 0.083
Var 0.014 0.014 0.011 0.014 0.013 0.009 0.009
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Table Al. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl CV2
ine | Mean 0.234 0.233 0.135 0.234 0.233 0.117 0.115
6 | Median | 0.250 0.250 0.125 0.250 0.250 0.083 0.083
Var 0.016 0.016 0.010 0.016 0.016 0.010 0.010
ine | Mean 0.214 0.213 0.149 0.214 0.214 0.118 0.117
7 | Median | 0.208 0.208 0.167 0.208 0.250 0.083 0.083
Var 0.014 0.015 0.010 0.014 0.015 0.009 0.008
ine | Mean 0.213 0.209 0.134 0.213 0.210 0.104 0.103
8 | Median | 0.250 0.167 0.125 0.250 0.167 0.083 0.083
Var 0.012 0.012 0.009 0.012 0.012 0.008 0.008
ine | Mean 0.196 0.196 0.128 0.196 0.196 0.096 0.099
9 | Median | 0.167 0.167  0.083 0.167 0.167 0.083 0.083
Var 0.014 0.014 0.012 0.014 0.015 0.008 0.008
ine | Mean 0.209 0.208 0.126 0.209 0.206 0.088 0.087
10 | Median | 0.167 0.167  0.083 0.167 0.167 0.083 0.083
Var 0.016 0.016 0.009 0.016 0.016 0.006 0.006
Table A2. Prediction errors with n = 200 in Case 1.
R AIC BIC FPCA S-AIC S-BIC CVli CV2
ine | Mean 0.355 0.350 0.329 0.355 0.349 0322 0.322
1 | Median | 0.350 0.350 0.325 0.350 0.350 0.325 0.313
Var 0.006 0.007  0.007 0.006 0.007 0.006 0.006
ine | Mean 0.262 0.262 0.234 0.262 0.262 0.227 0.227
2 | Median | 0.275 0.275 0.225 0.275 0.275 0.225 0.225
Var 0.005 0.005 0.004 0.005 0.005 0.004 0.004
ine | Mean 0.205 0.205 0.184 0.205 0.205 0.174 0.174
3 | Median | 0.200 0.200 0.175 0.200 0.200 0.175 0.175
Var 0.005 0.005 0.004 0.005 0.005 0.003 0.003
ine | Mean 0.163 0.163 0.134 0.163 0.163 0.128 0.128
4 | Median | 0.150 0.150 0.125 0.150 0.150 0.125 0.125
Var 0.004 0.004 0.003 0.004 0.004 0.003 0.003
ine | Mean 0.139 0.139 0.113 0.139 0.139 0.110 0.110
5 | Median | 0.125 0.125 0.113 0.125 0.125 0.100 0.100
Var 0.003 0.003 0.003 0.003 0.003 0.002 0.002
ine | Mean 0.136 0.136 0.101 0.136 0.136  0.094 0.094
6 | Median | 0.125 0.125 0.100 0.125 0.125 0.100 0.100
Var 0.003 0.003 0.002 0.003 0.003 0.002 0.002
ine | Mean 0.129 0.129 0.099 0.129 0.129 0.086 0.086
7 | Median | 0.125 0.125 0.100 0.125 0.125 0.075 0.075
Var 0.003  0.003 0.003 0.003 0.003 0.002 0.002
ine | Mean 0.121 0.121 0.091 0.121 0.121 0.083 0.082
8 | Median | 0.113 0.113 0.075 0.113 0.113 0.075 0.075
Var 0.003 0.003 0.002 0.003 0.003 0.002 0.002
ine | Mean 0.127 0.127  0.090 0.127 0.127 0.084 0.083
9 | Median | 0.125 0.125 0.100 0.125 0.125 0.075 0.075
Var 0.003 0.003 0.002 0.003 0.003 0.002 0.002
ine | Mean 0.121 0.121 0.088 0.121 0.121 0.069 0.069
10 | Median | 0.125 0.125 0.075 0.125 0.125 0.075 0.075
Var 0.003 0.003 0.002 0.003 0.003 0.002 0.002
Table A3. Prediction errors with n = 500 in Case 1.
R AIC BIC FPCA S-AIC S-BIC CVl CV2
ine | Mean 0.349 0.349 0.332 0.349 0.349 0.330 0.330
1 | Median | 0.345 0.345 0.330 0.345 0.345 0.330 0.330
Var 0.002 0.002 0.002 0.002 0.002 0.002 0.002
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Table A3. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl (CV2
ine | Mean 0.240 0.240 0.232 0.240 0.240 0.228 0.228
2 | Median | 0.240 0.240 0.230 0.240 0.240 0.230 0.230
Var 0.001 0.001 0.002 0.001 0.001 0.002 0.002
ine | Mean 0.176 0.176 0.174 0.176 0.176 0.168 0.168
3 | Median | 0.170 0.170 0.170 0.170 0.170 0.160 0.160
Var 0.002 0.002 0.001 0.002 0.002 0.001 0.001
ine | Mean 0.143 0.143 0.133 0.143 0.143 0.135 0.134
4 | Median | 0.140 0.140 0.130 0.140 0.140 0.130 0.130
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ine | Mean 0.126 0.126 0.114 0.126 0.126  0.115 0.115
5 | Median | 0.120 0.120 0.110 0.120 0.120 0.110 0.110
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ine | Mean 0.109 0.109 0.097 0.109 0.109 0.095 0.096
6 | Median | 0.110 0.110 0.090 0.110 0.110 0.090 0.090
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ine | Mean 0.106 0.106 0.090 0.106 0.106  0.089 0.089
7 | Median | 0.110 0.110 0.090 0.110 0.110 0.090 0.090
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ine | Mean 0.096 0.096 0.081 0.096 0.096 0.084 0.084
8 | Median | 0.090 0.090 0.080 0.090 0.090 0.080 0.080
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ine | Mean 0.090 0.090 0.075 0.090 0.090 0.070 0.070
9 | Median | 0.085 0.085 0.070 0.085 0.085 0.065 0.065
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
ine | Mean 0.091 0.091 0.075 0.091 0.091 0.069 0.068
10 | Median | 0.090 0.090 0.070 0.090 0.090 0.065 0.065
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table A4. Prediction errors with n = 60 in Case 2.
R AIC BIC FPCA S-AIC S-BIC CVl CV2
ine | Mean 0.362 0.346 0.359 0.359 0.342 0351 0.354
1 | Median | 0.333 0.333 0.333 0.333 0.333 0.333 0.333
Var 0.021 0.021 0.021 0.021 0.021 0.021 0.022
ine | Mean 0.315 0.251 0.262 0.300 0.245 0.245 0.248
2 | Median | 0.333 0.250 0.250 0.250 0.250 0.250 0.250
Var 0.020 0.016 0.016 0.019 0.015 0.015 0.016
ine | Mean 0.269 0.193 0.208 0.257 0.188 0.185 0.184
3 | Median | 0.250 0.167  0.167 0.250 0.167 0.167 0.167
Var 0.016 0.014 0.014 0.015 0.013 0.012 0.013
ine | Mean 0.258 0.174 0.176 0.252 0.167 0.163 0.164
4 | Median | 0.250 0.167 0.167 0.250 0.167 0.167 0.167
Var 0.018 0.013 0.012 0.017 0.013 0.012 0.012
ine | Mean 0.244 0.145 0.169 0.239 0.137 0.138 0.135
5 | Median | 0.250 0.167  0.167 0.250 0.167 0.083 0.083
Var 0.017 0.010 0.013 0.017 0.010 0.011 0.011
ine | Mean 0.234 0.142 0.150 0.227 0.131 0.122 0.119
6 | Median | 0.250 0.167 0.167 0.250 0.083 0.083 0.083
Var 0.018 0.010 0.012 0.017 0.010 0.009 0.009
ine | Mean 0.214 0.127 0.142 0.205 0.118 0.113 0.110
7 | Median | 0.167 0.083 0.167 0.167 0.083 0.083 0.083
Var 0.016 0.011 0.012 0.016 0.010 0.009 0.009
ine | Mean 0.230 0.120 0.156 0.223 0.110 0.105 0.107
8 | Median | 0.250 0.083 0.167 0.167 0.083 0.083 0.083
Var 0.018 0.010 0.014 0.017 0.009 0.009 0.010
ine | Mean 0.204 0.121 0.160 0.192 0.108 0.100 0.099
9 | Median | 0.167 0.083 0.167 0.167 0.083 0.083 0.083
Var 0.017 0.009 0.016 0.016 0.009 0.008 0.008
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Table A4. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl (CV2

ine | Mean 0.201 0.114 0.178 0.182 0.101 0.096 0.096

10 | Median | 0.167 0.083 0.167 0.167 0.083 0.083 0.083

Var 0.019 0.010 0.017 0.019 0.009 0.008 0.008
Table A5. Prediction errors with n = 200 in Case 2.

R AIC BIC FPCA S-AIC S-BIC CVli (CV2

ine | Mean 0.369 0.336 0.349 0.369 0.336  0.342 0.341

1 | Median | 0.375 0.325 0.350 0.375 0.325 0.350 0.338

Var 0.007 0.007  0.006 0.006 0.007 0.006 0.006

ine | Mean 0.265 0.253 0.239 0.265 0.248 0.233 0.233

2 | Median | 0.275 0.250 0.250 0.275 0.250 0.225 0.225

Var 0.006 0.005 0.005 0.006 0.005 0.005 0.005

ine | Mean 0.204 0.204 0.184 0.204 0.203 0.175 0.175

3 | Median | 0.200 0.200 0.175 0.200 0.200 0.175 0.175

Var 0.004 0.004 0.003 0.004 0.004 0.003 0.003

ine | Mean 0.175 0.175 0.147 0.175 0.175 0.143 0.142

4 | Median | 0.175 0.175 0.150 0.175 0.175 0.150 0.125

Var 0.004 0.004 0.004 0.004 0.004 0.004 0.003

ine | Mean 0.157 0.157  0.130 0.157 0.157 0.118 0.118

5 | Median | 0.150 0.150 0.125 0.150 0.150 0.125 0.125

Var 0.004 0.004 0.003 0.004 0.004 0.003 0.003

ine | Mean 0.148 0.148 0.120 0.148 0.148 0.108 0.107

6 | Median | 0.150 0.150 0.125 0.150 0.150 0.100 0.100

Var 0.004 0.004 0.003 0.004 0.004 0.002 0.002

ine | Mean 0.150 0.150 0.116 0.150 0.150 0.092 0.091

7 | Median | 0.150 0.150 0.113 0.150 0.150 0.100 0.100

Var 0.003  0.003 0.003 0.003 0.004 0.002 0.002

ine | Mean 0.162 0.161 0.125 0.162 0.161 0.091 0.092

8 | Median | 0.150 0.150 0.125 0.150 0.150 0.088 0.100

Var 0.005 0.005 0.004 0.005 0.005 0.002 0.002

ine | Mean 0.173 0.167  0.130 0.173 0.165 0.086 0.087

9 | Median | 0.175 0.175 0.125 0.175 0.150 0.075 0.075

Var 0.004 0.004 0.004 0.004 0.004 0.002 0.002

ine | Mean 0.192 0.172 0.147 0.192 0.167 0.088 0.090

10 | Median | 0.200 0.175 0.150 0.200 0.150 0.075 0.075

Var 0.006 0.005 0.005 0.006 0.005 0.002 0.002
Table A6. Prediction errors with n = 500 in Case 2.

R AIC BIC FPCA S-AIC S-BIC CVl C(CV2

ine | Mean 0.345 0.338 0.332 0.345 0.336  0.330 0.330

1 | Median | 0.350 0.340 0.330 0.350 0.340 0.330 0.330

Var 0.003  0.002 0.002 0.003 0.002 0.002 0.002

ine | Mean 0.239 0.239 0.227 0.239 0.239 0.225 0.225

2 | Median | 0.240 0.240 0.230 0.240 0.240 0.225 0.220

Var 0.002 0.002 0.002 0.002 0.002 0.002 0.002

ine | Mean 0.182 0.182 0.170 0.182 0.182 0.168 0.168

3 | Median | 0.180 0.180 0.170 0.180 0.180 0.170 0.170

Var 0.002 0.002 0.001 0.002 0.002 0.001 0.001

ine | Mean 0.152 0.152 0.141 0.152 0.152 0.136 0.136

4 | Median | 0.150 0.150 0.140 0.150 0.150 0.140 0.140

Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ine | Mean 0.135 0.135 0.120 0.135 0.135 0.114 0.114

5 | Median | 0.130 0.130 0.120 0.130 0.130 0.110 0.110

Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001
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Table A6. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl (CV2

ine | Mean 0.129 0.129 0.110 0.129 0.129 0.100 0.101

6 | Median | 0.130 0.130 0.110 0.130 0.130 0.100 0.100

Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ine | Mean 0.128 0.128 0.107 0.128 0.128 0.092 0.093

7 | Median | 0.130 0.130 0.100 0.130 0.130 0.090 0.090

Var 0.002 0.002 0.001 0.002 0.002 0.001 0.001

ine | Mean 0.134 0.134 0.109 0.134 0.134 0.086 0.087

8 | Median | 0.130 0.130 0.110 0.130 0.130 0.080 0.080

Var 0.002 0.002 0.001 0.002 0.002 0.001 0.001

ine | Mean 0.147 0.147 0.117 0.147 0.147 0.086 0.088

9 | Median | 0.140 0.140 0.110 0.140 0.140 0.090 0.090

Var 0.002 0.002 0.002 0.002 0.002 0.001 0.001

ine | Mean 0.171 0.171 0.135 0.171 0.171 0.093 0.096

10 | Median | 0.170 0.170 0.135 0.170 0.170  0.090 0.090

Var 0.003 0.003 0.002 0.003 0.003 0.001 0.001
Table A7. Prediction errors with n = 60 in Case 3.

R AIC BIC FPCA S-AIC S-BIC CVli CV2

ine | Mean 0.494 0.482 0.430 0.490 0.483 0.405 0.413

1 | Median | 0.500 0.500 0417 0.500 0.500 0.417 0417

Var 0.026 0.029 0.026 0.027 0.029 0.022 0.022

ine | Mean 0.428 0.412 0.317 0.427 0412 0.318 0.303

2 | Median | 0.417 0.417 0.333 0.417 0417 0.333 0.333

Var 0.021 0.023 0.028 0.021 0.023 0.018 0.018

ine | Mean 0416 0.401 0.317 0.419 0.403 0.313 0.302

3 | Median | 0.417 0.417  0.292 0.417 0.417 0.292 0.250

Var 0.028 0.031 0.037 0.027 0.030 0.032 0.031

ine | Mean 0424 0387 0.393 0.420 0.382 0.357 0.344

4 | Median | 0.500 0417 0.417 0.458 0417 0.333 0.333

Var 0.047 0.048 0.056 0.044 0.046 0.046 0.043

ine | Mean 0.372  0.362 0.493 0.398 0.365 0.380 0.355

5 | Median | 0.333 0.333 0.583 0.417 0.333 0.417 0.333

Var 0.052 0.054 0.067 0.049 0.052 0.053 0.048

ine | Mean 0.400 0.383 0.608 0.427 0.390 0.446 0.430

6 | Median | 0.417 0.375 0.667 0.417 0.375 0500 0417

Var 0.072 0.075 0.060 0.066 0.075 0.067 0.066

ine | Mean 0.374 0.378 0.628 0.428 0.388 0.481 0.468

7 | Median | 0.333 0.333 0.667 0.417 0.417 0.500 0.500

Var 0.072 0.075 0.052 0.063 0.072 0.067 0.070

ine | Mean 0.457 0457 0.673 0.527 0474 0.615 0.593

8 | Median | 0417 0.417 0.750 0.583 0.500 0.667 0.667

Var 0.098 0.098 0.053 0.071 0.091 0.073 0.075

ine | Mean 0.565 0.565 0.738 0.642 0.583 0.652 0.659

9 | Median | 0.583 0.583 0.750 0.750 0.667 0.750 0.750

Var 0.099 0.099 0.040 0.079 0.087 0.072 0.074

ine | Mean 0.565 0.565 0.744 0.662 0.613 0.698 0.694

10 | Median | 0.583 0.583 0.750 0.667 0.667 0.750 0.750

Var 0.096 0.096 0.037 0.063 0.080 0.057 0.065
Table A8. Prediction errors with n = 200 in Case 3.

R AIC BIC FPCA S-AIC S-BIC CVl CV2

ine | Mean 0.406 0.403 0.366 0.406 0.401 0.341 0.342

1 | Median | 0.400 0.400 0.350 0.400 0400 0.325 0.325

Var 0.006 0.007  0.007 0.006 0.007  0.007 0.007
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Table A8. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl (CV2
ine | Mean 0.378 0.377 0.310 0.378 0.378 0272 0.271
2 | Median | 0.375 0.375 0.300 0.375 0.375 0.250 0.250
Var 0.010 0.010 0.010 0.010 0.010 0.008 0.007
ine | Mean 0.428 0.428 0.324 0.428 0.427 0253 0.251
3 | Median | 0.463 0.463 0.300 0.463 0450 0.225 0.225
Var 0.018 0.018 0.016 0.018 0.018 0.010 0.009
ine | Mean 0465 0427  0.370 0.470 0.430 0.259 0.254
4 | Median | 0.500 0.475 0.350 0.500 0475 0.225 0.225
Var 0.031 0.035 0.029 0.030 0.034 0.021 0.020
ine | Mean 0.281 0.231 0.507 0.310 0.228 0.282 0.276
5 | Median | 0.200 0.175 0.500 0.225 0.175 0.238 0.225
Var 0.035 0.021 0.041 0.034 0.020 0.030 0.029
ine | Mean 0.242 0.242 0.612 0.289 0.242 0325 0.321
6 | Median | 0.175 0.175 0.675 0.225 0.175 0.238 0.238
Var 0.040 0.040 0.036 0.039 0.037 0.050 0.049
ine | Mean 0.298 0.298 0.712 0.363 0294 0.368 0.362
7 | Median | 0.200 0.200 0.725 0.313 0.200 0.300 0.288
Var 0.059 0.059 0.014 0.056 0.056 0.064 0.063
ine | Mean 0.476 0.476 0.749 0.553 0473 0.498 0.495
8 | Median | 0513 0.513 0.763 0.588 0.500 0.588 0.575
Var 0.086 0.086 0.009 0.068 0.084 0.076 0.076
ine | Mean 0.497 0497 0.785 0.625 0.500 0.592 0.586
9 | Median | 0.525 0.525 0.800 0.700 0.538 0.663 0.650
Var 0.104 0.104 0.005 0.057 0.099 0.062 0.064
ine | Mean 0.606 0.606 0.807 0.746 0.627 0.662 0.661
10 | Median | 0.750 0.750 0.825 0.825 0.800 0.763 0.750
Var 0.105 0.105 0.004 0.042 0.101 0.053 0.054

Table A9. Prediction errors with n = 500 in Case 3.
R AIC BIC FPCA S-AIC S-BIC CVl CV2
ine | Mean 0.394 0.394 0.360 0.394 0.394 0.338 0.338
1 | Median | 0.390 0.390 0.355 0.390 0.390 0.340 0.340
Var 0.004 0.004 0.003 0.004 0.004 0.003 0.003
ine | Mean 0.345 0.345 0.280 0.345 0.345 0.241 0.244
2 | Median | 0.340 0.340 0.275 0.340 0.340 0.240 0.240
Var 0.005 0.005 0.003 0.005 0.005 0.002 0.002
ine | Mean 0426 0.426 0.286 0.426 0426 0.190 0.200
3 | Median | 0.430 0.430 0.270 0.430 0430 0.190 0.200
Var 0.008 0.008 0.008 0.008 0.008 0.002 0.002
ine | Mean 0.524 0.490 0.390 0.526 0490 0.170 0.190
4 | Median | 0.550 0.540 0.400 0.550 0.540 0.160 0.180
Var 0.017 0.025 0.018 0.015 0.025 0.002 0.003
ine | Mean 0.225 0.199 0.535 0.241 0.198 0.168 0.170
5 | Median | 0.160 0.160 0.560 0.180 0.160 0.150 0.160
Var 0.028 0.018 0.017 0.027 0.018 0.006 0.006
ine | Mean 0.186 0.183 0.665 0.225 0.184 0.183 0.183
6 | Median | 0.140 0.140 0.680 0.180 0.140 0.140 0.150
Var 0.014 0.013 0.009 0.014 0.012 0.013 0.011
ine | Mean 0.251 0.251 0.735 0.322 0.252 0.251 0.253
7 | Median | 0.170 0.170 0.740 0.260 0.170 0.170 0.190
Var 0.033 0.033 0.004 0.028 0.031 0.033 0.028
ine | Mean 0.376  0.376 0.776 0.511 0.379 0.376 0.383
8 | Median | 0.335 0.335 0.780 0.520 0.335 0.335 0.385
Var 0.065 0.065 0.002 0.048 0.062 0.065 0.057
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Table A9. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl (CV2
ine | Mean 0.467 0.467 0.797 0.650 0476 0467 0.491
9 | Median | 0.475 0.475 0.800 0.700 0480 0.475 0.510
Var 0.087 0.087  0.002 0.039 0.082 0.087 0.076
ine | Mean 0.652 0.652 0.822 0.820 0.675 0.652 0.713
10 | Median | 0.780 0.780 0.820 0.840 0.790 0.780 0.800
Var 0.071 0.071 0.002 0.012 0.062 0.071 0.048
Table A10. Prediction errors with n = 60 in Case 4.
R AIC BIC FPCA S-AIC S-BIC CVli CV2
ine | Mean 0.389 0.378 0.417 0.396 0.381 0.381 0.387
1 | Median | 0417 0.333 0.417 0.417 0.417 0417 0417
Var 0.024 0.024 0.023 0.023 0.023 0.022 0.024
ine | Mean 0.286 0.268 0.363 0.299 0.269 0.268 0.268
2 | Median | 0.250 0.250 0.333 0.250 0.250 0.250 0.250
Var 0.022 0.021 0.029 0.022 0.022 0.021 0.021
ine | Mean 0.230 0.219 0.382 0.259 0.228 0.219 0.219
3 | Median | 0.167 0.167  0.333 0.250 0.167 0.167 0.167
Var 0.024 0.023 0.040 0.024 0.023 0.023 0.023
ine | Mean 0.186 0.181 0.460 0.242 0.199 0.181 0.181
4 | Median | 0.167 0.167 0.417 0.167 0.167 0.167 0.167
Var 0.022 0.022 0.048 0.031 0.024 0.022 0.022
ine | Mean 0.195 0.194 0.545 0.284 0216 0.194 0.194
5 | Median | 0.167 0.167  0.583 0.250 0.167 0.167 0.167
Var 0.029 0.030 0.054 0.046 0.034 0.030 0.030
ine | Mean 0.213 0.211 0.642 0.374 0.256 0.211 0.211
6 | Median | 0.167 0.167  0.667 0.333 0.167 0.167 0.167
Var 0.042 0.042 0.045 0.062 0.049 0.042 0.042
ine | Mean 0.208 0.210 0.680 0.424 0.268 0.210 0.210
7 | Median | 0.167 0.167  0.750 0.417 0.167 0.167 0.167
Var 0.052 0.053 0.037 0.068 0.060 0.053 0.053
ine | Mean 0.228 0.228 0.727 0.513 0.310 0.228 0.228
8 | Median | 0.167 0.167  0.750 0.500 0.250 0.167 0.167
Var 0.059 0.059 0.025 0.067 0.071 0.059 0.059
ine | Mean 0.259 0.258 0.730 0.572 0.366 0.258 0.258
9 | Median | 0.167 0.167 0.750 0.583 0.250 0.167 0.167
Var 0.084 0.084 0.030 0.069 0.091 0.084 0.084
ine | Mean 0.303 0.303 0.761 0.665 0.455 0.303 0.303
10 | Median | 0.167 0.167  0.750 0.750 0.417 0.167 0.167
Var 0.099 0.099 0.020 0.047 0.096 0.099 0.099
Table A11. Prediction errors with n = 200 in Case 4.
R AIC BIC FPCA S-AIC S-BIC CVl CV2
ine | Mean 0.378 0.348 0.387 0.380 0.350 0.354 0.353
1 | Median | 0.375 0.350 0.375 0.375 0.350 0.350 0.350
Var 0.008 0.008 0.008 0.008 0.007  0.007 0.007
ine | Mean 0.277 0.251 0.330 0.287 0.253 0.258 0.258
2 | Median | 0.275 0.250 0.325 0.275 0.250 0.250 0.250
Var 0.007  0.006 0.010 0.007 0.006 0.007 0.006
ine | Mean 0.193 0.183 0.374 0.216 0.186 0.205 0.205
3 | Median | 0.175 0.175 0.375 0.200 0.175 0.200 0.200
Var 0.006 0.005 0.020 0.007 0.005 0.006 0.006
ine | Mean 0.168 0.167 0.512 0.219 0.171 0.217 0.216
4 | Median | 0.150 0.150 0.550 0.200 0.150 0.200 0.200
Var 0.008 0.008 0.022 0.012 0.008 0.011 0.011
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Table A11. Cont.

R AIC BIC FPCA S-AIC S-BIC CVl (CV2

ine | Mean 0.141 0.141 0.613 0.237 0.152 0.237 0.237

5 | Median | 0.125 0.125 0.650 0.200 0.125 0.200 0.200

Var 0.008 0.008 0.020 0.019 0.009 0.018 0.018

ine | Mean 0.132 0.132 0.700 0.294 0.146 0.292 0.291

6 | Median | 0.100 0.100 0.700 0.250 0.125 0.250 0.250

Var 0.011 0.011 0.010 0.030 0.013 0.029 0.029

ine | Mean 0.138 0.138 0.742 0.392 0.161 0.381 0.377

7 | Median | 0.100 0.100 0.750 0.375 0.125 0.375 0.375

Var 0.014 0.014 0.007 0.039 0.017 0.033 0.033

ine | Mean 0.154 0.154 0.769 0.512 0.193 0.490 0.487

8 | Median | 0.100 0.100 0.775 0.550 0.125 0.500 0.500

Var 0.023 0.023 0.004 0.042 0.028 0.039 0.039

ine | Mean 0.175 0.175 0.788 0.624 0.232 0.583 0.580

9 | Median | 0.100 0.100 0.800 0.675 0.125 0.625 0.625

Var 0.038 0.038 0.005 0.032 0.046 0.035 0.035

ine | Mean 0.192 0.192 0.800 0.695 0.282 0.654 0.653

10 | Median | 0.100 0.100 0.800 0.725 0.175 0.688 0.675

Var 0.049 0.049 0.004 0.024 0.063 0.029 0.029
Table A12. Prediction errors with n = 500 in Case 4.

R AIC BIC FPCA S-AIC S-BIC CVl CV2

ine | Mean 0.380 0.339 0.367 0.380 0.340 0.338 0.339

1 | Median | 0.380 0.340 0.360 0.380 0.340 0.340 0.340

Var 0.003  0.003 0.004 0.003 0.003 0.003 0.003

ine | Mean 0.278 0.242 0.310 0.284 0.242 0.228 0.229

2 | Median | 0.270 0.240 0.300 0.280 0.240 0.230 0.230

Var 0.005 0.003 0.005 0.004 0.003 0.002 0.002

ine | Mean 0.180 0.177  0.385 0.198 0.179 0.176 0.179

3 | Median | 0.170 0.170 0.380 0.190 0.170 0.170 0.180

Var 0.002  0.002 0.009 0.003 0.002 0.002 0.002

ine | Mean 0.141 0.141 0.527 0.184 0.143 0.141 0.146

4 | Median | 0.140 0.140 0.540 0.170 0.140 0.140 0.140

Var 0.001 0.001 0.010 0.003 0.001 0.001 0.001

ine | Mean 0.122 0.122 0.649 0.203 0.126  0.122 0.130

5 | Median | 0.120 0.120 0.660 0.185 0.120 0.120 0.120

Var 0.002 0.002 0.004 0.007 0.002 0.002 0.002

ine | Mean 0.109 0.109 0.716 0.266 0.116 0.109 0.125

6 | Median | 0.100 0.100 0.720 0.240 0.110 0.100 0.110

Var 0.002 0.002 0.003 0.013 0.002 0.002 0.003

ine | Mean 0.103 0.103 0.754 0.371 0.115 0.103 0.129

7 | Median | 0.090 0.090 0.750 0.360 0.100 0.090 0.120

Var 0.003 0.003 0.002 0.020 0.004 0.003 0.005

ine | Mean 0.102 0.102 0.775 0.490 0.119 0.102 0.141

8 | Median | 0.090 0.090 0.780 0.500 0.100 0.090 0.120

Var 0.005 0.005 0.002 0.023 0.006 0.005 0.007

ine | Mean 0.112 0.112 0.791 0.629 0.143 0.112 0.184

9 | Median | 0.090 0.090 0.790 0.650 0.110 0.090 0.140

Var 0.009 0.009 0.002 0.015 0.012 0.009 0.017

ine | Mean 0.114 0.114 0.802 0.707 0.155 0.114 0.211

10 | Median | 0.080 0.080 0.800 0.720 0.110 0.080 0.160

Var 0.014 0.014 0.002 0.007 0.019 0.014 0.025
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Appendix D. Simulation Results in Section 4.2

Table A13. Prediction errors with R = 1

N R=1 AIC BIC PCA SAIC SBIC CVl C(CV2
ine Mean 0329 0325 0312 0323 0322 0313 0313
200 Median | 0.325 0.325 0.300 0.325 0.325 0.325 0.325

Var 0.006 0.006 0.005 0.006 0.006 0.006 0.006

ine Mean 0330 0319 0305 0327 0314 0304 0.304

400 Median | 0.325 0.313 0.300 0.325 0.313 0.300 0.300

Var 0.003 0.003 0.003 0.003 0.003 0.003 0.003

ine Mean 0332 0326 0304 0330 0326 0305 0.304

1000 Median | 0.330 0.320 0.303 0.330 0.320 0.303 0.300
Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table A14. Prediction errors with R = 3

N R=3 AIC BIC PCA SAIC SBIC CVl C(CV2
ine Mean 0173 0173 0.168 0173 0.173 0.162 0.162
200 Median | 0175 0.175 0175 0175 0175 0.175 0.163

Var 0.003 0.003 0.002 0.003 0.003 0.002 0.002

ine Mean 0172 0172 0163 0172 0171 0.167 0.169

400 Median | 0175 0.175 0163 0175 0175 0.175 0.175

Var 0.001 0.001 0.002 0.001 0.001 0.001 0.002

ine Mean 0175 0.193 0.15 0175 0.189 0.149 0.148

1000 Median | 0.180 0.198 0.160 0.180 0.190 0.145 0.145
Var 0.001 0.001 0.000 0.001 0.001 0.001 0.001

Table A15. Prediction errors with R =7

N R=7 AIC BIC PCA SAIC SBIC CVvl CV2
ine Mean 0.104 0.104 0.109 0.104 0.104 0.095 0.097
200 Median | 0.100 0.100 0.100 0.100 0.100 0.100 0.088

Var 0.003 0.003 0.003 0.003 0.003 0.003 0.002

ine Mean 0.106 0.106 0.101 0.106 0.106 0.087 0.087

400 Median | 0.100 0.100 0.100 0.100 0.100 0.088 0.088

Var 0.001 0.001 0.001 0.001 0.001 0.001 0.001

ine Mean 0.109 0.109 0.103 0.109 0.109 0.084 0.083

1000 Median | 0.110 0.110 0.105 0.110 0.110 0.085 0.080
Var 0.001 0.001 0.000 0.001 0.001 0.000 0.000
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