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Abstract: Large-dimensional dynamic factor models and dynamic stochastic general equilibrium
models, both widely used in empirical macroeconomics, deal with singular stochastic vectors,
i.e., vectors of dimension r which are driven by a q-dimensional white noise, with q < r. The present
paper studies cointegration and error correction representations for an I(1) singular stochastic
vector yt. It is easily seen that yt is necessarily cointegrated with cointegrating rank c ≥ r − q.
Our contributions are: (i) we generalize Johansen’s proof of the Granger representation theorem to
I(1) singular vectors under the assumption that yt has rational spectral density; (ii) using recent results
on singular vectors by Anderson and Deistler, we prove that for generic values of the parameters
the autoregressive representation of yt has a finite-degree polynomial. The relationship between the
cointegration of the factors and the cointegration of the observable variables in a large-dimensional
factor model is also discussed.

Keywords: singular stochastic vectors; cointegration for singular vectors; Granger representation
theorem; large-dimensional dynamic factor models)

JEL Classification: C0; C01; E0

1. Introduction

An r-dimensional stochastic vector yt such that yt = A0ut + A1ut−1 + · · · , where the
matrices Aj are r × q and ut is a q-dimensional white noise, with q < r, is said to be
singular. Singular stochastic vectors have been systematically analyzed in a number of papers
starting with (Anderson and Deistler 2008a, 2008b). A motivation for studying the consequences of
singularity, as argued by these authors, is that the factors’ vector in large-dimensional dynamic
factor models (DFM), such as those introduced in Forni et al. (2000); Forni and Lippi (2001),
(Stock and Watson 2002a, 2002b), is typically singular. Singularity is also an important feature of
dynamic stochastic general equilibrium models (DSGE), see e.g., Sargent (1989), Canova (2007),
pp. 230–2. Singularity as it arises in DFMs is presented in some detail below.

DFMs are based on the idea that all the observed variables in an economic system are driven
by a few common (macroeconomic) shocks and by idiosyncratic components which may result from
measurement errors and sectoral or regional shocks. Formally, each variable in the n-dimensional
dataset xit, i = 1, 2, . . . , n, t = 1, 2, . . . , T, is decomposed into the sum of a common component χit,
and an idiosyncratic component εit: xit = χit + εit, where χit and εjs are orthogonal for all i, j, t, s. In the
standard version of the DFM the common components are linear combinations of an r-dimensional
vector of common factors Ft = (F1t F2t · · · Frt)′,

χit = λi1F1t + λi2F2t + · · ·+ λirFrt = λiFt. (1)
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Now suppose that the observable variables xit and the common factors Ft are I(1) and that

(1− L)Ft = C(L)ut, (2)

where ut is a nonsingular q-dimensional white-noise vector1, the common shocks. A number of papers
analyzing macroeconomic databases find strong empirical support for the assumption that the vector
Ft is singular, i.e., that q < r. See, for US datasets, Giannone et al. (2005); Amengual and Watson
(2007); Forni and Gambetti (2010), Luciani (2015). For a Euro-area dataset, see Barigozzi et al. (2014).

Such results can be easily understood observing that usually the static Equation (1) is just a
convenient representation derived from a “primitive” set of dynamic equations linking the common
components χit to the common shocks ut. As a simple example, suppose that the variables xit are
driven by a common one-dimensional cyclical process ft, such that (1− αL) ft = ut, where ut is scalar
white noise, and that the variables xit load ft dynamically:

xit = ai0 ft + ai1 ft−1 + εit. (3)

In this case we can set F1t = ft, F2t = ft−1 = F1,t−1, λi1 = ai0, λi2 = ai1, so that
Equations (1) and (2) take the form

xit = λi1F1t + λi2F2t + εit and

(
F1t
F2t

)
=

(
(1− αL)−1

L(1− αL)−1

)
ut,

respectively. Here r = 2 and q = 1 so that Ft is singular. For a general analysis of the relationship
between representation (1) and “deeper” dynamic representations like (3), see e.g., Forni et al. (2009);
Stock and Watson (2016).

Now suppose that the factors Ft have been estimated. Obtaining ut and the impulse-response
functions of the variables xit with respect to ut (or structural shocks obtained by a linear transformation
of ut) requires the estimation of a VAR for the singular I(1) vector Ft. On the other hand, the latter
is necessarily cointegrated with cointegration rank c at least equal to r− q (the rank of the spectral
density of (1− L)Ft does not exceed q at all frequencies and, therefore, at frequency zero).

Singular vectors of factors in an I(1) DFM and I(1) singular vectors in DSGE models provide
strong motivation for studying singular I(1) vectors in a general time-series context. The main
contributions of the paper are:

(I) A generalization of Johansen’s proof of the Granger Representation Theorem (from MA to
AR), this is Proposition 2. Consider an I(1) singular vector yt, with dimension r, rank q < r,
and cointegrating rank c ≥ r− q. Assuming that (1− L)yt has an ARMA structure, S(L)(1−
L)yt = B(L)ut and that some simple additional conditions hold, yt has a representation as a
vector error correction mechanism (VECM) with c error correction terms:

A(L)yt = A∗(L)(1− L)yt + α(β′yt−1 −w) = B(0)ut, (4)

where α and β are both r× c and full rank, β′yt −w is I(0), A(L) and A∗(L) are r× r rational
matrices in L. Under the additional assumption that unity is the only zero of B(L), i.e., if z 6= 1
then B(z) is full rank, A(L) and A∗(L) are finite-degree matrix polynomials.

(II) Assuming that the parameters of S(L) and B(L) may vary in an open subset of Rλ, see Section 3.2
for the definition of λ, in Proposition 3 we show that all the assumptions used to obtain (4),
and also the assumption that unity is the only possible zero of B(L), hold for generic values of

1 Usually orthonormality is assumed. This is convenient but not necessary in the present paper.
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the parameters. This implies that the matrices A(L) and A∗(L) are generically of finite degree,
which is obviously not the case for nonsingular vectors.2

The paper is organized as follows. Section 2 is preliminary. We firstly recall recent results
for stationary singular stochastic vectors with rational spectral density, see (Anderson and Deistler
2008a, 2008b). Secondly, we discuss cointegration and the cointegrating rank for I(1) singular
stochastic vectors.

In Section 3 we prove our main results. We also obtain the permanent-transitory shock
representation in the singular case: yt is driven by r− c permanent shocks, i.e., r minus the cointegrating
rank, the usual result. However, the number of transitory shocks is c − (r − q), not c as in the
nonsingular case.

Section 3 also contains an exercise carried out with simulated singular I(1) vectors. We compare
the results obtained by estimating an unrestricted VAR in the levels and a VECM. Though limited
to a simple example, the results confirm what has been found for nonsingular vectors, that under
cointegration the long-run features of impulse-response functions are better estimated using a VECM
rather than an unrestricted VAR in the levels (Phillips 1998).

In Section 4 we analyse cointegration of the observable variables xit in a DFM. Our results on
cointegration of the singular vector Ft have the implication that p-dimensional subvectors of the
n-dimensional common-component vector χt, with p > r − c, are cointegrated. As a consequence,
stationarity of the idiosyncratic components would imply that all p-dimensional subvectors of the
n-dimensional dataset xt are cointegrated if p > r − c. For example, if q = 3 and d = 1, then all
3-dimensional subvectors in the dataset are cointegrated, a kind of regularity that we do not observe
in actual large macroeconomic datasets. This suggests that an estimation strategy robust to the
assumption that the idiosyncratic components can be I(1) has to be preferred (for this aspect we refer
to Barigozzi et al. 2019). Section 5 concludes. Some proofs, a discussion of some non-uniqueness
problems arising with singularity and details on the simulations are collected in the Appendix.

2. Stationary and I(1) Singular Vectors

2.1. Stationary Singular Vectors

As in this paper we only consider representation issues it is convenient to assume that all stochastic
processes are defined for t ∈ Z. Accordingly, the lag operator L is defined as Lyt = yt−1 for t ∈ Z
(Bauer and Wagner (2012) also study I(1) and cointegrated processes for t ∈ Z).

We start by introducing results on singular vectors with an ARMA structure from (Anderson and
Deistler 2008a, 2008b). Some preliminary definitions are needed.

Definition 1. (Zeros and Poles)
(A) When considering matrices V(z) whose entries are rational functions of z ∈ C we always assume that
numerator and denominator of each entry have no common roots. If V(z) is an r× q matrix of rational functions,
we say that z∗ is a pole of V(z) if it is a pole of some entry of V(z).
(B) Suppose that V(z) is an r × q matrix whose entries are polynomial functions of z ∈ C, with q ≤ r.
We say that z∗ ∈ C is a zero of V(z) if rank(V(z∗)) < q, and that V(z) is zeroless if it has no zeros,
i.e., rank(V(z)) = q for all z ∈ C.

2 To our knowledge, the present paper is the first to study cointegration and error correction representations for I(1) singular
vectors, the factors of I(1) dynamic factor models in particular. An error correction model in the DFM framework is
studied in (Banerjee et al. 2014, 2017). However, their focus is on the relationship between the observable variables and
the factors. Their error correction term is a linear combination of the variables xit and the factors Ft, which is stationary
if the idiosyncratic components are stationary (so that the x’s and the factors are cointegrated). Because of this and other
differences their results are not directly comparable to those in the present paper.
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With a minor abuse of language, we may speak of zeros and poles of the corresponding matrix
V(L). When a r× r polynomial matrix S(L) has all its zeros outside the unit circle we say that S(L)
is stable.

All the stationary vector processes considered have an ARMA structure. Precisely,
the r-dimensional process yt has an ARMA structure with rank q, q ≤ r, if there exist

(i) a non-singular q-dimensional white-noise process ut,
(ii) an r× r stable polynomial matrix S(z), with S(0) = Ir,
(iii) an r× q matrix B(z) whose rank is q for all z with the exception of a finite subset of C, such that

yt = V(L)ut, (5)

where V(L) = S(L)−1B(L).

Suppose that yt has also the representation yt = S̃(L)−1B̃(L)ũt, where ũt is a q̃-dimensional
nonsingular white noise. Denoting by Σy(θ) the spectral density of yt,

Σy(θ) = (2π)−1V(e−iθ)ΣuV′(eiθ),

so that the rank of Σy(θ) is q for all θ, with the exception of a finite subset of [−π, π]. As the spectral
density is independent of the ARMA representation, q = q̃ and B̃(z) has rank q except for a finite
subset of C.

Remark 1. Let us recall that the equation

S(L)ζt = B(L)ut,

in the unknown vector process ζt, where S(L) is stable, has only one stationary solution, and this is yt =

S(L)−1B(L)ut. Thus the ARMA process yt can also be defined as the stationary solution of S(L)ζt = B(L)ut.

Definition 2. (Genericity) Suppose that a statement Q depends on p ∈ A, where A is an open subset of Rλ.
We say that Q holds generically in A, or that Q holds for generic values of p ∈ A, if the subset N of A where it
does not hold is nowhere dense in A, i.e., the closure of N in A has no internal points.

For example, assuming that p ∈ A = R, the statement “The roots of the polynomial x2 + px + 1
are distinct” holds generically in A.

Definition 3. (Rational reduced-rank family of filters) Assume that r > q and let G be a set of ordered
couples (S(L), B(L)), where:

(i) B(L) is an r× q polynomial matrix of degree s1 ≥ 0.
(ii) S(L) is an r× r polynomial matrix of degree s2 ≥ 0. S(0) = Ir.
(iii) Denoting by p the vector containing the λ = rq(s1 + 1) + r2s2 coefficients of the entries of B(L) and

S(L), we assume that p ∈ Π, where Π is an open subset of Rλ such that for p ∈ Π, (1) S(z) is stable,
(2) rank(B(z)) = q with the exception of a finite subset of C.

We say that G is a rational reduced-rank family of filters with parameter set Π.

The notation Sp(L), Bp(L), though more rigorous, would be heavy and not really necessary.
We use it only in Appendix A.1.

Proposition 1. Assume that r > q.

(I) Suppose that V(L) is an r × q matrix polynomial in L. If V(z) is zeroless then V(L) has an r × r
finite-degree stable left inverse, i.e., there exists a finite-degree polynomial r× r matrix W(L) such that:
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(a) W(0) = Ir, (b) det(W(z)) = 0 implies |z| > 1, (c) W(L)V(L) = V(0). Let yt be the stationary
solution of S(L)ζt = B(L)ut and suppose that B(L) is zeroless. Then yt has a finite vector autoregressive
representation (VAR) A(L)yt = B(0)ut, where A(L) = N(L)S(L) and N(L) is a finite-degree left
inverse of B(L).

(II) Assume that yt is the stationary solution of S(L)ζt = B(L)ut, where (S(L), B(L)) belongs to a rational
reduced-rank family of filters with parameter set Π. For generic values of the parameters in Π, B(L) is
zeroless so that yt has a finite VAR representation.

For statement (I) see Anderson and Deistler (2008a), Theorem 3. Statement (II) is a modified
version of their Theorem 2, see for a proof Forni et al. (2009), p. 1327.

2.2. Fundamentalness

Assume that the r-dimensional vector yt has an ARMA structure, rank q and the moving average
representation (5). If rank(B(z)) = q for |z| < 1, then ut belongs to the space spanned by yt−k,
with k ≥ 0, and representation (5), as well as ut, is called fundamental (for these definitions and results
see e.g., Rozanov (1967), pp. 43–7). Note that if (5) is fundamental rank(B(0)) = q. Note also that
when q = r, the condition that rank(B(z)) = q for |z| < 1 becomes det(B(z)) 6= 0 for |z| < 1.

Remark 2. Note that in Proposition 1, part (II), we do not assume that ut is fundamental for yt. However,
Proposition 1, (II), states that for generic values of p ∈ Π the matrix B(L) is zeroless and therefore ut is
fundamental for yt.

2.3. I(1) Singular Vectors

To analyze cointegration and the autoregressive representations of singular non-stationary vectors
let us first recall the definitions of I(0), I(1) and cointegrated vectors. This requires some preliminary
definitions and results.

We denote by L2(Ω,F , P) the space of the square-integrable functions on the probability space
(Ω,F , P). Let zt = (z1t z2t · · · zrt)′, zht ∈ L2(Ω,F , P), be an r-dimensional stochastic process and
consider the difference equation

(1− L)ζt = zt, (6)

in the unknown r-dimensional process ζζζt. A solution of (6) is

ψ̃t =


z1 + z2 + · · ·+ zt, for t > 0

0, for t = 0

−(z0 + z−1 · · ·+ zt+1), for t < 0,

see e.g., Gregoir (1999), p. 439, Franchi and Paruolo (2019). All the solutions of (6) are ψt = ψ̃t + φt,
where φt = (φ1t φ2t · · · φrt)′, φht ∈ L2(Ω,F , P), is a solution of the homogeneous equation (1− L)ζt =

0, so that φt = K, for some r-dimensional stochastic vector K, for all t ∈ Z. We say that the process
φt = K is a constant stochastic process. Obviously a constant stochastic process φt = K is weakly
stationary. Its spectral measure has the jump ΣK at frequency zero. Thus φt has a spectral density (has
an absolutely continuous spectral measure) if and only if ΣK = 0, i.e., if and only if φt(ω) = k, where
k ∈ Rr, for ω almost everywhere in Ω.

Definition 4. (I(0), I(1) and Cointegrated vectors)
I(0). An r-dimensional ARMA yt with spectral density Σy(θ) is I(0) if Σy(0) 6= 0.
I(1). The r-dimensional vector stochastic process yt is I(1) if it is a solution (1− L)ζt = zt where zt is an
r-dimensional I(0) process. The rank of yt is defined as the rank of zt.
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Cointegration. Assume that the r-dimensional stochastic vector yt is I(1) and denote by Σ∆y(θ) the
spectral density of (1 − L)yt. The vector yt is cointegrated with cointegrating rank c, with 0 < c < r,
if rank(ΣΣΣ∆y(0)) = r− c.

If q is the rank of yt and r ≥ q, then c = r− q + d, where q > d > 0. Thus in the singular case,
r > q, yt is necessarily cointegrated with cointegrating rank at least equal to r− q.

If yt is I(1) and cointegrated with cointegrating rank c, there exist c linearly independent r× 1
vectors cj, j = 1, . . . , c, such that the spectral density of c′j(1 − L)yt vanishes at frequency zero.
The vectors cj are called cointegrating vectors and the set cj, j = 1, . . . , c, a complete set of cointegrating
vectors. Of course a complete set of cointegrating vectors cj, j = 1, . . . , c, can be replaced by the set dj,
j = 1, . . . , c, where the vectors dj are c independent linear combinations of the vectors cj.

Lemma 1. (I) Assume that yt has an ARMA structure and has the rational representation (5): yt = V(L)ut.
Then yt is I(0) if and only if V(1) 6= 0.
(II) Assume (1− L)yt has an ARMA structure and has the rational representation

(1− L)yt = V(L)ut. (7)

The process yt is I(1) if and only if V(1) 6= 0.
(III) If yt is I(1), cointegrated and has representation (7), the cointegrating rank of yt is c if and only if the rank
of V(1) is r− c. Moreover c is a cointegrating vector for yt if and only if c′V(1) = 0.
(IV) Assume that yt is I(1). c is a cointegrating vector for yt if and only if a scalar stochastic variable
w ∈ L2(Ω,F , P) can be determined such that c′yt − w is stationary with an ARMA structure.

Proof. (I) is an immediate consequence of Σy(0) = (2π)−1V(1)ΓuV(1)′, where Γu is the nonsingular
covariance matrix of ut. (II) and (III) are obtained in the same way from Σ∆y(0) = (2π)−1V(1)ΓuV(1)′.
(IV) The process yt solves (6) with zt = V(L)ut, so that, defining

µt =


u1 + u2 + · · ·+ ut, for t > 0

0, for t = 0

−(u0 + u−1 · · ·+ ut+1), for t < 0,

(8)

we have

yt = V(L)µt + K =

[
V(1) + (1− L)

V(L)−V(1)
1− L

]
µt + K = V(1)µt + V∗(L)ut + K,

where (i) the entries of V∗(L) = (V(L)−V(1))/(1− L) are rational functions of L with no poles of
modulus less or equal to unity, (ii) K is a constant r-dimensional stochastic process. We have:

c′yt = c′V(1)µt + c′V∗(L)ut + c′K. (9)

If c is a cointegrating vector of yt we have c′V(1) = 0, so that

c′yt = c′V∗(L)ut + c′K.

Setting w = c′K, the process c′yt −w = c′V∗(L)ut has the desired properties. Note that w has the
equivalent definition w = c′y0 − c′V∗(L)u0. Conversely, suppose that w is such that c′yt − w has an
ARMA structure. By (9),

c′yt − w = c′V(1)µt + c′V∗(L)ut + c′K− w,
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so that √
E(c′yt − w)2 +

√
E(c′V∗(L)ut)2 +

√
E(c′K − w)2 ≥

√
c′V(1)Σµt V′(1)c.

The three terms on the left-hand side are finite and independent of t. As Σµt = |t|Σu and Σu is
positive definite, the right-hand side diverges for |t| → ∞ unless c′V(1) = 0.

Lemma 1 shows that our definitions of I(0) and I(1) processes are equivalent to
Definitions 3.2, and 3.3 in Johansen (1995), p. 35, with two minor differences: (i) our assumption
of rational spectral density, (ii) the time span of the stochastic processes is t = 0, 1, . . . in Johansen’s
book, t ∈ Z in the present paper. Also, under the assumption that (1− L)yt has an ARMA structure,
our definition of cointegration is equivalent to that in Johansen (1995), p. 37.

3. Representation Theory for Singular I(1) Vectors

In Section 3.1 we prove our generalization to singular vectors of the Granger representation
theorem (from MA to AR). We closely follow the proof in Johansen (1995), Theorem 4.5, p. 55–57.
In Section 3.2 we show that, under a suitable parameterization, the matrix of the autoregressive
representation is generically of finite degree.

3.1. The Granger Representation Theorem (MA to AR)

Suppose that r ≥ q, c > 0 and r > c ≥ r− q. Let B(L) be an r× q polynomial matrix of degree
s1 ≥ 0 and S(L) an r× r polynomial matrix of degree s2 ≥ 0 with S(0) = Ir.

Assumption 1. S(L) is stable.

Assumption 2. If z∗ is a zero of B(z) (i.e. rank(B(z∗)) < q) then either z∗ = 1 or |z∗| > 1.

Assumption 2 implies that the rank of B(0) is q. The next is a stronger version of Assumption 2:

Assumption 3. If z∗ is a zero of B(z) then z∗ = 1.

Assumption 4. rank(B(1)) = r− c.

Under Assumption 1, let yt be a solution of the equation

(1− L)ζt = S(L)−1B(L)ut. (10)

We have
yt = S(L)−1B(L)µt + K, (11)

where µt is defined in (8) and K is a constant stochastic process. By Assumption 4, S(1)−1B(1) 6= 0,
so that yt is I(1) with cointegrating rank c, see Lemma 1, (II) and (III).

Consider the finite Taylor expansion of B(z) around z = 1:

B(z) = B(1)− (1− z)B′(1) + (1− z)2B′′(1) + · · · .

Assumption 4 implies that
B(1) = ξη′,

where ξξξ is r× (r− c) of rank r− c, η is q× (r− c) of rank r− c, see Lancaster and Tismenetsky (1985,
p. 97, Proposition 3). The Taylor expansion above can be rewritten as

B(z) = ξηηη′ + (1− z)B∗ + (1− z)2E(z), (12)
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where B∗ = −B′(1) and E(z) is a polynomial matrix.
Let ξξξ⊥ be an r× c matrix whose columns are orthogonal to all columns of ξ: (i) the columns of

ξ⊥ are a complete set of cointegrating vectors for B(L)ut, (ii) the columns of the matrix S′(1)ξ⊥ are a
complete set of cointegrating vectors for yt. Regarding (i), using (11) and (12), we have

ξ′⊥S(L)yt = ξ′⊥B(L)µt + ξ′⊥S(1)K = (ξ′⊥B∗ + (1− L)ξ′⊥E(L))ut + ξ′⊥S(1)K, (13)

so that ξ′⊥S(L)yt − ξ′⊥S(1)K has an ARMA structure. Regarding (ii), see the proof of Proposition 2.

Assumption 5. rank

[(
ξξξ ′⊥B∗

ηηη′

)]
= rank

[(
ξξξ ′⊥B∗

ξξξ ′ξξξηηη′

)]
= q.

Define S∗(L) = S(L)− S(1)
1− L .

Assumption 6. ξξξ ′⊥(B
∗ − S∗(1)S(1)−1ξη′) 6= 0.

Remark 3. Let yt be a solution of (10) so that (1 − L)yt is stationary and S(L)[(1 − L)yt] = B(L)ut.
Assumption 2, and therefore 3, implies that ut is fundamental for (1− L)yt, see Section 2.2.

We are now ready for our main representation result.

Proposition 2. (I) Weak form. Suppose that Assumptions 1, 2, 4, 5 and 6 hold and let yt be a solution of the
difference Equation (10), so that yt = S(L)−1B(L)µt + K, with µt defined in (8) and K a constant stochastic
process. Set β = S(1)′ξ⊥. Then a c-dimensional stochastic vector w can be determined such that (i) β′yt −w
is I(0), (ii) yt has the error correction representation

A(L)yt = A∗(L)(1− L)yt + α(β′yt−1 −w) = B(0)ut, (14)

where A(L) is a rational r× r matrix with no poles in or on the unit circle, A(1) = Ir, A∗(L) = (A(L)−
A(1)L)(1− L)−1, α is r× c and full rank, αβ′ = A(1).
(II) Strong form. Under Assumptions 1, 3, 4, 5 and 6, statement (I) holds with an r× r stable, finite-degree
matrix polynomial A(L).

Proof. Multiply both sides of (1 − L)S(L)yt = B(L)ut by the r × r invertible matrix Ξ =

(
ξ′⊥
ξ′

)
.

We obtain

(1− L)ΞS(L)yt = ΞΞΞB(L)ut

=

{(
0c×q

ξ′ξη′

)
+ (1− L)

(
ξ′⊥B∗

ξ′B∗

)
+ (1− L)2

(
ξ′⊥E(L)
ξ′E(L)

)}
ut

=

(
(1− L)Ic 0

0 Ir−c

){(
ξ′⊥B∗

ξ′ξη′

)
+ (1− L)

(
ξ′⊥E(L)

ξ′B∗

)
+ (1− L)2

(
0c×q

ξ′E(L)

)}
ut.

(15)

Taking the first c rows in (15),

(1− L)ξ′⊥S(L)yt = (1− L)
(
ξ′⊥B∗ + (1− L)ξ′⊥E(L)

)
ut.

This implies that
ξ′⊥S(L)yt =

(
ξ′⊥B∗ + (1− L)ξ′⊥E(L)

)
ut + w, (16)
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where w is a c-dimensional constant stochastic vector. Comparing with (13), w = ξ′⊥S(1)K. On the
other hand,

ξ′⊥S(1)yt −w = (ξ′⊥S(L)yt −w)− (ξ′⊥S(L)yt − ξ′⊥S(1)yt)

= (ξ′⊥S(L)yt −w)− ξ′⊥S∗(L)(1− L)yt

= (ξ′⊥S(L)yt −w)− ξ′⊥S∗(L)S(L)−1B(L)ut

=
{

ξ′⊥(B
∗ − S∗(1)S(1)−1ξη′) + (1− L)HHH(L)

}
ut,

(17)

where the last equality has been obtained using (16) and HHH(L) is a suitable polynomial matrix.
Thus β′yt −w = ξ′⊥S(1)yt −w has an ARMA structure. Moreover, by Assumption 6, β′yt −w
is I(0).

Joining (16) with the last r− c rows of (15),(
Ic 0
0 (1− L)Ir−c

)
ΞS(L)yt −

(
Ic

0(r−c)×c

)
w = M(L)ut, (18)

where

M(L) =

(
ξ′⊥B∗

ξ′ξη′

)
+ (1− L)

(
ξ′⊥E(L)

ξ′B∗

)
+ (1− L)2

(
0c×q

ξ′E(L)

)
. (19)

By (15) and (19),

B(L) = Ξ−1

(
(1− L)Ic 0

0 Ir−c

)
M(L).3 (20)

By Assumption 5, M(z) has no zero at z = 1, see (19). On the other hand, (i) if z∗ is a zero of
M(z) then z∗ is a zero of B(z), (ii) if z∗ is a zero of B(z), z∗ 6= 1, then z∗ is a zero of M(z). Therefore,
Assumption 3 implies that M(z) is zeroless and viceversa. Under Assumption 2, the zeros of M(z) lie
outside the unit circle. In order to conclude the proof we need inverting M(L) in (18).
(I) Under Assumption 3, Proposition 1, part (I), states that there exists an r× r stable, finite-degree
polynomial matrix N(L) = Ir + N1L + · · · + NpLp, for some p, such that: (i) N(0) = Ir,
(ii) N(L)M(L) = M(0).
(II) Under Assumption 2, by a standard procedure we remove all the zeros of M(z) which lie outside
the unit circle4, then use Proposition 1, part (I), to left-invert the residual zeroless polynomial,
thus obtaining an r× r rational matrix N(L) such that (i) N(L) has no poles in or on the unit circle
(possible poles of N(L) are the zeros of M(L), which lie outside the unit circle), (ii) N(0) = Ir,
(iii) N(L)M(L) = M(0). See also Deistler et al. (2010).

Defining

A(L) = Ξ−1N(L)

(
Ic 0
0 (1− L)Ir−c

)
ΞS(L) = Ξ−1N(L)

(
ξ′⊥

(1− L)ξ′

)
S(L)

and using M(0) = ΞB(0), we have

A(L)yt − Ξ−1N(1)

(
Ic

0(r−c)×c

)
w = B(0)ut,

3 In the square case, r = q, Assumption 3 holds if and only if M(z) is unimodular.
4 If z∗ is a zero of M(z), multiply M(z) by an invertible r× r matrix Qz∗ such that z∗ is a zero of, say, the first row of Qz∗M(z).

Then multiply by the r× r diagonal matrix with (z− z∗)−1 in position (1, 1) and unity elsewhere on the main diagonal.
Iterating, all the zeros of M(z) are removed.
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with A(0) = Ir. Defining A∗(L) = (A(L)−A(1)L)(1− L)−1,

A∗(L)(1− L)yt + A(1)yt−1 − Ξ−1N(1)

(
Ic

0(r−c)×c

)
w = B(0)ut.

Defining

α = Ξ−1N(1)

(
Ic

0(r−c)×c

)
,

we see that A(1) = αααβ′ and

A∗(L)(1− L)yt + α(β′yt−1 −w) = B(0)ut.

Some remarks are in order.

Remark 4. (I) Under our assumption of an ARMA structure, Assumption 1 corresponds to Definition 3.1
in Johansen’s book, see p. 34. Assumption 2 is Johansen’s Assumption 1 (see p. 14), adapted for singularity.
Assumption 3 has no counterpart in Johansen’s nonsingular framework. In Section 3.2 we show that under the
parameterization adopted in Definition 5, Assumption 3 holds generically.
(II) Simplifying the model by taking S(L) = Ir, Assumption 5 generalizes to the singular case Johansen’s
assumption that ξ′⊥C∗ηηη⊥ is full rank (see Theorem 4.5, p. 55; C∗ corresponds to our B∗). For, assuming

that r = q, multiplying the matrix in Assumption 5 by the nonsingular matrix
(

η⊥ ηηη
)

, we obtain that
Assumption 5 holds if and only if ξ′⊥B∗η⊥ is full rank. Assumption 5 is used in the proof of Proposition 2
to invert the matrix M(L), which remains on the right-hand side after the removal of the unit roots, see
Equation (18), which is the same rôle played by Johansen’s assumption in his proof.
(III) Under S(L) = Ir, assumption 6 simplifies to ξ′⊥B∗ 6= 0. If d > 0 Assumption 6 is a consequence of
Assumption 5. For, if d > 0 then r− c = q− d < q. On the other hand, r− c is the number of rows of ηηη′,
so that Assumption 5 holds only if Assumption 6 holds. In particular, if r = q and c = d > 0, Assumption 6 is
redundant. However if r > q and d = 0, so that the rank of ηηη′ is q, then Assumption 5 holds even if ξξξ ′⊥B∗ = 0.
Assumption 6 is necessary in Proposition 2 to prove that the error correction term is I(0), not only stationary.

Remark 5. Uniqueness issues arise with autoregressive representations of singular vectors. For example,
suppose that c = r− q > 0, so that d = 0. Representation (14) has an (r− q)-dimensional error correction
term β′yt −w. On the other hand, in this case B(1) has full rank q, so that Proposition 1 (I) applies and, in spite
of cointegration, yt has an autoregressive representation in differences

D(L)S(L)(1− L)yt = B(0)ut.

In Appendix B.1 we sketch a proof of the statement that in general, yt has VECM representations with a
number of error correction terms ranging from d to c. However, as we show in Appendix B.2, different
autoregressive representations of yt produce the same impulse-response functions. Both in this and the companion
paper Barigozzi et al. (2019) the number of error correction terms in the error correction representation for
reduced-rank I(1) vectors is always the maximum c. It is worth reporting that, in our experiments with simulated
data, the best results in estimation of singular VECMs are obtained using c as the number of error correction
terms.

Remark 6. Assume for simplicity that S(L) = Ir. From equation (17):

et = β′yt −w = ξ′⊥yt −w =
{

ξ′⊥B∗ + (1− L)HHH(L)
}

ut.
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If r = q, Assumption 5 implies that ξ′⊥B∗ has rank c, so that no c-dimensional vector d 6= 0 can be determined
such that some of the coordinates of det is stationary but not I(0). Thus, according to the definition introduced
in Franchi and Paruolo (2019), p. 1181, the error term et is a “non-cointegrated I(0) process.” When r > q and
c ≤ q, i.e., r ≤ 2q− d, elementary examples can be produced in which et is an I(0) but not a non-cointegrated
I(0) process (one is given in Appendix A.2). Thus Assumption 6 only implies that et is I(0). Of course,
under c ≤ q, the assumption that ξξξ ′⊥(B

∗ − S∗(1)S(1)−1ξη′) has rank c, an enhancement of Assumption 6,
implies that et is a non-cointegrated I(0) process. On the other hand, if c > q, i.e., r > 2q− d, et cannot be a
non-cointegrated I(0) process.

3.2. Generically, A(L) Is a Finite-Degree Polynomial

Suppose that the couple (S(L), B(L)) is parameterized as in Definition 3. It easy to see that B(1)
has generically rank q, so that generically the cointegrating rank of yt is r− q. In particular, if r = q
cointegration is non generic.

It is quite easy to see that this paradoxical result only depends on the choice of a parameter set
that is unfit to study cointegration. Our starting point here is that a specific value of c between r− q
and r− 1 has a motivation in economic theory or in statistical inference, and must be therefore built in
the parameter set. Thus in Definition 5 below the family of filters is redefined so that generically the
cointegrating rank is equal to a given c between r− q and r− 1.

Definition 5. (Rational reduced-rank family of filters with cointegrating rank c) Assume that r > q,
c > 0 and r > c ≥ r− q. Let G be a set of couples (S(L), B(L)), where:

(i) The matrix B(L) has the parameterization

B(L) = ξη′ + (1− L)B∗ + (1− L)2E(L),

where ξ and η are r× (r− c) and q× (r− c) respectively, B∗ is an r× q matrix and E(L) is an r× q
matrix polynomial of degree s1 ≥ 0.

(ii) S(L) is an r× r polynomial matrix of degree s2 ≥ 0. S(0) = Ir.
(iii) Denoting by p the vector containing the λ = (r − c)(r + q) + rq(s1 + 2) + r2s2 coefficients of the

matrices S(L), ξ, η, B∗ and E(L), we assume that p ∈ Π, where Π is an open subset of Rλ such
that for p ∈ Π: (1) S(z) is stable, (2) rank(B(z)) = q with the exception of a finite subset of C,
(3) rank(B(1)) = rank(ξη′) = r− c.

We say that G is a rational reduced-rank family of filters with cointegrating rank c.

Proposition 3. Assume that r > q. Let yt be a I(1) solution of Equation (10), where (S(L), B(L)) belongs
to a rational reduced-rank family of filters with cointegrating rank c. For generic values of the parameters
in Π, Assumptions 1, 3, 4, 5 and 6 hold. Thus the Strong Form of Proposition 2 holds and yt has an error
correction representation

A(L)yt = A∗(L)(1− L)yt + α(β′yt−1 −w) = B(0)ut,

where A(L) is a finite-degree polynomial matrix.

Proof. Part (iii) of Definition 5 implies that Assumptions 1 and 4 hold for all p ∈ Π. The sets where
Assumptions 5 and 6 do not hold are the intersections of the open set Π with the algebraic varieties

(a) rank

[(
ξξξ ′⊥B∗

ηηη′

)]
< q, (b) ξξξ ′⊥(B

∗ − S∗(1)S(1)−1ξη′) = 0

(the variety described by (a) is obtained by equating to zero the determinant of all the q× q submatrices
of the r × q matrix between brackets). It is easy to see that the varieties (a) and (b) are not trivial,
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i.e., that their dimension is lower than λ. Thus Assumptions 5 and 6 hold generically. The same
result holds for Assumption 3. The points of Π where it is not fulfilled belong to a lower-dimensional
algebraic variety. This is proved in A.1, see in particular Lemma A4.

Remark 7. It is easy to see that, assuming that c ≤ q, rank(ξξξ ′⊥(B
∗ − S∗(1)S(1)−1ξη′) = c holds generically

in Π. Thus, in that case, the error term βyt −w is generically a non-cointegrated I(0) process, see Remark 6.

Remark 8. A general comment on genericity results is in order. Theorems like Proposition 3 or Proposition 1,
part (II), show that the subset where some statement does not hold belong to some algebraic variety of lower
dimension (see the proof of Proposition 3 in particular), and is therefore negligible from a topological point of
view. This suggests the working hypothesis that such subset is negligible from an economic or statistical point of
view as well. If, for example, economic theory produces a singular vector yt with cointegrationg rank c, we may
find reasonable to conclude that yt has representation (14) with a finite autoregressive polynomial. However,
a greater degree of certainty is obtained by checking that the parameters of (S(L), B(L)), that are implicit in the
theory, do not necessarily lie in one of the three algebraic varieties described in the proof of Proposition 3.

Definition 5 does not assume that B(L) has no zeros inside the unit circle. Thus we have not
assumed that ut is fundamental for (1− L)Ft, see Section 2.2. However, Proposition 3 shows that
for generic values of the parameters in Π, the assumptions of Proposition 2, strong form, hold,
Assumption 3 in particular, so that B(L) has no zeros of non-unit modulus and therefore inside the
unit circle. Thus:

Proposition 4. Assume that r > q. Let yt be a solution of Equation (10), where (S(L), B(L)) belongs to a
rational reduced-rank family of filters with cointegrating rank c. For generic values of the parameters in Π, ut is
fundamental for (1− L)yt.

Remark 9. Note that Propositions 3 and 4 do not hold in the nonsingular case, where no genericity argument can
be used to rule out non-unit zeros of B(L), either inside or outside the unit circle. In particular, fundamentalness
of ut for (1− L)yt is not generic if r = q.

3.3. Permanent and Transitory Shocks

Let η⊥ be a q× d matrix whose columns are independent and orthogonal to the columns of η,
and let

η = η(η′η)−1, η⊥ = η⊥(η
′
⊥η⊥)

−1.

Defining v1t = η′⊥ut, and v2t = η′ut, we have

ut = η⊥v1t + ηv2t =
(

η⊥ η
)(v1t

v2t

)

We have

B(L)ut = [B(L) (η⊥ η)]

(
v1t
v2t

)
= (1− L)G1(L)v1t + (ξ + (1− L)G2(L)) v2t.

where G1(L) = (B∗ + (1− L)E(L)) η⊥, and G2(L) = (B∗ + (1− L)E(L)) η. All the solutions of the
difference equation (1− L)yt = S(L)−1C(L)ut are

yt = S(L)−1 [G1(L)v1t + G2(L)v2t + Tt] + K, (21)
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where K is a constant stochastic process, and

Tt =


ξ(v21 + v22 + · · ·+ v2t), for t > 0

0, for t = 0

−ξ(v20 + v2,−1 + · · ·+ v2,t+1), for t < 0.

As ξ is full rank, we see that yt is driven by the q − d = r − c permanent shocks v2t, and by
the d temporary shocks v1t. In representation (21), the component Tt is the common-trend of
Stock and Watson (1988). Note that the number of permanent shocks is obtained as r minus the
cointegrating rank, as usual. However, the number of transitory shocks is only d = c − (r − q),
as though r− q transitory shocks had a zero coefficient.

3.4. VECMs and Unrestricted VARs in The Levels

Several papers have addressed the issue of whether and when an error correction model or an
unrestricted VAR in the levels should be used for estimation in the case of nonsingular cointegrated
vectors: Sims et al. (1990) have shown that the parameters of a cointegrated VAR are consistently
estimated using an unrestricted VAR in the levels; on the other hand, Phillips (1998) shows that if the
variables are cointegrated, the long-run features of the impulse-response functions are consistently
estimated only if the unit roots are explicitly taken into account, that is within a VECM specification.
The simulation exercise described below provides evidence in favour of the VECM specification in the
singular case.

(I) We generate yt using a specification of (14) with r = 4, q = 3, d = 2, so that c = r− q + d = 3.
The 4× 4 matrix A(L) is of degree 2. The impulse-response functions are identified by assuming
that the upper 3× 3 submatrix of B(0) is lower triangular (see Appendix C for details). We
replicate the generation of yt 1000 times for T = 100, 500, 1000, 5000.

(II) For each replication, we estimate a (misspecified) VAR in differences (DVAR), a VAR in the
levels (LVAR) and a VECM, as in Johansen (1988 1991), assuming known c, the degree of A(L)
and that of A∗(L). For the VAR in differences the impulse-response functions for (1− L)yt are
cumulated to obtain impulse-response function for yt. The root mean square error between
estimated and actual impulse-response functions is computed for each replication using all 12
impulse-responses and averaged over all replications.

The results are shown in Table 1. We see that the RMSE of both the VECM and the LVAR decreases
as T increases. However, for all values of T, the RMSE of the VECM stabilizes as the lag increases,
whereas it deteriorates for the LVAR, in line with the claim that the long-run response of the variables
are better estimated with the VECM. The performance of the misspecified DVAR is uniformly poor
with the exception of lag zero.
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Table 1. Monte Carlo Simulations. VECM: r = 4, q = 3, c = 3.

Lags DVAR LVAR VECM Lags DVAR LVAR VECM

T = 100

0 0.06 0.05 0.05

T = 500

0 0.02 0.02 0.02
4 0.26 0.18 0.17 4 0.23 0.07 0.07
20 0.30 0.37 0.22 20 0.25 0.14 0.09
40 0.30 0.45 0.22 40 0.25 0.21 0.09
80 0.30 0.57 0.22 80 0.25 0.32 0.09

T = 1000

0 0.02 0.02 0.02

T = 5000

0 0.01 0.01 0.01
4 0.23 0.05 0.05 4 0.22 0.02 0.02
20 0.25 0.09 0.07 20 0.25 0.03 0.03
40 0.25 0.13 0.07 40 0.25 0.04 0.03
80 0.25 0.22 0.07 80 0.25 0.06 0.03

Root mean squared errors at different lags, when estimating the impulse-response functions of the simulated
variables yt to the shocks ut. Estimation is carried out using three different autoregressive representations: a VAR
for (1− L)yt (DVAR), a VAR for yt (LVAR), and a VECM with c = r− q + d error terms (VECM). The results are
based on 1000 replications. For the data generating process see Appendix C. The RMSEs are obtained averaging
over all replications and all 4× 3 responses.

4. Cointegration of the Observable Variables in a DFM

Consider again the factor model xit = χit + εit, rewritten here as

xt = χt + εt, χt = ΛFt, (22)

where Λ is n× r, with n > r. The relationship between cointegration of the factors Ft and cointegration
of the variables xit is now considered.

Let us recall that the the common factors Fjt are assumed to be orthogonal to the idiosyncratic
components εks for all i, j, t, s, i.e., Eχtε

′
s = 0n×n. for all t, s, see the Introduction. The other

assumptions on model (22) are asymptotic, see e.g., Forni et al. (2000); Forni and Lippi (2001);
(Stock and Watson 2002a, 2002b), and put no restriction on the matrix Λ and the vector εεεt for a
given finite n. In particular, the first r eigenvalues of the matrix ΛΛ′ must diverge as n→ ∞, but this
has no implications on the rank of the matrix Λ corresponding to, say, n = 10. However, as we see in
Proposition 5 (iii), if the idiosyncratic components are I(0), then, independently of Λ, all p-dimensional
subvectors of xt are cointegrated for p > q − d, which is at odds with what is observed in the
macroeconomic datasets analyzed in the empirical Dynamic Factor Model literature. This motivates
assuming that εt is I(1). In that case, see Proposition 5 (i), cointegration of xt requires that both
the common and the idiosyncratic components are cointegrated. Some results are collected in the
statement below.

Proposition 5. Let x(p)
t = χ

(p)
t + ε

(p)
t = Λ(p)Ft + ε

(p)
t be a p-dimensional subvector of xt, p ≤ n. Denote

by cp
χ and cp

ε the cointegrating rank of χ
(p)
t and ε

(p)
t respectively. Both range from p, stationarity, to 0,

no cointegration.

(i) x(p)
t is cointegrated only if χ

(p)
t and ε

(p)
t are both cointegrated.

(ii) If p > q− d then χ
(p)
t is cointegrated. If p ≤ q− d and rank(Λ(p)) < p then χ

(p)
t is cointegrated.

(iii) Let Vχ ⊆ Rp and Vε ⊆ Rp be the cointegrating spaces of χ
(p)
t and ε

(p)
t respectively. The vector x(p)

t is
cointegrated if and only if the intersection of Vχ and Vε contains non-zero vectors. In particular, (a) if
p > q− d and cε > q− d then x(p) is cointegrated, (b) if p > q− d and ε

(p)
t is stationary then x(p)

is cointegrated.

Proof. Because χit and εjs are orthogonal for all i, j, t, s, the spectral densities of (1− L)x(p)
t , (1− L)χχχ(p)

t ,

(1− L)εεε(p)
t fulfill:

Σ
(p)
∆x (θ) = ΣΣΣ(p)

∆χ (θ) + Σ
(p)
∆ε (θ) θ ∈ [−π, π]. (23)
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Now, (23) implies that

λp

(
Σ
(p)
∆x (0)

)
≥ λp

(
Σ
(p)
∆χ (0)

)
+ λ(p)

(
Σ
(p)
∆ε (0)

)
, (24)

where λp(A) denotes the smallest eigenvalue of the hermitian matrix A; this is one of the Weyl’s
inequalities, see Franklin (2000), p. 157, Theorem 1. Because the spectral density matrices are
non-negative definite, the right hand side in (24) vanishes if and only if both terms on the right
hand side vanish, i.e., the spectral density of ∆x(p)

t is singular at zero if and only if the spectral densities

of ∆χ
(p)
t and ∆ε

(p)
t are singular at zero. By definition 4, (i) is proved.

Without loss of generality we can assume that S(L) = Ir. By substituting (21) in (22), we obtain

xt = Λ [(G1(L)v1t + G2(L)v2t + Tt) + K] + εt, (25)

where on the right hand side the only non-stationary terms are Tt and possibly εt. By recalling
that Tt = ξ ∑t

s=1 v2s where ξ is of dimension r × (q − d) and rank q − d, and by defining Gt =

Λ[G1(L)v1t + G2(L)v2t + K] and Tt = ∑t
s=1 v2s, we can rewrite (25) as

xt = ΛξTt + Gt + εt.

For x(p)
t :

x(p)
t = χχχ

(p)
t + ε

(p)
t = Λ(p)ξTt + G(p)

t + ε
(p)
t ,

where Λ(p) and G(p)
t have an obvious definition. Of course cointegration of the common components

χχχ
(p)
t is equivalent to cointegration of Λ(p)ξTt, which in turn is equivalent to rank(Λ(p)ξ) < p. Statement

(ii) follows from
rank

(
Λ(p)ξ

)
≤ min

(
rank(Λ(p)), rank(ξ)

)
.

The first part of (iii) is obvious. Assume now that p > q− d. If cp
χ + cp

ε = dim(Vχ) + dim(Vε) =

p− (q− d) + cp
ε > p, i.e., if cp

ε > q− d, then the intersection between Vχ and Vε is non-trivial, so that
x(p)

t is cointegrated.

5. Summary and Conclusions

The paper studies representation theory for singular I(1) stochastic vectors, the factors of an I(1)
Dynamic Factor Model in particular. Singular I(1) vectors are cointegrated, with a cointegrating rank
c equal to r− q, the dimension of yt minus its rank, plus d, with 0 ≤ d < q.

If (1− L)yt has rational spectral density, under assumptions that generalize to the singular case
those in Johansen (1995), we show that yt has an error correction representation with c error terms,
thus generalizing the Granger representation theorem (from MA to AR) to the singular case. Important
consequences of singularity are that generically: (i) the autoregressive matrix polynomial of the error
correction representation is of finite degree, (ii) the white noise vector driving (1− L)yt is fundamental.

We find that yt is driven by r− c permanent shocks and d = c− (r− q) transitory shocks, not c as
in the nonsingular case.

Using simulated data generated by a simple singular VECM, confirms previous results, obtained
for nonsingular vectors, showing that under cointegration the long-run features of impulse-response
functions are better estimated using a VECM rather than a VAR in the levels.

In Section 4 we argue that stationarity of the idiosyncratic components in a DFM produce an
amount of cointegration for the observable variables xit that is not observed in the datasets that are
standard in applied Dynamic Factor Model literature. Thus the idiosyncratic vector in those datasets is
likely to be I(1), so that an estimation strategy robust to the assumption that some of the idiosyncratic
variables εit are I(1) should be preferred.
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The results in this paper are the basis for estimation of I(1) Dynamic Factor Models with
cointegrated factors, which is developed in the companion paper (Barigozzi et al. 2019).
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Appendix A. Proofs

Appendix A.1. Assumption 3 Holds Generically

Proving that Assumption 3 holds generically is equivalent to proving that M(z) is generically
zeroless, see the argument below Equation (20).

We need some preliminary results. Lemma A1, though quite easy, is not completely standard
and is therefore carefully stated and proved below. Regarding notation, to avoid possible
misunderstandings, let us recall that vectors and matrices are always denoted by boldface symbols,
while light symbols denote scalars, see Lemmas A1 and A2 in particular.

Lemma A1. Let Aj, j = 1, . . . , s, be scalar polynomials defined on Rλ, let p ∈ Rλ and Q(p) be the statement

Aj(p) = 0, for j = 1, . . . , s,

for example the statement that all the q× q minors of M(1) vanish, i.e., that rank(M(1)) < q. Let Π be an
open subset of Rλ. If Q is false for one point p∗ ∈ Rλ, then Q is generically false in Π.

Proof. Let N be the closure in Π (in the topology of Π) of the subset of Π where Q is true. Suppose
that Q is not generically false in Π. Then the interior of N in Π, call it N ◦, is not empty. As Π is open,
N ◦ is open both in the topology of Π and of Rλ. On the other hand a polynomial function defined on
Rλ vanishes on an open set if and only if it vanishes on the whole Rλ, which contradicts the existence
of a point in Rλ where Q is false.

Lemma A2. Consider the scalar polynomials

A(z) = a0zn + a1zn−1 + · · ·+ an, B(z) = b0zm + b1zm−1 + · · ·+ am,

with a0 6= 0 and b0 6= 0, and let αi, i = 1, . . . , n and β j, j = 1, . . . , m, be the roots of A and B, respectively.
Then: (i)

am
0 bn

0 ∏
i,j
(αi − β j) = R(a0, a1, . . . , an; b0, b1, . . . , bm),

where R is a polynomial function which is called the resultant of A and B. (ii) The resultant vanishes if and
only if A and B have a common root. (iii) Suppose that the coefficients ai and bj are polynomial functions of
p ∈ Π, where Π is an open subset of Rλ. If there exists a point p∗ ∈ Rλ such that a0(p∗) 6= 0, b0(p∗) 6= 0,
and R(p∗) 6= 0, then generically in Π the polynomials A and B have no common roots.
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Proof. For (i) and (ii) see van der Waerden (1953, pp. 83-8). Statement (iii) is an obvious consequence
of (ii) and Lemma A1.

Lemma A3. Recall that a zero of M(z) is a complex number z∗ such that rank(M(z∗)) < q. If M(z) has two
q× q submatrices whose determinants have no common roots, then M(z) is zeroless.

Proof. If z∗ is a zero of M(z), then z∗ is a zero of all the q× q submatrices of M(z).

For the statement and proof of our last result it is convenient to make explicit the dependence
of the matrix M(z) and its submatrices on the vector p. Thus we use Mp(z), etc. The parameters
of the matrix S(L) play no role here. Hence, with no loss of generality, we assume s2 = 0, so that
λ = (r− c)(r + q) + rq(s1 + 2). Lemmas A2–A4 below imply that Assumption 3 holds generically in
Π.

Lemma A4. Let Mp
1 (z), Mp

2 (z), . . . be all the q× q submatrices of Mp(z) and let Lp
i be the leading coefficient

of det Mp
i (z) and Rp

ij is the resultant of det Mp
i (z) and det Mp

j (z). There exist i, j, p∗ ∈ Rλ such that

Lp∗
i L

p∗
j 6= 0

and
Rp∗

ij 6= 0.

Proof. Assume that r = q + 1. To each p ∈ Π there corresponds the matrix

Mp(z) =

(
ξ′⊥B∗

ξ′ξη′

)
+ (1− z)

(
ξ′⊥E(z)

ξ′B∗

)
+ (1− z)2

(
0c×q

ξ′E(z)

)
.

Of course, the definition of Mp(z) makes sense for all p ∈ Rλ, see Equation (19). Let Mp
1 (z)

and Mp
2 (z) be the matrices obtained from Mp(z) by removing the first and the last row respectively.

We have:
degree[det(Mp

1 (z))] ≤ (q− d)(s1 + 2) + d(s1 + 1) = d1,

degree[det(Mp
2 (z))] ≤ (q− d− 1)(s1 + 2) + (d + 1)(s1 + 1) = d2.

We will construct a point p∗ ∈ Rλ such that: (A) the coefficient of zd1 in det(Mp∗
1 (z)) and the

coefficient of zd2 in det(Mp∗
2 (z)) (the leading coefficients) do not vanish, (B) the resultant of det(Mp∗

1 (z))
and det(Mp∗

2 (z)) does not vanish.
Let us firstly define a family of matrices, denoted by M(z), obtained by specifying ηηη, ξ, ξ′⊥, B∗

and E(z) in the following way:

η′ =
(

0(q−d)×d Iq−d

)
, ξ =

(
Iq−d

0c×(q−d)

)
, ξ′⊥ =

(
K
H

)
,

B∗ =
(

H′ 0(q+1)×(q−d)

)
, E(z) =

E1(z)
E2(z)
E3(z)

 ,



Econometrics 2020, 8, 3 18 of 23

where:

K =
(

01×(q−d) 1 01×d

)
, H =

(
0d×(q+1−d) Id

)
,

E1(z) =


k1(z) h1(z) · · · 0

0(q−d)×d
. . . . . .

. . . hq−d−1(z)
0 · · · kq−d(z)


, E2(z) =

(
e(z) 01×(q−1)

)
,

E3(z) =


f1(z) g1(z) · · · 0

. . . . . . 0d×(q−d−1)
0 · · · fd(z) gd(z)

 ,

the entries e, ki, hi, fi and gi being scalar polynomials of degree s1.
We denote by q1 the vector including the coefficients of the polynomials fi, i = 1, . . . , d and ki,

i = 1, . . . , (q− d), a total of q(s1 + 1) coefficients, by q2 the vector including the coefficients of the
polynomials e, gi, i = 1, . . . , d and hi, i = 1, . . . , (q− d− 1), a total of q(s1 + 1) coefficients, by q0 the
vector including the zeros and the ones in the definition of ξ, η, B∗, E, and define q = (q0 q1 q2),
which is a λ-dimensional parameter vector. We put no restriction on q1 and q2, so that both can take
any value in Rν, with ν = q(s1 + 1). Note that q does not necessarily belong to Π. We have:

Mq(z) =

 01×d 01×(q−d)
Id 0d×(q−d)

0(q−d)×d Iq−d

+ (1− z)

 E2(z)
E3(z)

0(q−d)×q

+ (1− z)2

 01×q
0d×q
E1(z)

 . (A1)

The matrix Mq(z) has zero entries except for the diagonal joining the positions (1, 1) and
(q, q), and the diagonal joining (2, 1) and (q + 1, q). The matrices Mq

1 (z) and Mq
2 (z) are upper- and

lower-triangular, respectively, and

det(Mq
1 (z)) = [1 + (1− z) f1(z)] · · · [(1 + (1− z) fd(z)]

× [1 + (1− z)2k1(z)] · · · [1 + (1− z)2kq−d(z)] = L
q
1,d1

zd1 + · · ·+ Lq
1,0

det(Mq
2 (z)) = (1− z)2q−d−1e(z)[g1(z) · · · gd(z)][h1(z) · · · hq−d−1(z)] = L

q
2,d2

zd1 + · · ·+ Lq
2,0.

Note that det(Mq
1 (z)) does not depend on q2, while det(Mq

2 (z)) does not depend on q1. Thus we
use the notation δ

q1
1 (z) = det(Mq

1 (z)), δ
q2
2 (z) = det(Mq

2 (z)),M
q1
1,d1

= Lq
1,d1

,Mq2
2,d2

= Lq
2,d2

. Now:

(i) Let q∗2 ∈ Rν be such that none of the leading coefficients of the polynomials e, gi and hi vanishes.

Of courseMq∗2
2,d2

= d2 6= 0.

(ii) Let ž be a root of δ
q∗2
2 (z). If ž = 1 then ž is not a root of δ

q1
1 (z) for all q1 ∈ Rν. Suppose that ž is a

root of gj(z), for some j. As the parameters of the polynomials fi and ki are free to vary in Rν,

then, generically in Rν, δ
q1
1 (ž) 6= 0. Iterating for all roots of δ

q∗2
2 (z), generically in Rν, δ

q1
1 (z) and

δ
q∗2
2 (z) have no roots in common. Moreover, generically in Rν,Mq1

1,d1
= d1 6= 0. Thus, there exists

q∗1 such that (a)Mq∗1
1,d1

= d1 6= 0, (b) δ
q∗1
1 (z) and δ

q∗2
2 (z) have no roots in common.

(iii) Now let p∗ = (q0 q∗1 q∗2), so that

det(Mp∗
1 (z)) = δ

q∗1
1 (z)), det(Mp∗

2 (z)) = δ
q∗2
2 (z).
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Using (i) and (ii), (A) the leading coefficients of det(Mp∗
1 (z)) and det(Mp∗

2 (z)) do not vanish,

(B) det(Mp∗
1 (z)) and det(Mp∗

2 (z)) have no root in common so that their resultant does not vanish.
This proves the proposition for r = q + 1.

Generalizing this result to r > q + 1 is easy. Let us define the family N(z) in the following way:
(a) specify η′, ξ, E1(z) and E3(z) as in the definition of M(z), (b) then let

K =
(

0(r−q)×(r−d−1)

(
01×(r−q−1)1

)′
0(r−q)×d

)
, H =

(
0d×(r−d) Id

)
,

ξ′⊥ =

(
K
H

)
, D =

(
H′ Ir×(q−d)

)
, E2(z) =

(
0(r−q)×q(

e(z) 01×(q−1)

)) .

We have:

N(z) =

0(r−q)×d 0(r−q)×(q−d)
Id 0d×(q−d)

0(q−d)×d Iq−d

+ (1− z)

 E2(z)
E3(z)

0(q−d)×q

+ (1− z)2

0(r−q)×q
0d×q
E1(z)

 .

It is easy to see that the (q + 1)× q lower submatrix of N(z) is identical to the matrix Mq(z) in (A1).

Appendix A.2. if R > Q and C ≤ Q, Assumptions 5 and 6 Do Not Imply That et Is a Non-Cointegrated
I(0) Process.

Let r = 3, q = 2, S(L) = I3,

ξ =

1
0
0

 , η =

(
0
1

)
, ξ⊥ =

0 0
1 0
0 1

 , B∗ =

a b
1 0
1 0

 .

In this case c = 2 and d = 1, so that c = q (see Remark 6). We have

(
ξ′⊥B∗

η′

)
=

1 0
1 0
0 1

 .

We see that Assumptions 5 and 6 hold. However, rank(ξ′⊥B∗) = 1, so that et, though being I(0),
is not a non-cointegrated I(0) process. On the other hand, if the (3, 2) entry of B∗ is 1 instead of 0,
et is non-cointegrated.

Appendix B. Non Uniqueness

In Proposition 3 we prove that a singular I(1) vector with cointegrating rank c has a finite error
correction representation with c error terms. On the other hand, as we have seen in Remark 5, when
c = r − q the singular vector yt has also an autoregressive representation in the differences, i.e.,
a representation with zero error terms. In Appendix B.1 we give an example hinting that yt has error
correction representations with any number of error terms between d and c. However, in Appendix B.2
we show that all such representations produce the same impulse-response functions.

Appendix B.1. Alternative Representations with Different Numbers of Error Terms

Let S(L) = Ir and consider the following example, with r = 3, q = 2, c = 2, so that d = 1:
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ξ′ =
(

1 1 1
)

η′ =
(

1 2
)

ξ′⊥ =

(
1 −1 0
0 1 −1

)
We have,

(1− L)

(
ξ′⊥
ξ′

)
yt =

1− L 0 0
0 1− L 0
0 0 1



b∗11 − b∗21 b∗12 − b∗22

b∗21 − b∗31 b∗22 − b∗32
3 6

+ (1− L)Ê(L)

ut,

where (1− L)Ê(L) gathers the second and third terms in M(L). If the assumptions of Proposition 2
hold, we obtain an error correction representation with error terms

ξ′⊥yt =

(
y1t − y2t
y2t − y3t

)
.

However, we also have

(1− L)

(
ξ′⊥
ξ′

)
yt =

1− L 0 0
0 1 0
0 0 1


×


 b∗11 − b∗21 b∗12 − b∗22
(1− L)(b∗21 − b∗31) (1− L)(b∗22 − b∗32)

3 6

+ (1− L)Ě(L)

ut =

1− L 0 0
0 1 0
0 0 1

 M̌(L)ut.

Under suitable assumptions on the coefficients b∗ij and Ě(L), assuming in particular that the matrix(
b∗11 − b∗21 b∗12 − b∗22

3 6

)

is nonsingular, the matrix M̌(L) is zeroless and has therefore a finite-degree left inverse. Proceeding
as in Proposition 2, we obtain an alternative error correction representation with just one error term,
namely y1t − y2t.

This example should be sufficient to convey the idea that yt admits error correction representations
with a minimum d and a maximum c = r− q + d of error terms.

The problem of error correction representations, with different numbers of error terms, has been
recently addressed in Deistler and Wagner (2017). An implication of their main result (see Theorem 1,
p. 41) is that if yt has the error correction representation

Ã(L)yt = Ã∗(L)(1− L)yt + Ã(1)yt−1 = B̃ũt,

and rank(Ã(1)) < c (the number of error terms is not the maximum), then Ã(L) and B̃ are not
left coprime.

The consequences of Deistler and Wagner’s paper have not yet been developed. In Propositions 2
and 3 we have only considered representations with c error terms. On non-uniqueness of autoregressive
representations for singular vectors with rational spectral density see also Chen et al. (2011);
Anderson et al. (2012); Forni et al. (2015).
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Appendix B.2. Uniqueness of Impulse-Response Functions

Suppose that the assumptions of Proposition 2, weak form, hold. Let yt be a solution of
Equation (10), so that

(1− L)yt = S(L)−1B(L)ut, (A2)

and suppose that yt has the autoregressive representation

Ã(L)yt = B̃ũt, (A3)

where Ã(L) is a rational matrix with poles outside the unit circle, Ã(0) = Ir, ũt is a nonsingular
q-dimensional white noise, B̃ is a full rank r× q matrix5. We have

Ã(L)[(1− L)yt] = (1− L)B̃ũt. (A4)

The assumption that B̃ is full rank and the argument used e.g., in Brockwell and Davis (1991),
p. 111, Problem 3.8, imply that ũt is fundamental for (1 − L)yt. Thus ũt = Qut, where Q is a
nonsingular q× q matrix (see Rozanov (1967), p. 57), and B̃ũt = [B̃Q]ut.

On the other hand, from (A2) and (A4):

Ã(L)S(L)−1B(L)ut = (1− L)[B̃Q]ut. (A5)

As ut is nonsingular, Ã(L)S(L)−1B(L) = (1− L)[B̃Q]. Setting L = 0 we have B̃Q = B(0), so that
(A3) becomes

Ã(L)yt = B(0)ut (A6)

while (A5) becomes
Ã(L)S(L)−1B(L)ut = (1− L)B(0)ut. (A7)

The impulse-response function of yt to ut resulting from (A6) is H(L)B(0), where H(L)Ã(L) = Ir.
Multiplying both sides of (A7) by H(L) we obtain

S(L)−1B(L) = (1− L)H(L)B(0),

so that H(L)B(0) is obtained by cumulating S(L)−1B(L) and is therefore independent of Ã(L).

Appendix C. Data Generating Process for the Simulations

The simulation results of Section 3.4 are obtained using the following specification of (14):

A(L)yt = A∗(L)(1− L)yt + αβ′yt−1 = C(0)ut = GHut,

where r = 4, q = 3, c = 3, the degree of A(L) is 2, so that the degree of A∗(L) is 1. A(L) is generated
using the factorization

A(L) = U(L)M(L)V(L),

where U(L) and V(L) are r× r matrix polynomials with all their roots outside the unit circle, and

M(L) =

(
(1− L)Ir−c 0

0 Ic

)

5 Multiplying both sides of (A3) by (1− L) and using (A2), we obtain Ã(L)S(L)−1B(L)ut = (1− L)B̃ũt. Comparing the
spectral densities of right- and left-hand terms, it is easy to prove that ũt must be a q-dimensional, nonsingular white noise
and the rank of B̃ must be q.
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(see Watson 1994). To get a VAR(2) we set U(L) = Ir − U1L, and V(L) = Ir, and then, by rewriting
M(L) = Ir −M1L, we get A1 = M1 +U1, and A2 = −M1U1.

Regarding the generation of the data, the diagonal entries of the matrix U1 are drawn from a
uniform distribution between 0.5 and 0.8, while the extra–diagonal entries are drawn from a uniform
distribution between 0 and 0.3. U1 is then multiplied by a scalar so that its largest eigenvalue is 0.6.
The matrix G is generated as in Bai and Ng (2007): (1) G̃ is an r× r diagonal matrix of rank q where
g̃ii is drawn from the uniform distribution between 0.8 and 1.2, (2) Ǧ is obtained by orthogonalizing
an r × r uniform random matrix, (3) G is equal to the first q columns of the matrix ǦG̃1/2. Lastly,
the orthogonal matrix H is such that the upper 3× 3 submatrix of GH is lower triangular. The results
are based on 1000 replications. The matrices U1, G and H are generated only once (the numerical
values are available on request) so that the set of impulse responses to be estimated is the same for all
replications, whereas the vector ut is redrawn from N (0, I4) at each replication.
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