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Abstract: We propose a methodology to include night volatility estimates in the day volatility 
modeling problem with high-frequency data in a realized generalized autoregressive conditional 
heteroskedasticity (GARCH) framework, which takes advantage of the natural relationship between 
the realized measure and the conditional variance. This improves volatility modeling by adding, in 
a two-factor structure, information on latent processes that occur while markets are closed but 
captures the leverage effect and maintains a mathematical structure that facilitates volatility 
estimation. A class of bivariate models that includes intraday, day, and night volatility estimates is 
proposed and was empirically tested to confirm whether using night volatility information 
improves the day volatility estimation. The results indicate a forecasting improvement using 
bivariate models over those that do not include night volatility estimates. 
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1. Introduction 

We aim to improve volatility modeling by adding information that exists on latent volatility 
processes while the markets are closed and no transactions occur. We build upon the observation that 
the price at market closing usually differs from the price at market opening, despite no transactions 
occurring between the two recordings. Models previously proposed usually estimate volatility by 
including information on past day and intraday volatility, estimated from day-recorded prices and 
sampled at various time intervals. Some papers have proposed methods to address overnight returns. 
The latent volatility component apparent in periods when markets are closed, highlighted by the 
difference between the two prices, may be the effect of events that occurred during the market closing, 
both domestic or international, or may be due to other latent factors that usually influence the 
financial markets, and may prove useful in volatility modeling. We propose an estimation of this 
night latent volatility and suggest a new model that uses day, intraday, and night volatility 
information to model day volatility. What distinguishes our contribution from other papers 
published on similar topics is that we propose a two-factor structure in a realized generalized 
autoregressive conditional heteroskedasticity (GARCH) setting that takes advantage of the natural 
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relationship between the realized measure and the conditional (day and night) variance. The 
mathematical structure is thus elegant, facilitates volatility estimation, and allows the inclusion of 
return-volatility dependence. We call the structure bivariate because it uses both day and night 
volatility information, as opposed to the univariate ones that only use day information. To strengthen 
the robustness of our empirical research, we further extended this idea to a number of realized 
GARCH models that use day and intraday volatility information, creating an equivalent set of 
bivariate models that additionally use night volatility information. We obtained a class of realized 
GARCH models that incorporate day, night, and intraday volatility measures; they were assessed 
against their counterparts that did not include night volatility information using an extended set of 
10 stock prices. Empirical results of the forecasting performance assessment show a degree of 
improvement of the newly proposed models over those that do not include night volatility measures. 
This finding suggests the potential of our method for volatility forecasting problems for financial 
assets and other assets with night latent volatility information. 

Financial volatility modeling has benefited significantly from the availability of high-frequency 
data. The main interest in modeling using frequently sampled information and integrating it into 
models built to estimate day conditional variance was initiated by Andersen and Bollerslev (1998), 
who used realized volatility estimates extracted from intraday data (realized variance) as better 
estimates of conditional volatility than squared returns. They proved that by adding up squared 
intraday returns, the forecasted volatility would correlate closely to the future latent volatility factor. 

Engle (2002) was among the first econometricians who extended the standard GARCH model to 
include an exogenous realized measure (the realized variance) in the conditional variance (GARCH) 
equation. In this model, the realized measures’ variation is not explained; thus, such models 
(GARCH-X) are considered incomplete. Engle and Gallo (2006) proposed the multiplicative error 
model (MEM), which was the first attempt to contain a separate GARCH structure equation for the 
realized measure. A similar complete model nested in a MEM setting is the high frequency based 
volatility (HEAVY) model of Shephard and Sheppard (2010). Both MEM and HEAVY models are 
difficult to use as they work with multiple latent processes—for every realized measure used, there 
is a corresponding latent volatility process. The Realized GARCH model proposed by Hansen et al. 
(2012) combines a GARCH structure for returns with realized measures of volatility. Compared with 
MEM and HEAVY models, the Realized GARCH model takes advantage of the natural relationship 
between the realized measure and the conditional variance. Instead of introducing additional latent 
factors, it proposes a single measurement equation in which the realized measure is a consistent 
estimator of the integrated variance. Besides its elegant mathematical structure, the Realized GARCH 
model is easy to estimate, captures the return-volatility dependence (leverage effect), and has been 
empirically shown to outperform conventional GARCH. A more robust version of the Realized 
GARCH model was introduced by Banulescu-Radu et al. (2019), suggesting a variant that is less 
sensitive to outliers and minimizes the impact on volatility of days with extreme negative volatility 
shocks. A realized exponential GARCH model that can use multiple realized volatility measures for 
the modeling of a return series, using a similar framework, has also been proposed (Hansen and 
Huang 2016). Finding that the Realized GARCH model was insufficient for capturing the long 
memory of underlying volatility, Huang et al. (2016) developed a parsimonious variant of the 
Realized GARCH model by introducing Corsi’s (2009) heterogeneous autoregressive (HAR) 
specification in the volatility dynamics. A multivariate GARCH model that incorporates realized 
measures of variances and covariances was also introduced by Hansen et al. (2014), but it did not 
suggest the introduction of night volatility information. Bollerslev et al. (2018) proposed asymmetric 
multivariate volatility models that exploit estimates of variances and covariances based on the signs 
of high-frequency returns to allow for more nuanced responses to positive and negative return shocks 
than the threshold leverage effect. Hansen et al. (2019) proposed a multivariate GARCH model that 
incorporates realized measures for the covariance matrix of returns. 

Overnight (close-to-open) volatility is usually higher than the five-minute realized volatility 
estimated during trading hours, and the close-to-open price differential may trigger a distorting effect 
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on the realized volatility. Thus, the inclusion of overnight returns when constructing the realized 
conditional covariance matrix of the daily returns has been empirically documented to reduce 
information loss and consequently improve volatility forecasting. A common approach to account 
for volatility during the market’s closing hours has been to calculate a close-to-open return from the 
price change recorded between the trading day closing and the next trading day opening, and then 
add its squared value to the sum of intraday returns (Bollerslev et al. 2009; Martens 2002; Blair et al. 
2001). Hansen and Lunde (2005) compounded optimal weights corresponding to overnight returns 
and to the sum of intraday returns, and Fleming and Kirby (2011) and Fuertes and Olmo (2013) 
further applied it. De Pooter et al. (2008) and Fleming et al. (2003) computed it in matrix form by 
incorporating the cross-product of the vector of overnight returns in the summation of the matrix that 
provided the covariance matrix of the daily returns, acknowledging that the outer product of the 
vector of overnight returns is an inaccurate estimator of the integrated covariance matrix for the 
period when markets were closed (Fleming et al. 2003). Koopman et al. (2005); Martens (2002); and 
Angelidis and Degiannakis (2008) excluded the noisy overnight returns to compute an estimate of 
volatility during trading hours, instead of daily volatility; then, they scaled up the sum of intraday 
returns to cover the whole 24-h day. The literature has not yet reached a consensus on the best method 
of accounting for overnight returns; however, Ahoniemi and Lanne (2013) suggested that the 
weighted sum of the squared overnight return and the sum of intraday squared returns was the most 
accurate measure of realized volatility for the Standard&Poor’s’ S&P 500 index. 

This paper suggests a method of capturing and incorporating night volatility into the day 
conditional volatility equation of one low-frequency as well as a number of high-frequency GARCH 
models. We propose a two-factor structure of the conditional variance, one for night and one for day 
variance, in a realized GARCH setting that takes advantage of the natural relationship between the 
realized measure and the conditional (day and night) variance. The mathematical structure is thus 
elegant, facilitates volatility estimation, and allows the inclusion of the return-volatility dependence. 
A general framework is formulated; based on it, a set of GARCH models is adapted such that it uses 
the estimation of night latent volatility to model day conditional volatility. This approach enabled us 
to document, in an empirical context, whether the introduction of the night volatility component, in 
the two-factor structure and realized GARCH setting we propose, improved the volatility modeling 
for each of the models discussed. The new models are called bivariate as they use both night and day 
volatility information and are defined to work in typical financial settings, such as volatility modeling 
of stock and commodity prices. We assessed the performance of the bivariate models by comparing 
the error functions of the forecasts of the bivariate models with those obtained when the simple 
versions of the models, which do not use night volatility information, were used. We call the latter 
models univariate models. The scope of this study was thus to analyze whether the use of night 
volatility information in the forms proposed improves the modeling of day volatility. 

The paper proceeds as follows. Section 2 proposes the new set of bivariate realized models. 
Section 3 describes the data and methodology, and Section 4 summarizes the results. The paper 
concludes with Section 5, where final remarks are presented, and some future lines of research are 
proposed. 

2. Bivariate Realized Models 

2.1. Base Model 

Existing high-frequency GARCH models estimate day conditional variance using day and 
intraday volatility information. We developed a class of realized models that allow constructing day 
volatility estimates with day, intraday, and night volatility information. Models previously proposed 
use return and volatility information estimated from trades that occurred during the trading day to 
estimate next-day volatility. However, latent volatility existing between the trading periods (called 
night volatility) has scarcely been considered in the day volatility estimation problem. The idea 
emerged from an observation on financial stock time series; prices at market closing differ from those 
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at market opening the following trading day, although during the night the market is closed and thus 
no transactions occur, so no intranight information exists. Despite the lack of night trades, latent 
(night) volatility still occurs, causing a price mismatch. We examined whether this latent night 
volatility can be modeled and whether, if incorporated into the conditional volatility modeling, it 
would help to provide better estimates of day volatility. Compared to other researchers that also 
modeled overnight returns, we proposed a two-factor structure in a realized GARCH setting with a 
GARCH equation that links day/night volatility to returns, night/day volatility, and intraday 
volatility of the previous day. This allowed us to retain the benefits of the Realized GARCH model 
of Hansen et al. (2012), namely, to take advantage of the natural relationship between the realized 
measure and the conditional day (and night for the models we proposed in the current paper) 
variance in an elegant structure that facilitates volatility estimation, allowed us to capture the return-
volatility dependence, and was previously proved to outperform traditional GARCH. Below, we 
presented a method to capture this volatility and to insert it into the day conditional volatility 
equation. 

The starting model is a reduced form Bivariate Realized GARCH model, which is a Realized 
GARCH model with night volatility information and exogenous realized measures, defined as 
follows: 

𝑟௧ = 𝑟௧
• + 𝑟௧
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ට௛೟
°

 , 𝑧௧
• =

௥೟
•ିఓ•

ඥ௛೟
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where • denotes the night information, ° denotes the day information of the vector, 𝑟௧ is the return, 
𝑧௧~𝑖𝑖𝑑(0,1),  𝑢௧~𝑖𝑖𝑑(0, 𝜎௨
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such, 𝑟௧ is the sum between night 𝑟௧
• and day 𝑟௧

° returns, 𝑧௧
° represents the standardized day returns, 

and 𝑧௧
• represents the standardized night returns, whereas 𝜇° is the means of day returns and 𝜇• is the 

means of night returns. All 𝜏’s are coefficients of the standardized returns that follow to be estimated 
through the maximum log-likelihood function (MLE). If marked by °, 𝜏 represents the coefficients of 
the standardized returns in the equation of conditional day volatility, and if marked by •, 𝜏 represents 
the coefficients of the standardized returns in the equation of conditional night volatility. The 
numbers next to ° or • are for indexing purposes: For example, 𝜏(°ଵ) and 𝜏(°ଶ) are two coefficients of 
the standardized returns in the equation of conditional day volatility that follow to be estimated 
through MLE. 

Thus, the base model is formed of three equations: The return equation, which is the sum 
between day (open-to-close) returns and night (close-to-open) returns, and two conditional volatility 
equations, as follows: The first expresses day volatility as a function of previous day (𝑧௧ିଵ

° ) and night 
(𝑧௧ିଵ

• ; standardized) returns, conditional day variance (ℎ௧ିଵ
°  ), and a realized measure of volatility 

(𝑥௧ିଵ ; realized kernel, high–low, realized variance, etc.). The second defines night volatility as a 
function of previous day (𝑧௧ିଵ

° ) and night (𝑧௧ିଵ
• ; standardized) returns, conditional night variance 

(ℎ௧ିଵ
• ), and a realized measure of volatility (𝑥௧ିଵ). Notably, in this model (called reduced form for this 

reason), the realized measure is not endogenized nor linked to the day volatility measure through a 
measurement equation, but rather is treated as an exogenous variable. We added this equation to the 
complete form of the model that was documented in the next section. The realized measure was 
compounded from intraday prices recorded throughout the day. 

2.2. Extended Models 

We used the base model structure and extended its idea to a class of best-known GARCH-type 
models. We used this approach as all models used share the same structure and thus similar 
properties, which enabled us to set up a similar bivariate configuration. The aim was to construct a 
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group of models that takes advantage of night volatility estimation, and also defines the existing 
natural relationship between the realized measures and the conditional day and night variance. As 
such, we proposed four new realized models and one non-realized model: Bivariate Realized 
GARCH (1,1), with an endogenous component of realized measure and therefore a separate 
measurement equation, which we will call a complete version model; Bivariate Exponential GARCH-
X (Bivariate EGARCH-X), that is a bivariate exponential generalized autoregressive conditional 
heteroskedastic model with an exogenous realized measure; Bivariate Realized EGARCH (1,1); 
Bivariate Realized GARCH (2,2); and Bivariate EGARCH (1,1). The detailed specifications of the 
bivariate models we propose are provided in Table 1.  

Next, we summarized the main features of each model. All share similar return equations as in 
the case of the base model—the daily return 𝑟௧ is the sum between open-to-close return (day return) 
𝑟௧

° and close-to-open return (night return) 𝑟௧
•. The GARCH equations share distinct properties but they 

have unique features as well. All define the day (open-to-close) volatility ℎ௧
°  as a function of day 

𝑧௧
° and night 𝑧௧

• standardized returns as defined above, and also as a function of the previous day 
(open-to-close) volatility. Except for the Bivariate EGARCH (1,1) and the reduced form Bivariate 
Realized GARCH models, all other models also include the relationship between day volatility ℎ௧

°  and 
intraday volatility 𝑥௧ିଵ  in the GARCH equation. Since Bivariate EGARCH (1,1) is not a realized 
model, it does not contain intraday information. In our Bivariate EGARCH-X model, intraday 
volatility 𝑥௧ିଵ  is treated as an exogenous variable and is thus not linked to any other variable. 
However, all other realized models incorporate a third equation, the measurement equation, which 
defines the joint dependence between 𝑟௧ and 𝑥௧. 𝑥௧ is thus “endogenized” by being formulated as a 
function of day (open-to-close) volatility, night (close-to-open) volatility, and day and night 
standardized returns (𝑧௧

° and 𝑧௧
•, respectively). 

Table 1. Summary of the bivariate realized generalized autoregressive conditional 
heteroskedasticity (GARCH) models proposed. 
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Bivariate 
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3. Data and Estimation Methodology 

We used tick data sampled along 3537 trading days during the period of 30 August 2004–31 
December 2018, corresponding to 10 stocks: AIG (American International Group, Inc.), AXP 
(American Express Company), BAC (Bank of America Corporation), CSCO (Cisco Systems, Inc.), F 
(Ford Motor Company (F)), GE (General Electric Company), INTC (Intel Corporation), JPM 
(JPMorgan Chase & Co.), MSFT (Microsoft Corporation), and T (AT&T Inc.). To avoid the outliers 
that would result from quiet days, the half trading days around the Christmas and Thanksgiving 
holidays were removed. 

We opted for estimating intraday volatility by compounding realized kernels instead of the more 
widely used realized variance, as it is generally acknowledged that squared daily returns provide a 
poor estimation of actual intraday volatility. Realized kernels are robust for microstructure errors or 
frictions, which are known to cause endogenous and dependent noise terms. They are used to 
estimate the quadratic variation in an efficient price process when the time stamps in every day do 
not match (non-synchronous, with irregularly spaced observations) and when the high-frequency 
time series described by the prices are noisy with many microstructure effects. We compounded the 
realized kernels as measures of intraday volatility (𝑥௧) using the methodology of Barndorff-Nielsen 
et al. (2009, 2011). The framework is given by Y, a variable that is the sum of a Brownian semi-
martingale and a jump process, as follows: 

𝑌௧ = ∫ 𝑎௨𝑑𝑢
௧

଴
+ ∫ 𝜎௨𝑑𝑊௨

௧

଴
+ 𝐽௧. (4) 

For the purpose of our exercise, we need to find the quadratic variation of Y, [𝑌] =

∫ 𝜎௨
ଶ𝑑𝑢 + ∑ 𝐶௜

ଶே೅
௜ୀଵ

்

଴
. Barndorff-Nielsen et al. (2009, 2011) estimated it from the noisy discrete 

observations 𝑋ఛೕ
 of 𝑌ఛೕ

,  0 = 𝜏଴ < 𝜏ଵ < ⋯ < 𝜏௡ = 𝑇 , where 𝑋ఛೕ
= 𝑌ఛೕ

+ 𝑈ఛೕ
 and 𝑈ఛೕ

 represents the 
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market microstructure effects (noise). Barndorff-Nielsen et al. (2009, 2011) estimated this quadratic 
variation by proposing realized kernels, a non-negative estimator that is constructed as follows. 

The first challenge with the tick data is the non-synchronicity. Non-synchronous trading occurs 
when the trades or quotes appear at irregularly spaced times across stocks, which is usually the case 
in stock markets, especially those with low liquidity or stale prices. Barndorff-Nielsen et al. (2011) 
solved this by suggesting a refresh time when all the stocks are traded. We implemented the same 
method by recording the prices only when (and immediately after) all of them were traded.  

To eliminate start and end effects and their associated errors, which are averaged through this 
procedure, we proceeded to jittering (averaging) the first and last two prices, as also suggested by 
Barndorff-Nielsen et al. (2011). Having synchronized and constructed the time series by jittering at 
the initial and final time points, we defined the semi-definite realized kernels, as follows, according 
to Barndorff-Nielsen et al. (2009, 2011): 

𝐾(𝑋) = ∑ 𝑘(
௛

ுାଵ
)𝛾௛

ு
௛ୀିு , where 𝛾௛ = ∑ 𝑥௝𝑥௝ି|௛|

௡
௝ୀ|௛|ାଵ , (5) 

where 𝑘(𝑥)  is a kernel weight function that has the 𝑘(0) = 1, 𝑘ᇱ(0) = 0  property, and 𝑘  is twice 
differentiable with continuous derivatives. 

Barndorff-Nielsen et al. (2009) used a Parzen kernel as it satisfies the smoothness conditions 
through 𝑘ᇱ(0) = 𝑘ᇱ(1) = 0, and its estimates are positive. We made the same choice, and used the 
same Parzen kernel function: 

𝑘(𝑥) = ቐ
1 − 6𝑥ଶ + 6𝑥ଷ, 0 ≤ 𝑥 ≤ 1/2

2(1 − 𝑥)ଷ, 1/2 ≤ 𝑥 ≤ 1
0, 𝑥 > 1

. (6) 

The optimal choice of bandwidth, according to Barndorff-Nielsen et al. (2009), which we chose 

to use, is 𝐻∗ = 𝑐∗𝜉ସ/ହ𝑛ଷ/ହ, with 𝑐∗ = ቄ
௞ᇱᇱ(଴)మ

௞•
బ,బ ቅ

ଵ/ହ

 and 𝜉ଶ =
ఠమ

ට் ∫ ఙೠ
రௗ௨

೅
బ

, where 𝑐∗ = ((12)ଶ)ଵ/ହ = 3.5134 for 

the Parzen kernel. ∫ 𝜎௨
ସ𝑑𝑢

்

଴
 is called the integrated quarticity, and, in our empirical exercise, it equals 

𝑅𝑉௦௣௔௥௦௘ . This denotes a subsampled realized variance based on 20-min returns. By calculating 1200 
realized variances by shifting the first observation recorded time in 1-s increments, we obtained a 
number of realized variance estimators. We averaged them and obtained 𝑅𝑉௦௣௔௥௦௘ . 𝜔ଶ was estimated 
by calculating the realized variance using every ith trade. We varied the starting point, and thereby 
produced i realized variances, namely 𝑅𝑉ௗ௘௡௦௘

௜ . Thus, our 𝜔ଶ estimator was calculated as: 

𝜔ෝ(௝)
ଶ =

ோ௏೏೐೙ೞ೐
(ೕ)

ଶ௡(ೕ)
, 𝑗 = 1, … , 𝑖, (7) 

where 𝑛(௝) is the number of non-zero returns used to estimate 𝑅𝑉ௗ௘௡௦௘
(௝) . The estimate of 𝜔ଶ is then the 

average of the 𝑗 estimates, 

𝜔ෝ 
ଶ =

ଵ

௜
∑ 𝜔ෝ(௝)

ଶ௜
௝ୀଵ . (8) 

By design, the realized kernel is positive semi-definite and the rate of convergence is 𝑛ଵ/ହ.  
We estimated the in-sample and out-of-sample (3000th day in the sample, 24 November 2016, 

the cutoff point) in both the univariate and bivariate models with respect to each of the 10 stocks. The 
univariate models considered are the standard realized versions of the GARCH model (Realized 
GARCH, Realized EGARCH, EGARCH-X, and Realized GARCH (2,2)), as well as the EGARCH 
model. The estimated bivariate models are those mentioned in Section 2 (Bivariate EGARCH, reduced 
and complete forms of Bivariate Realized GARCH, Bivariate Realized EGARCH, Bivariate EGARCH-
X, and Bivariate Realized GARCH (2,2)).  

The estimation was performed by maximizing the total log-likelihood functions (MLE), namely 
the sum of partial log-likelihood functions for the returns and for the intraday measures; the ranking 
criterion with respect to the MLE was the partial log-likelihood function for returns solely. We used 
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MLE to estimate both the proposed bivariate models and a number of univariate models that do not 
include night volatility information. 

The log-likelihood function used in the estimation of the above models takes the form 
𝑙(𝑟௧

•, 𝑟௧
°, 𝑥௧) = 𝐿ଵ  for Bivariate EGARCH and Bivariate EGARCH-X, or 𝑙(𝑟௧

•, 𝑟௧
°, 𝑥௧) = 𝐿ଵ + 𝐿ଶ  for 

Bivariate Realized GARCH complete version, Bivariate Realized EGARCH (1,1), and Bivariate 

Realized GARCH (2,2) (Appendix A), where 𝐿ଵ = −
ଵ

ଶ
∑ ቐ2 log(2𝜋) + log(1 − 𝜌ଶ) + logℎ௧

• + logℎ௧
° +௡

௧ୀଵ

(௥೟
• ି ఓ•)మ ௛೟

•ൗ ା(௥೟
° ି ఓ°)మ ௛೟

°ൗ

(ଵ ି ఘమ)
−

ଶఘ

(ଵ ି ఘమ)

(௥೟
• ି ఓ•)൫௥೟

° ି ఓ°൯

ට௛೟
•௛೟

°
ቑ and 𝐿ଶ = −

ଵ

ଶ
∑ {log(2𝜋) + log(𝜎௨

ଶ) + 𝑢௧
ଶ 𝜎௨

ଶ⁄ }௡
௧ୀଵ  . 

To evaluate whether introducing night volatility estimations in models’ equations improves the 
day volatility estimation, we calculated two loss functions, root mean squared error (RMSE) and 
mean absolute error (MAE). Based on these, we documented the number of models for each in-
sample and out-of-sample estimation for each of the 10 stocks, at which MAE and RMSE were 
smaller. This allowed us to draw conclusions about the better performance of the bivariate or 
univariate models. Based on the size of the loss functions obtained at each estimation, we analyzed 
the performance of the new models that included night volatility estimates. This contributed to our 
objective by documenting whether or not night volatility information improves the estimation of day 
volatility with respect to the main GARCH-type of models proposed in the literature.  

The maximized log-likelihood functions in univariate and bivariate estimations are provided in 
Tables A1 and A2 in Appendix B. As the log-likelihood functions of the bivariate models differ from 
those of the univariate versions (for the bivariate estimation, we maximized a bi-dimensional vector 

൬
𝑟௧

•

𝑟௧
°൰ with a non-null correlation factor (𝜌) between its subvectors), it makes little sense to compare 

the values of the MLEs across the univariate and bivariate models to document an improvement or 
loss of performance when introducing night volatility estimates. Specifically, the log-likelihood 

function for the bivariate models is: log𝑙(𝑟௧
•, 𝑟௧

°) = −
ଵ

ଶ
∑ ቐ2log(2𝜋) + log(1 − 𝜌ଶ) + log( ℎ௧

•) +௡
௧ୀଵ

log( ℎ௧
° ) +

௥೟
•మ

௛೟
•ൗ  ା ௥೟

°మ
௛೟

°ൗ

(ଵ ି ఘమ)
−

ଶఘ

(ଵ ି ఘమ)

௥೟
•௥೟

°

ට௛೟
•௛೟

°
ቑ, where 𝜌 =  𝑐𝑜𝑟𝑟(𝑟௧

°, 𝑟௧
•). In the univariate models’ case, the log-

likelihood function is log𝑙(𝑟௧) = −
ଵ

ଶ
∑ ൤log(2𝜋) + log(ℎ௧

 ) +
(௥೟ ି ఓ)మ

௛೟
 ൨௡

௧ୀଵ  for EGARCH and EGARCH-X, 

and log𝑙(𝑟௧) = −
ଵ

ଶ
∑ ൤2log(2𝜋) + log(ℎ௧

 ) +
(௥೟ ି ఓ)మ

௛೟
 + log(𝜎௨

ଶ) +
௨೟

మ

ఙೠ
మ൨௡

௧ୀଵ  for Realized EGARCH, Realized 

GARCH, and Realized GARCH (2,2). As such, we could not use this method to evaluate the 
performance of the bivariate models, as we would be comparing the values of estimations of different 
functions. 

Thus, for the purpose of documenting the gain or loss in accuracy, we used the standard method 
in econometrics for evaluating the models’ performance—that of calculating two loss functions 
(RMSE and MAE)—which would better assess whether adding night volatility information with a 
two-factor structure in a realized GARCH setting improves estimations of next-day volatility. 

4. Results 

The standard method used in econometrics to evaluate models’ performance is to calculate the 
size of the loss functions, among which RMSE and MAE are the most common and reliable. We 
calculated them for both in-sample and out-of-sample estimations, and our results indicate an 
improvement when night volatility estimations were included in the equations of the day conditional 
volatility in almost every case. 

We worked with a number of models that have different features and for which adding an 
estimation of night volatility may contribute to the volatility estimation. For example, by inspecting 
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the results for RMSE (in-sample estimation) in Table 2, the improvement was evident for 55 out of 60 
cases (1 loss function result × 6 models evaluated × 10 stocks). The cases in which the improvement 
could not be documented are marked with red (for RMSE) or green (for MAE) numbers in Table 2. 
In the five cases in which this was not evident, four of them were for Realized GARCH (2,2). This 
means that Realized GARCH (2,2) only shows some features that did not work better when the night 
volatility estimates were considered given the way in which the model was designed. This may be 
because, compared to the other models that model next-day volatility by only using information from 
the previous day and night, Realized GARCH (2,2) uses information on the previous night volatility 
as well as information on returns and volatility of the previous two days. We thought that this might 
be the problem with this model, but it would need to be proven empirically; we left this question for 
future work. 

This conclusion was strengthened by examining the MAE results. When considering MAE as an 
evaluation tool, the bivariate models produced superior forecasting ability in 59 out of 60 cases, 
indicating an improvement for the models that included night volatility estimation in the day 
volatility modeling. However, in only one case out of 60 was the improvement not evident, for the 
same Realized GARCH (2,2) model. As such, the model itself appears to be problematic, not the 
evaluation we performed. As mentioned above, we thought that the problem with this model was 
that it models conditional day volatility by including in the model information on day volatility and 
returns from the previous two days, instead of one day only as we did for the other models. In 
Bivariate Realized GARCH (2,2), we considered only one-night volatility information instead of 
considering the night volatility estimation from the previous two nights. 

Table 2. Loss functions in univariate and bivariate estimations; in-sample. 

Stock 
EGARCH EGARCH-X 

Realized 
EGARCH 

Realized GARCH 
Realized 
GARCH 

(2,2) 

Univ Biv Univ Biv Univ Biv Univ Biv 
(com) 

Univ Biv 
(red) 

Univ Biv 

AIG 
RMSE 203.3 188.6 203.7 195.1 189.8 195.8 254.0 218.2 254.0 219.7 190.6 250.2 
MAE 18.0 15.1 20.1 16.5 17.2 15.2 22.9 21.0 22.9 21.1 17.4 21.4 

AXP RMSE 6.9 6.3 6.7 6.2 6.8 5.5 6.8 5.5 7.0 5.2 7.0 7.1 
MAE 3.1 2.3 3.1 2.6 3.1 2.2 3.2 2.0 3.3 1.9 3.0 2.3 

BAC 
RMSE 16.7 15.9 16.3 15.4 15.9 15.1 16.2 15.7 16.4 15.3 15.9 15.1 
MAE 4.5 3.5 4.0 3.2 4.1 2.8 4.3 3.0 3.8 3.1 4.2 2.7 

CSCO RMSE 6.5 5.6 6.6 6.4 6.8 5.7 6.4 5.5 6.8 5.9 6.8 6.6 
MAE 3.1 2.2 3.1 2.4 3.3 2.5 3.0 2.2 3.0 1.9 3.2 2.3 

F 
RMSE 16.9 16.3 16.4 15.1 16.3 15.5 16.1 15.7 16.5 15.3 16.2 14.8 
MAE 4.0 3.2 3.8 3.3 4.2 3.3 4.3 3.3 4.2 2.9 4.0 3.0 

GE RMSE 6.8 6.0 6.9 6.5 6.6 5.8 6.9 5.5 6.7 5.5 6.4 7.0 
MAE 3.3 1.9 2.7 2.2 3.1 1.8 3.2 2.2 3.2 1.8 2.8 2.4 

INTC RMSE 16.6 15.9 16.3 15.4 16.4 15.3 16.5 15.0 16.5 15.1 16.1 15.2 
 MAE 4.4 3.1 4.0 3.5 4.3 3.1 4.2 3.0 3.7 3.2 3.9 2.7 

JPM RMSE 11.4 10.4 11.1 9.7 10.7 10.6 11.1 9.9 10.8 10.1 11.1 9.9 
MAE 3.9 2.6 3.5 2.7 3.5 2.7 3.3 3.0 3.6 2.2 3.6 2.7 

MSFT 
RMSE 6.8 6.4 6.6 6.1 6.8 5.6 6.9 5.6 6.8 5.5 6.6 7.1 
MAE 3.3 1.8 2.8 2.5 3.1 2.1 3.3 2.0 3.4 2.1 3.4 2.9 

T RMSE 16.8 15.9 16.5 15.2 16.7 15.2 16.4 15.4 16.6 15.7 16.2 14.9 
MAE 4.3 3.5 4.2 3.4 4.0 3.0 4.1 3.0 4.5 3.5 4.5 3.1 

Univ and Biv stand for Univariate and Bivariate, respectively, while com and red stand for complete 
and reduced, respectively. Red and green numbers indicate the stances in which bivariate models 
perform worse than the univariate ones (when evaluated according to RMSE or MAE, respectively). 
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When examining the results for the out-of-sample estimations in Table 3, we found that of 60 
evaluations with RMSE, 53 showed forecasting improvement when night volatility information was 
used. In the seven cases in which the improvement was not evident, three were recorded for the same 
Realized GARCH (2,2) model. The remaining four belonged to various other models, one for each. 
However, we observed another pattern. Most of the failures in documenting an improvement were 
for the same stock: AIG. This suggests that the results were sensitive not only to the model (as we 
explained earlier with the way in which Realized GARCH (2,2) was built), but were also sensitive to 
the stock choice. Since AIG persistently failed in showing an improvement when using night 
volatility information, AIG price recordings should be more carefully examined to understand what 
makes it less sensitive to this modeling suggestion, including examining the amount of the stock price 
differential (the difference between the market closing and the market opening prices), and also 
understanding the roots of the volatility transmission for this stock in particular. Again, we left this 
as exploratory work for the future paper. When ranked according to MAE, 58 results out of 60 
indicated improvement, whereas only two cases (among them, one for Realized GARCH (2,2)) did 
not. Again, both estimations indicated strong evidence in favor of including night volatility 
estimation in the modeling problem of day volatility. 

Counting the number of cases that fail to show improvement is valuable for two reasons: (1) It 
is the best tool when comparing models evaluated through MLE given that the log-likelihood 
functions were not similar for looking at the size of the MLE values; and (2) the cases in which we 
failed to see improvement indicated some consistency for a specific model and a specific stock. This 
opens the opportunity for future work in which we might try to understand why the Realized 
GARCH (2,2) model and AIG stock persistently indicated less evidence compared with other models 
and stocks, where by adding night volatility information, we produced improved volatility 
estimation. 

Table 3. Loss functions in univariate and bivariate estimations; out-of-sample. 

 EGARCH EGARCH-X Realized 
EGARCH 

Realized GARCH 
Realized 
GARCH 

(2,2) 

Stock Univ Biv Univ Biv Univ Biv Univ Biv 
(com) 

Univ Biv 
(red) 

Univ Biv 

AIG 
RMSE 565.5 574.3 552.0 532.9 544.0 566.4 552.9 572.4 552.9 573.3 538.9 584.7 
MAE 109.0 100.4 106.9 104.1 103.8 102.5 122.0 103.1 122.1 103.0 104.6 121.1 

AXP RMSE 14.3 14.0 14.5 13.3 14.2 12.8 14.0 13.0 14.0 12.6 13.9 12.8 
MAE 8.8 8.1 9.0 9.1 8.6 7.8 8.7 7.7 8.7 8.1 9.0 7.7 

BAC 
RMSE 44.0 43.1 43.2 42.1 44.5 42.6 43.5 42.1 43.3 42.6 43.3 43.1 
MAE 19.4 17.7 18.4 17.6 18.0 17.2 18.3 17.8 18.6 17.2 18.0 17.4 

CSCO RMSE 14.2 14.2 14.4 13.1 14.3 13.2 13.9 12.8 14.2 13.1 13.8 12.7 
MAE 8.9 8.0 9.0 8.9 8.7 7.8 9.0 8.1 9.0 8.0 9.2 8.1 

F 
RMSE 44.0 43.0 43.0 42.4 44.3 42.3 43.4 42.6 43.5 42.0 43.3 43.4 
MAE 19.1 18.1 18.6 17.4 18.6 16.7 18.5 17.9 18.3 17.0 18.6 17.0 

GE RMSE 14.7 14.4 14.3 13.3 14.0 13.3 13.9 12.7 14.3 12.6 13.9 13.0 
MAE 9.5 7.6 8.8 8.7 8.6 7.8 8.8 8.2 8.4 8.0 9.4 7.8 

INTC 
RMSE 44.4 43.3 43.2 42.2 44.4 42.0 43.7 42.2 43.4 41.9 43.4 43.3 
MAE 19.6 18.1 18.5 17.1 18.2 17.0 18.4 18.0 18.3 17.1 18.3 17.3 

JPM RMSE 26.7 26.1 26.1 25.3 25.4 24.0 25.2 24.8 25.5 24.6 25.4 25.1 
MAE 12.5 11.9 12.9 11.6 12.1 10.9 12.1 11.7 12.4 11.9 12.3 11.3 

MSFT 
RMSE 14.6 14.3 14.0 13.5 13.8 13.2 13.7 12.7 14.3 12.7 14.0 12.3 
MAE 8.7 8.0 9.2 9.0 8.6 7.6 8.5 7.6 8.8 8.1 9.0 7.7 

T 
RMSE 43.8 42.9 43.1 42.3 43.8 42.5 43.3 42.1 43.4 42.0 43.2 43.4 
MAE 19.6 17.9 18.4 17.5 18.0 16.7 18.3 17.6 18.6 17.0 18.3 17.6 
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Red and green numbers indicate the stances in which bivariate models perform worse than the 
univariate ones (when evaluated according to RMSE or MAE, respectively). 

Thus, we concluded that the proposed bivariate models improved the forecasting performance 
compared with the univariate models; as such, adding night volatility estimations according to the 
methodology suggested improves next-day volatility estimates. 

5. Conclusions 

This paper provided a methodology that captures and integrates night volatility into the 
modeling of day volatility. In univariate context, this method led to formulating four bivariate 
realized GARCH models (Bivariate EGARCH-X, Bivariate Realized GARCH, Bivariate Realized 
GARCH (2,2), and Bivariate Realized EGARCH) and one bivariate non-realized model (Bivariate 
EGARCH). The novelty of this method is the incorporation of a night measure of volatility into the 
models, computed from price changes between the closing and opening of the trading market with a 
two-factor structure of the conditional variance in a realized GARCH setting that takes advantage of 
the natural relationship between the realized measure and the conditional variance. This captures the 
leverage effect and maintains an elegant mathematical structure that facilitates the estimation of 
volatility. 

With respect to assessing forecasting performance, the first finding was that rankings were 
sensitive to the stock and model choice but displayed little sensitivity to the ranking criterion and 
estimation methodology. However, the bivariate models were proved to perform better in most 
instances, compared with the univariate models. As such, we concluded that by adding night 
volatility estimates in the volatility models according to the methodology described, better estimates 
of next-day volatility could be obtained. This represents a step further from including high-frequency 
data in the modeling problem of the GARCH models in that estimates of night volatility are added 
into the equation of the day conditional variance according to the novel methodology we suggest. 

The assessment to multivariate assets (e.g., portfolios of stocks) could be extended in future work 
by documenting a method of forecasting volatility of assets using the principal component (PC) 
analysis or other statistical procedures that use the orthogonal transformation to convert a set of 
observations of possibly correlated variables into a set of values of linearly uncorrelated variables, 
taking advantage of the autoregressive conditional heteroskedastic models we proposed that use 
estimates of day, intraday, and night volatility. We might refer to these models as PC Bivariate 
Realized GARCH models and these might be used to formulate the general form of one multivariate 
asset’s conditional variance–covariance matrix expressed in terms of conditional variances of the 
compounding assets and of their principal components. This would allow the estimation of the 
volatility of one multivariate asset through estimations of the volatility of principal components using 
day, intraday, and night volatility information. Then, by reducing the n-multivariate to a 𝑛 − 𝑘 stock 
dimension (𝑛 and 𝑘 positive integers), we could estimate the new models and assess their one-day-
ahead forecasting performance. Constructing models that use volatility information from the 
previous two days and two nights may further improve the modeling of volatility, as we noted by 
inspecting the results for the current bivariate form of Realized GARCH (2,2). Disseminating among 
the stocks according to their underlying volatility features may provide a better method of more 
consistently modeling their volatility patterns. 

Integration of volatility estimates of highly interlinked markets that are open during the closing 
time of the reference market is another suggestion for further research. For example, proposing 
models for the U.S. market that estimate day volatility using night volatility estimates from the Asian 
markets open during the non-trading times of the U.S. market would allow for integration in such 
models of systemic risk and financial contagion related elements, with likely benefits for volatility 
estimation and forecasting.  
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Appendix A. Log-Likelihood Function for the Bivariate Models 

The data are bivariate vectors compounded of two univariate vectors that refer to uncorrelated 
sets of information (we considered first that night volatility was uncorrelated with day volatility): 

൬
𝑟௧

•

𝑟௧
°൰ |𝐹௧ିଵ~𝑁(0, ൬

ℎ௧
• 0

0 ℎ௧
° ൰). Accordingly, the random vector ൬

𝑟௧
•

𝑟௧
°൰ depends solely on the information 

set available at time 𝑡 − 1, and has a normal distribution with ቀ0
0

ቁ mean and a variance equal to the 

variance–covariance matrix ൬
ℎ௧

• 0

0 ℎ௧
° ൰ . The latter is equivalent to 𝑣𝑎𝑟(𝑟௧

°) = 𝜎௧
° , 𝑣𝑎𝑟(𝑟௧

•) = ℎ௧
•  and 

𝑐𝑜𝑣(𝑟௧
°, 𝑟௧

•) = 0. The total volatility is given as 𝑟௧ = 𝑟௧
° + 𝑟௧

•. Theory states that when a random vector 

(such as ൬
𝑟௧

•

𝑟௧
°൰) is normally distributed, then its components are also normal. ൬

𝑟௧
•

𝑟௧
°൰ |𝐹௧ିଵ~𝑁(0, ൬

ℎ௧
• 0

0 ℎ௧
° ൰) 

shows that 𝑟௧
•|𝐹௧ିଵ, ~𝑁(0, ℎ௧

•) and 𝑟௧
°|𝐹௧ିଵ~𝑁(0, ℎ௧

° ). Since a sum of two normal variables is a normal 
variable with the average equal to the arithmetic sum of the two component averages, 
𝑟௧|𝐹௧ିଵ~𝑁(0, ℎ௧

• + ℎ௧
° ), then the density function of 𝑟௧|𝐹௧ିଵ has the form of a normal variable, that is, 

𝑓(𝑟௧) =
ଵ

ටఙ೟
∗√ଶగ

𝑒
ೝ೟

మ

మ೓೟
∗ , where ℎ௧

∗ = ℎ௧
• + ℎ௧

°  is the variance of 𝑟௧ . Since n observations of 𝑡 = 1, … , 𝑛 are 

made, the likelihood function is the ൭
𝑟ଵ

…
𝑟௡

൱ vector’s density, and 𝑟ଵ, … , 𝑟௡ are independent of each other, 

so the likelihood function is 𝑙(𝑟௧) = ∏ 𝑓(𝑟௧)௡
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 . Taking 

the log of this expression and using the logarithm properties, the log-likelihood function of the total 

returns 𝑟௧  will become log𝑙(𝑟௧) = log(∏ (ቀ
ଵ

√ଶగ
ቁ

௡

) + log ( ቌ∏
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If we considered a more complete model with a non-null correlation between 𝑟௧
° and 𝑟௧

• (meaning 
that night volatility influences day volatility), that is, 𝑐𝑜𝑟𝑟(𝑟௧

°, 𝑟௧
•) = 𝜌 ≠ 0, the formulation of the log-

likelihood function slightly changes. Observe first that 𝜌 does not depend on t, that is, the correlation 
is not time dependent. Then, the covariance will be (𝑟௧

°, 𝑟௧
•) = 𝑐𝑜𝑟𝑟(𝑟௧

°, 𝑟௧
•)ඥ𝑣𝑎𝑟(𝑟௧

•)𝑣𝑎𝑟(𝑟௧
°) = 𝜌ඥℎ௧

•ℎ௧
° . 

This means that in the new model (with a non-null correlation), the variance–covariance matrix takes 

the form ቆ
ℎ௧

• 𝜌ඥℎ௧
•ℎ௧

°

𝜌ඥℎ௧
•ℎ௧

° ℎ௧
°

ቇ , having the variances of 𝑟௧
° and 𝑟௧

•  on the first diagonal, and the 
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covariance between 𝑟௧
° and 𝑟௧

• on the second diagonal, that is 𝑐𝑜𝑣(𝑟௧
°, 𝑟௧

•)  (since 𝑐𝑜𝑣(𝑟௧
°, 𝑟௧

•) =
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°) ). As such, the |𝐹௧ିଵ  conditioned distribution of the ൬
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°൰ vector is 

൬
𝑟௧

•

𝑟௧
°൰ |𝐹௧ିଵ~𝑁(0, ቆ

ℎ௧
• 𝜌ඥℎ௧

•ℎ௧
°

𝜌ඥℎ௧
•ℎ௧

° ℎ௧
°

ቇ). The conditional variance of r୲,  𝑣𝑎𝑟(𝑟௧|𝐹௧ିଵ) , is 𝑣𝑎𝑟(𝑟௧|𝐹௧ିଵ) =

𝑣𝑎𝑟(𝑟௧
•|𝐹௧ିଵ) + 𝑣𝑎𝑟(𝑟௧

°|𝐹௧ିଵ) + 2𝑐𝑜𝑣(𝑟௧
•|𝐹௧ିଵ, 𝑟௧

°|𝐹௧ିଵ) = ℎ௧
• + ℎ௧

° + 2𝜌ඥℎ௧
•ℎ௧

° , that is, ℎ௧
∗ = ℎ௧

• + ℎ௧
° +

2𝜌ඥℎ௧
•ℎ௧

° . The log-likelihood function of 𝑟௧ = 𝑟௧
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correlation case, the only difference being that the variance encloses the correlation term ℎ௧
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• +

ℎ௧
° + 2𝜌ඥℎ௧

•ℎ௧
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However, we want to consider the log-likelihood function of the bivariate vector ൬
𝑟௧

•

𝑟௧
°൰ and not 

that of the univariate vector 𝑟௧ = 𝑟௧
• + 𝑟௧

° . As such, to define the new log-likelihood function, we 

considered the density function of the bi-dimensional normal ൬
𝑟௧
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𝑟௧
°൰ . The general form of a p-

dimensional normal vector 𝑁௣(𝜇, 𝛴)  (a matrix with 𝜇  vector average and 𝛴  variance–covariance 
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covariance matrix 𝛴, and (𝑥 − 𝜇)ᇱ𝛴ିଵ(𝑥 − 𝜇) is the matrix product between the transpose of the (𝑥 −

𝜇) vector, the inverse of matrix 𝛴, and the (𝑥 − 𝜇) vector. As such, with 𝑝 = 2 for the particular case 

of a bi-dimensional vector ൬
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° ) + log(1 − 𝜌ଶ). The inverse matrix of the variance–covariance 

matrix is 𝛴ିଵ =
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obtained by multiplying the functions 𝑓(𝑟௧
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By performing some simple iterations in the expression above, we obtained the final form of the 

bivariate log-likelihood function as log𝑙(𝑟௧
•, 𝑟௧

°) = −
ଵ

ଶ
∑ ቐ2log(2𝜋) + log(1 − 𝜌ଶ) + log( ℎ௧

•) +௡
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ට௛೟
•௛೟

°
ቑ.  

Appendix B 

Table A1. Maximized log-likelihood functions in univariate and bivariate estimations; in-
sample. 

Stock 
EGARCH EGARCH-X Realized 

EGARCH 
Realized GARCH Realized GARCH 

(2,2) 

Univ Biv Univ Biv Univ Biv Univ 
Biv 

(com) 
Biv 

(red) Univ Biv 

AIG −1721.9 −2900.0 −1710.1 −2821.5 −1711.8 −2845.7 −1709.1 −2874.4 −2875.4 −1701.3 −2849.9 
AXP −1668.6 −2742.6 −1637.8 −2790.4 −1645.5 −2842.3 −1642.7 −2855.3 −2857.5 −1638.3 −2904.8 
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BAC −1506.6 −2499.9 −1473.0 −2438.8 −1475.5 −2437.7 −1478.5 −2443.0 −2439.7 −1471.5 −2437.1 
CSCO −1722.4 −2886.2 −1709.7 −2820.9 −1712.9 −2841.1 −1711.7 −2876.9 −2876.1 −1702.1 −2845.1 
F −1673.5 −2746.3 −1644.2 −2791.8 −1645.9 −2841.5 −1644.1 −2853.8 −2855.2 −1642.8 −2898.9 
GE −1504.9 −2498.1 −1474.2 −2433.2 −1475.8 −2442.8 −1477.9 −2446.1 −2440.1 −1467.1 −2440.7 
INTC −1505.4 −2497.5 −1471.4 −2434.7 −1478.1 −2439.8 −1475.5 −2445.9 −2439.8 −1468.1 −2437.7 
JPM −1658.1 −2750.6 −1616.4 −2699.0 −1619.6 −2702.0 −1625.9 −2714.3 −2703.1 −1615.4 −2683.7 
MSFT −1668.0 −2743.3 −1639.9 −2792.0 −1639.3 −2840.6 −1642.8 −2851.0 −2855.3 −1639.9 −2903.1 
T −1507.1 −2497.5 −1470.9 −2434.4 −1477.5 −2438.6 −1478.2 −2442.1 −2440.0 −1471.3 −2439.3 

Table A2. Maximized log-likelihood functions in univariate and bivariate estimations; out-
of-sample. 

Stock 
EGARCH EGARCH-X Realized 

EGARCH Realized GARCH 
Realized 

GARCH (2,2) 

Univ Biv Univ Biv Univ Biv Univ Biv 
(com) 

Biv 
(red) Univ Biv 

AIG −399.5 −1032.1 −394.2 −795.4 −387.7 −749.6 −372.5 −777.9 −774.4 −383.6 −736.9 
AXP −313.3 −607.7 −309.6 −565.7 −310.7 −576.5 −305.9 −561.3 −561.8 −308.4 −573.1 
BAC −344.6 −654.0 −341.9 −687.9 −352.0 −671.4 −337.0 −673.7 −676.2 −337.6 −670.0 
CSCO −407.3 −1033.4 −386.0 −790.5 −392.5 −752.5 −376.0 −770.1 −777.9 −372.5 −732.2 
F −308.9 −602.1 −308.0 −560.3 −307.6 −566.1 −305.6 −573.0 −563.7 −307.7 −570.1 
GE −348.8 −657.6 −339.0 −687.8 −353.7 −666.6 −348.5 −678.1 −672.0 −339.1 −672.9 
INTC −347.5 −659.5 −345.9 −681.7 −351.3 −678.7 −336.2 −674.3 −674.8 −340.5 −676.8 
JPM −330.9 −607.9 −326.1 −589.3 −324.1 −582.2 −316.0 −579.1 −573.1 −323.2 −584.8 
MSFT −403.5 −1030.5 −393.2 −787.9 −389.4 −745.4 −368.9 −772.7 −780.4 −386.3 −733.3 
T −315.0 −603.8 −305.2 −568.1 −303.8 −569.8 −301.4 −570.6 −572.1 −304.2 −570.6 
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