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Abstract: To avoid the risk of misspecification between homoscedastic and heteroscedastic
models, we propose a combination method based on ordinary least-squares (OLS) and generalized
least-squares (GLS) model-averaging estimators. To select optimal weights for the combination,
we suggest two information criteria and propose feasible versions that work even when the
variance-covariance matrix is unknown. The optimality of the method is proven under some
regularity conditions. The results of a Monte Carlo simulation demonstrate that the method is
adaptive in the sense that it achieves almost the same estimation accuracy as if the homoscedasticity
or heteroscedasticity of the error term were known.

Keywords: model averaging; OLS; GLS; combination method

1. Introduction

Model averaging has been developed as an alternative to model selection. In many situations,
model-averaging methods perform better than alternative model-selection methods. The main reason
for this is that model selection delivers a pretest estimator that has inferior properties, and its use can
be harmful (see Danilov and Magnus, 2004). Yuan and Yang (2005) provided a detailed discussion
on the choice between model averaging and model selection. As one of the pioneers of frequentist
model averaging, Hansen (2007) proposed Mallows model averaging (MMA) based on the ordinary
least-squares (OLS) estimator for linear regression models with homoscedastic errors. Wan et al. (2010)
extended the results for non-nested models with homoscedastic errors. Zhao et al. (2018) is the most
recent work in this area. For linear regression models with heteroscedastic errors, Hansen and Racine
(2012), Liu and Okui (2013) and Zhang et al. (2013, 2015) proposed model averaging methods that are
still based on the OLS estimator, while Liu et al. (2016) proposed a method based on the generalized
least squares estimator (GLS). They demonstrated that their methods are optimal in the sense of
Li (1987) for homoscedastic or heteroscedastic models. For model averaging in big datasets, Xie (2017)
proposed the use of model screening (before averaging) in order to deal with the large number of
candidate models/regressors.

However, all previous papers assumed that it was known whether the errors of the true
data-generating process are homoscedastic or heteroscedastic. Due to this assumption, the previous
averaging methods were based only on estimators constructed using the same estimation method,
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either OLS or GLS estimators (with different regressor sets). This assumption can be unrealistic in
empirical applications. Usually, researchers do not know the structure of the error term; therefore,
this assumption leads to possible misspecification. A natural solution is to combine OLS and GLS
estimators. Combinations of different methods are routinely used in the applied forecast combination
literature. In a recent forecasting competition that included 100,000 series, Makridakis et al. (2018)
found that, out of the 17 most accurate methods, 12 were combinations. All combinations used
different models/methods varying from simple exponential smoothing models to sophisticated
machine-learning algorithms.

We propose a combination method based on OLS and GLS estimators to reduce the risk
of misspecification between homoscedastic and heteroscedastic linear models. More precisely,
the proposed estimator is a weighted average of mixtures of OLS and GLS estimators. The OLS
mixture is constructed using the MMA of Hansen (2007) or the heteroscedasticity-robust Cp(HRCp)
model averaging of Liu and Okui (2013). The GLS mixture is constructed using the GLS model
averaging (GLSMA) of Liu et al. (2016).

We propose the use of two criteria, MMA-GLSMA and HRCp-GLSMA, to choose the weight
vector for combining estimators. The optimality of the chosen weight vector in the sense of Li (1987) is
investigated. Our method works in situations with an unknown variance-covariance matrix of the
error term if an estimate based on the nonparametric method k-nearest neighbours (k-NN) is used.
The results of the simulation experiments show that our combination method is adaptive in the sense
that it can achieve almost the same estimation accuracy as if the homoscedasticity or heteroscedasticity
of the error term was known.

The rest of the paper is organized as follows: In Section 2, we describe the theoretical setup and
introduce the new combination method with the criteria for choosing the weight vector. In Section 3,
we investigate the optimality of the proposed criteria. Section 4 presents the results of the Monte Carlo
simulations. Section 5 concludes the paper, and all proofs are provided in the Appendix A.

2. Method

Suppose that we have an independent random sample of (yi, xi) for i = 1, . . . , n, where
xi = (xi1, xi2, . . . , )′ is a countably infinite real-valued vector and yi is a real-valued scalar random
variable generated from an infinite dimensional linear regression model:

yi = µi + ei,

where:

µi =
∞

∑
j=1

θjxij,

ei is an unobserved error term that can be homoscedastic or heteroscedastic with E(ei|xi) = 0, E(e2
i ) = σ2

and E(e2
i |xi) = σ2

i and θj for j = 1, 2, · · · are unknown parameters. We also define X ≡ (x1, · · · , xn),

Y ≡ (y1, · · · , yn)
′
, µ ≡ (µ1, · · · , µn)

′
, e ≡ (e1, · · · , en)

′
and denote the variance-covariance matrix

as Ω ≡ E
(

ee
′ |X
)
= diag(σ2

1 , · · · , σ2
n). We state the theoretical results considering the distributions

conditional on X and omit all notations for those conditional on X hereafter.

2.1. Infeasible Combination Estimator and Information Criteria

Suppose Ω is known; we have a candidate set of M1 linear models with different numbers of
independent variables for OLS estimation and a candidate set of M2 linear models with different
numbers of independent variables for GLS estimation. Then, we can obtain a set of OLS estimates µ̂ols

m ≡
PmY for m = 1, · · · , M1 and a set of GLS estimates µ̂

gls
m ≡ GmY for m = 1, · · · , M2. Therein, Pm =

Xm(X′mXm)−1X′m is the projection matrix of the mth regression model for OLS with m = 1, · · · , M1,
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and Gm ≡ Xm(X′mΩ−1Xm)−1X′mΩ−1 with Xm being the independent variable matrix of the mth

regression model for GLS with m = 1, · · · , M2. In this paper, we only consider the situation with
nested models for both OLS and GLS estimators. This means that the mth model is nested in the
(m + 1)th model. Theoretical results may be extended to non-nested candidate models using the
approach of Wan et al. (2010). Moreover, M1 and M2 can be fixed or go to infinity when the sample
size n is increasing.

Based on those OLS and GLS estimates, we construct a combination estimator as follows:

µ̂ (W) =
M1

∑
m=1

wols
m µ̂ols

m +
M2

∑
m=1

wgls
m µ̂

gls
m ,

≡ µ̂ols (W1) + µ̂gls (W2)

where W =
(

W
′
1, W

′
2

)
=
(

wols
1 , · · · , wols

M1
, wgls

1 , · · · , wgls
M2

)′
belongs to:

H =
{

W
∣∣∣W ∈ [0, 1]M , I′W = 1

}
,

where M = M1 + M2 and I denote a M× 1 vector having all elements equal to one.
In order to reduce the risk of the combination-estimation method proposed above, we need to

select a suitable weight vector. To do that, in this subsection, we propose two versions, MMA-GLSMA
and HRCp-GLSMA, with infeasible criteria. In the next subsection, we provide their feasible
counterparts for the situation with unknown Ω values.

HRCp-GLSMA: The first information criterion for selecting a weight vector is defined as:

C̄n (W) = s2
1

{
‖Y− µ̂ols (W∗1 )‖

2 + 2tr (P (W∗1 )Ω)
}

(1)

+s2
2

{∥∥∥Y− µ̂gls (W∗2 )
∥∥∥2

+ 2tr (G (W∗2 )Ω)

}
(2)

+2s1s2

{
(Y− µ̂ols (W∗1 ))

′ (
Y− µ̂gls (W∗2 )

)
(3)

+tr (P (W∗1 )Ω) + tr (G (W∗2 )Ω)− e
′
e
}

, (4)

where s1 ≡ ∑M1
m=1 wols

m , s2 ≡ ∑M2
m=1 wgls

m , W∗1 ≡ W1/s1, W∗2 ≡ W2/s2, P
(
W∗1
)
≡ ∑M1

m=1 wols
m Pm and

G (W∗2 ) ≡ ∑M2
m=1 wgls

m Gm.
Note that:

C̄n (W) = s2
1HRCp (W∗1 ) + s2

2CIn (W
∗
2 )

+ 2s1s2

{
(Y− µ̂ols (W∗1 ))

′ (
Y− µ̂gls (W∗2 )

)
+tr (P (W∗1 )Ω) + tr (G (W∗2 )Ω)− e

′
e
}

,

where HRCp
(
W∗1
)
=
∥∥Y− µ̂ols

(
W∗1
)∥∥2

+ 2tr
(

P
(
W∗1
)

Ω
)

is the HRCp model-averaging criterion

proposed by Liu and Okui (2013) with the weight vector W∗1 and CIn (W
∗
2 ) =

∥∥∥Y− µ̂gls (W∗2 )
∥∥∥2

+

2tr (G (W∗2 )Ω) is a GLSMA information criterion proposed by Liu et al. (2016) with the weight
vector W∗2 . C̄ can be regarded as a combination of the HRCp and the GLSMA. Hence, we call C̄ the
HRCp-GLSMA-type criterion.

MMA-GLSMA: Second, we propose an MMA-GLSMA-type criterion for weight selection.
The infeasible MMA-GLSMA-type criterion is defined as follows:

C̃n (W) = s2
1CMMA (W∗1 ) + s2

2CIn (W
∗
2 )
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+2s1s2

{
(Y− µ̂ols (W∗1 ))

′ (
Y− µ̂gls (W∗2 )

)
+σ2tr (P (W∗1 )) + tr (G (W∗2 )Ω)− e

′
e
}

,

where CMMA
(
W∗1
)
=
∥∥Y− µ̂ols

(
W∗1
)∥∥2

+ 2σ2tr
(

P
(
W∗1
))

is the MMA criterion proposed by Hansen
(2007) with the weight vector W∗1 .

Suppose the variance-covariance matrix Ω is known; we can then choose the weight by
minimizing the criteria C̄n or C̃n, as follows:

W̄ = arg min
W∈H

C̄n

or
W̃ = arg min

W∈H
C̃n.

However, since the variance-covariance matrix Ω is unknown, W̄ and W̃ are infeasible.

2.2. Feasible Combination Estimator and Information Criteria

For a situation with unknown variance, a feasible combination estimator can be constructed
using feasible GLS (FGLS) estimators. FGLS estimators and the feasible combination estimator are
defined below:

µ̂F (W) =
M1

∑
m=1

wols
m µ̂ols

m +
M2

∑
m=1

wgls
m µ̂

f gls
m ,

≡ µ̂ols (W1) + µ̂ f gls (W2)

where the FGLS estimator is µ̂
f gls
m ≡ Xm(X′mΩ̂−1Xm)−1X′mΩ̂−1Y. Therein, the estimator Ω̂ is based on

the k-NN estimator σ̌i
2 of Liu et al. (2016).

We propose two feasible counterparts of C̄n and C̃n. The feasible HRCp-GLSMA-type criterion
C̄F

n is defined as:

C̄F
n (W) = s2

1

{∥∥Y− µ̂ols
(
W∗1
)∥∥2

+ 2 ∑n
i=1 ê2

i pii
(
W∗1
)}

+s2
2

{∥∥∥Y− µ̂ f gls (W∗2 )
∥∥∥2

+ 2tr
(
GF (W∗2 ) Ω̂

)}
+2s1s2

{(
Y− µ̂ols

(
W∗1
))′ (

Y− µ̂ f gls (W∗2 )
)

+tr
(

P
(
W∗1
)

Ω̂
)
+ tr

(
GF (W∗2 ) Ω̂

)
− ê

′
ê
}

,

(5)

and the feasible MMA-GLSMA-type criterion C̃F
n is defined as:

C̃F
n (W) = s2

1

{∥∥Y− µ̂ols
(
W∗1
)∥∥2

+ 2σ̂2tr
(

P
(
W∗1
))}

+s2
2

{∥∥∥Y− µ̂ f gls (W∗2 )
∥∥∥2

+ 2tr
(
GF (W∗2 ) Ω̂

)}
+2s1s2

{(
Y− µ̂ols

(
W∗1
))′ (

Y− µ̂ f gls (W∗2 )
)

+σ̂2tr
(

P
(
W∗1
))

+ tr
(
GF (W∗2 ) Ω̂

)
− ê

′
ê
}

,

(6)

where êi denotes the ith element of ê ≡
√

n/ (n− kL)(I − PL)Y with kL denoting the number of
independent variables in the largest OLS model:

GF (W∗2 ) =
M2

∑
m=1

wgls
m Xm(X′mΩ̂Xm)

−1X′mΩ̂−1.
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PL denotes the projection matrix of that model, and pii denotes the ith diagonal element of P
(
W∗1
)
. ẽ ≡

(I − PL)Y, while σ̂2 ≡ (n− kL)
−1 ẽ

′
ẽ is defined as one of the estimators suggested by Hansen (2007).

Ω̂ is calculated by plugging in the k-NN estimator σ̌i
2 used in Liu et al. (2016).

3. Properties of the Criteria

The following lemma demonstrates the significant fact that the two infeasible criteria proposed above
are unbiased estimates of the risk function R (W) ≡ E (L (W)) plus a constant; L (W) ≡ ‖µ− µ̂ (W)‖2 is
the loss function.

Lemma 1. For any real-valued vector W, E (C̄n (W)) = R (W) + c1 and E
(

C̃n (W)
)

= R (W) + c2,
where c1 and c2 are constants.

Another useful property is that all criteria are asymptotically optimal in the sense of Li (1987).
Proofs of the asymptotic optimality for all of the above-mentioned criteria can be performed by
extending the proofs of Hansen (2007); Liu and Okui (2013); Liu et al. (2016). As an example,
we demonstrate the optimality of the feasible MMA-GLSMA case method with the nonparametric
estimator of Ω used in Liu et al. (2016).

To do that, we define the feasible loss function and the risk function as follows:

LF (W) ≡
∥∥∥µ− µ̂F(W)

∥∥∥2

= (µ̂F(W)− µ)′(µ̂F(W)− µ).

We employ some notations and assumptions from Liu et al. (2016), reproduced in the Appendix,
and add the following additional assumption:

Assumption 1’. As n→ ∞ and kl → ∞,
(

kl + kl

√
∑n

j=1 b2
l j

)
/ξn → 0, where ξn ≡ infW∈Hn(N) R (W), kl

is the number of regressors used in the regression model for the k-NN estimator and bli denotes the approximation
error of that model.

Assumption 1’ guarantees that when the number of regressors used in the regression model
(adjusted with the approximation errors of that model) increases with the sample size n, it increases at
a rate slower than the lower bound of the risk across all possible weights. In practice, this assumption
requires us to moderate the increase in the number of regressors kl (relative to the sample size) to
reduce the approximation errors.

Following Hansen (2007), we restrict the elements of the weighting vector to belong to set
HM(N) ≡ {0, 1/N, 2/N, . . . , 1} for some integer N < ∞.

Theorem 1. Under Assumption 1’ and Assumptions 1–3, 6, and 10–14 of Liu et al. (2016), as n→ ∞, kl → ∞,
κ → ∞ and kL/

√
n→ 0, we have:

LF(W̃)

infW∈HM(N) L(W)
→p 1,

where W̃ = arg minW∈HM(N) C̃F
n (W).

In other words, as the sample size increases, our method can achieve the infimum of the loss.

4. Simulation Study

To investigate the finite sample performance of the proposed MMA-GLSMA and HRCp-GLSMA
versions and to compare them with other alternative methods, we performed a Monte Carlo simulation.
Alternative methods include MMA, HRCp and GLSMA with CF

In
, where CF

In
is the feasible counterpart

of CIn proposed in Liu et al. (2016).
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The data-generating process (DGP) is:

yi = µi + ei,

where:

µi =
10,000

∑
j=1

θjxij

for i = 1, · · · , n, with n = 50. We used parameter θj = cj−1 with j truncated at 10,000 and a positive
constant c. xi1 = 1 and xij ∼ N (0, 1) for j 6= 1 are independent with respect to i. We conducted three
simulations. The first case was a simulation with a homoscedastic error term ei ∼ N (0, 1). The second
case was a mild heteroscedastic case with heteroscedastic error term ei ∼ N

(
0, σ2

i
)
, with σi = |xi2|.

The third case was a strong heteroscedastic case with σi = x2
i2. In all cases, ei was independent with

respect to i. The number of regressors in the largest approximation model or the number of nested
models was M = 10. The mth model contained the first m regressors, including the constant term.
We varied c to change the R2 of the DGP from 0.1–0.9 with an increment of 0.1.

We considered two cases of GLSMA with different estimation methods of σi, one based on the
maximum likelihood estimation (MLE), and the other based on the nonparametric method k-NN.
For details of these two cases, see Liu et al. (2016). Because the true specification of σi is usually
unknown in practice, we misspecified σi for GLSMA. For the MLE-based method, we set σ2

i = a + bx4
i3,

where a and b are the unknown parameters to be estimated. For the nonparametric case, we only used
xi3 and xi4 for k-NN estimation.

The number of replications for all simulations was 1000. We evaluated the performance of each

method by the sample mean squared error (MSE) = 1/1000 ∑1000
k=1

∥∥∥µ̂(k) − µ(k)

∥∥∥2
, where µ̂(k) and µ(k)

are the realized vector of the estimated value µ̂ and true value µ in the kth replication, respectively.
The simulation results are shown in Tables 1–3. Figure 1 presents the same information relative to the
MSE of the GLSMA method.

The results in Tables 1 and 2 show that our combination methods, MMA-GLSMA and HRCp-
GLSMA, performed better than the alternatives (GLSMA, HRCp and MMA) when the error term was
homoscedastic or had mild heteroscedasticity for R2 ≤ 0.7. When R2 ≥ 0.8, the performance of our
methods was slightly worse than that of the alternative methods. For the homoscedastic case, the three
alternative methods performed similarly. On the other hand, in the case of mild heteroscedasticity,
GLSMA and HRCp performed better than MMA (which was expected, as MMA was designed for
homoscedastic models).

Table 3 demonstrates that, when the heteroscedasticity of the error term was considerably strong,
our combination method HRCp-GLSMA worked much better than the others when the MLE-based
estimation of σi was used. However, MMA-GLSMA and HRCp-GLSMA became worse than GLSMA
when σi was estimated using the nonparametric method.

Moreover, for most cases, GLSMA with the nonparametric estimator of σi outperformed GLSMA
with the MLE-based estimator of σi. This can be explained by a characteristic of the k-NN method that
we adopted. In the k-NN estimation, a large weight was placed on the ith squared residual to estimate
σ2

i ; therefore, even though σ2
i was misspecified, the estimate could catch the heteroscedasticity of the

error term to some extent.
The aforementioned simulation results gave us the following indications for practical analysis.

If we know that the heteroscedasticity of the data is considerably strong or the population R2 is large,
we should use the nonparametric GLSMA. Otherwise, it is preferable to choose an MMA-GLSMA or
HRCp-GLSMA combination.
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Figure 1. Performance of the methods relative to generalized least-squares model averaging
(GLSMA): Heteroscedasticity-robust Cp (HRCp), Mallows model averaging (MMA), MMA-GLSMA
and HRCp-GLSMA.
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Table 1. Sample mean squared error (MSE) for the case with homoscedastic error.

R2 GLSMA HRCp MMA MMA-GLSMA HRCp-GLSMA

0.1 6.80 6.55 6.50 6.16 6.18
0.2 9.50 9.34 9.34 8.81 8.83
0.3 12.20 12.09 12.14 11.56 11.56
0.4 15.25 15.16 15.25 14.63 14.60

Nonpara. 0.5 19.06 18.97 19.08 18.52 18.47
0.6 24.33 24.21 24.34 23.92 23.87
0.7 32.64 32.48 32.61 32.48 32.39
0.8 48.66 48.33 48.51 49.18 49.19
0.9 95.66 94.88 95.07 98.76 99.08

0.1 6.56 6.55 6.50 6.04 6.05
0.2 9.42 9.34 9.34 8.83 8.82
0.3 12.22 12.09 12.14 11.61 11.60
0.4 15.31 15.16 15.25 14.74 14.67

MLE 0.5 19.14 18.97 19.08 18.63 18.56
0.6 24.44 24.21 24.34 24.00 23.95
0.7 32.74 32.48 32.61 32.50 32.43
0.8 48.72 48.33 48.51 49.13 49.04
0.9 95.42 94.88 95.07 98.70 98.56

Table 2. Sample MSE for the case with mild heteroscedastic error.

R2 GLSMA HRCp MMA MMA-GLSMA HRCp-GLSMA

0.1 6.43 6.51 6.97 6.18 6.00
0.2 8.62 9.13 9.37 8.32 8.18
0.3 10.77 11.58 11.74 10.48 10.36
0.4 13.02 14.07 14.21 12.80 12.77

Nonpara. 0.5 15.76 16.94 17.11 15.65 15.61
0.6 19.45 20.66 20.86 19.45 19.36
0.7 25.20 26.34 26.56 25.29 25.28
0.8 36.05 37.04 37.26 36.50 36.44
0.9 67.46 67.87 68.10 69.53 69.34

0.1 6.80 6.51 6.97 6.47 6.30
0.2 9.23 9.13 9.37 8.73 8.58
0.3 11.59 11.58 11.74 11.02 10.90
0.4 14.06 14.07 14.21 13.48 13.39

MLE 0.5 16.95 16.94 17.11 16.41 16.32
0.6 20.71 20.66 20.86 20.25 20.14
0.7 26.43 26.34 26.56 26.04 25.96
0.8 37.21 37.04 37.26 37.13 37.07
0.9 68.36 67.87 68.10 69.86 69.79

Table 4 and 5 give the averages of the estimated weights corresponding to the OLS and GLS
parts for HRCp-GLSMA and MMA-GLSMA. Table 4 shows that for HRCp-GLSMA, when the
heteroscedasticity became stronger, the average weights corresponding to the GLS part increased and
the average weights corresponding to the OLS estimates decreased. Table 5 does not show a similar
trend for MMA-GLSMA. This might be an explanation for why the performance of MMA-GLSMA
was worse than that of HRCp-GLSMA.
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Table 3. Sample MSE for the case with strong heteroscedastic error.

R2 GLSMA HRCp MMA MMA-GLSMA HRCp-GLSMA

0.1 13.44 14.88 20.07 15.52 13.70
0.2 16.13 18.68 23.17 18.05 16.30
0.3 18.92 22.74 26.47 20.80 19.17
0.4 22.02 27.11 30.24 24.06 22.69

Nonpara. 0.5 25.91 32.18 34.74 27.96 26.73
0.6 30.89 38.52 40.48 33.13 32.21
0.7 38.28 47.03 48.46 40.62 39.94
0.8 51.15 60.68 61.92 53.80 53.37
0.9 85.65 94.97 96.06 89.21 89.15

0.1 17.02 14.88 20.07 17.52 15.86
0.2 20.15 18.68 23.17 20.23 18.64
0.3 23.52 22.74 26.47 23.40 21.94
0.4 27.40 27.11 30.24 26.99 25.59

MLE 0.5 32.01 32.18 34.74 31.40 30.21
0.6 37.90 38.52 40.48 37.02 36.00
0.7 46.35 47.03 48.46 45.13 44.29
0.8 59.56 60.68 61.92 58.65 57.93
0.9 93.86 94.97 96.06 93.65 93.33

Table 4. Averages of the OLS (W̄1) and GLS (W̄2) parts of the weight vector for HRCp-GLSMA.

R2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Homoscedastic Cases
Nonp.OLS (W̄1) 0.50 0.50 0.50 0.50 0.49 0.49 0.49 0.49 0.49
Nonp. GLS (W̄2) 0.50 0.50 0.50 0.50 0.51 0.51 0.51 0.51 0.51
MLE OLS (W̄1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MLE GLS (W̄2) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Mild Heteroscedastic Cases
Nonp. OLS (W̄1) 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Nonp. GLS (W̄2) 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
MLE OLS (W̄1) 0.49 0.49 0.49 0.49 0.49 0.49 0.50 0.50 0.50
MLE GLS (W̄2) 0.51 0.51 0.51 0.51 0.51 0.51 0.50 0.50 0.50

Strong Heteroscedastic Cases
Nonp. OLS (W̄1) 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48 0.48
Nonp. GLS (W̄2) 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52 0.52
MLE OLS (W̄1) 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
MLE GLS (W̄2) 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51

Table 5. Averages of the OLS (W̄1) and GLS (W̄2) parts of the weight vector for MMA-GLSMA.

R2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Homoscedastic Cases
Nonp. OLS (W̄1) 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Nonp. GLS (W̄2) 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
MLE OLS (W̄1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MLE GLS (W̄2) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Mild Heteroscedastic Cases
Nonp. OLS (W̄1) 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Nonp. GLS (W̄2) 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51 0.51
MLE OLS (W̄1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MLE GLS (W̄2) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50

Strong Heteroscedastic Cases
Nonp. OLS (W̄1) 0.50 0.50 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Nonp. GLS (W̄2) 0.50 0.50 0.51 0.51 0.51 0.51 0.51 0.51 0.51
MLE OLS (W̄1) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
MLE GLS (W̄2) 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.50
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5. Conclusions

In this paper, we proposed a combination method of OLS and GLS estimators. The proposed
method reduced the risk of misspecification between homoscedastic and heteroscedastic models.
The optimality of the criteria for choosing a weight vector was proven under some regularity conditions.
We performed simulation experiments to investigate the finite sample property of our combination
method. The results of the simulations demonstrate that our method was adaptive for homoscedasticity
and heteroscedasticity. As mentioned previously, the proposed method was novel in that it combined
estimators from two different estimation methods. Combining the different estimation methods
can also combine the advantages of each. This idea could be useful and should be extended to the
combination of other estimation methods.
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Appendix A

For the convenience of the readers of this journal, we list Assumptions 1–3, 6 and 10–14 and
replicate Lemma 7 of Liu et al. (2016) here. Their notation of RIn(W) coincides with our notation R(W);
xmi denotes the ith observation vector of the regressors of the mth model, and xm,j,i is the jth entry
of xmi.
Assumption 1. E(|ei|4(N+1)) ≤ c < ∞ for some c.
Assumption 2. ξn ≡ infW∈Hn(N) RIn(W)→ ∞ as n→ ∞.
Assumption 3. 0 < infi σ2

i ≤ supi σ2
i < ∞.

Assumption 6. The maximum eigenvalue of ∑n
i=1 xmix′mi/n is bounded uniformly in n and m. There exists a

c > 0 such that the minimum eigenvalue of ∑n
i=1 xmix′mi/n is greater than c for any n and m.

Assume that σ2
i is a function of a finite subset of xi, denoted by zi, so that σ2

i = σ2(zi).
Assumption 10. σ2(·) is differentiable. Let σ′(·) denote its first derivative. Then, supz ‖σ′(z)‖ < ∞.
Moreover, the support of zi is bounded, and the density of zi is bounded from below.

Let κ be the tuning parameter for the k-NN estimator. Let ci, 1 ≤ i ≤ n be such that ci > 0 for
1 ≤ i ≤ κ, ci = 0 for i > κ and ∑κ

i=1 ci = 1.
Assumption 11. limn→∞ max1≤i≤κ κ ci < ∞.
Assumption 12. limn→∞ ∑n

i=1 x4
m,j,i/n is bounded uniformly in m and j.

Assumption 13. There exists a C < ∞ such that limn→∞ ∑n
i=1 µ4

i /n < C.
Assumption 14. Define ν = 4(N + 1) and:

An =
n2/ν

√
κ

+
kl√

κ
+

kl

√
∑n

j=1 b2
l j√

κ
+

κ1/q

n1/q .

As n → ∞, kl → ∞ and κ → ∞, it is the case that kM An → 0, k2
M An/ξn → 0, nkM A2

n/ξn → 0 and√
nkM An/ξn → 0.

Lemma 7 of Liu et al. (2016). Suppose that Assumptions 1, 3, 5, 6 and 11 of Liu, Okui and Yoshimura (2016)
hold. Then, as n→ ∞, kl → ∞ and κ → ∞, with k2

l /κ → 0 and k2
l ∑n

j=1 b2
l j/κ → 0, we have:

max
i
|σ̌2

i − σ̃2
i | = Op

 kl√
κ

1 +

√√√√ n

∑
j=1

b2
l j

 .
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Proof of Lemma 1. We have:

R (W) = E ‖µ− µ̂ (W)‖2

= E
∥∥∥s1µ− s1µ̂ols (W∗1 ) + s2µ− s2µ̂gls (W∗2 )

∥∥∥2

= E
[
s2

1 ‖µ− µ̂ols (W∗1 )‖
2
]

(A1)

+ E
[
2s1s2 (µ− µ̂ols (W∗1 ))

′ (
µ− µ̂gls (W∗2 )

)]
(A2)

+ E
[

s2
2

∥∥∥µ− µ̂gls (W∗2 )
∥∥∥2
]

. (A3)

According to Liu and Okui (2013); Liu et al. (2016), it is obvious that the squared terms (1) and (2)
are unbiased estimates of the terms (A1) and (A3) plus a constant.

In order to estimate the cross-product term (A2), we can observe that:

(Y− µ̂ols (W∗1 ))
′ (

Y− µ̂gls (W∗2 )
)
= (µ− µ̂ols (W∗1 ))

′ (
µ− µ̂gls (W∗2 )

)
+ e

′
e

+ 〈e, (I − P (W∗1 )) µ〉+ 〈e, (I − G (W∗2 )) µ〉

− e
′
P (W∗1 ) e− e

′
G (W∗2 ) e

and E
〈
e,
(

I − P
(
W∗1
))

µ
〉
= E 〈e, (I − G (W∗2)) µ〉 = 0. Therefore, the sum of the terms (3) and (4)

unbiasedly estimates the cross-product term (A2).

Proof of Theorem 1. We define Lols (W) ≡ (µ− µ̂ols (W))
′
(µ− µ̂ols (W)) and L f gls (W) ≡(

µ− µ̂ f gls (W)
)′ (

µ− µ̂ f gls (W)
)

. Note that:

C̃F
n (W)− LF(W) = s2

1

[
CF

MMA (W∗1 )− Lols (W∗1 )
]
+ s2

2

[
CF

In
(W∗2 )− L f gls (W∗2 )

]
+ 2s1s2

{
〈e, (I − P (W∗1 )) µ〉+

〈
e,
(

I − GF (W∗2 )
)

µ
〉

+ σ̂2tr (P (W∗1 )) + tr
(

GF (W∗2 ) Ω̂
)
− e

′
P (W∗1 ) e− e

′
GF (W∗2 ) e

+e
′
e− ê

′
ê
}

,

where CF
MMA = CMMA

(
W∗1
)

=
∥∥Y− µ̂ols

(
W∗1
)∥∥2

+ 2σ̂2tr
(

P
(
W∗1
))

and CF
In
(W∗2 ) =∥∥∥Y− µ̂gls (W∗2 )

∥∥∥2
+ 2tr

(
GF (W∗2 ) Ω̂

)
.

Using the results of Hansen (2007); Liu et al. (2016), it can be shown that the supremum with
respect to W ∈ HM(N) of all the absolute values of the terms except e

′
e− ê

′
ê divided by risk function

R (W) go to zero in probability. We only need to show:

sup
W

∣∣∣∣∣ e
′
e− ê

′
ê

R (W)

∣∣∣∣∣→p 0.

This can easily be done by modifying Lemma 7 of Liu et al. (2016). By replacing sij, the weight
defined for k-NN in Liu et al. (2016) with one, we have:

sup
W

∣∣∣∣∣ e
′
e− ê

′
ê

R (W)

∣∣∣∣∣ ≤ ∣∣∣e′ e− ẽ
′
ẽ
∣∣∣ /ξn + (kL/ (n− kL)) ẽ

′
ẽ/ξn

= Op

kl + kl

√√√√ n

∑
j=1

b2
l j

 /ξn + op (1)
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→ 0.

The proof is complete.
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