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Abstract: This paper presents a brief review of interval-based hypothesis testing, widely used
in bio-statistics, medical science, and psychology, namely, tests for minimum-effect, equivalence,
and non-inferiority. We present the methods in the contexts of a one-sample t-test and a test for
linear restrictions in a regression. We present applications in testing for market efficiency, validity of
asset-pricing models, and persistence of economic time series. We argue that, from the point of view of
economics and finance, interval-based hypothesis testing provides more sensible inferential outcomes
than those based on point-null hypothesis. We propose that interval-based tests be routinely employed
in empirical research in business, as an alternative to point null hypothesis testing, especially in the
new era of big data.

Keywords: equivalence; minimum-effect; non-inferiority; point-null hypothesis testing;
zero probability paradox
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Genuinely interesting hypotheses are neighbourhoods, not points. No parameter is exactly
equal to zero; many may be so close that we can act as if they were zero.

Edward Leamer (1988)

1. Introduction

The paradigm of point null hypothesis testing has been almost exclusively adopted in all areas of
empirical research in business, including accounting, economics, finance, management, and marketing.
The procedure involves forming a sharp null hypothesis (typically the value of a parameter equal to
zero, to represent no effect) and using the “p-value less than α” criterion to reject or fail to reject the
null hypothesis, or in the Neyman–Pearson tradition, determining whether the test statistic lies in a
region defined by α, the test size. Although the alternative hypothesis is often unspecified, the rejection
of a null hypothesis of no effect is frequently taken as evidence for the existence of a non-zero effect.

As a hybrid of Fisher’s approach to significance testing and Neyman–Pearson decision-theoretic
approach, the procedure is often conducted in an automatic manner without considering the key
factors of statistical research, such as effect size, statistical power, relative loss, and prior beliefs
(see, for example, Kim and Choi 2019). This practice has been criticized by many authors, for example,
Gigerenzer (2004) calls it the “null ritual”; while McCloskey and Ziliak (1996) warn against widespread
practice of “asterisk econometrics” and “sign econometrics”. Despite numerous calls for change for
years, little improvement has been made in the practice of “mindless statistics” (Gigerenzer 2004).
The consequences include serious distortion of scientific process (Wasserstein and Lazar 2016),
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an embarrassing number of false positives (Kim and Ji 2015; Harvey 2017; Kim et al. 2018) replication
crises in many fields of science (see, for example, Open Science Collaboration 2015), and publication
bias (Basu and Park 2014; Kim and Ji 2015).

With increasing availability of large or massive data sets in the business disciplines in recent
years, the current paradigm has become even more problematic, and arguably deficient. This is
because, in reality, any null hypothesis is violated even when it is (practically or economically)
true (see, for example, De Long and Lang 1992). Rao and Lovric (2016) call this phenomenon the
zero-probability paradox, providing a mathematical proof for a simple case. Its consequence is that
the p-value is a decreasing function of sample size, even when the null hypothesis is violated by an
economically or scientifically negligible margin (see Kim and Ji 2015). As a result, the probability of
a false positive increases with sample size, as also noted by Ohlson (2018). As Spanos (2017) points
out, there is nothing paradoxical about this, since it is a reflection of the consistency property of a test.
As Kim and Ji (2015) and Kim et al. (2018) report from their respective meta-analytic surveys, many
empirical researchers routinely adopt large or massive samples under the current paradigm, with a
high chance that their scientific findings represent false positives. It is also problematic in the context
of model specification testing, since any model may be judged to be mis-specified when the sample
size is large enough (Spanos 2017).

In view of the above points, Rao and Lovric (2016) argue that “in the 21st century, statisticians
will deal with large data sets and complex questions, it is clear that the current point-null paradigm
is inadequate” and that “next generation of statisticians must construct new tools for massive data
sets since the current ones are severely limited” (see also van der Laan and Rose 2010). They call for a
paradigm shift in statistical hypothesis testing and suggest the Hodges and Lehmann (1954) paradigm
as a possible alternative, arguing that this will substantially improve the credibility of scientific research
based on statistical testing. Under the Hodges and Lehmann (1954) paradigm, the null and alternative
hypotheses are formulated as intervals. The focus of testing is whether the parameter value belongs
to an interval of no practical (or economic) significance, with its limits set by the researcher based
on substantive importance. In this way, the researcher’s economic reasoning or judgment can be
incorporated into hypothesis testing.

In fact, the tests for interval-based hypotheses have been in existence and being used in biostatistics
and psychology under the name of equivalence tests, non-inferiority tests, and minimum tests: see,
for comprehensive and in-depth reviews, Wellek (2010), Murphy et al. (2014), and Lehmann and
Romano (2005, sct. 13.5.2). However, the researchers in the business disciplines have little knowledge
about these tests, especially those who are engaged in empirical or applied research. The purpose
of this paper is to present a brief review of these tests to the researchers in business, discussing their
merits and otherwise. The tests are also presented for parameter restrictions and model specification
in the linear regression context, incorporating the bootstrap method. The tests are presented with three
empirical applications in economics and finance. We propose that these tests be routinely employed in
business research as an alternative to point null hypothesis testing. We hope that this will contribute
to a paradigm shift in statistical inference, which will restore credibility and integrity in statistical
research in business disciplines.

In the next section, we briefly discuss the current paradigm of point null hypothesis and its
problems and consequences. In Section 3, we present a review of equivalence, non-inferiority,
and minimum-effect tests for the simple t-test and regression F-test. Section 4 provides empirical
applications, and Section 5 concludes the paper.

2. Current Paradigm and Its Deficiencies

We begin by presenting the current (frequentist) paradigm of hypothesis testing, which is widely
adopted in many areas of statistical research, in the context of a simple t-test for a point null hypothesis.
This is followed by a review of its deficiencies as a criterion of statistical evidence. We also review
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the problems and malpractices such as p-hacking and data-mining and how they are related with the
current paradigm of statistical inference.

2.1. A Simple t-Test for a Point Null Hypothesis

Consider the case of a simple one-sample t-test for the population mean θ, where Xi (i = 1, . . . , n)
is independently generated from a normal distribution with mean θ and standard deviation σ. Applying
the point null hypothesis paradigm, we test (assuming two-tailed alternative) for

H0 : θ = 0; H1 : θ 6= 0.

The null hypothesis most often represents the claim of “no effect”. When H0 is true (hereafter, under
H0), the t-statistic follows a t-distribution; while under H1, it follows a non-central t-distribution with
the non-centrality parameter

√
nθ/σ. The decision to reject or fail to reject depends on the “p-value

less than α” criterion where p-value ≡ Prob(|t| > tc,1−0.5α|H0) and tc,1−0.5α is the critical value from
a central t-distribution at the α level of significance. The value of α conventionally adopted is 0.05,
although values such as 0.01 or 0.10 are often used. When the p-value satisfies the criterion, the
effect is said to be statistically significant at the α level of significance. This is what Gigerenzer (2004)
calls the “null ritual”, which is a hybrid of the proposal of Fisher and that of Neyman and Pearson.
In practical applications, a small p-value is often interpreted as a strong evidence against H0 and its
strength is marked with the number of asterisks indicating the significance at a 0.10, 0.05, or 0.01
level of significance. More seriously, many researchers do not pay attention to the magnitude of the θ

estimate, making their decisions based only on its sign and statistical significance. This practice has
been branded as “asterisk econometrics” and “sign econometrics” by Ziliak and McCloskey (2008),
who correctly argue that it only shows whether the effect exists or not, but nothing about economic
significance or substantive importance of the effect (see also Kleijnen 1995).

2.2. Shortcomings of the p-Value Criterion

It is well-known that the p-value is not a good measure of evidence for a hypothesis. For example,
Berger and Sellke (1987) shows that the p-value provides a measure of evidence against H0 that can
differ from the actual value by an order of magnitude. Johnstone and Lindley (1995) demonstrates that
a p-value less than 0.05 may represent evidence in favor of the null, not against it, especially when the
sample size is large (see, also, Kim et al. 2018). It is largely because the p-value does not take account
of the probability under H1; nor does it represent the probability that null is true given data. On this
basis, the American Statistical Association expressed grave concerns against the misuse or abuse of the
p-value criterion in empirical research, stating that this practice has led to a considerable distortion of
the scientific process (Wasserstein and Lazar 2016).

Another problem of the p-value criterion is that the choice of its threshold α is arbitrary
(Keuzenkamp and Magnus 1995; Lehmann and Romano 2005, p. 57). As Arrow (1960) and
Leamer (1978) argue, it should be chosen in consideration of the key factors such as sample size,
statistical power, and relative loss from Type I and II errors. For example, the level of significance
should be set at a range of 0.3 to 0.4 when the power is low (Winer 1962); while is should be set at a
small a value (such as 0.001) when the sample size is large (McCloskey and Ziliak 1996, p. 102). This is
to balance the probabilities of Type I and II errors when the losses from Type I and II errors are (almost)
equal. Kim and Choi (2017, 2019) provided a review of a decision-theoretic approach to the optimal
level of significance with applications.

2.3. Zero-Probability Paradox

In practice, the null hypothesis cannot hold exactly, as shown by Rao and Lovric (2016).
As Leamer (1988), De Long and Lang (1992), and Startz (2014) point out, an economic hypothesis
should not be formulated as a point, but as a neighborhood or an interval since an economic effect
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(or parameter) cannot take a numerically exact value such as 0. The consequence is that, with
observational data, the distribution under a point H0 is never observed nor realized; but the t-statistic
is always generated from the distribution under H1, which is a non-central t-distribution. This is
another reason that makes the p-value criterion deficient because the critical value tc,α is obtained from
a central t-distribution which is never observed in practice.

The problem is exacerbated as the sample size increases, because the non-centrality of the
t-distribution (

√
nθ/σ) also sharply increases, meaning that the p-value approaches 0. This occurs

even when the true value of θ is practically or economically no different from 0. When the sample size
is large, this distribution is so far away from the central t-distribution. Hence, when H0 is numerically
violated but it holds practically, rejection of H0 occurs with certainty in large samples, as long as the
level of significance α is maintained at a conventional value such as 0.05. In practice, many empirical
researchers often take an economically negligible violation of H0 as evidence for particular alternative
hypothesis, committing what is called the “fallacy of rejection” (Spanos 2017). A natural solution in
this context is to obtain the critical value from a non-central distribution under H1, which increases
with sample size. In fact, this is a proposal of interval-based hypothesis testing, as we shall see in the
next section.

2.4. Problems and Consequences

The deficiency and weakness of the p-value criterion discussed above have created a number
of problems and malpractices, namely p-hacking (Harvey 2017), data mining (Black 1993) or data
snooping (Lo and MacKinlay 1990). They generally refer to the practice of cherry-picking the results in
order to achieve statistically significant outcome. Black (1993, p. 75) provides a good description of
data mining:

When a researcher tries many ways to do a study, including various combinations of
explanatory factors, various periods, and various models, we often say, he is “data mining.”
If he reports only the more successful runs, we have a hard time interpreting any statistical
analysis he does. We worry that he selected, from the many models tried, only the ones
that seem to support his conclusions. With enough data mining, all the results that seem
significant could be just accidental.

A consequence is an embarrassing number of false positives, as Harvey (2017) puts it.
As Kim and Ji (2015), Kim et al. (2018) and Kim (2019) report, the use of alternative criteria for statistical
significance (such as Bayes factors, adaptive or optimal levels of significance, or posterior probabilities
for null hypotheses) gives different inferential outcomes from the p-value criterion in a large number
of published results. This may have led to accumulation of many false stylized facts in empirical
studies. For example, Black (1993) argues that most of investment anomalies identified in finance are
likely to be the result of data-mining; while Kandel and Stambaugh (1996) argue that the p-value as
measure of evidence often conflicts with economic significance in asset-allocation decisions. Kim and
Choi (2017) report that many economically puzzling research outcomes (such as empirical invalidity
of the purchasing power parity) based on unit root testing may be the result of incorrectly maintaining
the conventional level of significance, despite extremely low power of the test. In behavioral finance,
it is a stylized fact that the weather affects stock market (see, for example, Saunders 1993; Hirshleifer
and Shumway 2003). However, as Kim (2017) argues, this statistical significance is the result of
having power of practically one due to massive sample size. In a similar context, Kamstra et al. (2003)
report the statistically significant effect of winter blues on stock market (as discussed in Section 4.1
as an application), while they find statistically insignificant effect of weather variables in the same
equation. This conflicting result may be the outcome of data-mining, where statistical significance is
purely accidental.

Abuse and misuse of the p-value criterion for statistical significance also have contributed to
other serious problems which undermines the research integrity and credibility in science: namely,
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publication bias and replication crisis. The practice of p-hacking and data-mining is closely related
with publication bias where statistically significant results are favored in the publication process.
The meta-analytic evaluation of Kim and Ji (2015) and Kim et al. (2018) reveal unreasonably high
proportions of studies published in accounting and finance journals are statistically significant.
Harvey (2017) also recognizes the practice of p-hacking can contribute to publication bias. This is
partly because many journal editors and referees favor statistically significant results, and often
judge statistically insignificant studies with skepticism and suspicion. As a consequence, many
studies with statistically insignificant results (at a conventional significance level) may not have
been published, even though they are economically important and statistically sound. This practice
can push many researchers to the malpractice of p-hacking or data-mining to gain higher chance of
publication. “Replication crisis” refers to the problem that a high proportion of published results
are not reproducible by replication exercises (Peng 2015). For example, in psychology, only 36% of
the replications are found to be statistically significant, compared to 97% of the original studies that
reported significance (Open Science Collaboration 2015).

As discussed in this section, the current paradigm of statistical inference has a number of problems,
and has contributed to a range of serious issues that undermine research integrity and credibility.
On this basis, Rao and Lovric (2016) call for a new paradigm for statistical inference, especially needed
in the big data era where the p-value fails as a measure of statistical evidence and the conventional
level of significance is inappropriate. They suggest an interval-based test as a possible alternative,
which will be discussed in the next section.

3. Tests for Minimum-Effect, Equivalence, and Non-Inferiority

We now present the three types of interval tests, namely the equivalence, minimum-effect, and
non-inferiority tests, based on the well known one-sample t-test or test for linear restrictions in the
linear regression. Loosely speaking, the difference between the equivalence and minimum-effect
tests comes down to the condition for which proof is being sought. If the status quo conjecture is
characterized by equality, that is, the conjecture against which we wish to assess evidence is that one
thing equals another, then we falsify the conjecture by the minimum-effect test. On the other hand, if
the status quo conjecture is characterized by inequality, so the conjecture against which we wish to
assess evidence is that things are unequal, then we falsify using an equivalence test. A non-inferiority
test may be used when the hypothesis formulated as an open interval.

3.1. Test for Minimum Effect

The minimum-effect test, originally put forward by Hodges and Lehmann (1954), has the null
and alternative hypotheses of the following form:

H0 : θl ≤ θ ≤ θu; H1 : (θ < θl) ∪ (θu < θ), (1)

where θl and θu denote the limits of practical or economic importance. Hodges and Lehmann (1954,
p. 254) propose conducting separate one-tailed t-tests of the two one-sided hypotheses. That is,

• H01 : θ ≤ θu against alternative H11 : θ > θu and
• H02 : θ ≥ θl against alternative H12 : θ < θl .

According to Hodges and Lehmann (1954, p. 254), we then reject H0 given in (1) if either of these
separate tests rejects. The size of this composite t-test is the sum of their separate sizes. The power
of the test should depend on the power of the individual one-tailed tests associated. The decision
can also be made by using the confidence interval: the null hypothesis of minimum-effect given in (1)
cannot be rejected at the α level of significance if a two-sided (1− 2α) confidence interval for θ lies
entirely within the interval [θl , θu].
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Even though the interval test extends the simple t-test, the intention is the same: to detect a
statistically significant and important difference. Rejection of the test is interpreted as a failure to
detect such a difference—a failure to split. We now review tests that have the opposite effect: to detect
a statistically significant and important similarity. These tests are equivalence tests. Rejection of these
tests is interpreted as a failure to detect such a similarity—a failure to lump.

3.2. Test for Equivalence

If we switch the null and alternative hypotheses, we have what is called an equivalence test
(e.g., Wellek 2010). That is,

H0 : (θ ≤ θl) ∪ (θu ≤ θ); H1 : θl < θ < θu. (2)

The decision rule for the equivalence test can be developed by conducting two one-sided test
procedures similarly to the above, which is referred to as TOST:

• H01 : θ ≤ θl against alternative H11 : θ > θl and
• H02 : θ ≥ θu against alternative H12 : θ < θu.

Let p1 be the one-sided p-value for the test of H01 against H11; and p2 be the same for for the
test of H02 against H12. For the equivalence test, the null hypothesis of no equivalence given in (2) is
rejected at the α level of significance if max(p1, p2) < α. Equivalently, it is rejected at the α level of
significance if a two-sided (1− 2α) confidence interval for θ lies entirely within the interval [θl , θu].
The power of the test should depend on the power of the individual one-tailed tests associated.

Note that the researcher should choose between the minimum-effect test and equivalence test by
considering whether the evidence being sought is against similarity (minimum effect test) or difference
(equivalence test). It is worth mentioning that, as the sample size increases, the confidence interval
shrinks but the limits of economic significance do not change. For interval-based tests, this can be
interpreted as the critical values increasing with sample size, relative to the test statistic, which is a
feature not shared by point-null hypothesis testing. It is also worth mentioning that the minimum
effect and equivalence tests give mutually exclusive results in that one always rejects and the other
always does not, as long as the two tests share the same limits of economic importance.

3.3. Test for Non-Inferiority

It is often the case that testing for a one-sided (open) interval may be appropriate. The test is called
the non-inferiority test or superiority test, whose null and alternative hypotheses can be written as

H0 : θ ≥ θl ; H1 : θ < θl , (3)

where θl denotes the smallest effect size of economics importance. The non-inferiority test tests whether
the null hypothesis that an effect is at least as large as θl can be rejected. The actual direction of the
hypothesis depends on whether a higher value of the response is desirable or not. The above test can
be conducted as a usual one-tailed test.

3.4. Interval Tests in the Linear Regression Model

Following Hodges and Lehmann (1954), Murphy and Myors (1999) approach the minimum-effect
using the F-test, which can be presented in a regression context. In this subsection, we review their
proposal and extend it to a more general setting.

Consider a regression model of the form

Y = γ0 + γ1X1 + ... + γKXK + u, (4)
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where Y is a dependent variable and X’s are independent variables. Suppose the researcher tests for a
linear restriction such as H0 : γ1 = ... = γJ = 0, where J ≤ K. The F-statistic can be written as

F =
(R2

1 − R2
0)/J

(1− R2
1)/(T − K− 1)

, (5)

where R2
j represents the coefficient of determination under Hj (j = 0, 1). Under H0, the F-statistic

follows the F-distribution with J and T − K − 1 degrees of freedom, denoted as F (J, T − K− 1).
Under H1, the F-statistic follows F(J, T− K− 1; λ), which denotes the non-central F-distribution with
the degrees of freedom (J, T − K− 1) and the non-centrality parameter λ. Note that

λ = T
R2

p1 − R2
p0

1− R2
p1
≡ Tη, (6)

where R2
pj denotes the population or desired coefficient of determination under Hj, following from

Peracchi (2001, Theorem 9.2). Note that η ≡ (R2
p1 − R2

p0)/(1− R2
p1) may be called the population

signal-to-noise ratio, measuring the incremental contribution of (X1, . . . , XJ) relative to the noise to
the model. The degree of non-centrality is determined as a product of sample size and signal-to-noise
ratio, with the former playing a dominant role.

Hodges and Lehmann (1954, p. 253) and Murphy and Myors (1999) propose that the above
non-central distribution be used to test for the minimum-effect test. As an example, consider a
simple regression model Y = γ0 + γ1X1 + u with H0 : γ1 = 0. Here, R2

p1 measures the incremental
contribution of X1 for Y (note that R2

p0 = 0). The researcher wishes to test for H0 : 0 ≤ γ1 ≤ γu,
where γu represents the limit for the minimum-effect. The researcher can also specify the value of R2

p1

corresponding to the value of γu, which is the minimum desired value of R2 for X1 to be economically
significant (see Section 3.8 for the details as to how this value may be chosen with applications in
Section 4.1). Alternatively to H0 : 0 ≤ γ1 ≤ γu, one can formulate the null hypothesis in terms of
R2

p1, namely H0 : 0 ≤ R2
p1 ≤ R2

max, where R2
max is the maximum of R2

p1 value for 0 ≤ γ1 ≤ γu, given
(Y, X1); and also 0 < λ ≤ λmax corresponding to 0 ≤ R2

p1 ≤ R2
max.

If the F-statistic is greater than Fα,λmax , the α-level critical value from F(J, T−K− 1; λmax), then the
null hypothesis of the minimum-effect is rejected at the α-level of significance. An interesting feature of
the decision rule for the minimum-effect test is that its critical value and sampling distribution change
with sample size. This is in stark contrast with those of the point-null hypothesis, which do not change
with sample size. The latter property is the root cause of the “large-n problem” associated with the
point-null hypothesis, as Rao and Lovric (2016) point out.

As an illustration, consider a regression where K = 1. For simplicity, we assume that Var(X1) =

Var(Y), when the sample size T takes values 2000 and 4000. Consider first the case of point-null
hypothesis where H0 : γ1 = 0. The black curves in Figure 1 plot the density F(J, T − K− 1), which is
the distribution of the F-statistic under H0 : γ1 = 0, for each sample size of 2000 and 4000. It is clear
that the 5% critical value does not change with increasing sample size. Since F-statistic is an increasing
function of sample size, rejection of H0 : γ1 = 0 will eventually occur (except of course for the rare
case that the true value of γ1 is really numerically identical to zero).

Suppose the researcher tests for a minimum effect: H0 : 0 ≤ γ1 ≤ 0.1 against H1 : γ1 > 0.1. Since
R2

p1 = γ2
1Var(X1)/Var(Y) and R2

p0 = 0, the null and alternative hypotheses can be formulated as H0 :
R2

p1 ≤ 0.01 against H1 : R2
p1 > 0.01. The red curves in Figure 1 plot the density F(J, T − K− 1; λmax)

associated with R2
p1 = 0.01 for each sample size. The gray under area under represents 5%, indicated by

the critical value which is the 95th percentile of the red curve. It appears that this critical value increases
with sample size. The blue curve plots the density F(J, T − K− 1; λ) associated with H1 : R2

p1 = 0.02
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and the red shaded area represents the power of the test for H0 : R2
p1 ≤ 0.01. It shows that the power

increases with sample size.Figure 1: Test for minimum-effect: an illustration

Note: The black curve plots the density F (J, T −K − 1) which is the distribution of

the F -statistic under H0 : γ1 = 0. The gray area under it represents 5% associated

with the corresponding critical value.

The red curve plots the density F (J, T −K − 1;λmax) which is the distribution of

the F -statistics under H0 : γ1 ≤ 0.1 or H0 : R2
p1 ≤ 0.01. The gray area under it

represents 5% associated with the corresponding critical value.

The blue curve plots the density F (J, T − K − 1;λ) for H1 : R2
p1 = 0.02. The

red-shaded are represents the power of the test for H0 : R2
p1 ≤ 0.01.

It is often the case in economics and finance that a test for linear re-
strictions is conducted involving a number of regression parameters. For
example, under the point-null paradigm, the null hypothesis can be formu-
lated as H0 : γ1 = γ2 = 0 for a regression of Y on X1 and X2. In the context
of minimum-effect test, the null hypothesis can be written as

H0 : (γ1l ≤ γ1 ≤ γ1u) ∪ (γ2l ≤ γ2 ≤ γ2u),

13

Figure 1. Test for minimum-effect: an illustration. Note: The black curve plots the density
F(J, T − K− 1) which is the distribution of the F-statistic under H0 : γ1 = 0. The gray area under
it represents 5% associated with the corresponding critical value. The red curve plots the density
F(J, T− K− 1; λmax) which is the distribution of the F-statistics under H0 : γ1 ≤ 0.1 or H0 : R2

p1 ≤ 0.01.
The gray area under it represents 5% associated with the corresponding critical value. The blue curve
plots the density F(J, T− K− 1; λ) for H1 : R2

p1 = 0.02. The red-shaded are represents the power of the

test for H0 : R2
p1 ≤ 0.01.

It is often the case in economics and finance that a test for linear restrictions is conducted involving
a number of regression parameters. For example, under the point-null paradigm, the null hypothesis
can be formulated as H0 : γ1 = γ2 = 0 for a regression of Y on X1 and X2. In the context of
minimum-effect test, the null hypothesis can be written as

H0 : (γ1l ≤ γ1 ≤ γ1u) ∪ (γ2l ≤ γ2 ≤ γ2u),
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where γil and γiu for (i = 1, 2) denote the boundaries of economic significance. In this case, the null
hypothesis can be formulated in terms of R2

pj. That is,

H0 : η ≤ ηmax,

where ηmax is the maximum population signal-to-noise ratio implied by R2
pj. The researcher can

formulate the value of R2
p1− R2

p0 as the economically significant incremental contribution of (X1, X2) to
Y, where the value of R2

p0 can be estimated from the regression with restriction γ1 = γ2 = 0. Let λmax =

Tηmax, then if the F-statistic is greater than Fα,λmax , the α-level critical value from F(J, T − K− 1; λmax),
the null hypothesis of the minimum-effect is rejected at the α-level of significance. An example in a
more general setting can be found in Section 4.1.2.

3.5. Bootstrap Implementation

The tests introduced so far are valid under the assumption of normality. When the assumption
of normality is questionable, the one-tailed tests, confidence intervals and the distribution
F(J, T − K− 1; λ) can be implemented using the bootstrap (Efron and Tibshirani 1994). Since there are
extensive references available for bootstrapping the p-value and confidence intervals for a one-sample
t-test, the details are not given here.

For the minimum-effect test in the linear regression model, the researcher may want to obtain the
bootstrap counterpart of the red curve in Figure 1, when the underlying normality is questionable.
Consider a simple case of H0 : 0 ≤ γ1 ≤ 0.1 against H1 : γ1 > 0.1. Since γ1 = 0.1 is associated with
the maximum value of R2

p1 of 0.01, we consider the regression model under the restriction γ1 = 0.1.
That is,

Y = γ̂0 + 0.1X1 + e,

where γ̂0 is the estimator for γ0 under the restriction γ1 = 0.1 and e represents the associated residuals.
Generate the artificial data Y∗ given X1 as

Y∗ = γ̂0 + 0.1X1 + e∗,

where e∗ is a random resample of e with replacement. Calculate the F-statistic from {Y∗, X1}, denoted
as F∗. Repeat the above process sufficiently many times, say B, to obtain {F∗(i)}B

i=1, which represents
the bootstrap distribution for F(J, T − K− 1; λ).

When a number of parameters are involved with the linear restrictions being tested, the bootstrap
can be conducted at the parameter values which maximize the value λ. As an example, consider the
minimum-effect test

H0 : (γ1l ≤ γ1 ≤ γ1u) ∪ (γ2l ≤ γ2 ≤ γ2u).

Let γ̂1 and γ̂2 denote the values under the above H0 which jointly imply the largest economic impact
on Y. The bootstrap is conducted with the restrictions γ1 = γ̂1 and γ2 = γ̂2.

3.6. Model Equivalence Test

Lavergne (2014) proposes a general framework based on the Kullback-Leibler information to
assess the approximate validity of multivariate restrictions in parametric models, which is labeled
as model equivalence testing. Consider a random sample Xt (t = 1, . . . T) whose probability density
function is denoted as f (X|θ0) where θ0 ∈ Θ the parameter space. Let g(θ0) = 0 denote multivariate
restrictions on θ0 with r number of restrictions. As a measure of closeness to the true distribution,
Lavergne (2014) adopts the Kullback-Leibler information criterion, which is defined as

KLIC = Eθ0

[
log

f (X|θ0)

f (X|θc
0)

]
,
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where Eθ0 denotes the expectation when θ0 is the parameter value and θc
0 is the value which maximizes

Eθ0 log f (X|θ0) under g(θc
0) = 0. Noting that KLIC ≥ 0 and it is 0 when the restriction g(θ0) = 0 holds

exactly, Lavergne (2014) considers the null and alternative hypotheses of the form

H0 : 2KLIC ≥ δ2/T; H1 : 2KLIC < δ2/T, (7)

where δ2 ≡ T∆2 while ∆2 being the tolerance of substantive importance. Rejection of H0 implies that
the restriction g(θ0) = 0 is close to be valid.

According to Lavergne (2014), the above model equivalence test can be conducted using the
log-likelihood ratio (LR) test, which can be written as

LR = 2
[

L(θ̂)− L(θ̂c)
]
, (8)

where θ̂ denotes the unrestricted (quasi) maximum likelihood estimator for θ and θ̂c the restricted
(quasi) maximum likelihood estimator. The LR statistic follows a non-central chi-squared distribution
with r degrees of freedom with the non-centrality parameter δ2, denoted as χ2

r,δ2 . The null hypothesis is
rejected in favor of model equivalence if the LR statistic is less than χ2

r,δ2(α), which is the αth percentile
of χ2

r,δ2 .
Note that the vanishing tolerance δ2/T is based on a theoretical consideration,

as Lavergne (2014, p. 416) points out. In practical applications, a fixed tolerance ∆2 is chosen
so that δ2 = T∆2. This means that the degree of non-centrality of χ2

r,δ2 increases with sample size, so
does the critical value of the test. This is a feature different from the point-null hypothesis testing where
the critical value is obtained from a central distribution regardless of sample size. Lavergne (2014)
has shown that, in the regression context, 2KLIC measures the loss in explanatory power coming
from imposing the constraint relative to the error’s variance. Hence, if the researcher sets ∆2 = 0.1,
the models under H0 and H1 are considered to be equivalent if the loss of explanatory power due to
imposing the restriction is no more than 10%. Lavergne (2014) provides further asymptotic theories of
the test, along with empirical applications.

3.7. Equivalence Test for Model Validation

Model validation or specification tests are often performed based on the paradigm of point null
hypothesis testing, for which the null hypothesis is that the model is valid, and the alternative
hypothesis is that the model is not valid. Such tests inherit the problems associated with the
conventional statistical testing. As Box (1976) points out, all models are wrong, they are approximations
to the true data-generation process; consequently a test based on a sharp null hypothesis is not suitable.
It is possible that, in small samples, the tests may commit Type II errors due to low power, whereas in
large samples all models are found to be rejected due to extreme power (see, for example, Spanos 2017).

As a consequence, Robinson and Froese (2004) recommended the use of equivalence tests
for model validation, arguing that using traditional point-null hypothesis testing, as commonly
done, enabled the rejection of good models when the data were too many and the failure to reject
poor models when the data were too few. Furthermore, equivalence tests permit the expression
of a ‘region of equivalence’, within which model predictions could be close enough to reality
to be useful, without necessarily being exactly identical (see, e.g., Kleijnen 1995; Robinson 2019).
The principle was further extended by Robinson et al. (2005), who produced an equivalence-based
variant of a regression-style test originally proposed by Cohen and Cyert (1961). We now summarize
Robinson et al.’s (2005) approach.

Assume that we have computer simulation results xi, i = i, . . . , n that are intended to represent
process observations yi. For example, y could be the heights of a sample of trees selected from a forest,
and x the predicted heights for the same trees having been computed using the tree diameter and some
mathematical function that we wish to validate; ŷ = x = f (d; β). Centre the predictions: x∗i = xi − x̄.
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Fit the linear regression model yi = β0 + β1x∗i + εi; εi
d
= N(0, σ2). Then, perform a TOST on the null

hypothesis that β0 6= 0 as a test of model bias and a TOST on the null hypothesis that β1 6= 1 as a
test of the model fidelity, where fidelity is taken to mean both the spread of the predictions compared
to the observations and the order of the predictions compared to the observations. The estimate of
the slope will reflect how well the predictions match the spread of the observations—close to 1 is
good, and the standard error of the slope will reflect how well the quantiles of the predictions match
the quantiles of the observations—small is good. In this way, several interpretable characteristics of
model performance can be distilled from the omnibus test. Robinson (2019) provides a more detailed
explanation with examples, and Robinson (2016) provides an R (R Core Team 2017) package that runs
such tests1.

3.8. Choosing the Limits of Economic Significance

The choice of the limits of economic significance is the most critical step for interval-based tests.
Detailed discussions in the contexts of psychology and medical research appear in Murphy and
Myors (1999), Walker and Nowacki (2011) and Lakens et al. (2018), among others. These limits affect
the outcomes of the test, and also provide scientific credibility to the research outcome. The limits
should be determined by the researcher, in consideration of economic theories and meaningful effect
size. In so doing, economic reasoning or theory can be incorporated into statistical decision-making.

As Murphy and Myors (1999, p. 237) point out, the choice of limits requires “value judgment”.
The choice can also be “context-dependent”, since it may depend on the type of dependent variable
involved; and can also depend on the likelihood or seriousness of Type I and II errors. It would be
desirable to have a set convention or a consensus of expert opinions in the related field as to the extent
of “negligible effects” that could be economically ignored. One may also use meta-analytic evidence
from past studies.

The researcher can be guided by estimation-based measures to further justify their choice.
For example, one may choose the limits so that they imply the smallest effect size guided by the
value of Cohen’s d (Cohen 1977), which is a measure of effect size (the mean difference divided by
the standard deviation of the data). In the regression context, the limits may be determined so that
the implied economic impact provides a certain value of (incremental) signal-to-noise ratio η given
in (6) (which is also called Cohen’s f 2) or desired coefficient of determination R2

pj. For example. if Y is
stock return and X is a proposed factor, the interval can be formulated so that X can explain at least
5% of the total variation of stock return (R2

p1 = 0.05; and R2
p0 = 0). This is based on the judgment

that an economically meaningful factor should explain at least 5% of the stock return variation, in the
absence of other factors. Again, this choice requires value judgment that can be context-dependent.
For example, the choice may be different across markets depending on the market conditions such
as the trading cost, regulatory framework, and development of market structure, among others.
The researcher may consider a number of different values or possible candidates of this value, and
make a decision considering the inferential outcomes and their economic significance. However, most
ideally, the choice of the limits should be made before the researcher observes the data.

The proposed interval can be indicative of the decision when the point estimate is available.
However, the point estimate is subject to sampling variability and it is necessary to conduct the test
to make a more informed decision under sampling variability. Proposing such an interval may be
equivalent to providing a prior distribution for the Bayesian inference. It is well known that the
outcome of the Bayesian inference in large part depends on the choice of prior. But if the choice
is made based on concrete economic reasoning and evidence, the Bayesian inference can provide

1 There are two other R packages for equivalence and non-inferiority tests. One is EQUIVNONINF (Wellek and Ziegler 2017)
which accompanies the book by Wellek (2010), and the other is PowerTOST (Labes et al. 2018), which contains functions to
calculate power and sample size for various study designs used for bio-equivalence studies.
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an informed decision. Similarly, if the interval of economic significance is proposed with concrete
economic rationale, then it can help the researcher make a correct decision.

Furthermore, it is important for the researcher to include the key components of the test in
reporting, such as the interval of equivalence. Doing so serves two purposes: first, it enables the
reader to apply different intervals for different applications, and second, it provides a check against
unscrupulous researchers choosing intervals that suit their narrative.

4. Empirical Applications

In this section, we provide empirical applications of the interval-based tests discussed in Section 3
to economics and finance. We present two cases where large sample size is used; and one case of a
small sample.

4.1. A SAD Stock Market Cycle

In empirical finance, a large number of market anomalies have been identified, where it is claimed
that a stock market is systematically influenced by the factors unrelated with the market fundamentals.
The evidence is at odds with the efficient market hypothesis which is a cornerstone of modern finance
theories. Central to this is the findings that investors’ mood systematically and negatively affects stock
return. For example, it is hypothesized that less sunlight or more cloudiness negatively affect investors’
mood, which in turn exerts a negative impact on stock market return. The seminal papers in this
area of literature include Saunders (1993), Hirshleifer and Shumway (2003), and Kamstra et al. (2003).
However, as Kim (2017) reports, the studies in this area typically show negligible effects with high
statistical significance, accompanied by large sample size and negligible R2 values.

Kamstra et al. (2003) study the effect of depression linked with seasonal affective disorder (SAD)
on stock return. They claim that, through the link between SAD and depression, and the link between
depression and risk aversion, seasonal variation in length of day can translate into seasonal variation
in equity return. They consider the regression model of the following form:

Rt = γ0 +
2

∑
i=1

γiRt−i + γ3Mt + γ4Tt + γ5SADt + γ6Ft + γ7Ct + γ8Pt + γ9Gt + εt, (9)

where Rt denotes the stock return in percentage on day t; M a dummy variable for Monday; T a dummy
for the last trading day or the first five trading days of the tax year; F a dummy for fall; C cloud cover,
P a precipitation; and G temperature. SADt is a measure of seasonal depression, which takes the value
of Ht − 12 where Ht represents the time from sunset to sunrise if the day t is in the fall or winter;
0 otherwise.

Kamstra et al. (2003; p. 326) argue that lower returns should commence with autumn because
depressed investors shunning risk and re-balance their portfolio in favor of safer assets (i.e., γ6 < 0).
This is followed by abnormally higher returns when days begin to lengthen and SAD-affected investors
begin resuming their risky holdings (i.e., γ5 > 0). They use the daily index return data from the
markets around the world: U.S. (S&P 500, NYSE, NASGAQ, AMEX), Sweden, U.K., Germany Canada,
New Zealand, Japan, Australia, and South Africa. They report, nearly for all markets, that the
parameter estimate of γ5 is positive and statistically significant at a conventional level of significance;
and that of γ6 is negative and statistically significant. These results are the basis of their evidence
for the existence of the SAD effects around the world. However, the results are based on the point
null hypothesis at a conventional level of significance under large sample sizes, for which Rao and
Lovric (2016) among others are concerned about. In this section, we evaluate the regression results of
Kamstra et al. (2003) using the interval-based tests.
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4.1.1. Evaluating the Results of Kamstra et al.

We first conduct the interval tests using the regression results reported in Kamstra et al. (2003).
Table 1 reports the sample size (T) and R2 values of the regression (9), reproduced from
Kamstra et al. (2003; Tables 2 and 4A–C). From these values, we calculate the F-statistic for joint
significance of all slope coefficients are jointly zero (H0 : γ1 = · · · = γ9 = 0), as reported in Table 1.
The CR column reports the 5% critical values from the central F distributions, which are around
1.88 regardless of sample size. It appears that the F-test for joint significance is clearly rejected for
all markets at a conventional significance level, which indicates that the all slope coefficients of
regression (9) are statistically significant. However, this is at odds with negligible R2 values reported
in Table 1 which indicate little predictive power for all markets.

Suppose that, for a regression model for stock return to be economically significant, it should
explain at least 5% of the return variation. That is, we test for H0 : 0 ≤ R2

p1 ≤ 0.05 against H1 : R2
p1 >

0.05. The column labeled CR2 reports the 5% critical values associated with F(J, T− K− 1; λmax) while
the value of λmax is associated with R2

p1 = 0.05 (and R2
p0 = 0). According to these critical values, the

null hypothesis of economically negligible effect cannot be rejected for all market indices except for
US4. The critical values listed in column CR1 are those associated with H0 : 0 ≤ R2

p1 ≤ 0.01, which
delivers rejection in four markets only. If we test for H0 : 0 ≤ R2

p1 ≤ 0.1, the critical values in column
labeled CR3 indicate that the predictive power of the estimated models are economically negligible for
all markets.

Table 1. Testing for the SAD effect.

Market T R2 F CR CR1 CR2 CR3

US1 18,380 0.011 20.43 1.83 26.87 120.25 245.15
US2 9688 0.027 29.84 1.88 15.76 66.27 133.20
US3 7083 0.033 26.82 1.88 12.33 49.83 99.26
US4 9688 0.091 107.66 1.88 15.77 66.27 133.20
SWE 4836 0.017 9.28 1.88 9.29 35.46 69.70
UK 4534 0.009 4.57 1.88 8.87 33.51 65.69

GER 9411 0.008 8.42 1.88 15.40 64.53 129.61
CAN 8308 0.030 28.52 1.88 13.96 57.58 115.26
NZ 2627 0.010 3.31 1.94 6.79 23.49 45.04
JAP 12,783 0.002 3.20 1.94 22.11 96.18 194.77
AUS 5521 0.010 6.19 1.88 10.22 39.86 78.75
SA 7247 0.010 8.12 1.88 12.54 50.87 101.41

US1: United States, S&P500, from 04 January 1928 to 29 December 2000; US2: United States, NYSE, from
1962-07-05 to 2000-12-29; US3: United States, NASDAQ, from 1972-12-18 to 2000-12-29; SWE: Sweden from
1982-09-15 to 2001-12-18; UK: Britain from 1984-01-04 to 2001-12-06; GER: Germany from 1965-01-05 to
2001-12-12; CAN: Canada from 1969-01-03 to 2001-12-18; NZ: New Zealand from 1991-07-02 to 2001-12-18;
JAP: Japan from 1950-04-05 to 2001-12-06; AUS: Australia from 1980-01-03 to 2001-12-18; SA: South Africa
from 1973-01-03 to 2001-12-06; T: sample size, calculated using R package “bizdays” (Freitas 2018) from
the sample ranges reported in Kamstra et al. (2003; Table 2); R2: R2 values reported in Kamstra et al. (2003;
Table 4A–C); F: F-statistic for the joint significance of regression slope coefficients; CR: 5% critical values from
a central F distribution for H0 : R2 = 0; CR1: 5% critical values for H0 : 0 ≤ R2 ≤ 0.01; CR2: 5% critical values
for H0 : 0 ≤ R2 ≤ 0.05; CR3: 5% critical values for H0 : 0 ≤ R2 ≤ 0.10.

Economic significance of the magnitude of regression coefficients reported in Kamstra et al. (2003)
is also questionable. For example, for the U.S. market with S&P500 index (US1), γ̂6 = −0.058 and
its 90% confidence interval is [−0.10,−0.01]. The point estimate means that the stock return is on
average lower by 0.058% during the autumn period. Suppose, for a factor to have an economically
meaningful impact on stock return, its marginal effect should be at least 0.5% (either positive or
negative) to justify transaction cost. Then, one can formulate the null hypothesis of economically
negligible effect as H0 : −0.5 ≤ γ6 ≤ 0.5. The 90% confidence interval is clearly within this bound,
so we do not reject H0 at the 5% level of significance. The same inferential outcomes apply to all
the other regression coefficients of (9) reported in Kamstra et al. (2003). Note that, depending on the
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attitude of the researcher, one can formulate the null hypothesis as H0 : (γ6 < −0.5)∪ (γ6 > 0.5), but it
is also clearly rejected at the 5% level in favor of a negligible effect. Although Kamstra et al. (2003)
justify their effect size using the annualized return, this annualized return does not take account of the
underlying volatility of stock return or trading costs involved.

4.1.2. Replicating the Results of Kamstra et al.

We now replicate the model (9) using the value-weighted daily returns from the NYSE
composite index (CRSP). The SAD variable and other dummy variables are generated following
Kamstra et al. (2003), using programming language R (R Core Team 2017). The data for weather
variables (C, P, and G) are collected from the National Center for Environmental Information.2

Our data for the regression ranges from January 1965 to April 1996 (7886 observations), due to the
limited availability of the weather data (C) for New York. We have the following estimated values
for the key coefficients: γ̂5 = 0.032 with t-statistic of 2.29; γ̂6 = −0.055 with t-statistic of −2.17; and
R2 = 0.05. These values are fairly close to those reported in Table 4A of Kamstra et al. (2003).

We first pay attention to the point null hypothesis that H0 : γ5 = γ6 = 0 for joint significance of
the SAD effects. The F-statistic is 3.18 with the p-value of 0.04, rejecting H0 at the 5% significance level.
This is despite the observation that the incremental contribution of these two variables is negligible,
measured by R2

1 − R2
0 = 0.0008 with R2

1 = 0.0501 and R2
0 = 0.0493. Next, we consider an interval

hypothesis of minimum-effect. Suppose that the incremental contribution of these variables should be
at least 0.01 to be economically significant. That is,

H0 : (R2
p1 − R2

p0) ≤ 0.01.

Assuming R2
p0 = 0.05, λmax = 83.87 and the corresponding 5% critical value is 58.97, obtained from

F(J, T − K− 1; λmax). With this critical value being much larger than the F-statistic of 3.18, the above
interval null hypothesis of minimum-effect cannot be rejected at the 5% level, providing evidence that
the SAD economic cycle is economically negligible in the U.S. stock market.

4.2. Empirical Validity of an Asset-Pricing Model

An asset-pricing model explains the variation of asset return as a function of a range of risk
factors. The most fundamental is the capital asset pricing model (CAPM) which stipulates that an
asset (excess) return is a linear function of market (excess) return. The slope coefficient (often called
beta) measures the sensitivity of an asset return to the market risk. While the CAPM is theoretically
motivated, the market risk alone cannot fully explain the variation of asset return. In response to
this, several multi-factor models have been proposed, which augment the CAPM with a number of
empirically motivated risk factors such as the size premium or value premium (see, for example,
Fama and French 1993). The most recently proposed multi-factor model is the five-factor model of
Fama and French (2015), which can be written as

Rit − R f t = ai + bi(RMt − R f t) + siSMBt + hi HMLt + riRMWt + ciCMAt + eit, (10)

where Rit is the return on an asset or portfolio i at time t (i = 1, . . . , N; t = 1, . . . , T), R f t is the risk-free
rate, RMt is the return on a (value-weighted) market portfolio at time t, SMBt is the return on a
diversified portfolio of small stocks minus the return on a diversified portfolio of big stocks, the
HMLt is the spread in returns between diversified portfolios of high book-to-market stocks and low
book-to-market stocks, RMWt is the spread in returns between diversified portfolios of stocks with
robust and weak profitability, and the CMAt is the spread in returns between diversified portfolios

2 https://www.ncdc.noaa.gov/data-access.

https://www.ncdc.noaa.gov/data-access
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of low and high investment firms. The precursors to this 5-factor model include the 3-factor model
of Fama and French (1993) which include (RMt − R f t), SMB, and HML; and the 4-factor model of
Carhart (1997) which adds momentum factor (MOM) to the 3-factor model. If these factors fully or
adequately capture the variation of asset return, then the intercept terms ai (which may be may be
interpreted as the risk-adjusted return) should be zero or sufficiently close to it. On this basis, the
model’s empirical validity is evaluated by testing for H0 : a1 = ... = aN = 0, which is a point-null
hypothesis.

4.2.1. GRS Test: Minimum-Effect

The F-test for H0 is widely called the GRS test, proposed by Gibbons et al. (1989). Let a =

(a1, . . . , aN)
′ be the vector of N intercept terms, and Σ be the N × N covariance matrix of error terms.

The model (10) is estimated using the ordinary least-squares: â denotes the estimator for a and Σ̂ the
estimator for Σ. The F-test statistic is written as

F =
T(T − N − K)
N(T − K− 1)

â′Σ̂−1 â
1 + µ̂′Ω̂−1µ̂

, (11)

where T is the sample size, K = 5 is the number of risk factors, Ω̂ is the K× K covariance matrix of
risk factors, and µ̂ is the K× 1 mean vector. Under the assumption that the error terms e’s follow a
multivariate normal distribution, the statistic follows the F(N, T − N − K; λ) distribution, with the
non-centrality parameter

λ =

(
T

1 + θ̂2

)
a′Σ−1a =

(
T

1 + θ̂2

)
(θ∗2 − θ2), (12)

where θ̂ is the ex-post maximum Sharpe ratio of K-factor portfolio, θ is the ex-ante maximum Sharpe
ratio of K-factor portfolio, and θ∗ is the slope of the ex ante efficient frontier based on all assets.
Gibbons et al. (1989) call θ/θ∗ the proportion of the potential efficiency. Note that, under H0, this ratio
is equal to one and λ = 0.

However, perfect efficiency cannot exist in practice. It is unrealistic that all of a values are
jointly and exactly zero. On this point, it is sensible to consider an interval-based hypothesis testing.
For example, consider H0 : 0.75 < θ/θ∗ ≤ 1 against H1 : θ/θ∗ < 0.75. This is on the basis of judgment
that the factors with the proportion of potential efficiency of 0.75 or higher provide practically efficient
asset-pricing.

The data is available from French’s data library monthly from 1963 to 2015 (T = 630).3 We use
25 portfolio returns (N = 25) sorted by size and book-to-market ratio extensively analyzed by
Fama and French (1993, 2015). Table 2 reports the test results. The GRS test for H0 : a1 = . . . = aN = 0
are clearly rejected for all models considered, with the p-value (not reported) practically 0 for all
cases. The critical values of this test (from the central F distributions) is listed in the column labeled
CR. This results suggest that none of the asset pricing models are able to fully capture asset return
variations. This is at odds with the high values of R2 and small values of |a|, especially multi-factor
models. For the 4-factor and 5-factor model, the estimated ratio of potential efficiency is much higher
than other models, close to 0.7.

3 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html.

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/index.html
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Table 2. GRS test for asset-pricing models.

Model GRS R2 |a| CR CR1 Ratio

CAPM 4.41 0.74 0.25 1.52 1.88 0.25
3-factor 3.61 0.92 0.10 1.52 2.62 0.46
4-factor 3.07 0.92 0.09 1.52 3.70 0.63
5-factor 2.79 0.92 0.09 1.52 4.03 0.67

CAPM: the model with single factor (RMt − R f t); 3-factor: CAPM plus SMB and HML
(Fama and French 1993); 4-factor: 3-factor plus MOM (Carhart 1997); 5-factor: 3 factor plus RMW and
CMA (Fama and French 1993); GRS: GRS test statistic H0 : a1 = . . . = aN = 0; R2: average R2 values
over N = 25 equations; |a|: average intercept estimates over N = 25 equations; CR: 5% critical value from
F(N, T − N − K); CR1: 5% critical value from F(N, T − N − K, λmax); ratio: sample estimate of θ/θ∗.

Table 2 also reports the critical values (CR2) for H0 : 0.75 < θ/θ∗ ≤ 1, which is calculated from
F(N, T − N − K, λmax) distribution with the value of λmax implied by θ/θ∗ = 0.75. It is found that,
for the 4-factor and 5-factor models, H0 : 0.75 < θ/θ∗ ≤ 1 cannot be rejected at the 5% level of
significance. This suggests that these multi-factor model have captured the variation of asset returns
adequately, with economically negligible deviation from the perfect efficiency. For the CAPM and
3-factor models, the interval-based H0 is rejected at the 5% level, but this seems consistent with the
estimated values of potential efficiency which are less than 0.5 for both cases. It is worth noting that
the critical values CR for the point-null hypothesis (based on the central F-distribution) are nearly
identical for all cases, regardless of the estimation results such as R2 and |a|. However, those for the
interval-based tests are different, depending on the model estimation results.

4.2.2. LR Test: Model Equivalence

We now test for the validity of the asset-pricing models using the model equivalence test discussed
in Section 3.6. We calculate the LR test for given in (8) for H0 : a1 = ... = aN = 0, which is written as

LR = T(log{det[Σ̂(H0)]} − log{det[Σ̂(H1)]}),

where Σ̂(Hi) denotes the maximum likelihood estimator for Σ under Hi. For the model equivalence
test given in (7), the above LR statistic follows the χ2

N,δ2 distribution with δ2 = T∆2. Using the same
data set as in Section 4.2.1, the LR statistic is 105.67, 88.05, 75.82, and 69.26 for the CAPM, 3-factor
model, 4-factor model, and 5-factor model respectively. If we set ∆2 to 0.1, the 5% critical value is 61.12,
indicating that H0 is not approximately valid for all models. If we set ∆2 to 0.15, the 5% critical value
is 87.19, indicating H0 is approximately valid only for 4-factor and 5-factor models. If we set ∆2 to
0.20, the 5% critical value is 114.00, indicating that H0 is approximately valid for all models. It appears
that the results are sensitive to the choice of ∆2 values. However, at a reasonable value of ∆2 = 0.15,
the results are consistent with the minimum-effect test based on the GRS test conducted above.

4.3. Testing for Persistence of a Time Series

The presence of a unit root in economic and financial time series has strong implications to many
economic theories and their empirical validity (see Choi 2015). For example, a unit root in the real
exchange rate is evidence that the purchasing power parity does not hold (Lothian and Taylor 1996);
and a unit root in the real GNP supports the view that a shock to the economy has a permanent
effect, which is not consistent with the traditional (or Keynesian) view of business cycle (Campbell
and Mankiw 1987). To test for the hypothesis, the unit root test proposed by Dickey and Fuller (1979)
has been widely used, while a large number of its extensions and improvement have been proposed.
The augmented Dickey–Fuller (ADF) test for a time series Y is based on the regression of the form

∆Yt = δ0 + δ1t + θYt−1 +
m−1

∑
j=1

ρj∆Yt−j + ut, (13)
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where ∆Yt = Yt −Yt−1; m is the autoregressive (AR) order of Y; and ut is an i.i.d. error term with zero
mean and fixed variance. Note that θ ≡ τ − 1 where τ is the sum of all AR(m) coefficients in level of
Y, measuring the degree of persistence. The test for a unit root is based on point-null hypothesis of
H0 : θ = 0 against H1 : θ < 0. Under H0, the t-test statistic asymptotically follows the Dickey–Fuller
distribution, from which the critical values of the test are obtained. Under H1, the t-test statistic
asymptotically follows the standard normal distribution.

The problems of the unit root test are well documented (see, for example, Choi 2015). The most
well-known is its low power (at a conventional significance level), which means that there is a
high chance of committing Type II error (failure to reject a false null hypothesis). On this point,
Kim and Choi (2017) propose the unit root test at the optimal level of significance, which is obtained
by minimizing the expected loss from hypothesis testing. They find that the optimal level is in the 0.3
and 0.4 range for many economic time series, arguing that the exclusive use of 0.05 level has led to
accumulation of false stylized facts. The other problem of the test is the discontinuity of the sampling
distributions of the test statistic under H0 and H1. This makes the decision highly sensitive to the value
specified under H0.

More importantly, as discussed in Section 2.3, it is unrealistic to assume that an economic time
series such as the real GNP or real exchange rate has an autoregressive root exactly equal to one.
An economist may wish to test whether a time series shows a degree of persistence practically different
from that of a unit root time series. The test can be conducted in the context of non-inferiority test
discussed in the previous section. To do this, we need to find the value of τ or θ under which a time
series shows a practically different degree of persistence from a unit root time series. According to
DeJong et al. (1992), a plausible value of τ under H1 : θ < 0 is 0.85, 0.95, 0.99 for annual, quarterly and
monthly data respectively, which translate to the θ values of −0.15, −0.05, and −0.01. On this basis,
we test for the persistence of a time series using the following interval hypotheses:

H0 : θ ≤ θ1; H1 : θ > θ1,

where θ1 ∈ {−0.15,−0.05,−0.01} depending on the data frequency. The time series is practically
trend-stationary under this H0. This test is a standard one-sample t-test whose statistic asymptotically
follows the standard normal distribution. However, we note that the least-squares estimator for τ or θ

is biased in small samples, which may adversely affect the small sample properties of the test. As an
alternative to the non-inferiority test, we also use the bias-corrected bootstrap confidence interval for θ

for improved statistical inference, similar to those of Kilian (1998a, 1998b) and Kim (2004).
For a set of time series (Y1, . . . .YT), we first estimate the parameters of model (13) using the

bias-corrected estimators. Let (δ̂0, δ̂1, θ̂, ρ̂1, . . . , ρ̂m−1) be the bias-corrected estimators; and let {et}
denote the corresponding residual. Generate the artificial data set as

Y∗t = δ̂0 + δ̂1t + β̂1Yt−1 + · · ·+ β̂mYt−m + e∗t ,

using (Y1, . . . , Ym) as the starting values, where e∗t is a random draw with replacement from {et}T
t=m+1

and (β̂1, . . . , β̂m) are the AR coefficients in level associated with (θ̂, ρ̂1, . . . , ρ̂m−1). Using {Y∗t }T
t=1,

estimate the AR(m) coefficients, again with bias correction, (δ̂∗0 , δ̂∗1 , β̂∗1, . . . , β̂∗m). For bias correction, we
use Shaman and Stine (1988) asymptotic formula with stationarity-correction, following Kilian (1998b)
and Kim (2004). We obtain θ̂∗ = τ̂∗ − 1, where τ̂∗ = ∑m

j=1 β̂∗j . Repeat this process B times to obtain the

bootstrap distribution {θ̂∗(j)}B
j=1, which can be used as an approximation to the sampling distribution

of θ̂. If the confidence interval for θ obtained from {θ̂∗(j)}B
j=1 covers θ1, then this is evidence that the

time series shows a degree of of persistence practically no different from that of a trend-stationary
time series.

Table 3 reports the results from the extended Nelson and Plosser (1982) data for a set of annual
U.S. macroeconomic time series, setting θ1 = −0.15. Firstly, the ADF test (a point-null hypothesis
test) provides the p-values larger than 0.05 for most of time series, providing evidence that many
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macroeconomic time series have a unit root. In contrast, the t-test (non-inferiority test) results for
H0 : θ ≤ −0.15 against H1 : θ > −0.15 show that we clearly cannot reject this H0 at the 5% level
of significance (asymptotic critical value 1.645) for the real GNP, real per capita GNP, industrial
production, employment, unemployment rate, providing evidence that these time series are practically
trend-stationary. As for the bootstrap inference, it is found that the 95% bias-corrected bootstrap
confidence interval for θ does cover −0.15, for the real GNP, real per capita GNP, industrial production,
employment, unemployment rate, real wage, and interest rate, indicating that these time series show
the degree of persistence practically of a trend-stationary time series. The two alternative methods are
in agreement in their inferential outcomes, except for real wage and interest rate.

Table 3. Test for persistence: Extended Nelson–Plosser Data.

T p-Value θ̂ t-Stat CI1 CI2

R.GNP 80 0.05 −0.140 −0.66 −0.298 −0.037
N.GNP 80 0.58 −0.010 2.96 −0.147 −0.0001
P.GNP 80 0.04 −0.150 −0.82 −0.304 −0.043

IP 129 0.26 −0.098 −0.21 −0.274 −0.002
Emp 99 0.18 −0.118 −0.21 −0.242 −0.031

Uemp 99 0.01 −0.214 −1.53 −0.430 −0.074
Def 100 0.70 −0.003 5.56 −0.081 −0.0001
CPI 129 0.91 −0.002 13.22 −0.019 −0.0001

Wages 89 0.53 −0.026 2.81 −0.144 −0.0002
Rwages 89 0.75 −0.010 1.90 −0.183 −0.0002

MS 100 0.18 −0.037 3.83 −0.110 −0.0016
Vel 120 0.78 −0.001 4.65 −0.099 −0.0001

Rate 89 0.98 −0.025 2.35 −0.191 −0.0004
S&P 118 0.64 −0.021 2.15 −0.144 −0.0002

R.GNP: Real GNP; N.GNP: Nominal GNP: P.GNP: Real per capita GNP; IP” Industrial Production; Emp:
Employment; Uemp: Unemployment Rate; Def: GNP deflator; CPI: Consumer Price Index; Wages: Wages;
Rwages: Real Wages: MS: Money Stock; Vel: Velocity; Rate: Interest rate; S&P: Common Stock Price. T:
Sample size; p-value: p-value of the ADF test for H0 : θ = 0; θ̂: bias-corrected estimators for θ; t-stat: t-statistic
for H0 : θ ≤ −0.15 against H1 : θ > −0.15 based on equation (13) with 5% critical value of 1.645; (CI1, CI2):
lower and upper bounds of 95% bootstrap bias-corrected confidence interval for θ; The AR orders used are
same as those of Nelson and Plosser (1982).

The results for the test of persistence based on the non-inferiority test are largely consistent
with those of Kim and Choi (2017) who re-evaluate the ADF test results at the optimal level of
significance and report evidence that the real GNP, real per capita GNP, employment, and money
stock do not have a unit root. These results are also largely consistent with the Bayesian evidence of
Schotman and van Dijk (1991).

5. Conclusions

This paper provides a review of interval-based hypothesis testing methods, which are known
under the name of minimum-effect, non-inferiority, and equivalence tests in biostatistics and
psychology. Although the first proposal of such a test goes back to Hodges and Lehmann (1954),
it has attracted little attention in the business disciplines of science. In the latter, the paradigm of
point-null hypothesis has been the major workforce in making statistical decisions and establishing
research findings. However, as a number of authors have criticized for many years, the current
paradigm has a range of limitations and deficiencies, as discussed in Section 2 of this paper. These
problems have become even more apparent in the big data era, where the p-value criterion widely and
routinely adopted by statistical researchers is no longer usable in making sensible statistical decisions.
The consequences are serious, with widespread practice of data-mining (Black 1993), data-snooping
(Lo and MacKinlay 1990), p-hacking (Harvey 2017), and multiple testing (Harvey et al. 2016), which
result in an embarrassing number of false positives as Harvey (2017) puts it. The related empirical
evidence is provided by meta-analytic studies conducted by Kim and Ji (2015) and Kim et al. (2018).
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Even more serious is systematic distortion of published results, such as publication bias (Basu and
Park 2014) and replication crisis (Peng 2015). In light of these problems, Rao and Lovric (2016) call for a
new paradigm to be in place for statistical testing in the 21st century, with a proposal of interval-based
hypothesis testing as a possible solution.

An important point in favor of adopting an interval-based test is the fact that an economic
hypothesis cannot be formulated as a point. Rather, it is more sensible when it takes a form
of an interval or a neighborhood: see, for example, De Long and Lang (1992), Leamer (1988),
and Startz (2014). For example, when a researcher tests for stock market efficiency, she is not testing
for a perfect efficiency (as described by a point-null hypothesis), since such a perfect relationship
cannot hold economically (Grossman and Stiglitz 1980). More realistically, the researcher is interested
in whether the degree of market inefficiency (Campbell et al. 1997) is economically large enough to be
concerned (an interval hypothesis). Hence, it makes more sense to consider an interval hypothesis for
decision-making in economic or business research.

As we have seen in this paper, an interval-hypothesis can be implemented in a simple and
straightforward manner, using the existing instruments of hypothesis testing such as one-tailed test,
confidence interval, and non-central distributions. Its main attraction is that the critical values of these
tests increase with sample size, overcoming a major deficiency of point-null hypothesis testing. A key
requirement of the test is that the researcher should specify an interval of economic significance under
the null or alternative hypothesis, preferably before she observes the data. This may require a value
judgment depending on contexts, accompanied by a thorough economic analysis on the effect size
of the relationship under investigation. This is an integral part of interval-based hypothesis testing,
since it has a strong impact on the test outcome and research integrity. It is also highly desirable that
the relevant research community establishes a consensus on the range of minimum effect size that
matters economically.

We have applied the interval-based tests to economics and finance applications. The first is a
test for market efficiency, whether investors’ mood has a systematic effect on stock market return.
While the effect may appear to show statistical significance under the current point-null paradigm,
the minimum-effect tests cannot reject its negligible economic effect. The second is on the empirical
validity of asset-pricing models. In contrast to the findings based on point-null hypothesis testing,
we find that a class of multi-factor models are empirically valid based on minimum-effect and model
equivalence tests. The third is on the degree of persistence of economic time series. A unit root test
based on a conventional point-null hypothesis strongly favors the presence of a unit root in many
macroeconomic time series such as the real GNP. According to the non-inferiority test, many time series
in Nelson–Plosser data set are found to show a degree of persistence of a trend-stationary time series,
especially in the real income variables. From these applications, we find that the interval-based tests
are applicable to many contentious research problems in the business disciplines of science, shedding
new lights on the existing results or stylized facts. We propose that interval-based hypothesis tests be
widely adopted in business research, especially in the new era of big data.
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