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Abstract: Many financial decisions, such as portfolio allocation, risk management, option pricing and
hedge strategies, are based on forecasts of the conditional variances, covariances and correlations
of financial returns. The paper shows an empirical comparison of several methods to predict
one-step-ahead conditional covariance matrices. These matrices are used as inputs to obtain
out-of-sample minimum variance portfolios based on stocks belonging to the S&P500 index from 2000
to 2017 and sub-periods. The analysis is done through several metrics, including standard deviation,
turnover, net average return, information ratio and Sortino’s ratio. We find that no method is the
best in all scenarios and the performance depends on the criterion, the period of analysis and the
rebalancing strategy.
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1. Introduction

Forecasting returns, volatilities and conditional correlations has attracted the interest of
researchers and practitioners in finance since these factors are crucial, for example, in portfolio
allocation, risk management, option pricing and hedging strategies; see, for instance, Engle (2009),
Hlouskova et al. (2009) and Boudt et al. (2013) for some references.

A well-known stylised fact in multivariate time series of financial returns is that not only
conditional variances but also conditional covariances and correlations evolve over time. To describe
this evolution, several methods have been proposed in the literature. In general, these methods
involve different ways to circumvent the issue of dimensionality. The treatment of this problem
is vital for the estimation of large portfolios (composed of hundreds or thousands of assets).
As noted by Engle et al. (2017), when dealing with portfolios composed of a thousand time
series, many multivariate GARCH models present unsatisfactory performance or computational
problems in their estimation. For some multivariate GARCH models, estimation problems arise
even for smaller dimensions; see, for instance, Laurent et al. (2012), Caporin and McAleer (2014),
Caporin and Paruolo (2015) and de Almeida et al. (2018).

Our empirical application is based on an investor who adopts the minimum variance
criterion in order to decide on portfolio allocations. A very large body of literature in portfolio
optimization considers this particular policy; see, for instance, Clarke et al. (2011 2006) for
extensive practitioner-oriented studies on the performance and composition of minimum variance
portfolios. This policy can be seen as a particular case of the traditional mean-variance optimisation.
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The mean-variance problem, however, is known to be very sensitive to estimation of the mean returns
(Frahm 2010; Jagannathan and Ma 2003).1 Very often, the estimation error in the mean returns degrades
the overall portfolio performance and introduces an undesirable level of portfolio turnover. In fact,
existing evidence suggests that the performance of optimal portfolios that do not rely on estimated
mean returns is usually better, see DeMiguel et al. (2009).

To obtain the minimum variance portfolio, the key input is the estimate of the conditional
covariance matrix. As far as we known, there are few works in the literature comparing the estimation of
this matrix for large portfolios, with Creal et al. (2011), Hafner and Reznikova (2012), Engle et al. (2017),
Nakagawa et al. (2018) and Moura and Santos (2018) being especially relevant. Given the myriad of
models and methods in the literature to estimate the covariance matrix, empirical studies about the
comparison of estimates in large portfolios are most welcome.

The paper is intended to assess the performance of several methods to predict one-step-ahead
conditional covariance matrices in large portfolios. This is done empirically, by comparing the
out-of-sample performance of minimum variance portfolios based on S&P500 stocks traded from
2 January 2000 to 30 November 2017, using measures such as average (AV), standard deviation (SD),
information ratio (IR), Sortino’s ratio (SR) (Sortino and van der Meer 1991), turnover (TO) and average
portfolio net of transaction cost (AVnet). Since not all stocks of the index were traded during the
whole period, we consider portfolios of dimension N = 174 stocks. To assess the robustness of the
results, we also the analyse three sub-periods: the pre-crisis period (January 2004 to December 2007),
the subprime crisis period (January 2008 to June 2009), and the post-crisis period (July 2009 to
November 2017).

We consider several attractive methods and models including recent proposals used by
practitioners and academics to predict one-step-ahead conditional covariance matrices. They are
selected mainly because they use different approaches to overcome the issue of dimensionality problem.
Specifically, the paper compares the DCC model as used in Engle et al. (2017), the DECO model of
Engle and Kelly (2012), the OGARCH model of Alexander and Chibumba (1996), the RiskMetrics 1994
and the RiskMetrics 2006 (Zumbach 2007) methods, the generalised principal volatility components
analysis (GPVC) proposed by Li et al. (2016) as a generalisation of the procedure of Hu and Tsay (2014),
and we also apply the robust version of the GPVC method proposed by Trucíos et al. (2019).
DCC models are estimated using composite likelihood, as advocated in Pakel et al. (2014). In addition,
the linear shrinkage (LS) and non-linear shrinkage (NLS) of Ledoit and Wolf (2004a) and Ledoit
and Wolf (2012), respectively, are applied on all the previous methods. Therefore, compared to
Engle et al. (2017), Hafner and Reznikova (2012) and Nakagawa et al. (2018), the set of competing
methods is much bigger and the device of shrinkage is assessed in all the compared methods.
We consider a total of 47 methods, including the equal-weighted portfolio strategy. This constitutes the
main contribution of the paper.

The rest of the paper is organised as follows: Section 2 presents the methods and models used to
predict the one-step-ahead volatility covariance matrix. It also presents the composite likelihood used
to estimate the DCC model and the shrinkage method as presented in Pakel et al. (2014). The empirical
application is given in Section 3. Section 4 concludes and the list of the estimation methods is in the
Appendix A.

2. The Forecast Methods

Denote by ri,t, i = 1, . . . , N, t = 1, . . . , T the return of the i-th asset at time t, where N is
the number of assets under consideration to construct the portfolio and T denotes the sample size.
For simplicity, consider that E(ri,t|Ft−1) = 0, where Ft−1 denotes the information available at time
(t− 1). Let rt = (r1,t, . . . , rN,t)

′; the conditional covariance matrix is defined as Ht = Cov(rt|Ft−1)

1 See Wied et al. (2013) for a test for the presence of structural breaks in minimum variance portfolios
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with elements hi,j,t = Cov(ri,t, rj,t|Ft−1). At time (t− 1), we are interested in estimating Ht in order to
select a portfolio for the period (t− 1, t]. In the following we present some methods to estimate it.

2.1. The RiskMetrics Methods

One of the most popular methods used in risk analysis is the RiskMetrics method developed by
the RiskMetrics Group at JP Morgan. We call this the RiskMetrics 1994 (RM1994) method. The main
feature of the RiskMetrics method is that the predicted volatility is a linear function of the present and
past squared returns. Although it has being widely used, it has some problems. In order to overcome
some of these problems, the same group developed the RM2006 method. Like the RM1994 method,
the RM2006 method is also data-oriented, in the sense that it was calibrated and tested to have good
performance with the majority of the target empirical data, and was developed to take into account
some of the stylised facts and weaknesses detected in the RM1994 method. We can summarize the
main modifications in three types. In the first type, considering that the volatility has a long memory
feature, the weights decay logarithmically instead of exponentially, as happens in the RM1994 method.
The second is that the weights depend on the forecast horizon. The third is that the conditional
distribution of the return is not multivariate Gaussian; the distribution is based on the estimated
devolatilised residuals and it can be roughly defined as a Student-t distribution with scale correction.
Finally, the return levels are modelled considering the lagged correlation between returns.

2.2. The CCC Model

The constant conditional correlation model (Bollerslev 1990) is one of the simplest MGARCH
models to estimate, since basically the variances are modelled independently and the covariances
are obtained using the conditional standard deviation and a constant conditional correlation matrix.
The conditional covariance matrix Ht evolves according to:

Ht = DtRDt, (1)

Dt = Diag(d1,t, . . . , dN,t), (2)

R = Diag(H)−1/2HDiag(H)−1/2, (3)

H = Cov(rt), (4)

with d2
i,t = Var(ri,t|Ft−1) (marginal univariate conditional variances). The advantage of the CCC

model is its easy estimation, although, the main disadvantage is the strong assumption that conditional
correlations are time-invariant. Engle (2002) extended this idea in a dynamic conditional correlation
way, as detailed in the next section.

2.3. The DCC Model

In this section, we describe the scalar DCC model of Engle (2002) as used in Pakel et al. (2014)
and Engle et al. (2017), and the composite likelihood. The non-linear shrinkage method, which is
also used to estimate the DCC model, is presented in Section 2.8. In the DCC model, the marginal
univariate conditional variances d2

i,t = Var(ri,t|Ft−1) are modelled first. Define the devolatilised
residuals as st = (r1,t/d1,t, . . . , rN,t/dN,t)

′. We use the DCC model with correlation targeting as in
Engle et al. (2017). The conditional covariance matrix Ht evolves according to:

Ht = DtRtDt, (5)

Rt = Diag(Qt)
−1/2QtDiag(Qt)

−1/2, (6)

Qt = (1− α− β)C + αst−1s
′
t−1 + βQt−1, (7)
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where Dt is a diagonal matrix with the i-th element of the diagonal equal to d2
i,t, C = Corr(rt) = Cov(st)

is the unconditional correlation matrix, and Rt = Corr(rt|Ft−1) = Cov(st|Ft−1) is the conditional
correlation matrix at time t. The parameters α and β are non-negative with α + β < 1. We have

rt|Ft−1 ∼WS(0, Ht), (8)

where WS(0, Ht) means a multivariate distribution with mean zero and covariance matrix Ht.
The model is usually estimated in three stages. In each stage, the estimation is conditional on the

estimates found in previous stages. The stages are: (1) estimate Dt usually assuming a GARCH(1,1)
model for each t = 1, . . . , T, and evaluate the devolatilised residuals; (2) select an estimator of the
correlation target matrix C using the devolatilised residuals; and (3) estimate the parameters α and β.
We will comment on stage one in the application section and on stage 2 in Section 2.8. In the third
stage, even with only two parameters, one may face estimation problems with a large number of
assets because it is necessary to invert the conditional covariance matrix Ht (for each t = 1, . . . , T).
One way to overcome this problem is through the use of the composite (log-)likelihood2 to compute it.
This method was proposed in the 2008 version of Pakel et al. (2014). In the 2014 version, they showed
that the estimators of α and β, given by maximizing the composite likelihood, are consistent although
not efficient. They evaluate the composite likelihood by summing the likelihood of all contiguous pairs.
Thus, there are only (N − 1) bivariate terms and for any contiguous pair it is only necessary to invert
a matrix of order two. For instance, let r(i) = (ri,1, . . . , ri,T)

′
, i = 1, . . . , N, i.e., the series of returns of

the ith asset, and denote by li(α, β; r(i), r(i+1)) the likelihood of the pair (r(i), r(i+1)), i = 1, . . . , N − 1,
assuming that each pair comes from a bivariate DCC model, defined similarly as the model given by
Equations (5-7). Then, the composite likelihood is given by:

CL(α, β; r(i), i = 1, . . . , N) =
N−1

∑
i=1

li(α, β; r(i), r(i+1)). (9)

Engle et al. (2017) argue that the estimator of the conditional covariance matrix given by the DCC
model using composite likelihood in stage three with the estimation of the unconditional correlation
matrix using non-linear shrinkage in stage two is robust against model misspecification in large
dimensions (N).

2.4. The DECO Model

Engle and Kelly (2012) propose a dynamic equicorrelation (DECO) model as a trade-off between
a model which imposes many restrictions in the covariance matrix and a less structured model.
They contend that imposing too much structure can lead to an efficient estimation when the restrictions
are correct, but can suffer from breakdown in the presence of misspecification. On the other hand,
the lack of restrictions may lead to the issue of dimensionality. Considering this trade-off, they propose
a model where the cross-correlations between any pair of returns are equal on the same day, but it can
vary over time. In addition, as in the CCC and DCC models, the DECO model also assumes that
the marginals are modelled by a univariate volatility model. Using the same notation, we have
d2

i,t = Var(ri,t|Ft−1), and the covariance matrix is written as Ht = DtRtDt as in Equation (5).
The equicorrelation matrix is given by:

Rt = (1− ρt)IN + ρtJN , (10)

where ρt is the equicorrelation, IN denotes the N-dimensional identity matrix and JN is the
N × N matrix of ones. According to Engle and Kelly (2012), R−1

t exist if and only if ρt 6= 1 and

2 From now on we just call the log-likelihood likelihood.
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ρt 6= −1/(N − 1), and Rt is positive definite if and only if ρt ∈ (−1/(N − 1), 1). The evaluation of the
likelihood is easy because we have closed forms for R−1

t and det(Rt), given by:

R−1
t =

1
1− ρt

IN −
ρt

(1− ρt)(1 + [N − 1]ρt)
JN , (11)

and
det(Rt) = (1− ρt)

N−1 [1 + (N − 1)ρt] , (12)

respectively. This description of the DECO model corresponds to a single block. The DECO model can
also be used considering many blocks, as described in Engle and Kelly (2012).

2.5. The OGARCH Model

Alexander and Chibumba (1996) propose the Orthogonal GARCH (OGARCH) model, a dimension
reduction technique to model the conditional covariance matrix. The model intends to simplify the
problem of modelling an N-dimensional system into modelling a system of K-dimension orthogonal
components where those components are obtained through principal component analysis (K ≤ N).
Since the components are orthogonal, the conditional covariance matrix of the whole system can be
obtained as:

Ht = ADtA′ + Vε, (13)

where A is an N × k matrix whose columns are the normalised eigenvectors associated with the
unconditional covariance matrix, Dt is a diagonal matrix whose elements are the conditional variances
of the k principal orthogonal components associated with the k largest eigenvalues, and Vε is the
covariance matrix of the errors that can be ignored. The conditional variances of each component can
be modelled by a GARCH-type model.

Alexander and Chibumba (1996) and Alexander (2002) emphasise the importance of using
a number of components k much smaller than N. However, Bauwens et al. (2006) and
Becker et al. (2015) suggest using k = N to avoid problems related with the inverse of Ht.
The OGARCH model with k = N is a particular case of the GO-GARCH model (Van der Weide 2002).

2.6. The Generalised Principal Volatility Components Model

The generalised principal volatility components (GPVC) procedure is a dimension reduction
technique recently proposed by Li et al. (2016), which decomposes a series into two groups of volatility
components. The first group corresponds to a small number of components with volatility evolving
over time while the second one corresponds to components whose volatility is constant over time.
The GPVC procedure considers an orthogonal matrix M = [A : B] and decomposes an N-dimensional
vector yt = (y1t, ..., yNt)

′ with E(yt|Ft−1) = 0 into:

yt = MM′yt = (AA′ + BB′)yt = Aft + fflt, (14)

with ft = A′yt and fflt = BB′yt. The matrix M is obtained through the decomposition GM = ΛM,
where Λ is a diagonal matrix with elements given by the eigenvalues in decreasing order and
M is the associated matrix of normalised eigenvectors. The columns of matrices A and B are the
eigenvectors associated with the non-zero and zero eigenvalues, respectively, which are obtained from
the eigenvalue decomposition of the matrix G. In practice, G is given by:

G =
g

∑
k=1

T

∑
t=1

ω(yt)E2 [(yty′t − Σ
)

I(‖yt−k‖ ≤ ‖yt‖)
]

, (15)
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where g is a positive integer that gives the maximum lag order considered, ω(·) is a weight function,
Σ is the unconditional covariance matrix and ‖ · ‖ is the L1 norm. Then, after some calculations,
the conditional covariance matrix can be obtained by:

Ht = AH f
t A′ + AA′ΣBB′ + BB′Σ, (16)

where H f
t is the conditional covariance matrix of the volatility components with volatility evolving

over time and the remaining are terms as defined previously3. The matrix G is estimated as:

Ĝ =
g

∑
k=1

T

∑
τ=1

ω(yτ)

[
1

T − k

T

∑
t=k+1

[(
yty′t − Σ̂

)
I(‖yt−k‖ ≤ ‖yτ‖)

]]2

. (17)

The estimated version of Equation (16) is obtained by replacing the true values with the
estimated ones.

2.7. The Robust GPVC Model

Trucíos et al. (2019) show the non-robustness of the GPVC procedure of Li et al. (2016) and propose
an alternative procedure to obtain volatility components that is robust to outliers. This procedure
is based on a robust estimator of the unconditional covariance matrix, a weighted estimator of
E [(yty′t − Σ) I(‖yt−k‖ ≤ ‖yt‖)], and robustified filters. The matrix (17) is replaced by a less sensitive
matrix, defined as:

ĜR =
g

∑
k=1

T

∑
τ=1

ω(yτ)

[
T

∑
t=k+1

δ∗(d2
t )
{
(yty′t − Σ̂R)I(‖yt−k‖ ≤ ‖yτ‖)

}]2

, (18)

where d2
t is the robust squared Mahalanobis distance given by d2

t = (yt − ˆ̄R)′Σ̂−1
t (yt − ˆ̄R) with

Σ̂t = 0.01ρ(y′t−1yt−1) + 0.99Σ̂t−1, Σ̂1 = Σ̂R and ˆ̄R, Σ̂R being robust estimates of the unconditional
mean and covariance matrix. Trucíos et al. (2019) use the minimum covariance determinant (MCD)
estimator of Rousseeuw (1984), implemented by the algorithm of Hubert et al. (2012). The robust filters,
ρ(·) and δ(·) are given by ρ(xt) = xt if d2

t ≤ c, ρ(xt) = Σ̂R if d2
t > c; δ(x) = 1 if x ≤ c, δ(x) = 1/x if

x > c and δ∗(·) = δ(·)/||δ(·)||, where ‖ · ‖ is the L1 norm. For details, see Trucíos et al. (2019).
To avoid returns corresponding to periods with high volatility being considered as possible

outliers, the robust procedure incorporates in the squared Mahalanobis distance a covariance matrix
evolving over time, which can be seen as a robust RM1994 method with λ = 0.99.

Finally, the conditional covariance matrix Ht is obtained as in Equation (16).

2.8. Linear and Non-Linear Shrinkage

Besides the estimation of the covariance matrix (Ht), in some of the aforementioned models, we
have to estimate the unconditional covariance or correlation matrix; for instance, the matrix C in
Equation (7) of the DCC model. Generally, the estimation of the unconditional correlation (covariance)
matrix is done using the sample correlation (covariance) matrix. However, this is inefficient in the
large dimensional case because we could end up with a number of parameters with the same order
of magnitude as the dataset, or even larger (see, for instance, the simulation study in the Appendix
of Engle et al. (2017)). In general, comparing the eigenvalues of the true correlation matrix with
the eigenvalues of the sample correlation matrix, there is a tendency to underestimate the smaller
eigenvalues and overestimate the larger ones. A natural way to reduce this bias is to increase the
smaller eigenvalues and decrease the larger sample eigenvalues and then reconstruct the estimate of the

3 Note that when Σ = I, Ht = AH f
t A′ + BB′Σ = AH f

t A′ + Σffl as presented in Li et al. (2016).
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correlation matrix. This is the main idea behind the shrinkage method. Engle et al. (2017) analyse the
use of three types the shrinkage: linear shrinkage of Ledoit and Wolf (2004b) with shrinkage target given
by (a multiple of) the identity matrix; linear shrinkage of Ledoit and Wolf (2004a) with shrinkage target
given by the equicorrelation matrix; and the non-linear shrinkage of Ledoit and Wolf (2012) for the
estimation of the unconditional correlation matrix in Equation (7). Using simulation, they conclude that
the three types of shrinkage have better performance than the use of the sample correlation matrix in the
estimation of Ht, and the best performance is obtained from the non-linear shrinkage. They conclude
that the application of non-linear shrinkage improves the estimation, and the improvement generally
increases for a larger number of assets. In the application, they also apply the non-linear shrinkage to
the estimated one-step-ahead conditional covariance matrix, which is not done in the simulation study.
In the empirical application, they construct portfolios of global minimum variance with portfolio sizes
100, 500 and 1000 and updated monthly. As in the simulation study, they construct portfolios with Ht

modelled by DCC and CCC models and the RiskMetrics 2006 method. However, besides applying
the linear and non-linear shrinkage to the target correlation matrix, they also apply the shrinkages to
the one-step-ahead prediction of the volatility matrix. The best performance is achieved by the DCC
model with the non-linear shrinkage applied only to the estimation of the intercept matrix, followed
by the non-linear shrinkage applied both to the intercept matrix and to the one-step-ahead prediction
matrix. We use the linear shrinkage towards the equicorrelation matrix, because in Engle et al. (2017) it
presented slightly better performance than the shrinkage towards the identity matrix, although the
estimator does not belong to the class of rotation-equivariant estimators.

For a light introduction to the main idea behind shrinkage, suppose we want to estimate the
covariance matrix Σ and we have an estimate Ĉ based on a sample of size T. For instance, Ĉ could
be the sample covariance matrix and Σ, the population matrix (unconditional covariance matrix).
This is the case of the estimation of the DCC, where Σ is the intercept matrix. When the ratio N/T,
called concentration ratio, becomes large, we have in-sample overfitting due to the excessive number
of parameters, introducing a bias in the estimation of the eigenvalues. One way to correct this problem
is through the shrinkage method.

For the linear shrinkage towards the equicorrelation matrix, denote by ĉij the element of the
estimate Ĉ. The mean of the estimated correlations is given by:

r̄ =
2

(N − 1)N

N−1

∑
i=1

N

∑
j=i+1

ĉi,j√
ĉi,i ĉj,j

, (19)

such that for the target matrix F we have fi,i = ĉi,i and fi,j = r̄
√

ĉi,i ĉj,j. The shrinkage estimate
is given by:

Σ̂Shrink = δF + (1− δ)Ĉ, (20)

where the shrinkage intensity, δ, is such that it minimizes the expected quadratic loss as in
Ledoit and Wolf (2004a). For the shrinkage intensity δ, define the quadratic loss function

L(δ) = ||δF + (1− δ)Ĉ− Σ||2.

Ledoit and Wolf (2004a) propose to use the shrinkage intensity, which minimizes the risk function
R(δ) = E(L(δ)). The formulae and the derivation of the estimated shrinkage intensity can be found in
the Appendix B of Ledoit and Wolf (2004a).

Regarding the non-linear shrinkage, let Ĉ having dimension (N × N), (λ̂1, . . . , λ̂N), sorted in
descending order, be the set of eigenvalues, and (û1, . . . , ûN) the corresponding eigenvectors, such that:

Ĉ =
N

∑
i=1

λ̂iûiû′i. (21)
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For an investor holding a portfolio with weights ω, the estimated variance is given by ω′Ĉω.
The non-linear shrinkage of Ledoit and Wolf (2004b) is a transformation from (λ̂1, . . . , λ̂N) to
λ̃ = (λ̃1, . . . , λ̃N), such that substituting λ̂i for λ̃i in Equation (21) gives a consistent estimator of the
out-of-sample variance ω′Σω′. Denote by λ = (λ1, . . . , λN) the set of eigenvalues of Σ in descending
order. Ledoit and Wolf (2004b) define QuEST functions (q1(λ), . . . , qN(λ), such that λ̃ minimizes the
Euclidean distance between the QuEST functions and the sample eigenvalues, i.e., given by:

λ̃ = arg min
λ∈[0,∞)N

N

∑
i=1

[qi(λ)− λ̂i]
2. (22)

A definition of the QuEST functions and a rigorous exposition of non-linear shrinkage can be found in
Ledoit and Wolf (2012), while a lighter presentation can be found in the Supplementary Material of
Engle et al. (2017).

3. Empirical Application

3.1. Data and Methods

In this section, we implement the procedures described in Section 2 and use the predicted
one-step-ahead conditional covariance matrix to construct the minimum variance portfolio (MVP) of
the stocks used in the composition of the S&P 500 index, traded from 2 January 2000 to 30 November
2017. Because not all stocks of the index were traded during the whole period, we ended up with
N = 174 stocks.

To evaluate the out-of-sample portfolio performance, we consider a rolling window scheme.
The out-of-sample portfolio performance is evaluated in four different periods, namely: pre-crisis
period (January 2004 to December 2007, 1008 days), subprime crisis period (January 2008 to June 2009,
378 days), post-crisis period (July 2009 to November 2017, 2218 days), and full period (January 2004 to
November 2017, 3503 days). In each window, the one-step-ahead covariance matrix is estimated and
the MVP values with and without short-sale constraints are obtained. The weights in the MVP portfolio
are rebalanced with both daily and monthly frequencies. In the latter case, we follow Engle et al. (2017),
that is, we obtain the portfolio returns daily but update the weights monthly (following the common
convention we use 21 consecutive trading days as a month). Monthly updating is common in practice
to reduce transaction costs.

The procedures described in Section 2 are combined with the linear and non-linear shrinkage
estimator described in Subsection 2.8. The linear and non-linear shrinkage are applied at the beginning
and/or at the end of the estimation procedure. A detailed description of each combination of the
estimation procedures is given in the Appendix A. In addition, for the sake of comparison, we also
implement the naive equal-weighted portfolio. In the line of Engle et al. (2017), Gambacciani and
Paolella (2017), Trucíos et al. (2018) among others, we consider the following annualised out-of-sample
performance measures. Denote by Rp = {rp,1, . . . , rp,k} the observed out-of-sample returns from
a given method where k in the length of the out-of-sample period. The measures considered in
this paper: the annualised average portfolio return (AV), standard deviation portfolio return (SD),
information ratio (IR), Sortino’s ratio (SR) and average turnover (TO) are computed as follows:

AV: equal to 252× R̄p, where R̄p is the average of the elements of Rp.
SD: equal to

√
252× Sp, where Sp is the standard deviation of the elements of Rp.

IR: AV/SD.
SR: AV/

√
252× S∗2, where S∗2 is the mean of r∗p,i, i = 1, . . . , k, with r∗p,i = r2

p,i if rp,i less than the
minimal acceptable return, which is taken to zero, and zero otherwise.

TO: k−1
k

∑
t=2

N

∑
j=1
|ωj,t −ωj,t−1| where ωj,t is the portfolio weight at time t for the j-th asset, and k is the

number of the out-of-sample portfolio returns.
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As pointed out by Kirby and Ostdiek (2012), Santos and Ferreira (2017), Olivares-Nadal
and DeMiguel (2018), among others, transaction costs (c) can have an impact on the portfolio’s
performance. In order to take into account those costs, we also compute the portfolio returns net
of transaction cost. For a given c, the portfolio return net of transaction costs at time t is given
by rnet

p,t = (1− c× turnovert)(1 + rp,t)− 1 and then the annualised average portfolio return net of
transaction costs is AVnet = 252 × R̄net

p where R̄net
p is the average of the portfolio return net of

transaction costs rnet
p,1 , . . . , rnet

p,k . We consider c = 20bp (intermediate) and c = 50bp (high level)
transaction costs where a basis point (bp) is a unit of measure commonly used in finance and is
equivalent to 0.01%. The annualised average portfolio return net of transation costs considering
c = 20bp and c = 50bp are denoted by AVnet

20bp and AVnet
50bp, respectively.

3.2. Results

Tables 1–8 report annualised out-of-sample performance measures for MVP with performance
for the pre-crisis, crisis, post-crisis and full periods. Tables 1–4 report the results for daily rebalanced
portfolios whereas Tables 5–8 report the results for monthly rebalanced portfolios. We also have
results for MVP with no short-sale constraints. However, in this paper we focus on the results for
MVP with short-sale constraints and give a short summary of the main findings for the case without
short-sale constraints. A detailed analysis of the case without short-sale constraints is given in the
Supplementary Material.

In Tables 1–8 we report (in parentheses) the rank of the methods according to the SD criterion in
the second column. Moreover, for each criterion, the best five methods are highlighted in shadowed
cells. The equal-weighted portfolio strategy is represented by 1/N.

Taking into account the fact that portfolios are chosen in order to have the minimum variance,
the analysis is first done according to the SD criterion. For portfolios rebalanced daily or monthly,
the largest SD is reported by the equal-weight portfolio strategy. For portfolios rebalanced daily
(Tables 1–4), the five smallest SDs are obtained by the DCC based-methods, except in the crisis period,
in which case the five smallest SDs are spread among the DCC, OGARCH and GPVC based-methods.
In the crisis-period, the smallest SD is obtained by the GPVC procedure with the non-linear shrinkage
applied to the one-step-ahead conditional covariance matrix. For portfolios rebalanced monthly
(Tables 5–8), the smallest SDs are obtained by the RM2006-LS4, NLS-DCC, NLS-GPVC and RM2006-LS
procedures for the full, pre-crisis, crisis and post-crisis periods, respectively.

The best performance in terms of the AV criterion differs depending on the period and rebalance
strategy. For instance, for daily rebalancing the best performance in the full period is achieved
by the RPVC followed by the RPVC with non-linear shrinkage applied to the one-step-ahead
conditional covariance matrix. However, for the pre-crisis, crises and post-crisis periods, the best
performance is achieved by the OGARCH with non-linear shrinkage applied to the unconditional
covariance matrix (NLS-OGARCH), RPVC with linear shrinkage applied to the one-step-ahead
conditional covariance matrix (RPVC-LS) and RiskMetrics method with linear shrinkage applied to
the one-step-ahead conditional covariance matrix (RM1994-LS), respectively. For monthly rebalancing,
the best performances in the full, pre-crisis, crisis and post-crisis periods are achieved by the RPVC,
OGARCH-NLS, GPVC-LS and equal-weight portfolio strategy, respectively.

In terms of average turnover, the five smallest average turnovers are in the OGARCH and GPVC
groups, with the best performance being achieved by the OGARCH with non-linear shrinkage applied
to the one-step-ahead conditional covariance matrix in almost all cases. The only two exceptions
are observed in the crisis period, in which case the best performance is achieved by the GPVC
procedure with non-linear shrinkage applied to the one-step-ahead conditional covariance matrix.

4 The acronyms are described in the Appendix A.
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Additionally, note that regardless of whether portfolio is rebalanced daily or monthly, the average
turnover reported by all dimension reduction techniques is smaller than reported by the non-dimension
reduction procedures.

Table 1. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to November 2017. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 8.302 20.058 (47) 0.414 0.570 - - -

CCC 7.706 11.839 (12) 0.651 0.890 0.297 7.509 7.279
CCC LS 7.004 11.881 (14) 0.590 0.807 0.307 6.815 6.578
CCC NLS 7.876 11.932 (17) 0.660 0.905 0.277 7.685 7.470
LS CCC 7.506 11.816 (11) 0.635 0.868 0.302 7.311 7.078
NLS CCC 7.345 11.809 (10) 0.622 0.848 0.298 7.153 6.923
LS CCC LS 6.628 11.918 (16) 0.556 0.759 0.305 6.439 6.205
NLS CCC NLS 7.522 11.910 (15) 0.632 0.865 0.303 7.327 7.091
DCC 7.737 11.613 (2) 0.666 0.908 0.308 7.532 7.296
DCC LS 6.941 11.689 (5) 0.594 0.810 0.314 6.749 6.508
DCC NLS 7.711 11.695 (6) 0.659 0.905 0.285 7.513 7.292
LS DCC 7.707 11.613 (1) 0.664 0.904 0.308 7.502 7.266
NLS DCC 7.629 11.616 (3) 0.657 0.894 0.307 7.424 7.188
LS DCC LS 6.907 11.688 (4) 0.591 0.806 0.314 6.715 6.474
NLS DCC NLS 7.645 11.699 (7) 0.653 0.896 0.283 7.447 7.227
RM2006 8.649 11.809 (9) 0.732 0.995 0.271 8.446 8.234
RM2006 LS 8.746 11.724 (8) 0.746 1.017 0.282 8.564 8.343
RM2006 NLS 8.734 11.865 (13) 0.736 1.011 0.268 8.537 8.327
RM1994 8.502 12.220 (22) 0.696 0.947 0.283 8.289 8.069
RM1994 LS 8.391 12.012 (18) 0.699 0.953 0.277 8.196 7.979
RM1994 NLS 8.763 12.151 (19) 0.721 0.990 0.225 8.581 8.405
DECO 5.980 12.258 (25) 0.488 0.660 0.297 5.797 5.568
DECO NLS 6.103 12.485 (41) 0.489 0.669 0.360 5.884 5.604
LS DECO 5.980 12.257 (24) 0.488 0.660 0.297 5.797 5.568
NLS DECO 5.981 12.257 (23) 0.488 0.660 0.297 5.798 5.569
NLS DECO NLS 6.103 12.485 (42) 0.489 0.669 0.360 5.884 5.604
OGARCH 8.363 12.341 (27) 0.678 0.936 0.095 8.271 8.196
OGARCH LS 7.052 12.544 (43) 0.562 0.773 0.103 6.974 6.893
OGARCH NLS 8.126 12.154 (20) 0.669 0.928 0.072 8.052 7.996
LS OGARCH 7.951 12.477 (39) 0.637 0.877 0.095 7.860 7.786
NLS OGARCH 8.365 12.341 (27) 0.678 0.936 0.095 8.273 8.198
LS OGARCH LS 6.880 12.710 (44) 0.541 0.743 0.101 6.802 6.723
NLS OGARCH NLS 8.126 12.154 (20) 0.669 0.928 0.072 8.051 7.996
GPVC 7.825 12.467 (38) 0.628 0.861 0.132 7.700 7.598
GPVC LS 7.438 12.274 (26) 0.606 0.834 0.106 7.341 7.259
GPVC NLS 6.727 12.369 (31) 0.544 0.749 0.113 6.621 6.533
LS GPVC 7.994 12.452 (36) 0.642 0.891 0.117 7.872 7.781
NLS GPVC 7.672 12.433 (33) 0.617 0.845 0.130 7.547 7.447
LS GPVC LS 7.470 12.429 (32) 0.601 0.826 0.161 7.359 7.238
NLS GPVC NLS 6.725 12.365 (30) 0.544 0.749 0.113 6.619 6.533
RPVC 9.657 12.785 (45) 0.755 1.047 0.222 9.479 9.310
RPCV LS 7.989 12.439 (34) 0.642 0.889 0.180 7.861 7.724
RPVC NLS 9.186 12.485 (40) 0.736 1.026 0.184 9.035 8.893
LS RPVC 8.543 12.347 (29) 0.692 0.953 0.201 8.387 8.235
NLS RPVC 8.064 13.142 (46) 0.614 0.850 0.191 7.904 7.755
LS RPCV LS 7.493 12.439 (35) 0.602 0.828 0.167 7.378 7.252
NLS RPVC NLS 7.658 12.460 (37) 0.615 0.850 0.172 7.509 7.376
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Table 2. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to December 2007. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 12.732 12.755 (47) 0.998 1.418 - - -

CCC 11.425 8.381 (6) 1.363 1.963 0.256 11.137 10.934
CCC LS 9.818 8.495 (14) 1.156 1.655 0.264 9.569 9.362
CCC NLS 11.157 8.404 (11) 1.328 1.907 0.247 10.863 10.668
LS CCC 11.305 8.394 (9) 1.347 1.940 0.258 11.030 10.826
NLS CCC 11.461 8.399 (10) 1.365 1.966 0.251 11.195 10.997
LS CCC LS 9.632 8.628 (17) 1.116 1.596 0.258 9.386 9.183
NLS CCC NLS 11.172 8.426 (12) 1.326 1.910 0.263 10.901 10.692
DCC 11.144 8.203 (3) 1.359 1.947 0.263 10.843 10.636
DCC LS 9.450 8.394 (8) 1.126 1.605 0.268 9.201 8.992
DCC NLS 10.919 8.234 (5) 1.326 1.898 0.253 10.609 10.410
LS DCC 11.103 8.199 (2) 1.354 1.941 0.263 10.802 10.596
NLS DCC 11.035 8.196 (1) 1.346 1.929 0.262 10.733 10.527
LS DCC LS 9.423 8.391 (7) 1.123 1.601 0.268 9.174 8.965
NLS DCC NLS 10.829 8.226 (4) 1.316 1.884 0.252 10.519 10.321
RM2006 11.983 8.553 (15) 1.401 2.045 0.258 11.630 11.426
RM2006 LS 10.988 8.435 (13) 1.303 1.887 0.268 10.728 10.516
RM2006 NLS 9.852 8.686 (19) 1.134 1.619 0.259 9.520 9.318
RM1994 9.496 9.148 (29) 1.038 1.503 0.282 9.121 8.902
RM1994 LS 8.498 8.866 (23) 0.959 1.374 0.275 8.182 7.967
RM1994 NLS 10.080 9.112 (28) 1.106 1.584 0.220 9.742 9.571
DECO 9.282 9.062 (25) 1.024 1.457 0.253 9.040 8.840
DECO NLS 8.998 9.197 (32) 0.978 1.388 0.302 8.725 8.487
LS DECO 9.280 9.063 (26) 1.024 1.456 0.253 9.039 8.838
NLS DECO 9.271 9.064 (27) 1.023 1.455 0.254 9.030 8.829
NLS DECO NLS 8.998 9.197 (33) 0.978 1.388 0.302 8.725 8.487
OGARCH 13.356 9.188 (31) 1.454 2.097 0.083 13.165 13.100
OGARCH LS 11.565 10.105 (45) 1.144 1.602 0.088 11.435 11.367
OGARCH NLS 12.805 9.203 (34) 1.391 1.998 0.071 12.638 12.582
LS OGARCH 13.068 9.257 (36) 1.412 2.030 0.081 12.885 12.821
NLS OGARCH 13.362 9.188 (30) 1.454 2.098 0.083 13.172 13.106
LS OGARCH LS 11.305 10.326 (46) 1.095 1.528 0.082 11.175 11.110
NLS OGARCH NLS 12.804 9.203 (34) 1.391 1.997 0.071 12.637 12.582
GPVC 11.497 9.268 (37) 1.241 1.757 0.109 11.246 11.163
GPVC LS 11.024 9.282 (39) 1.188 1.680 0.082 10.835 10.772
GPVC NLS 11.210 9.320 (43) 1.203 1.690 0.099 10.993 10.918
LS GPVC 12.213 9.294 (41) 1.314 1.868 0.094 11.953 11.881
NLS GPVC 11.274 9.348 (44) 1.206 1.703 0.108 11.020 10.938
LS GPVC LS 10.325 9.288 (40) 1.112 1.559 0.129 10.153 10.052
NLS GPVC NLS 11.165 9.318 (42) 1.198 1.683 0.097 10.949 10.876
RPVC 12.966 8.680 (18) 1.494 2.169 0.193 12.642 12.492
RPCV LS 10.423 9.000 (24) 1.158 1.646 0.152 10.218 10.100
RPVC NLS 12.233 8.697 (20) 1.407 2.018 0.171 11.951 11.818
LS RPVC 11.635 8.577 (16) 1.357 1.944 0.175 11.354 11.218
NLS RPVC 10.878 8.829 (22) 1.232 1.760 0.171 10.579 10.447
LS RPCV LS 10.304 9.271 (38) 1.111 1.558 0.139 10.125 10.016
NLS RPVC NLS 10.628 8.760 (21) 1.213 1.723 0.158 10.336 10.215
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Table 3. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2008 to June 2009. The shaded cells denote the top five for
each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N −30.668 43.046 (47) −0.713 −0.960 - - -

CCC −25.407 22.009 (20) −1.154 −1.464 0.362 −25.564 −25.799
CCC LS −25.522 22.003 (19) −1.160 −1.471 0.365 −25.680 −25.917
CCC NLS −23.682 22.613 (27) −1.047 −1.344 0.300 −23.820 −24.026
LS CCC −26.288 21.934 (13) −1.199 −1.516 0.369 −26.448 −26.686
NLS CCC −27.144 21.965 (16) −1.236 −1.558 0.365 −27.301 −27.537
LS CCC LS −27.052 21.967 (17) −1.232 −1.553 0.368 −27.211 −27.449
NLS CCC NLS −25.372 22.346 (25) −1.135 −1.446 0.326 −25.521 −25.743
DCC −26.520 21.580 (5) −1.229 −1.554 0.389 −26.683 −26.928
DCC LS −26.702 21.596 (7) −1.236 −1.563 0.391 −26.866 −27.112
DCC NLS −24.636 21.926 (12) −1.124 −1.446 0.312 −24.777 −24.989
LS DCC −26.639 21.582 (6) −1.234 −1.561 0.390 −26.802 −27.047
NLS DCC −27.020 21.596 (7) −1.251 −1.581 0.392 −27.184 −27.429
LS DCC LS −26.833 21.599 (9) −1.242 −1.570 0.392 −26.997 −27.243
NLS DCC NLS −24.899 21.952 (14) −1.134 −1.460 0.311 −25.039 −25.249
RM2006 −22.728 21.862 (11) −1.040 −1.326 0.281 −22.858 −23.054
RM2006 LS −22.912 21.815 (10) −1.050 −1.338 0.279 −23.041 −23.235
RM2006 NLS −21.267 21.958 (15) −0.969 −1.264 0.216 −21.372 −21.529
RM1994 −20.793 22.108 (22) −0.941 −1.205 0.260 −20.914 −21.096
RM1994 LS −21.234 22.053 (21) −0.963 −1.232 0.259 −21.355 −21.537
RM1994 NLS −20.974 22.161 (23) −0.946 −1.236 0.178 −21.060 −21.188
DECO −31.859 22.706 (33) −1.403 −1.742 0.408 −32.030 −32.288
DECO NLS −29.187 22.618 (28) −1.291 −1.633 0.386 −29.358 −29.615
LS DECO −31.854 22.706 (32) −1.403 −1.742 0.408 −32.026 −32.284
NLS DECO −31.829 22.702 (31) −1.402 −1.741 0.408 −32.001 −32.258
NLS DECO NLS −29.188 22.618 (29) −1.291 −1.633 0.386 −29.359 −29.615
OGARCH −21.671 23.390 (36) −0.927 −1.218 0.107 −21.722 −21.799
OGARCH LS −21.745 23.360 (35) −0.931 −1.223 0.108 −21.796 −21.873
OGARCH NLS −20.118 21.541 (3) −0.934 −1.223 0.071 −20.153 −20.205
LS OGARCH −23.677 24.009 (45) −0.986 −1.291 0.109 −23.728 −23.804
NLS OGARCH −21.671 23.390 (36) −0.927 −1.218 0.107 −21.722 −21.799
LS OGARCH LS −23.571 23.957 (41) −0.984 −1.288 0.109 −23.622 −23.699
NLS OGARCH NLS −20.118 21.541 (3) −0.934 −1.223 0.071 −20.153 −20.205
GPVC −19.789 22.287 (24) −0.888 −1.151 0.105 −19.831 −19.894
GPVC LS −16.841 22.700 (30) −0.742 −0.973 0.113 −16.890 −16.964
GPVC NLS −23.692 21.444 (1) −1.105 −1.434 0.050 −23.711 −23.740
LS GPVC −18.380 22.823 (34) −0.805 −1.079 0.112 −18.429 −18.503
NLS GPVC −20.574 21.983 (18) −0.936 −1.207 0.102 −20.614 −20.674
LS GPVC LS −21.137 23.982 (43) −0.881 −1.144 0.193 −21.208 −21.315
NLS GPVC NLS −23.716 21.451 (2) −1.106 −1.435 0.050 −23.735 −23.764
RPVC −17.369 23.870 (40) −0.728 −0.962 0.188 −17.446 −17.561
RPCV LS −15.911 23.839 (39) −0.667 −0.888 0.189 −15.990 −16.109
RPVC NLS −22.229 22.432 (26) −0.991 −1.296 0.114 −22.277 −22.350
LS RPVC −21.004 23.672 (38) −0.887 −1.153 0.195 −21.076 −21.183
NLS RPVC −25.119 27.169 (46) −0.925 −1.231 0.156 −25.192 −25.302
LS RPCV LS −21.164 23.982 (44) −0.883 −1.145 0.193 −21.235 −21.342
NLS RPVC NLS −25.492 23.964 (42) −1.064 −1.389 0.115 −25.543 −25.620
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Table 4. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period July 2009 to November 2017. The shaded cells denote the top five
for each criterion. Weights are rebalanced on a daily basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 13.130 16.057 (47) 0.818 1.148 - - -

CCC 11.830 10.561 (15) 1.120 1.606 0.306 11.669 11.427
CCC LS 11.455 10.599 (18) 1.081 1.554 0.318 11.288 11.037
CCC NLS 11.932 10.502 (10) 1.136 1.628 0.288 11.781 11.554
LS CCC 11.713 10.540 (13) 1.111 1.595 0.310 11.550 11.304
NLS CCC 11.525 10.512 (11) 1.096 1.571 0.308 11.362 11.119
LS CCC LS 11.193 10.629 (19) 1.053 1.514 0.315 11.027 10.778
NLS CCC NLS 11.640 10.552 (14) 1.103 1.583 0.317 11.473 11.222
DCC 12.213 10.366 (1) 1.178 1.681 0.315 12.047 11.797
DCC LS 11.736 10.429 (8) 1.125 1.612 0.322 11.566 11.311
DCC NLS 11.942 10.383 (5) 1.150 1.644 0.295 11.786 11.553
LS DCC 12.204 10.366 (1) 1.177 1.679 0.314 12.038 11.788
NLS DCC 12.175 10.367 (3) 1.174 1.674 0.314 12.009 11.761
LS DCC LS 11.715 10.427 (7) 1.124 1.609 0.322 11.545 11.290
NLS DCC NLS 11.922 10.383 (4) 1.148 1.641 0.293 11.768 11.536
RM2006 12.648 10.498 (9) 1.205 1.686 0.275 12.502 12.283
RM2006 LS 13.314 10.403 (6) 1.280 1.812 0.289 13.160 12.930
RM2006 NLS 13.542 10.518 (12) 1.288 1.820 0.281 13.393 13.169
RM1994 13.243 10.941 (35) 1.210 1.691 0.287 13.091 12.863
RM1994 LS 13.613 10.686 (25) 1.274 1.799 0.281 13.463 13.239
RM1994 NLS 13.430 10.808 (32) 1.243 1.747 0.235 13.305 13.117
DECO 11.144 10.806 (29) 1.031 1.478 0.298 10.986 10.749
DECO NLS 11.007 11.214 (39) 0.982 1.410 0.383 10.805 10.501
LS DECO 11.145 10.806 (31) 1.031 1.478 0.298 10.987 10.750
NLS DECO 11.145 10.806 (29) 1.031 1.478 0.298 10.987 10.750
NLS DECO NLS 11.007 11.214 (39) 0.982 1.410 0.383 10.805 10.501
OGARCH 11.333 10.671 (22) 1.062 1.508 0.098 11.280 11.201
OGARCH LS 10.030 10.684 (24) 0.939 1.334 0.109 9.972 9.885
OGARCH NLS 10.927 11.000 (36) 0.993 1.422 0.072 10.889 10.833
LS OGARCH 11.145 10.658 (20) 1.046 1.485 0.099 11.092 11.012
NLS OGARCH 11.333 10.671 (22) 1.062 1.508 0.098 11.280 11.201
LS OGARCH LS 10.194 10.669 (21) 0.956 1.360 0.108 10.136 10.050
NLS OGARCH NLS 10.926 11.000 (37) 0.993 1.421 0.072 10.889 10.833
GPVC 10.992 11.289 (41) 0.974 1.377 0.148 10.913 10.795
GPVC LS 10.052 10.781 (27) 0.932 1.324 0.116 9.991 9.898
GPVC NLS 10.008 11.374 (44) 0.880 1.251 0.132 9.939 9.835
LS GPVC 10.681 11.061 (38) 0.966 1.366 0.128 10.612 10.508
NLS GPVC 10.985 11.300 (42) 0.972 1.375 0.146 10.907 10.790
LS GPVC LS 11.203 10.569 (16) 1.060 1.532 0.170 11.114 10.981
NLS GPVC NLS 10.030 11.364 (43) 0.883 1.256 0.131 9.962 9.858
RPVC 12.892 11.524 (46) 1.119 1.592 0.241 12.766 12.578
RPCV LS 11.084 10.772 (26) 1.029 1.466 0.192 10.985 10.836
RPVC NLS 13.327 11.476 (45) 1.161 1.682 0.202 13.221 13.062
LS RPVC 12.331 10.816 (33) 1.140 1.636 0.214 12.219 12.051
NLS RPVC 12.630 10.801 (28) 1.169 1.677 0.207 12.521 12.358
LS RPCV LS 11.256 10.596 (17) 1.062 1.535 0.177 11.164 11.026
NLS RPVC NLS 12.145 10.837 (34) 1.121 1.619 0.189 12.047 11.898
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Table 5. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to November 2017. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 8.302 20.058 (47) 0.414 0.570 - - -
CCC 7.946 12.262 (10) 0.648 0.902 0.319 7.938 7.925
CCC LS 6.832 12.263 (11) 0.557 0.775 0.329 6.823 6.810
CCC NLS 7.725 12.388 (16) 0.624 0.867 0.296 7.717 7.704
LS CCC 7.731 12.261 (9) 0.631 0.878 0.323 7.723 7.709
NLS CCC 7.588 12.278 (14) 0.618 0.859 0.319 7.579 7.566
LS CCC LS 6.471 12.359 (15) 0.524 0.728 0.325 6.462 6.449
NLS CCC NLS 7.758 12.439 (20) 0.624 0.869 0.321 7.749 7.736
DCC 7.425 12.182 (3) 0.610 0.845 0.325 7.416 7.403
DCC LS 6.567 12.200 (6) 0.538 0.747 0.334 6.558 6.544
DCC NLS 6.901 12.247 (8) 0.563 0.780 0.302 6.892 6.879
LS DCC 7.386 12.184 (4) 0.606 0.840 0.325 7.377 7.364
NLS DCC 7.296 12.193 (5) 0.598 0.829 0.325 7.287 7.274
LS DCC LS 6.518 12.203 (7) 0.534 0.741 0.334 6.509 6.495
NLS DCC NLS 6.781 12.266 (12) 0.553 0.764 0.300 6.772 6.760
RM2006 7.350 12.012 (2) 0.612 0.843 0.287 7.342 7.329
RM2006 LS 7.442 11.870 (1) 0.627 0.867 0.294 7.434 7.421
RM2006 NLS 7.101 12.274 (13) 0.579 0.798 0.296 7.093 7.081
RM1994 7.777 12.644 (29) 0.615 0.848 0.296 7.769 7.756
RM1994 LS 7.157 12.391 (17) 0.578 0.796 0.292 7.149 7.136
RM1994 NLS 7.906 12.606 (27) 0.627 0.865 0.254 7.899 7.888
DECO 5.631 12.899 (43) 0.437 0.608 0.317 5.622 5.609
DECO NLS 5.641 13.162 (44) 0.429 0.599 0.386 5.630 5.614
LS DECO 5.631 12.899 (42) 0.437 0.608 0.317 5.622 5.609
NLS DECO 5.631 12.899 (41) 0.437 0.608 0.317 5.622 5.609
NLS DECO NLS 5.640 13.162 (45) 0.429 0.599 0.386 5.630 5.614
OGARCH 7.819 12.556 (24) 0.623 0.859 0.101 7.816 7.812
OGARCH LS 6.848 12.687 (32) 0.540 0.744 0.113 6.845 6.840
OGARCH NLS 7.985 12.451 (22) 0.641 0.891 0.078 7.984 7.981
LS OGARCH 7.581 12.716 (37) 0.596 0.821 0.103 7.579 7.575
NLS OGARCH 7.821 12.555 (23) 0.623 0.859 0.101 7.818 7.814
LS OGARCH LS 7.029 12.893 (40) 0.545 0.751 0.111 7.026 7.021
NLS OGARCH NLS 7.993 12.451 (21) 0.642 0.891 0.078 7.991 7.988
GPVC 7.282 12.707 (34) 0.573 0.789 0.155 7.277 7.271
GPVC LS 7.225 12.435 (19) 0.581 0.801 0.120 7.222 7.218
GPVC NLS 6.560 12.672 (31) 0.518 0.712 0.132 6.557 6.552
LS GPVC 7.200 12.713 (36) 0.566 0.783 0.138 7.196 7.190
NLS GPVC 7.223 12.697 (33) 0.569 0.782 0.153 7.219 7.212
LS GPVC LS 6.521 12.568 (25) 0.519 0.718 0.172 6.516 6.509
NLS GPVC NLS 6.568 12.665 (30) 0.519 0.713 0.130 6.565 6.559
RPVC 8.453 12.712 (35) 0.665 0.920 0.248 8.446 8.436
RPCV LS 7.355 12.415 (18) 0.592 0.822 0.193 7.350 7.342
RPVC NLS 8.011 12.816 (39) 0.625 0.863 0.201 8.005 7.997
LS RPVC 7.000 12.615 (28) 0.555 0.765 0.227 6.994 6.985
NLS RPVC 6.488 13.243 (46) 0.490 0.676 0.203 6.482 6.474
LS RPCV LS 6.535 12.588 (26) 0.519 0.718 0.180 6.530 6.523
NLS RPVC NLS 6.874 12.741 (38) 0.540 0.743 0.182 6.869 6.862
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Table 6. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period January 2004 to December 2007. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 12.732 12.755 (47) 0.998 1.418 - - -
CCC 10.636 8.697 (7) 1.223 1.750 0.265 10.629 10.618
CCC LS 7.605 8.868 (19) 0.858 1.208 0.284 7.597 7.585
CCC NLS 10.356 8.732 (8) 1.186 1.694 0.254 10.349 10.338
LS CCC 10.158 8.738 (9) 1.163 1.659 0.269 10.150 10.139
NLS CCC 10.186 8.758 (11) 1.163 1.659 0.263 10.179 10.168
LS CCC LS 7.319 9.045 (23) 0.809 1.137 0.281 7.312 7.300
NLS CCC NLS 9.802 8.809 (16) 1.113 1.581 0.277 9.795 9.784
DCC 10.939 8.612 (3) 1.270 1.825 0.271 10.932 10.920
DCC LS 7.691 8.796 (15) 0.874 1.233 0.286 7.683 7.671
DCC NLS 10.763 8.661 (6) 1.243 1.782 0.260 10.756 10.745
LS DCC 10.923 8.608 (2) 1.269 1.823 0.271 10.915 10.904
NLS DCC 10.889 8.599 (1) 1.266 1.819 0.269 10.882 10.871
LS DCC LS 7.672 8.795 (14) 0.872 1.230 0.284 7.664 7.653
NLS DCC NLS 10.725 8.649 (5) 1.240 1.778 0.258 10.718 10.707
RM2006 10.378 8.765 (13) 1.184 1.706 0.292 10.369 10.357
RM2006 LS 9.295 8.629 (4) 1.077 1.540 0.300 9.287 9.275
RM2006 NLS 9.578 8.884 (20) 1.078 1.527 0.313 9.569 9.556
RM1994 8.112 9.545 (37) 0.850 1.209 0.323 8.103 8.089
RM1994 LS 6.813 9.279 (24) 0.734 1.033 0.317 6.804 6.791
RM1994 NLS 9.912 9.282 (25) 1.068 1.520 0.265 9.904 9.892
DECO 6.883 9.577 (39) 0.719 1.009 0.277 6.875 6.864
DECO NLS 6.257 9.784 (43) 0.640 0.887 0.340 6.247 6.233
LS DECO 6.882 9.577 (39) 0.719 1.008 0.277 6.875 6.863
NLS DECO 6.873 9.577 (41) 0.718 1.007 0.277 6.865 6.854
NLS DECO NLS 6.257 9.784 (44) 0.640 0.887 0.340 6.247 6.233
OGARCH 12.682 9.305 (26) 1.363 1.958 0.088 12.680 12.676
OGARCH LS 11.229 10.166 (45) 1.105 1.556 0.097 11.226 11.222
OGARCH NLS 12.878 9.376 (29) 1.374 1.971 0.063 12.877 12.874
LS OGARCH 12.588 9.346 (28) 1.347 1.928 0.088 12.586 12.582
NLS OGARCH 12.682 9.305 (26) 1.363 1.958 0.088 12.680 12.676
LS OGARCH LS 11.414 10.359 (46) 1.102 1.548 0.090 11.411 11.408
NLS OGARCH NLS 12.878 9.376 (29) 1.374 1.971 0.063 12.877 12.874
GPVC 11.014 9.504 (36) 1.159 1.636 0.145 11.010 11.004
GPVC LS 11.064 9.438 (31) 1.172 1.657 0.105 11.061 11.057
GPVC NLS 10.637 9.478 (33) 1.122 1.569 0.134 10.634 10.628
LS GPVC 11.235 9.595 (42) 1.171 1.652 0.120 11.232 11.226
NLS GPVC 10.939 9.576 (38) 1.142 1.611 0.145 10.935 10.929
LS GPVC LS 9.183 9.503 (35) 0.966 1.345 0.139 9.179 9.174
NLS GPVC NLS 10.656 9.473 (32) 1.125 1.572 0.132 10.652 10.647
RPVC 11.558 8.741 (10) 1.322 1.896 0.216 11.552 11.544
RPCV LS 10.172 9.038 (22) 1.126 1.594 0.174 10.168 10.161
RPVC NLS 11.023 8.761 (12) 1.258 1.791 0.193 11.018 11.010
LS RPVC 9.859 8.845 (18) 1.115 1.566 0.202 9.854 9.846
NLS RPVC 9.802 8.925 (21) 1.098 1.558 0.193 9.797 9.789
LS RPCV LS 9.188 9.490 (34) 0.968 1.346 0.151 9.184 9.178
NLS RPVC NLS 9.995 8.828 (17) 1.132 1.600 0.183 9.990 9.982
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Table 7. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp
and AVnet

50bp stand for the average out-of-sample MVP return net of transaction costs considering 20
and 50 basis-points, respectively. Period January 2008 to June 2009. The shaded cells denote the top
five for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N −30.668 43.046 (47) −0.713 −0.960 - - -
CCC −25.344 22.796 (13) −1.112 −1.460 0.381 −25.355 −25.371
CCC LS −25.390 22.796 (14) −1.114 −1.462 0.383 −25.401 −25.418
CCC NLS −23.540 23.614 (33) −0.997 −1.318 0.318 −23.550 −23.566
LS CCC −25.295 22.748 (12) −1.112 −1.463 0.385 −25.306 −25.323
NLS CCC −26.760 22.916 (21) −1.168 −1.532 0.373 −26.771 −26.787
LS CCC LS −26.818 22.925 (22) −1.170 −1.535 0.375 −26.828 −26.844
NLS CCC NLS −25.222 23.536 (26) −1.072 −1.414 0.335 −25.233 −25.248
DCC −26.146 22.840 (16) −1.145 −1.508 0.419 −26.158 −26.175
DCC LS −26.248 22.850 (17) −1.149 −1.513 0.419 −26.259 −26.276
DCC NLS −23.982 23.354 (24) −1.027 −1.359 0.333 −23.993 −24.008
LS DCC −26.384 22.858 (18) −1.154 −1.520 0.419 −26.395 −26.412
NLS DCC −27.056 22.905 (20) −1.181 −1.554 0.419 −27.067 −27.084
LS DCC LS −26.495 22.865 (19) −1.159 −1.526 0.421 −26.506 −26.523
NLS DCC NLS −24.849 23.458 (25) −1.059 −1.401 0.331 −24.859 −24.875
RM2006 −22.356 22.084 (4) −1.012 −1.327 0.356 −22.367 −22.383
RM2006 LS −23.045 22.006 (2) −1.047 −1.370 0.356 −23.055 −23.071
RM2006 NLS −21.109 23.116 (23) −0.913 −1.206 0.274 −21.116 −21.126
RM1994 −22.685 22.716 (11) −0.999 −1.307 0.337 −22.695 −22.711
RM1994 LS −23.388 22.619 (10) −1.034 −1.350 0.335 −23.398 −23.413
RM1994 NLS −21.739 23.572 (28) −0.922 −1.215 0.235 −21.745 −21.755
DECO −28.184 24.101 (42) −1.169 −1.550 0.404 −28.197 −28.215
DECO NLS −27.588 23.858 (35) −1.156 −1.533 0.367 −27.599 −27.617
LS DECO −28.182 24.100 (41) −1.169 −1.550 0.404 −28.195 −28.213
NLS DECO −28.166 24.098 (40) −1.169 −1.549 0.404 −28.178 −28.197
NLS DECO NLS −27.591 23.859 (36) −1.156 −1.533 0.367 −27.602 −27.620
OGARCH −20.677 23.592 (30) −0.877 −1.145 0.124 −20.680 −20.683
OGARCH LS −20.855 23.577 (29) −0.885 −1.155 0.126 −20.857 −20.860
OGARCH NLS −19.608 22.343 (7) −0.878 −1.156 0.063 −19.610 −19.613
LS OGARCH −20.516 24.433 (44) −0.840 −1.098 0.130 −20.518 −20.522
NLS OGARCH −20.677 23.592 (30) −0.877 −1.145 0.124 −20.680 −20.683
LS OGARCH LS −20.564 24.390 (43) −0.843 −1.103 0.132 −20.567 −20.570
NLS OGARCH NLS −19.608 22.343 (7) −0.878 −1.156 0.061 −19.610 −19.613
GPVC −14.454 22.017 (3) −0.657 −0.868 0.138 −14.457 −14.462
GPVC LS −14.100 22.418 (9) −0.629 −0.831 0.136 −14.103 −14.107
GPVC NLS −20.436 22.235 (5) −0.919 −1.209 0.048 −20.438 −20.440
LS GPVC −15.361 22.807 (15) −0.674 −0.902 0.165 −15.364 −15.368
NLS GPVC −14.829 21.853 (1) −0.679 −0.892 0.134 −14.832 −14.837
LS GPVC LS −17.991 24.031 (38) −0.749 −0.995 0.226 −17.996 −18.004
NLS GPVC NLS −20.471 22.244 (6) −0.920 −1.210 0.048 −20.472 −20.474
RPVC −15.076 23.561 (27) −0.640 −0.849 0.203 −15.080 −15.086
RPCV LS −14.841 23.612 (32) −0.629 −0.837 0.201 −14.844 −14.850
RPVC NLS −23.341 23.711 (34) −0.984 −1.289 0.134 −23.344 −23.349
LS RPVC −18.340 23.935 (37) −0.766 −1.017 0.226 −18.345 −18.353
NLS RPVC −26.862 26.877 (46) −0.999 −1.331 0.178 −26.868 −26.876
LS RPCV LS −17.991 24.031 (38) −0.749 −0.995 0.226 −17.996 −18.004
NLS RPVC NLS −25.379 24.937 (45) −1.018 −1.338 0.140 −25.383 −25.388
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Table 8. Annualised performance measures: AV, SD, IR, SR and TO stand for the average, standard
deviation, information ratio, Sortino’s ratio and turnover of the out-of-sample MVP returns. AVnet

20bp and

AVnet
50bp stand for the average out-of-sample MVP return net of transaction costs considering 20 and

50 basis-points, respectively. Period July 2009 to November 2017. The shaded cells denote the top five
for each criterion. Weights are rebalanced on a monthly basis considering short-selling constraints.

AV SD IR SR TO AVnet
20bp AVnet

50bp

1/N 13.130 16.057 (47) 0.818 1.148 - - -
CCC 12.592 10.935 (21) 1.152 1.666 0.333 12.583 12.569
CCC LS 12.200 10.873 (17) 1.122 1.628 0.342 12.191 12.178
CCC NLS 12.038 10.852 (15) 1.109 1.600 0.310 12.029 12.017
LS CCC 12.455 10.936 (22) 1.139 1.648 0.340 12.446 12.432
NLS CCC 12.466 10.894 (18) 1.144 1.656 0.333 12.457 12.443
LS CCC LS 11.992 10.932 (20) 1.097 1.592 0.336 11.983 11.970
NLS CCC NLS 12.656 10.945 (23) 1.156 1.679 0.340 12.646 12.633
DCC 11.729 10.801 (11) 1.086 1.554 0.336 11.720 11.706
DCC LS 11.873 10.761 (7) 1.103 1.590 0.340 11.864 11.850
DCC NLS 10.560 10.716 (3) 0.985 1.402 0.315 10.551 10.538
LS DCC 11.714 10.800 (10) 1.085 1.551 0.333 11.705 11.691
NLS DCC 11.701 10.801 (12) 1.083 1.549 0.333 11.692 11.678
LS DCC LS 11.845 10.761 (6) 1.101 1.585 0.340 11.835 11.821
NLS DCC NLS 10.534 10.714 (2) 0.983 1.397 0.312 10.525 10.512
RM2006 11.197 10.716 (4) 1.045 1.476 0.271 11.189 11.177
RM2006 LS 11.987 10.531 (1) 1.138 1.627 0.279 11.978 11.966
RM2006 NLS 10.943 10.776 (8) 1.016 1.442 0.291 10.935 10.923
RM1994 13.040 11.344 (37) 1.150 1.630 0.275 13.032 13.021
RM1994 LS 12.758 11.017 (27) 1.158 1.653 0.273 12.750 12.738
RM1994 NLS 12.229 11.068 (28) 1.105 1.566 0.252 12.222 12.211
DECO 11.054 11.293 (34) 0.979 1.415 0.321 11.045 11.032
DECO NLS 11.262 11.791 (45) 0.955 1.392 0.409 11.251 11.235
LS DECO 11.054 11.293 (34) 0.979 1.415 0.321 11.045 11.032
NLS DECO 11.055 11.293 (36) 0.979 1.415 0.321 11.046 11.033
NLS DECO NLS 11.262 11.791 (45) 0.955 1.392 0.409 11.251 11.235
OGARCH 10.576 10.959 (25) 0.965 1.377 0.103 10.573 10.569
OGARCH LS 9.694 10.852 (16) 0.893 1.281 0.120 9.691 9.686
OGARCH NLS 10.568 11.197 (33) 0.944 1.348 0.088 10.566 10.563
LS OGARCH 10.200 10.921 (19) 0.934 1.332 0.103 10.197 10.192
NLS OGARCH 10.580 10.958 (24) 0.966 1.377 0.103 10.577 10.573
LS OGARCH LS 9.853 10.847 (14) 0.908 1.304 0.115 9.850 9.845
NLS OGARCH NLS 10.581 11.197 (32) 0.945 1.350 0.088 10.579 10.576
GPVC 9.374 11.733 (43) 0.799 1.121 0.161 9.370 9.363
GPVC LS 9.194 11.126 (31) 0.826 1.168 0.124 9.191 9.186
GPVC NLS 9.425 11.598 (41) 0.813 1.146 0.145 9.421 9.416
LS GPVC 9.295 11.436 (38) 0.813 1.143 0.141 9.291 9.285
NLS GPVC 9.379 11.742 (44) 0.799 1.122 0.159 9.375 9.368
LS GPVC LS 9.617 10.737 (5) 0.896 1.283 0.180 9.612 9.605
NLS GPVC NLS 9.435 11.585 (40) 0.815 1.149 0.145 9.432 9.426
RPVC 11.163 11.486 (39) 0.972 1.376 0.268 11.155 11.144
RPCV LS 9.965 10.803 (13) 0.922 1.319 0.201 9.959 9.951
RPVC NLS 12.158 11.600 (42) 1.048 1.497 0.218 12.152 12.143
LS RPVC 10.150 11.125 (30) 0.912 1.291 0.239 10.143 10.133
NLS RPVC 10.847 11.091 (29) 0.978 1.388 0.212 10.841 10.833
LS RPCV LS 9.637 10.782 (9) 0.894 1.279 0.187 9.632 9.624
NLS RPVC NLS 11.130 10.964 (26) 1.015 1.451 0.189 11.125 11.118

As for the annualised average portfolio returns taking into account transaction costs, the
procedures with the five largest values of AVnet

20bp and AVnet
50bp are the same procedures with the

largest AV, except in some cases in the pre-crisis period, where one of five largest AVnet
50bp is obtained by

the NLS-OGARCH-NLS procedure.
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For each period, the five best methods in terms of information criteria are the same (except in
Table 8, where four methods are the same). We omit the analysis in the crisis period because these
criteria values are negative. Overall, for daily rebalancing, RiskMetrics based methods are among
the best in the full and post-crisis periods, RPVC and RPVC-NLS are among the best in the full and
pre-crisis periods, and NLS-OGARCH and LS-OGARCH are among the best in the pre-crisis period.
For monthly rebalancing, some OGARCH-based methods are among the best in the pre-crisis and full
periods, some CCC-based methods are among the best in the post-crisis and full periods, RM1994-LS
is among the best for the post-crisis period, and RPVC is among the best for the full period.

The analysis of Tables 1–8 reveals that none of the methods is the best in all scenarios and the
performance depends on the criterion, the period and the rebalancing strategy. In this sense, the
analysis will focus on the full period (Tables 1 and 5) in order to account for periods with different
volatility levels. When portfolios are rebalanced on a daily basis, we find that DCC-based methods
are the best in terms of SD; RM2006-LS, RM2006-NL, RPVC and RPVC-NLS are the best in terms of
{AV, AVnet

20bp, AVnet
50bp} and {IR, SR}, and some OGARCH-based are the best regarding TO. For monthly

rebalanced portfolios, the best methods in terms of SD are DCC, LS-DCC, NLS-DCC, RM2006 and
RM2006-LS, whereas the best performances in terms of {AV, AVnet

20bp, AVnet
50bp} and {IR, SR} are given by

(RPVC, RPVC-NLS), (OGARCH-NLS,NLS-OGARCH-NLS) and CCC. In addition, the equal-weighted
strategy is the second best in terms of AV, but the worst regarding SD, IR and SR criteria.

To show when the shrinkage method improves performance in terms of SD, the analysis is again
focused on the full period (Tables 1 and 5). For daily and monthly portfolio rebalancing : shrinkage
always improves the performance of the RM2004 and GPVC methods (except LS-GPVC for monthly
rebalancing) whereas it always worsens the DCC method; linear shrinkage at the end improves
RM2006; just linear/non-linear shrinkage at the beginning improves DECO; OGARCH-NLS and
NLS-OGARCH-NLS improves OGARCH; LS-CCC improves CCC (as well as NLS-DCC for daily
rebalancing). Additionally, for daily rebalancing, shrinkage always improves the performance of RPVC
(except LS-GPVC), whereas for monthly rebalancing, linear shrinkage applied at the beginning and/or
end improves RPVC. Nakagawa et al. (2018) also reports that in some cases the use of non-linear
shrinkage on the unconditional covariance matrix of the devolatilised returns in the DCC model
increases the standard deviation of the out-of-sample portfolio returns.

We now discuss the effect of shrinkage in terms of AVnet
50bp. For daily rebalancing, shrinkage

improves the performance of the RM2006 and DECO methods, and worsens the performance of the
DCC and RPVC methods. In addition, CCC-NLS is better than CCC, RM1994-NLS is better than
RM1994, and LS-GPVC is better than GPVC. For monthly rebalancing, shrinkage does not improve
the performance of the CCC, DCC, GPVC and RPVC methods. In addition, RM2006-LS is better than
RM2006, RM1994-NLS is better than RM1994, DECO-NLS and NLS-DECO-NLS are better than DECO,
and OGARCH-NLS and NLS-OGARCH-NLS are better than OGARCH.

Finally, we list next the main findings when short-selling is allowed for optimisation of the
portfolio variance. A detailed analysis of these cases is given in the Supplementary Material. First, none
of the methods is the best in all scenarios and the performance depends on the criterion, the sample
period and the portfolio rebalancing scheme. Second, the analysis of the full period reveals that for
daily rebalancing, DCC methods are the best regarding SD and are among the best in terms of IR and
SR. RM1994-LS and RM2006-LS are the best according to AV, AVnet

20bp, AVnet
50bp, IR and SR. For monthly

rebalancing, DCC-LS and LS-DCC-LS are among the best in terms of SD, RM2006-NLS is the best in
terms of SD and is among the best regarding IR and SR. RM 1994 and RM1994-LS are the first and
second best in terms of AV, AVnet

20bp, AVnet
50bp but are among the worst in terms of SD. Third, the analysis

of the turnover and average net returns in the no short-sale constraints case must be carefully done.
This is because since no limits are imposed on the weights of the portfolio, large turnover values can
be obtained and consequently we can have a large loss (average return) but huge net gain (average net
portfolio return taking into account transaction costs). Fourth, in many cases shrinkage improves the
performance of the methods in terms of SD, and this improvement can be substantial. Fifth, the top-five



Econometrics 2019, 7, 19 19 of 24

models in terms of SD are the same in both restricted and unrestricted minimum variance portfolios
for daily rebalancing, except in the crisis period.

4. Conclusions

The main conclusion of the paper is that none of the methods is the best in all scenarios and
the performance depends on the criterion, the sample period, the portfolio rebalancing scheme and
whether or not short-selling constraints are included in the portfolio optimisation process.

When short-selling constraints are included in the portfolio optimisation process, the main
results can be summarised as follows. First, none of the methods is the best in all scenarios
and the performance depends on the criterion, the sample period and the portfolio rebalancing
scheme. Second, when considering the SD criterion, the five smallest SDs are obtained by the DCC
based-methods, except in the crisis period, in which case, the five smallest SDs are spread among
the DCC, OGARCH and GPVC based-methods. In the crisis-period, the smallest SDs are obtained
by the GPVC procedure with the non-linear shrinkage applied to the one-step-ahead conditional
covariance matrix. For portfolios rebalanced monthly, the smallest SDs are obtained by the RM2006-LS,
NLS-DCC, NLS-GPVC and RM2006-LS procedures for the full, pre-crisis, crisis and post-crisis periods,
respectively. Third, unlike Engle et al. (2017) and Nakagawa et al. (2018), we do not find that applying
non-linear shrinkage to the unconditional correlation matrix of the devolatilised returns improves
the performance of the portfolio in terms of SD when the DCC model is used, and this also happens
when applied in other methods. It is important to point out that Engle et al. (2017) use portfolio of
1000 assets, Nakagawa et al. (2018) use portfolios of 100, 500 and 1000 assets and we use a portfolio
with 174 assets.

When short-selling is allowed for optimisation of the portfolio variance, the main conclusions
are: none of the methods is the best in all scenarios and the performance depends on the criterion,
the sample period and the portfolio rebalancing scheme; in many cases shrinkage improves the
performance of the methods in terms of SD and this improvement can be substantial; for daily
rebalancing the top-five models in terms of SD are the same of those when short-selling constraints
are imposed, except in the crisis period cases. Finally, focusing on the analysis of the full period cases
we can say that overall the DCC and Riskmetrics-based methods are the best; and the analysis of the
turnover and average net returns in the no short-selling constraints case should be carefully done.
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Appendix A. Estimation Methods

Here we present the detailed list of the estimation methods implemented in the paper.
The marginal variances in the CCC, DCC and DECO models were modelled by the GJR-(1,1)
model (Glosten et al. 1993) and the parameters were estimated by quasi-maximum likelihood
assuming a Student-t distribution. The volatility components in the GPVC and RPVC procedures were
modelled by the GJR(1,1)-cDCC(1,1) model and its robust version proposed by Boudt et al. (2013) and

http://www.mdpi.com/2225-1146/7/2/19/s1
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Laurent et al. (2016), respectively. The univariate variances in the OGARCH model were also modelled
by the GJR-(1,1).

In the GPVC and RPVC procedures, the number of selected volatility components was estimated
using criteria of Ahn and Horenstein (2013), Bai and Ng (2002) and Kaiser-Guttman Guttman (1954),
and using the ratio estimator proposed by Lam and Yao (2012). Following these criteria and the
suggestions in Trucíos et al. (2019), we use one volatility component in the GPVC procedure and four
volatility components in the RPVC procedure.

The CCC, DCC, DECO, RM1994 and RM2006 procedures were implemented using the MFE
Matlab Toolbox of Kevin Sheppard. The OGARCH, GPVC and RPVC procedures were implemented
in R (R Core Team 2017) using the R packages rugarch of Ghalanos (2017), Rcpp of Eddelbuettel and
François (2011) and covRobust of Wang et al. (2017). For the shrinkage procedures, we used the R
packages RiskPortfolios (Ardia et al. 2018) and nlshrink (Ramprasad 2016) for the linear and non-linear
shrinkage, respectively, coupled with the MATLAB toolbox QuEST (Ledoit and Wolf 2017) for the
non-linear shrinkage and the MATLAB function covCor5. Whenever a program presented other options,
we used the default options.

CCC based-methods

• CCC: Estimated by quasi-maximum likelihood.
• LS-CCC: Estimated as in CCC, but with the unconditional covariance matrix (Equation (4))

estimated using linear shrinkage.
• NLS-CCC: Estimated as in LS-CCC, but replacing linear by the non-linear shrinkage.
• CCC-LS: Estimated as in CCC, with the application of the linear shrinkage to the one-step-ahead

conditional covariance matrix HT+1.
• CCC-NLS: Estimated as in CCC-LS, but replacing linear by non-linear shrinkage.
• LS-CCC-LS: Estimated as in LS-CCC, with the application of non-linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.
• NLS-CCC-NLS: Estimated as in NLS-CCC, with the application of non-linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.

DCC based-methods

• DCC: Estimated by composite likelihood (Pakel et al. 2014) using consecutive pairs.
• LS-DCC: Estimated as in DCC, but with the unconditional covariance matrix of the devolatilised

returns (C in Equation (7)) estimated using linear shrinkage.
• NLS-DCC: Estimated as in LS-DCC, but replacing linear by non-linear shrinkage.
• DCC-LS: Estimated as in DCC, with the application of linear shrinkage to the one-step-ahead

conditional covariance matrix HT+1.
• DCC-NLS: Estimated as in DCC-LS, but replacing linear by non-linear shrinkage.
• LS-DCC-LS: Estimated as in LS-DCC, with the application of linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.
• NLS-DCC-NLS: Estimated as in NLS-DCC, with the application of non-linear shrinkage to the

one-step-ahead conditional covariance matrix HT+1.

DECO based-methods

• DECO: Estimated using a single block.
• LS-DECO: Estimated as in DECO, but the unconditional covariance matrix of the devolatilised

returns is estimated using linear shrinkage.

5 Available at www.econ.uzh.ch/en/people/faculty/wolf/publications.
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• NLS-DECO: Estimated as in LS-DECO, but replacing linear by non-linear shrinkage.
• DECO-NLS: Estimated as in DECO-LS, but non-linear shrinkage is applied to the one-step-ahead

conditional covariance matrix HT+1.
• NLS-DECO-NLS: Estimated as in NLS-DECO model, but with non-linear shrinkage applied to

the HT+1 and linear shrinkage towards the equicorrelation matrix

Because in the DECO model the estimated unconditional covariance matrix and HT+1 are already
equicorrelated there is no sense in using linear shrinkage towards the equicorrelation matrix, since it
has no effect.

RiskMetrics based-methods

• RM1994: RM1994 method.
• RM1994-LS: Estimated as in RM1994 with linear shrinkage applied to the one-step-ahead

conditional covariance matrix HT+1.
• RM1994-NLS: Estimated as in RM1994-LS but replacing linear by non-linear shrinkage.
• RM20066: RM2006 method (Zumbach 2007).
• RM2006-LS: Estimated as in RM2006 with linear shrinkage applied to the one-step-ahead

conditional covariance matrix HT+1.
• RM2006-NLS: Estimated as in RM2006-LS but replacing linear by non-linear shrinkage.

OGARCH based-methods

• OGARCH: The OGARCH model considers k = N components.
• LS-OGARCH: Estimated as in OGARCH, but the unconditional covariance matrix used in the

spectral decomposition is estimated using linear shrinkage.
• NLS-OGARCH: Estimated as in LS-OGARCH, but replacing linear by non-linear shrinkage.
• OGARCH-LS: Estimated as in OGARCH with the linear shrinkage applied to the one-step-ahead

conditional covariance matrix HT+1.
• OGARCH-NLS: Estimated as in OGARCH-LS, but replacing linear by non-linear shrinkage.
• LS-OGARCH-LS: Estimated as in LS-OGARCH, but linear shrinkage is applied to the predicted

one-step-ahead conditional covariance matrix HT+1.
• NLS-OGARCH-NLS: Estimated as in NLS-OGARCH, but non-linear shrinkage is applied to the

predicted one-step-ahead conditional covariance matrix HT+1.

GPVC based-methods

• GPVC: The GPVC procedure considers k = 1 volatility component, as explained later. We use
g = 5 as in Li et al. (2016).

• LS-GPVC: Estimated as in the GPVC model with the unconditional covariance matrix Σ̂ in
Equation (17) estimated using linear shrinkage.

• NLS-GPVC: Estimated as in LS-GPVC, but replacing linear by non-linear shrinkage.
• GPVC-LS: Estimated as in GPVC with linear shrinkage applied to the one-step-ahead conditional

covariance matrix HT+1.
• GPVC-NLS: Estimated as in GPVC-LS, but replacing linear by non-linear shrinkage.
• LS-GPVC-LS: Estimated as in LS-GPVC with linear shrinkage applied to the predicted

one-step-ahead conditional covariance matrix HT+1.

6 This method was implemented using the MFE Matlab Toolbox of Kevin Sheppard with the default options.
An R implementation of the same procedure can be found in Trucios (2017).
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• NLS-GPVC-NLS: Estimated as in NLS-GPVC with non-linear shrinkage applied to the predicted
one-step-ahead conditional covariance matrix HT+1.

RPVC based-methods

• RPVC: The RPVC procedure considers k = 4 volatility components, as explained later. We use
g = 5 as in Li et al. (2016) and c as in Trucíos et al. (2019).

• LS-RPVC: Estimated as in RPVC, but linear shrinkage is applied to the robust unconditional
covariance matrix Σ̂R used in Equation (18).

• NLS-RPVC: Estimated as in LS-RPVC, but replacing linear by non-linear shrinkage.
• RPVC-LS: Estimated as in RPVC with linear shrinkage applied to the one-step-ahead conditional

covariance matrix HT+1.
• RPVC-NLS: Estimated as in RPVC-LS, but replacing linear by non-linear shrinkage.
• LS-RPVC-LS: Estimated as in LS-RPVC with the linear shrinkage applied to the predicted

one-step-ahead conditional covariance matrix HT+1.
• NLS-RPVC-NLS: Estimated as in NLS-RPVC with non-linear shrinkage applied to the predicted

one-step-ahead conditional covariance matrix HT+1.

References

Ahn, Seung C, and Alex R. Horenstein. 2013. Eigenvalue ratio test for the number of factors. Econometrica
81: 1203–27.

Alexander, Carol. 2002. Principal component models for generating large GARCH covariance matrices. Economic
Notes: Review of Banking, Finance and Monetary Economics 31: 337–59.

Alexander, Carol O., and Aubrey Muyeke Chibumba. 1996. Multivariate Orthogonal Factor GARCH. Sussex:
University of Sussex Discussion Papers in Mathematics.

Ardia, David, Kris Boudt, and Jean-Philippe Gagnon-Fleury. 2018. RiskPortfolios: Computation of Risk-Based
Portfolios. R package version 2.1.2. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_
id=2911021 (accessed on 28 June 2018).

Bai, Jushan, and Serena Ng. 2002. Determining the number of factors in approximate factor models. Econometrica
70: 191–221.

Bauwens, Luc, Sébastien Laurent, and Jeroen V.K. Rombouts. 2006. Multivariate GARCH models: A survey.
Journal of Applied Econometrics 21: 79–109.

Becker, Ralf, Adam E. Clements, Mark B. Doolan, and A. Stan Hurn. 2015. Selecting volatility forecasting models
for portfolio allocation purposes. International Journal of Forecasting 31: 849–61.

Bollerslev, Tim. 1990. Modelling the coherence in short-run nominal exchange rates: A multivariate generalized
ARCH model. Review of Economics and Statistics 72: 498–505.

Boudt, Kris, Jon Danielsson, and Sébastien Laurent. 2013. Robust forecasting of dynamic conditional correlation
GARCH models. International Journal of Forecasting 29: 244–57.

Caporin, Massimiliano, and Michael McAleer. 2014. Robust ranking of multivariate GARCH models by problem
dimension. Computational Statistics & Data Analysis 76: 172–85.

Caporin, Massimiliano, and Paolo Paruolo. 2015. Proximity-structured multivariate volatility models. Econometric
Reviews 34: 559–93.

Clarke, Roger, Harindra De Silva, and Steven Thorley. 2011. Minimum-variance portfolio composition. Journal of
Portfolio Management 37: 31.

Clarke, Roger G., Harindra De Silva, and Steven Thorley. 2006. Minimum-variance portfolios in the US equity
market. The Journal of Portfolio Management 33: 10–24.

Creal, Drew, Siem Jan Koopman, and André Lucas. 2011. A dynamic multivariate heavy-tailed model for
time-varying volatilities and correlations. Journal of Business & Economic Statistics 29: 552–563.

de Almeida, Daniel, Luiz K. Hotta, and Esther Ruiz. 2018. MGARCH models: Trade-off between feasibility and
flexibility. International Journal of Forecasting 34(1), 45–63.

DeMiguel, Victor, Lorenzo Garlappi, and Raman Uppal. 2009. Optimal versus naive diversification: How inefficient
is the 1/n portfolio strategy? Review of Financial Studies 22: 1915–53.

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911021
https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2911021


Econometrics 2019, 7, 19 23 of 24

Eddelbuettel, Dirk, and Romain François. 2011. Rcpp: Seamless R and C++ integration. Journal of Statistical
Software 40: 1–18. doi:10.18637/jss.v040.i08.

Engle, Robert. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive
conditional heteroskedasticity models. Journal of Business & Economic Statistics 20: 339–50.

Engle, Robert. 2009. Anticipating Correlations: A New Paradigm for Risk Management. Princeton: Princeton
University Press.

Engle, Robert, and Bryan Kelly. 2012. Dynamic equicorrelation. Journal of Business & Economic Statistics 30: 212–28.
Engle, Robert F., Olivier Ledoit, and Michael Wolf. 2017. Large dynamic covariance matrices. Jounal of Business

and Economic Statistics (doi:10.1080/07350015.2017.1345683).
Frahm, Gabriel. 2010. Linear statistical inference for global and local minimum variance portfolios. Statistical

Papers 51: 789–812.
Gambacciani, Marco, and Marc S. Paolella. 2017. Robust normal mixtures for financial portfolio allocation.

Econometrics and Statistics 3: 91–111.
Ghalanos, Alexios. 2017. Rugarch: Univariate GARCH Models. R package version 1.3-8. Available online: https:

//cran.r-project.org/web/packages/rugarch/ (accessed on 15 October 2017)
Glosten, Lawrence R., Ravi Jagannathan, and David E. Runkle. 1993. On the relation between the expected value

and the volatility of the nominal excess return on stocks. The Journal of Finance 48: 1779–801.
Guttman, Louis. 1954. Some necessary conditions for common factor analysis. Psychometrika 19: 149–61.
Hafner, Christian M and Olga Reznikova. 2012. On the estimation of dynamic conditional correlation models.

Computational Statistics & Data Analysis 56: 3533–3545.
Hlouskova, Jaroslava, Kurt Schmidheiny, and Martin Wagner. 2009. Multistage predictions for multivariate

GARCH models: Closed form solution and the value for portfolio management. Journal of Empirical Finance
16: 330–6.

Hu, Yu-Pin, and Ruey S. Tsay. 2014. Principal volatility component analysis. Journal of Business & Economic Statistics
32: 153–164.

Hubert, Mia, Peter J. Rousseeuw, and Tim Verdonck. 2012. A deterministic algorithm for robust location and
scatter. Journal of Computational and Graphical Statistics 21: 618–37.

Jagannathan, Ravi, and Tongshu Ma. 2003. Risk reduction in large portfolios: Why imposing the wrong constraints
helps. The Journal of Finance 58: 1651–84.

Kirby, Chris, and Barbara Ostdiek. 2012. It’s all in the timing: simple active portfolio strategies that outperform
naive diversification. Journal of Financial and Quantitative Analysis 47: 437–67.

Lam, Clifford, and Qiwei Yao. 2012. Factor modeling for high-dimensional time series: Inference for the number
of factors. The Annals of Statistics 40: 694–726.

Laurent, Sébastien, Christelle Lecourt, and Franz C. Palm. 2016. Testing for jumps in conditionally Gaussian
ARMA–GARCH models, a robust approach. Computational Statistics & Data Analysis 100: 383–400.

Laurent, Sébastien, Jeroen V. K. Rombouts, and Francesco Violante. 2012. On the forecasting accuracy of
multivariate garch models. Journal of Applied Econometrics 27: 934–55.

Ledoit, Olivier, and Michael Wolf. 2004a. Honey, I shrunk the sample covariance matrix. The Journal of Portfolio
Management 30: 110–9.

Ledoit, Olivier, and Michael Wolf. 2004b. A well-conditioned estimator for large-dimensional covariance matrices.
Journal of Multivariate Analysis 88: 365–411.

Ledoit, Olivier, and Michael Wolf. 2012. Nonlinear shrinkage estimation of large-dimensional covariance matrices.
The Annals of Statistics 40: 1024–60.

Ledoit, Olivier, and Michael Wolf. 2017. Numerical implementation of the quest function. Computational Statistics
& Data Analysis 115: 199–223.

Li, Weiming, Jing Gao, Kunpeng Li, and Qiwei Yao. 2016. Modeling multivariate volatilities via latent common
factors. Journal of Business & Economic Statistics 34: 564–73.

Moura, Guilherme Valle, and Andre A. P Santos. 2018. Forecasting Large Stochastic Covariance Matrices. Working
Paper. Available online: https://ssrn.com/abstract=3222808 (accessed on 15 Septembe 2018).

Nakagawa, Kei, Mitsuyoshi Imamura, and Kenichi Yoshida. 2018. Risk-based portfolios with large dynamic
covariance matrices. International Journal of Financial Studies 6: 1–14.

Olivares-Nadal, Alba V., and Victor DeMiguel. 2018. A robust perspective on transaction costs in portfolio
optimization. Operations Research 66: 733–9.

https://doi.org/10.18637/jss.v040.i08
https://cran.r-project.org/web/packages/rugarch/
https://cran.r-project.org/web/packages/rugarch/
https://ssrn.com/abstract=3222808


Econometrics 2019, 7, 19 24 of 24

Pakel, Cavit, Neil Shephard, Kevin Sheppard, and Robert Engle. 2017. Fitting Vast Dimensional Time-Varying
Covariance Models. NYU Working Paper No. FIN-08-009. Available online: https://ssrn.com/abstract=
1354497 (accessed on 3 March 2018).

R Core Team. 2017. R: A Language and Environment for Statistical Computing. Vienna: R Foundation for
Statistical Computing.

Ramprasad, Pratik. 2016. nlshrink: Non-Linear Shrinkage Estimation of Population Eigenvalues and Covariance Matrices.
R package version 1.0.1. Available online: https://cran.r-project.org/web/packages/nlshrink/ (accessed on
27 March 2018)

Rousseeuw, Peter J. 1984. Least median of squares regression. Journal of the American Statistical Association
79: 871–880.

Santos, André Alves Portela and Alexandre R. Ferreira. 2017. On the choice of covariance specifications for
portfolio selection problems. Brazilian Review of Econometrics 37: 89–122.

Sortino, Frank A., and Robert van der Meer. 1991. Downside risk. Journal of Portfolio Management 17: 27–31.
Trucios, Carlos. 2017. RM2006: RiskMetricsss 2006 Methodology. R package version 0.1.0. Available online: https:

//cran.r-project.org/web/packages/RM2006/ (accessed on 9 May 2018)
Trucíos, Carlos, Luiz K. Hotta, and Pedro L. Valls Pereira. 2019. On the robustness of the principal volatility

components. Journal of Empirical Finance 52: 201–219.
Trucíos, Carlos, Luiz K. Hotta, and Esther Ruiz. 2018. Robust bootstrap densities for dynamic conditional

correlations: Implications for portfolio selection and value-at-risk. Journal of Statistical Computation and
Simulation 88: 1976–2000.

Van der Weide, Roy. 2002. GO-GARCH: A multivariate generalized orthogonal GARCH model. Journal of Applied
Econometrics 17: 549–64.

Wang, Naisyin, Adrian Raftery, and Chris Fraley. 2017. covRobust: Robust Covariance Estimation via Nearest Neighbor
Cleaning. R package version 1.1-3. Available online: https://cran.r-project.org/web/packages/covRobust/
(accessed on 27 March 2018)

Wied, Dominik, Daniel Ziggel, and Tobias Berens. 2013. On the application of new tests for structural changes on
global minimum-variance portfolios. Statistical Papers 54: 955–75.

Zumbach, Gilles O. 2007. A Gentle Introduction to the RM2006 Methodology. Available online: https://ssrn.com/
abstract=1420183 (accessed on 12 March 2018).

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://ssrn.com/abstract=1354497
https://ssrn.com/abstract=1354497
https://cran.r-project.org/web/packages/nlshrink/
https://cran.r-project.org/web/packages/RM2006/
https://cran.r-project.org/web/packages/RM2006/
https://cran.r-project.org/web/packages/covRobust/
https://ssrn.com/abstract=1420183
https://ssrn.com/abstract=1420183
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	The Forecast Methods
	The RiskMetrics Methods
	The CCC Model
	The DCC Model
	The DECO Model
	The OGARCH Model
	The Generalised Principal Volatility Components Model 
	The Robust GPVC Model 
	Linear and Non-Linear Shrinkage

	Empirical Application 
	Data and Methods
	Results

	Conclusions
	Estimation Methods
	References

