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Abstract: Numerous tests designed to detect realized jumps over a fixed time span have been
proposed and extensively studied in the financial econometrics literature. These tests differ from “long
time span tests” that detect jumps by examining the magnitude of the jump intensity parameter in the
data generating process, and which are consistent. In this paper, long span jump tests are compared
and contrasted with a variety of fixed span jump tests in a series of Monte Carlo experiments. It is
found that both the long time span tests of Corradi et al. (2018) and the fixed span tests of Aït-Sahalia
and Jacod (2009) exhibit reasonably good finite sample properties, for time spans both short and long.
Various other tests suffer from finite sample distortions, both under sequential testing and under long
time spans. The latter finding is new, and confirms the “pitfall” discussed in Huang and Tauchen
(2005), of using asymptotic approximations associated with finite time span tests in order to study
long time spans of data. An empirical analysis is carried out to investigate the implications of these
findings, and “time-span robust” tests indicate that the prevalence of jumps is not as universal as
might be expected.

Keywords: jump test; jump intensity; sequential testing bias; fixed time span; long time span;
high-frequency data

JEL Classification: C12; C22; C52; C58

1. Introduction

In this paper, we add to the financial econometrics literature by carrying out an extensive Monte
Carlo and empirical analysis comparing different types of jump tests used in the specification process
associated with fitting continuous time models of financial variables.1 We focus on tests due to
Barndorff-Nielsen and Shephard (2006); Lee and Mykland (2008); Aït-Sahalia and Jacod (2009);
Corsi et al. (2010), and Podolskij and Ziggel (2010), who study “fixed time span” jump tests; and
tests due to Corradi et al. (2014) and Corradi et al. (2018) who study so-called “long time span” jump

1 In risk management and financial engineering, investors and researchers often require knowledge of the data generating
process (DGP) that governs asset price movements. For example, asset prices are frequently modeled as continuous-time
processes, such as (Itô-)semimartingales (see, e.g., Aït-Sahalia (2002a, 2002b); Chernov et al. (2003); and Andersen et al.
(2007b)). At the same time, investors and researchers are also interested in nonparametrically estimable quantities such as
spot/integrated volatility (see, e.g., Barndorff-Nielsen (2002); Barndorff-Neilsen and Shephard (2003); Todorov and Tauchen
(2011); and Patton and Sheppard (2015)), jump variation (see, e.g., Barndorff-Nielsen and Shephard (2004); Andersen et al.
(2007a); and Corsi et al. (2009)), leverage effect (see, e.g., Kalnina and Xiu (2017) and Aït-Sahalia et al. (2017)), and jump
activity (see e.g., Aït-Sahalia and Jacod (2011) and Todorov (2015)).
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tests.2 The reason why a “horse race” comparing alternative jump tests of these varieties is of interest
is because it is well known that tests constructed using observed sample paths of asset returns on
a “fixed time span”, such as a day or a week, are not consistent against non-zero jump intensity,
and are sensitive to sequential testing bias. On the other hand, the CSS and CSS1 tests that we
examine are based on direct evaluation of the data generating process, and are thus consistent and
asymptotically correctly sized when the time span, T → ∞, and the sampling interval, ∆ → 0. Put
differently, one reason why detecting jumps using long time span tests is of potential interest is that
empirical researchers often estimate DGPs after testing for jumps using fixed time span tests. This is
problematic if the jump intensity is identically zero, since parameters characterizing jump size are
unidentified, and consistent estimation of the rest of the parameters is thus no longer feasible (see
Andrews and Cheng (2012)). Moreover, if researchers detect jumps on a particular sample path (say,
when using a daily fixed time span jump test), they might conclude that the jump intensity is non-zero.
However, if no jumps are found in a sample path, this does not mean there are no jumps in other
sample paths, and hence that a DGP should be estimated with no jump component.3

The CSS and CSS1 tests examined in this paper are based on realized third moments, or tricity, and
as discussed above, utilize observations over an increasing time span. Although various tricity-type
tests have already been examined in the literature, it is worth noting that only the CSS and CSS1 tests
are developed using both in-fill and long-span asymptotics. As discussed above, the use of long-span
asymptotics ensures that these tests have power against non-zero intensity in the DGP rather than
against realized jumps on a particular sample path with a fixed time span. A key difference between
the CSS and CSS1 tests is that the latter test sacrifices power by using a rescaled bootstrap to ensure
robustness against leverage, while the former test uses thresholding and requires the use of time span,
T+, where T+/T → ∞, to eliminate the leverage effect. In our experiments, we consider two types
of the CSS1 jump test (i.e., CSS1 and C̃SS1 tests). Both of these build on earlier work of Aït-Sahalia
(2002a, 2002b), and are special cases of the CSS test introduced in Corradi et al. (2018). One test
assumes no leverage. The other test is robust to leverage, and is a rescaled version of the no leverage

test. Both tests are derived under the assumption that E
((

Yk∆ −Y(k−1)∆

)3
)

= 0, whenever there

are no jumps, where Yk∆ = ln Xk∆ − ∆
T ∑n

k=2 ln Xk∆ and ln Xk∆ is the kth asset return over a shrinking
sampling interval ∆.

In our Monte Carlo analysis, the finite sample properties of three fixed time span tests, as well as
the three CSS type tests (i.e., CSS1, C̃SS1 and CSS tests) are investigated.4 The three “fixed span” tests
include the higher order power variation test of Aït-Sahalia and Jacod (2009) (ASJ), the classic bipower
variation test of Barndorff-Nielsen and Shephard (2006) (BNS), and the truncated power variation test
of Podolskij and Ziggel (2010) (PZ).5 Our findings can be summarized as follows. First, we show that
the finite sample power of daily jump tests against non-zero jump intensity is low, particularly when
jumps are infrequent or jump magnitudes are “weak”. For instance, when the jump intensity is 0.4 and
the jump size parameter is our largest, rejection rates of the ASJ, BNS and PZ tests at a 0.05 significance
level are only around 0.26, 0.38, and 0.36, respectively. Second, sequential testing bias grows rapidly as

2 Specifically, when focusing on long time span tests, we evaluate the CSS test of Corradi et al. (2018), and the CSS1 test of
Corradi et al. (2014).

3 In an interesting paper related to this paper, Huang and Tauchen (2005) discuss issues associated with applying asymptotic
approximations used in fixed time span jump tests over an (long time span) entire sample. They suggest that an appropriate
way to solve both inconsistency and size distortion problems associated with fixed time span jump tests is to use test
statistics that are asymptotically valid under a double asymptotic scheme where both T → ∞ and ∆ → 0. This is the
approach taken by Corradi et al. (2018).

4 It is important to note that these tests have a different null hypotheses than fixed time span tests. However, our objective in
this paper is not only to examine the finite sample properties of both types of test, but also to compare and contrast the two
classes of tests, since both are often used as pre-tests, prior to specifying and estimating DGPs involving jumps.

5 For a detailed comparison of more fixed span tests, refer to Theodosiou and Zikes (2011) and Dumitru and Urga (2012).
These authors concisely summarize and compare a large group of existing jump tests via extensive Monte Carlo experiments.
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the time span increases. The size of a joint test based on the strategy of sequentially performing many
fixed-T daily tests approaches unity very quickly. Even for the most conservative test (i.e., the ASJ
test), empirical size is over 0.95 after 50 days. Importantly, we also show that the empirical sizes of
fixed-T jump tests over samples with growing time spans also increase in T. However, size distortion
accumulates more slowly when using the ASJ test than when using the BNS and PZ tests. Moreover,
the power of ASJ test is very good for all long time spans, as long as jumps are not too rare and too
weak. Finally, long time span jump tests are adequately sized, as long as T and ∆ are carefully chosen,
regardless of the presence of leverage. Additionally, power is reasonably good, even when jumps are
infrequent and weak, and increases with an increasing time span, T, for fixed ∆.

In our empirical analysis, we examine 5-min intraday observations between 2006 and 2013 on 12
individual stocks, nine sector ETFs, and one market (SPDR S&P 500) ETF. Our main empirical findings
are summarized as follows. First, using daily ASJ, BNS and PZ tests, jumps are widely detected in
asset prices over almost all time periods considered. Moreover, in some cases, the annual percentage
of jump days seems inconceivably large. For instance, all three tests detect jumps on around 35–40% of
the days in 2006 for two of the ETFs that we examine. Second, these jump percentages have diminished
over time. Third, long span jump tests tell a different story. Namely, the ASJ test, the C̃SS1 test, and the
CSS test indicate far fewer jumps than are found when using daily tests.6 This finding has important
implications for both specification and estimation of asset price models.

The rest of the paper is organized as follows. Section 2 outlines the theoretical framework and
introduces notation. Section 3 discusses statistical issues associated with testing for jumps. Section 4
discusses the long time span jump tests that we examine, and Section 5 briefly discusses the extant fixed
time span tests examined in the sequel. Section 6 reports results from our Monte Carlo experiments.
Section 7 presents the results of our empirical analysis of various individual stock and stock index
data. Finally, Section 8 contains concluding remarks.

2. Setup

We use the setup of Corradi et al. (2018). Namely, assume that asset (log-)prices are recorded
at an equally spaced discrete interval, ∆ = 1

m , where m is the total number of observations on each
trading day. In our model, we assume that ∆→ 0; or equivalently that m→ ∞. Log-prices follow a
jump diffusion model defined on some filtered probability space (Ω,F, (Ft)t≥0,P), with

d lnXt = µdt +
√

VtdW1,t + ZtdNt, (1)

where µ is the drift term,
√

Vt is the spot volatility, and W1,t is an adapted standard Brownian motion
(i.e., it is Ft-measurable for each t ≥ 0). Here, Vt is defined according to either (i), (ii), (iii), or (iv),
as follows:

(i) a constant:
Vt = v for all t; (2)

(ii) a measurable function of the state variable:

Vt is Xt-measurable; (3)

(iii) a stochastic volatility process without leverage:

dVt = µV,t(θ)dt + g (Vt, θ)dW2,t, E (W1,tW2,t) = 0; (4)

where the vector θ parameterizes µV(·) and g(·).

6 The C̃SS1 test is a “leverage robust” variant of the CSS1 test, and is discussed in detail in Section 4.
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(iv) a stochastic volatility process with leverage:

dVt = µV,t(θ)dt + g (Vt, θ)dW2,t, E (W1,tW2,t) = ρ 6= 0. (5)

Evidently, the volatility process is quite general, although we do not consider jumps in volatility.
Now, define,

Pr (Nt+∆ − Nt = 1|Ft) = λt∆ + o (∆) , (6)

Pr (Nt+∆ − Nt = 0|Ft) = 1− λt∆ + o (∆) , (7)

and
Pr (Nt+∆ − Nt > 1|Ft) = o (∆) , (8)

where λt characterizes the jump intensity. The jump size, Zt, is identically and independently
distributed with density f (z; γ), where γ parameterizes the jump size distribution. Equation (8)
implies that we rule out infinite-activity jumps.

When constructing the fixed time span realized jump tests discussed in the sequel, we remain
agnostic about the jump generating process. However, for the case of our long time span jump intensity
tests, we must provide a moderate amount of additional structure. This is one of the key trade-offs
associated with using either variant of test. In particular, following Corradi et al. (2018), we consider
two cases. First, Nt, which is the number of jump arrivals up to t, follows a counting process, such as
the widely used Poisson process. In this case, λt = λ, for all t. Second, jumps may be “self-exciting”,
in the sense that the jump intensity follows Hawkes diffusion (see Bowsher (2007) and Aït-Sahalia et al.
(2015)), with

dλt = a (λ∞ − λt)dt + βdNs, (9)

where λ∞ ≥ 0, β ≥ 0, a > 0, and a > β, so that the process is mean reverting with E(λt) = aλ∞
a − β .

As noted in Corradi et al. (2018), if λ∞ = 0, then E(λt) = 0, which implies that λt = 0, a.s. for all t.
This implies that Nt = 0, a.s., for all t. As a result, β, a and γ in this case are all unidentified. On the
other hand, if λ∞ > 0, then β and γ are identified. But if β = 0, a is not identified. These observations
highlight the importance of pretesting for λ∞ = 0 against λ∞ > 0, in order to obtain consistent
estimation of parameters in the case of Hawkes diffusions.

In light of the above discussion, we are interested in testing

H0 : λ = 0

versus
HA : λ > 0,

where λ is the constant jump intensity, in the case of Poisson-type jumps; and is the expectation of
the stochastic jump intensity (i.e., λ = E(λt)), in the case of self-exciting jumps.7 This is a nonstandard
inference problem because, under H0, some parameters are not identified, and a parameter lies on the
boundary of the null parameter space.

Before discussing the tests that are compared in our Monte Carlo experiments, we first
provide some heuristic motivation for long time span jump testing. This discussion follows
Corradi et al. (2014).

3. Heuristic Discussion

In recent years, a large variety of tests for realized jumps have been proposed and studied.
One common feature of the preponderance of these tests is that they are all carried out using

7 Note that λ∞ = (>) 0 if and only if E(λt) = (>) 0.
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high-frequency observations over a fixed time span and are justified by in-fill asymptotic theorems.
Therefore, they have power against realized jumps over fixed time spans, and none are consistent
against the alternative of λ > 0. This inconsistency issue has also been pointed out and illustrated
by Huang and Tauchen (2005) and Aït-Sahalia and Jacod (2009), among others. Many of the fixed
time span tests can be considered as Hausman-type tests in which a comparison of two realized
measures of the integrated volatility is made, where one is robust to jumps, and one is not. Under
the null of no jumps, both consistently estimate the integrated volatility. Under the alternative of
jumps, however, the consistency of the non-robust realized measure fails. Instead, it estimates the
total quadratic variation that contains the contribution from jump components. As a result, these two
realized measures differ in the presence of jumps. In general, Hausman-type tests are designed to
detect whether ∑

Nt+1
j=Nt

c2
j = 0 or ∑

Nt+1
j=Nt

c2
j > 0, where Nt denotes the number of jumps up to time t, and

cj is the (random) size of the jumps. However, λ > 0 does not imply that ∑
Nt+1
j=Nt

c2
j > 0, given that

Pr (Nt+1 − Nt > 0) < 1. Therefore, such tests have power against realized jumps, but not necessarily
against positive jump intensity.

Two techniques are often employed in practice to construct the jump-robust realized measures.
The first uses multipower variations, such as bipower variation or tripower variation. Under these
measures, the effect of jumps is asymptotically “removed” by using the product of consecutive
high-frequency observations. The second uses jump thresholding that allows for the separation of
jump and continuous components, based on the difference between their orders of magnitude. (see,
e.g., Mancini (2009) and Corsi et al. (2010)). Recent higher order power variation tests are motivated

by the fact that for p > 2, ∑n−1
i=1

∣∣∣ln X(t+(i+1)∆ − ln Xt+i∆

∣∣∣p converges to ∑t≤s≤t+1 |ln Xs − ln Xs−|p ,

where ∑t≤s≤t+1 |ln Xs − ln Xs−|p is strictly positive if there are jumps, and zero otherwise (see, e.g.,
Aït-Sahalia and Jacod (2009) and Aït-Sahalia et al. (2012)). In this case, however, test power remains
still because of realized jumps, and not because of positive jump intensity.

Additionally, other recent tests related to those discussed above have been proposed that are
based on comparisons using pre-averaged volatility measures, in order to obtain tests that are robust
to microstructure noise (see, e.g., Podolskij and Vetter (2009a, 2009b) and Aït-Sahalia et al. (2012)).

In the Monte Carlo and empirical experiments reported in this paper, we consider three fixed
time span tests based on multipower variation, jump thresholding and higher order power variation,
respectively.

Generally, jump tests performed over a fixed time span are designed to distinguish between:

ΩC
t,l = {ω : s→ ln Xs(ω) | ∆ ln Xs = ln Xs(ω)− ln Xs−(ω) = 0, ∀s ∈ [t, t + l)}

and
ΩJ

t,l = {ω : s→ ln Xs(ω) | ∆ ln Xs = ln Xs(ω)− ln Xs−(ω) 6= 0, ∀s ∈ [t, t + l)} ,

where l indicates a fixed time span. Hence, all of the tests discussed above are dependent upon
pathwise behavior. Clearly, one might decide in favor of ΩC

t,l , even if λ > 0, simply because jumps
are by coincidence absent over the interval [t, t + l). Now, in order to carry out a consistent test
against positive jump intensity, two approaches may be used. First, one may consider the following
joint hypothesis:

ΩC
T = ∩T−1

t=0 ΩC
t,l , as T → ∞,

versus its negation. Here, the objective is to test the joint null hypothesis that none of the fixed-span
sample paths contain jumps. In fact, under mild conditions on the degree of heterogeneity of the
process, failure to reject ΩC

∞ = limT→∞ ∩T−1
t=0 ΩC

t,l implies failure to reject λ = 0. The difficulty lies in
how to implement a test for ΩC

T , when T gets large. Needless to say, sequential application of fixed
time span jump tests leads to sequential test bias, and for T large, ΩC

T is rejected with probability
approaching unity. This is because the empirical size of the joint hypothesis test based on the sequential
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strategy is α̂T = 1−∏T
i=1(1− α̂i), where α̂i is the empirical size of the ith individual fixed time span

test. As a result,

lim
T→∞

α̂T = lim
T→∞

1−
T

∏
i=1

(1− α̂i)

= 1− lim
T→∞

T

∏
i=1

(1− α̂i)

= 1.

In our Monte Carlo simulations, we illustrate this issue under a set of experiments conducted with
an increasing time span. One common approach to this problem is based on controlling the overall
Family-Wise Error Rate (FWER), which ensures that no single hypothesis is rejected at a level larger
than a fixed value, say α. This is typically accomplished by sorting individual p-values, and using a
rejection rule which depends on the overall number of hypotheses. For further discussion, see Holm
(1979), who develops modified Bonferroni bounds, White (2000), who develops the so-called “reality
check”, and Romano and Wolf (2005), who provide a refinement of the reality check. However, when
the number of hypotheses in the composite grows with the sample size, the null will (almost) never be
rejected. In other words, approaches based on the FWER are quite conservative.

An alternative approach, which allows for the number of hypotheses in the composite to grow
to infinity, is based on the Expected False Discovery Rate (E-FDR). When using this approach, one
controls the expected number of false discoveries (rejections). For further discussion, see Benjamini
and Hochberg (1995) and Storey (2003). Although the E-FDR approach applies to the case of a growing
number of hypotheses, it is very hard to implement in the presence of generic dependence across
p-values, as in our context.

The above discussion, when coupled with issues of identification and test consistency, provides
ample impetus for using long time span jump tests of the variety discussed in the sequel. Still, it
should be noted that researchers have shown good performance of fixed time span tests over a day
or a week, and we provide further evidence on this front in our Monte Carlo experiments. However,
almost no one considers performing the tests over a year or even a decade. The only exception that
we are aware of is Huang and Tauchen (2005). They propose using “full-sample statistics” based on
BNS test statistics. They show that when the time span is long, the BNS test over-rejects the null of
no realized jumps, since the approximation error on a short interval accumulates as the time span
increases. Consequently, the empirical size is biased upwards.

4. Long Time Span Jump Intensity Test

Assume the existence of a sample of n observations over an increasing time span, T, and a
shrinking discrete interval ∆, so that n = T

∆ , with T → ∞ and ∆ → 0. Our interest lies in the
following hypotheses:

H0 : λ = 0

versus

HA = H(1)
A ∪ H(2)

A :
(

λ > 0 and E
(
(Zt − E (Zt))

3
)
6= 0

)
∪
(

λ > 0 and E
(
(Zt − E (Zt))

3
)
= 0

)
.

Notice that the alternative hypothesis is the union of two different alternatives, designed to allow
for both symmetric and asymmetric jump size density. This setup characterizes the CSS jump test
of Corradi et al. (2018) and the CSS1 test of Corradi et al. (2014). Moreover, both tests are based
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on statistics that are functions of realized third moments, or tricity.8 However, we discuss only the
CSS1 in the sequel, as the working paper in which that test appears will not be published, while
Corradi et al. (2018) has been published. Although, their test differs in a key respect. Namely, their
test is dependent on jump thresholding.

Let Yk∆ = ln Xk∆ − ∆
T ∑n

k=2 ln Xk∆, and Y(k−1)∆ = ln X(k−1)∆ − ∆
T ∑n

k=2 ln X(k−1)∆. In addition, let

λ̂T,∆ =
1
T

n

∑
k=2

(
Yk∆ −Y(k−1)∆

)3
.

Here, λ̂T,∆ is the demeaned sample third moment. Consider the statistic

CSS1T,∆ =

√
T

∆
λ̂T,∆. (10)

The asymptotic behavior of CSS1T,∆ can be analyzed under the following assumption.

Assumption 1. (i) ln Xt is generated by Equation (1) and Vt is defined in Equations (2), (3), or (4). (ii) ln Xt

is generated by Equation (1) and Vt is defined in Equation (5). For C a generic constant, (iii) E
(
|Vt|k

)
≤ C,

k ≥ 3, (iv)Nt satisfies Equations (6)–(8), and λt is either constant, or satisfies Equation (9). (v) The jump size,
Zt, is independently and identically distributed, and E

(
|Zt|k

)
≤ C, for k ≥ 6.

Corradi et al. (2014) show that under Assumptions 1(i) and (iii)–(v), assuming that as n →
∞, T → ∞ and ∆ → 0, then under H0 : CSS1T,∆

d→ N (0, ω0) ,with ω0 = 15E
(
V3

k∆

)
+

4 (E (Vk,∆))
3 − 12E (Vk,∆) E

(
V2

k,∆

)
. In addition, they prove that under H(1)

A , there exists an ε > 0,

such that: limT→∞,∆→0 Pr
(

∆√
T
|CSS1T,∆| > ε

)
= 1; and under H(2)

A , there exists an ε > 0, such that:
limT→∞,∆→0 Pr (∆ |CSS1T,∆| > ε) = 1.

It follows immediately that CSS1T,∆ converges to a normal random variable under the null

hypothesis, diverges at rate
√

T
∆ under the alternative of asymmetric jumps, and diverges at the slower

rate of 1
∆ under the alternative of symmetric jumps.

Given that the variance is of a different order of magnitude under the null and under each
alternative, the “standard” nonparametric bootstrap is not asymptotically valid. This issue arises
because the variance of the bootstrap statistic mimics the sample variance. This implies that the
bootstrap statistic is of order ∆−1 under the alternative. This is not be a problem under H(1)

A , since the

statistic is of order
√

T∆−1, but is a problem under H(2)
A , since the actual and bootstrap statistics would

be of the same order. To ensure power against H(2)
A , it suffices to ensure that the bootstrap statistic is of

a smaller order than the actual statistic. This can be accomplished by resampling observations over a
rougher grid, ∆̃, using the same time span, T.

Set the new discrete interval to be ∆̃, such that ∆/∆̃ → 0, and resample, with replacement,(
Y∗

k∆̃
−Y∗

(k−1)∆̃
, ..., Y∗

ñ∆̃
−Y∗

(ñ−1)∆̃

)
from

(
Yk∆̃ −Y(k−1)∆̃, ..., Yñ∆̃ −Y(ñ−1)∆̃

)
, where ñ = T/∆̃. Now, let

λ̃T,∆̃ =
1
T

ñ

∑
k=2

(
Yk∆̃ −Y(k−1)∆̃

)3
,

and

λ̃∗
T,∆̃

=
1
T

ñ

∑
k=2

(
Y∗

k∆̃
−Y∗

(k−1)∆̃

)3
.

8 The key difference between the CSS and CSS1 tests is that the former utilizes thresholding, while the latter does not.
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Further, define the bootstrap statistic as

CSS1∗
T,∆̃

=

√
T

∆̃

(
λ̃∗

T,∆̃
− λ̃T,∆̃

)
.

Finally, let c∗
α,B,∆,∆̃

and c∗
(1−α),B,∆,∆̃

be the (α/2)th and (1− α/2)th critical values of the empirical

distribution of CSS1∗
T,∆̃

, constructed using B bootstrap replications. Corradi et al. (2014) show that

under Assumptions 1(i) and (iii)–(v), and assuming that as n → ∞, B → ∞, T → ∞, ∆ → 0, ∆̃ → 0
and ∆/∆̃→ 0, then under H0 :

lim
T,B→∞,∆,∆̃→0

Pr
(

c∗
α/2,B,∆,∆̃

≤ CSS1T,∆ ≤ c∗
(1−α/2),B,∆,∆̃

)
= 1− α;

and under H(1)
A ∪ H(2)

A :

lim
T,B→∞,∆,∆̃→0

Pr
(

c∗
α/2,B,∆,∆̃

≤ CSS1T,∆ ≤ c∗
(1−α/2),B,∆,∆̃

)
= 0.

It is immediate to see that rejecting the null whenever
√

T
∆ λ̂T,∆ < c∗

α/2,B,∆,∆̃
or
√

T
∆ λ̂T,∆ >

c∗
(1−α/2),B,∆,∆̃

, and otherwise failing to reject, delivers a test with asymptotic size equal to α and

asymptotic power equal to unity. Note that the bootstrap statistic is of P∗−probability order 1
∆̃

under

both H(1)
A and H(2)

A , while the actual statistic is of P−probability order
√

T
∆ under H(1)

A and 1
∆ under

H(2)
A . Hence, the condition that ∆/∆̃→ 0 ensures unit asymptotic power under H(2)

A .
The CSS1 test is not robust to leverage. In particular, the results presented above rely on the fact

that under the null of no jumps, returns are symmetrically distributed. More precisely, all results are

derived under the assumption that E
((

Yk∆ −Y(k−1)∆

)3
)
= 0, whenever there are no jumps. However,

in the presence of leverage, (i.e., Vt is generated as in Equation (5)), E
((∫ k∆

(k−1)∆ V1/2
s dW1,s

)3
)
6= 0, and

is instead of order ∆2. For example, if Vt is generated by a square root process (i.e., dVt = κ (θ −Vt)dt+

ηV1/2
t dW2,t), then E

((
Yk∆ −Y(k−1)∆

)3
)
= λE (Zt − E (Zt))

3 ∆ + ηθρ
2κ ∆2 (see Aït-Sahalia et al. (2015)).

Although, the contribution to the third moment of the asymmetric jump component is of a larger order
than that of the leverage component, inference based on the comparison of CSS1T,∆ with the bootstrap
critical values c∗

α,B,∆,∆̃
and c∗

(1−α),B,∆,∆̃
will lead to the rejection of the null of no jumps, even if the null

is true. To avoid spurious rejection due to the presence of leverage, use the following modified statistic:

C̃SS1T,∆ =
1

T1/2+ε
CSS1T,∆, (11)

with ε > 0, arbitrarily small. For this test statistic, Corradi et al. (2014) show that under
Assumptions 1(ii)–(v) hold, and assuming that as n → ∞, T → ∞, ∆ → 0, ∆̃ → 0, and
(T1/2+ε∆)/∆̃→ 0, then under H0 :

lim
T,B→∞,∆,∆̃→0

Pr
(

c∗
α/2,B,∆,∆̃

≤ C̃SS1T,∆ ≤ c∗
(1−α/2),B,∆,∆̃

)
= 1; (12)

and under H(1)
A ∪ H(2)

A :

lim
T,B→∞,∆,∆̃→0

Pr
(

c∗
α/2,B,∆,∆̃

≤ C̃SS1T,∆ ≤ c∗
(1−α/2),B,∆,∆̃

)
= 0.
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It follows that inference based on the comparison of C̃SS1T,∆ with the bootstrap critical values
c∗

α,B,∆,∆̃
and c∗

(1−α),B,∆,∆̃
delivers a test with zero asymptotic size and unit asymptotic power.

There are two major differences between the CSS test developed in Corradi et al. (2018) and the
CSS1 type tests outlined above. First, instead of using an adjustment term in Equation (11) to account
for the leverage effect, Corradi et al. (2018) use a longer time span, T+, with κ = T+/T → ∞, to
eliminate the leverage effect. Specifically, now assume the existence of a sample of n+ observations
over an increasing time span, T+, and a shrinking discrete interval ∆, so that n+ = T+

∆ , with T+ → ∞
and ∆→ 0. Define n = T/∆ = n+ − T+−T

∆ , with T+/T → ∞. Let

µ̂T,∆ =
1
T

n−1

∑
k=1

(
ln X(k+1)∆ − ln Xk∆ −

ln Xn∆ − ln X∆

n

)

− 1
T+

n+−1

∑
k=1

(
ln X(k+1)∆ − ln Xk∆ −

ln Xn∆ − ln X∆

n+

)
1{| ln X(k+1)∆−ln Xk∆ |≤α∆v}

where the second term on the right-hand side correct for the leverage effect.
Define the statistic,

ĈSST,∆ =
sqrt(T)

∆
µ̂T,∆.

The ĈSST,∆ is evidently closely related to the CSS1T,∆ test in Equation (10).
Second, instead of using a rescaled bootstrap to account for the fact that the variance of the statistic

is of a different order of magnitude under the null and under each alternative, Corradi et al. (2018)
introduce a threshold variance estimator to consistently estimate the variance of ĈSST,∆ under the null
and bounded in probability under the union of alternatives. Specifically, define,

σ̂2
T,∆ =

1
T∆2

n−1

∑
k=1

(
ln X(k+1)∆ − ln Xk∆ −

ln Xn∆ − ln X∆

n

)3
1{| ln X(k+1)∆−ln Xk∆ |≤α∆v}

then the following t-statistic can be used for inference,

t̂T,∆ =
ĈSST,∆

σ̂T,∆

Corradi et al. (2018) show that under certain assumptions, t̂T,∆ converges to a standard normal variable

under the null, diverges at rate
√

T
∆ under H(1)

A , and diverges at the slower rate of 1
∆ under H(2)

A .

5. Fixed Time Span Realized Jump Tests

In this section, we briefly review three fixed time span realized jump tests that are evaluated in our
Monte Carlo and empirical experiments. These tests are the ASJ, BNS and PZ tests discussed above.

5.1. Aït-Sahalia and Jacod (ASJ: 2009) Test

Aït-Sahalia and Jacod (2009) propose a jump test based on calculating the ratio between two
realized higher order power variations with different sampling intervals ∆ and q∆, respectively, where
q is an integer chosen prior to test construction. The pth order realized higher order power variation is
defined as follows,

B̂(p, ∆) =
b1/∆c

∑
k=2
| ln Xk∆ − ln X(k−1)∆|p (13)

where bχc indicates the integer part of χ.
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The ratio between two realized power variations with different sampling intervals is then,

Ŝ(p, q, ∆) =
B̂(p, q∆)
B̂(p, ∆)

. (14)

The test statistic is defined as,

ASJ =
q

p
2−1 − Ŝ(p, q, ∆)√

Vc
n

, (15)

where in the denominator, Vc
n , can be estimated using a truncated estimator,

V̂c
n = ∆

Â(2p, ∆)M(p, q)
Â(p, ∆)2

, (16)

where
M(p, q) =

1
µ2

p
(qp−2(1 + q)µ2p + qp−2(q− 1)µ2

p − 2qp/2−1µq,p),

and Â(p, ∆) is defined as follows,

Â(p, ∆) =
∆1−p/2

µp

b1/∆c

∑
k=2
| ln Xk∆ − ln X(k−1)∆|p1{| ln Xk∆−ln X(k−1)∆ |≤α∆v}, (17)

where α > 0, v ∈ (0, 1/2), and α∆v functions as a threshold separating the continuous component
from the jump component. Alternatively, Vc

n , can be estimated using a multipower variation estimator,

Ṽc
n = ∆

M(p, q)Ã(p/(bpc+ 1), 2bpc+ 2, ∆)
Ã(p/(bpc+ 1), bpc+ 1, ∆)2

, (18)

where

Ã(r, l, ∆) =
∆1−lr/2

µl
r

b1/∆c−l+1

∑
k=l

l−1

∏
j=0
| ln X(k+j)∆ − ln X(k+j−1)∆|r, (19)

and
µr = E(|U|r) and µq,p = E(|U|p|U +

√
q− 1V|p),

for U, V i.i.d∼ N(0, 1).
In practice, for any significance level α, if ASJ > Zα, where Zα is the (1− α)th quantile of the

standard normal distribution, one rejects the null of no jumps on the fixed interval [0, 1].

5.2. Barndorff-Nielsen and Shephard (BNS: 2006) Test

The Barndorff-Nielsen and Shephard (2006) test compares the difference between two estimators
of integrated volatility: one which is robust to jumps and the other which is not, to test for jumps
on a particular sample path. Barndorff-Nielsen and Shephard (2004) introduce the realized bipower
variation (BPV) which is a robust estimator of the integrated volatility. Namely, they consider

BPV =
π

2
(

m
m− 1

)
b1/∆c

∑
k=2
| ln X(k+1)∆ − ln Xk∆|| ln Xk∆ − ln X(k−1)∆|, (20)
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where m = b1/∆c. Realized BPV is a special case of the following realized multipower variation with
p = 2,

MPV(p) = µ
−p
2
p
(

m
m− p + 1

)
b1/∆c−p+1

∑
k=p

p−1

∏
j=0
| ln X(k+j)∆ − ln X(k+j−1)∆|

2
p . (21)

In this paper, we analyze the following version of their test statistic:

BNS = ∆−
1
2

1− BPV
RV√

((π
2 )

2 + π − 5)max(1, TPV
(BPV)2 )

, (22)

where RV is the realized volatility (i.e., the sum of squared high-frequency returns), and TPV is
tripower variation (i.e., MPV(3)).

The authors prove that under the null, BNS d−→ N(0, 1). As a result, one rejects the null of no
jumps on some fixed interval [0, 1], if the test statistic BNS > Zα.

5.3. Podolskij and Ziggel (PZ: 2010) Test

Podolskij and Ziggel (2010) modify the original truncated power variation statistic proposed
in Mancini (2009) by introducing a sequence of positive i.i.d. random variables {ηi}i∈[1,b1/∆c], with
expectation one and finite variance. Namely, they consider

T(ln X, p) = ∆
1−p

2

b1/∆c

∑
k=2
| ln Xk∆ − ln X(k−1)∆|p(1− ηi1{| ln Xk∆−ln X(k−1)∆ |≤α∆v}). (23)

The test statistic that they propose has the following form,

PZ =
T(ln X, p)

Var∗(η)Â(2p, ∆)
, (24)

where Â(2p, ∆) is the original truncated power variation in Equation (17). The authors prove that

under the null of no jumps, PZ d−→ N(0, 1), and explodes under the alternative. As a result, one rejects
the null if PZ > Zα.

6. Monte Carlo Simulations

In this section, we report the results of Monte Carlo experiments used to analyze the finite sample
properties of the tests introduced above. The simulations are designed to show: (i) the relevance
of inconsistency of the fixed time span tests, when tested against non-zero jump intensity in the
underlying DGP; (ii) the relevance (or lack thereof) of sequential testing bias when performing daily
jump tests, sequentially, along sample paths with a long time span; (iii) the empirical size and power
of fixed time span jump tests when applied directly to samples with long time spans; and (iv) the finite
sample properties of the CSS1, C̃SS1 and CSS tests.

The DGP under the null hypothesis in all simulations is the following stochastic volatility model,

ln Xt = ln X0 +
∫ t

0
µ̄ds +

∫ t

0
σsdWs,

σ2
t = σ2

0 + κσ

∫ t

0
(σ̄2 − σ2

s )ds + ζ
∫ t

0

√
σ2

s dBs,
(25)
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where the stochastic volatility follows a square root process.9 Leverage effects are characterized by
corr(dWs, dBs) = ρ, where ρ={0, −0.5}. Under the alternative, we simulate jumps as a compound
Poisson process. Namely, we add ∑Nt

i=1 Ji to the null DGP, where Nt is a Poisson process characterized
by intensity parameter λ, which determines the frequency of jump arrivals, and Ji is independently
and identically drawn from a normal distribution, which characterizes the jump size. All parameter
values for various DGP permutations considered are given in Table 1. Of note is that the parameter
values used in our experiments are chosen to regions of the parameter space where the tests shift
from having strong finite sample properties to having weaker finite sample properties. Thus, for
example, while we broadly mimic the parameterizations used in the extant literature (see e.g., Huang
and Tauchen (2005) and Aït-Sahalia and Jacod (2009), in some cases, our parameters are slightly smaller.
For example, Huang and Tauchen (2005) have jump magnitude standard deviation parameters ranging
from 0.5 to 2.0, while ours range from 0.25 to 1.25. The sampling frequency in our simulations is
5-min (i.e., 78 observations per day).10 Using the Milstein discretization scheme, we simulate log-price
sample paths over T = 500 days, so that there are 39,000 observations in total, for each sample path.
Simulation results are calculated based on 1000 replications, and tests are implemented using 0.05 and
0.10 significance levels.

Table 1. Data Generating Processes (DGPs) used in Monte Carlo experiments.

Panel A: Parameter Values

κσ, σ̄, ζ = {5, 0.12, 0.5}
µ = 0.05
∆ = 1/78

ρ = {0, −0.5}
λ = {0.1, 0.4, 0.8}

Ji
i.i.d∼ N (µJ , σ2

J ), {µJ , σJ} = {0, 0.25}, {µJ , σJ} = {0, 5× 0.25}
{µJ , σJ} = {

√
0.5, 0.25}, {µJ , σJ} = {2.5×

√
0.5, 5× 0.25}

Panel B: Data Generating Processes

DGP 1: Equation (25) with µ = 0.05, ρ = 0, κσ = 5, σ̄ = 0.12, ζ = 0.5
DGP 2: Equation (25) with µ = 0.05, ρ = −0.5, κσ = 5, σ̄ = 0.12, ζ = 0.5

DGP 3: DGP 1 + Ji
i.i.d∼ N (0, 0.252)

DGP 4: DGP 2 + Ji
i.i.d∼ N (0, 0.252)

DGP 5: DGP 1 + Ji
i.i.d∼ N (0, (5× 0.25)2)

DGP 6: DGP 2 + Ji
i.i.d∼ N (0, (5× 0.25)2)

DGP 7: DGP 1 + Ji
i.i.d∼ N (

√
0.5, 0.252)

DGP 8: DGP 2 + Ji
i.i.d∼ N (

√
0.5, 0.252)

DGP 9: DGP 1 + Ji
i.i.d∼ N (2.5×

√
0.5, (5× 0.25)2)

DGP 10: DGP 2 + Ji
i.i.d∼ N (2.5×

√
0.5, (5× 0.25)2)

* Notes: DGP 1 is a continuous process without leverage effect and DGP 2 is a continuous process with leverage
effect. DGPs 3–10 are continuous processes with or without leverage effect plus jumps characterized by various
jump size densities. See Section 6 for complete details.

Table 2 reports empirical size of daily fixed time span jump tests. In this table, however, the test is
applied in two different ways. For entries under the “Jump Days” header, the empirical size of the daily
tests are reported. One can think of these experiments as reporting rejection frequencies of 500,000 tests
(since T = 500 and there are 1000 Monte Carlo replications). For entries under the “Sequential Testing

9 Note that in all of our experiments, we do not consider jumps in the volatility process, as mentioned in Section 2.
10 In all experiments, we first simulate asset log-prices using a Milstein approximation scheme, with a finer interval h = 1/312.

We then construct 5-min returns, i.e., with ∆ = 1/78. Other numerical simulation strategies can also be used. For example,
one can first simulate 1-s frequency data, then sample the data at a 5-min frequency, as in Christensen et al. (2014). However,
considering the great computational burden associated with simulating long-span data, this is left to future research.
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Bias” header, sequences of T tests (corresponding the the length of our daily samples) are run, and
overall rejection frequencies across all T tests are reported, where T ranges from 1 to 500 days. Thus,
these entries indicate the accumulation of sequential testing bias associated with repeated application
of the tests across multiple days. Turning first to the “Jump Days” empirical size results, it is evident
that the BNS test is least favorably sized, as expected, while the ASJ and PZ tests are very accurately
sized, across all DGPs, with the only exception being that the PZ test is undersized when T = 5. Now,
consider the “Sequential Testing Bias” results in the table. As expected, sequential testing bias leads to
a 1.000 rejection rate as T increases beyond 50 days, and these rejection rates are achieved surprisingly
quickly, as T increases, although it is interesting to note that the PZ test suffers from slightly less bias,
for smaller values of T.11

Table 2. Empirical Size of Daily Fixed Time Span Tests and Sequential Testing.

Test Subject T = 1 T = 5 T = 50 T = 150 T = 300 T = 500

DGP 1

Jump Days
0.112
0.058

0.115
0.058

0.118
0.059

0.120
0.059

0.119
0.059

0.120
0.060

ASJ
Sequential

Testing Bias
0.112
0.058

0.458
0.256

0.999
0.953

1.000
1.000

1.000
1.000

1.000
1.000

DGP 2

Jump Days
0.100
0.052

0.116
0.057

0.121
0.059

0.120
0.059

0.120
0.059

0.120
0.059

Sequential
Testing Bias

0.100
0.052

0.458
0.256

0.998
0.950

1.000
1.000

1.000
1.000

1.000
1.000

DGP 1

Jump Days
0.122
0.071

0.150
0.094

0.155
0.095

0.152
0.093

0.153
0.094

0.153
0.095

BNS

Sequential
Testing Bias

0.122
0.071

0.557
0.380

1.000
0.992

1.000
1.000

1.000
1.000

1.000
1.000

DGP 2

Jump Days
0.141
0.098

0.153
0.094

0.156
0.096

0.154
0.095

0.154
0.095

0.154
0.095

Sequential
Testing Bias

0.141
0.098

0.571
0.398

1.000
0.993

1.000
1.000

1.000
1.000

1.000
1.000

DGP 1

Jump Days
0.120
0.043

0.081
0.031

0.123
0.050

0.113
0.049

0.110
0.046

0.108
0.045

PZ

Sequential
Testing Bias

0.120
0.043

0.347
0.146

0.999
0.921

1.000
0.999

1.000
1.000

1.000
1.000

DGP 2

Jump Days
0.105
0.046

0.075
0.029

0.122
0.048

0.113
0.049

0.110
0.046

0.108
0.045

Sequential
Testing Bias

0.105
0.046

0.331
0.140

0.998
0.916

1.000
0.999

1.000
1.000

1.000
1.000

* Notes: Entries in this table denote rejection frequencies based on applications of ASJ, BNS and PZ daily fixed time
span jump tests. Results for 0.1 (row 1) and 0.05 (row 2) significance levels are reported. T denotes the number of
days for which daily fixed time span jump tests are applied. “Jump Days” shows the average percentage of detected
jump days at 0.1 and 0.05 significance levels, respectively. “Sequential Testing Bias” shows probability of finding at
least one jump at 0.1 and 0.05 significance levels, respectively. See Sections 5 and 6 for complete details.

11 It would be interesting to analyze results for the case where fixed time span tests are sequentially conducted, but the FWER
is controlled for, as discussed in Section 3. This is left to future research.
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Table 3 reports empirical power of daily fixed time span jump tests, defined as the rejection rate of
daily jump tests across each individual day in each sample path, averaged across all 1000 replications.
As in Table 2, one can think of these experiments as reporting rejection frequencies of 500,000 tests.
Interestingly, power is often small, even when λ = 0.4, which is a relatively large value, for
finite-activity jumps. Among the three jump tests, the ASJ test has the lowest power, while BNS
and PZ test are somewhat better. In interpreting these results, note that, intuitively speaking, the
empirical power of daily jump tests against non-zero jump intensity is largely determined by the
magnitude of the jump intensity, since this parameter determines the frequency or probability of
jump arrivals. Even if these tests have good power against jumps when they occur, for daily intervals
without any jumps, it is not surprising to observe that these tests do not reject the null in favor of
non-zero jump intensity. Therefore, as long as the intensity is finite, the probability of jumps not
occurring on a particular fixed interval is positive, which in turn affects the empirical power of all
fixed time span jump tests. However, the tests are also clearly impacted by jump size magnitude. For
example, when σ increase from 0.25 to 1.25 (compare DGPs 3 and 4 with DGPs 5 and 6—symmetric
jumps, or compare DGPs 7 and 8 with DGPs 9 and 10—asymmetric jumps), in such cases, empirical
power increases by around 30% under symmetric jumps. The exception is the BNS and PZ tests, which
show little power improvement, under the asymmetric jump case. However, there is still a trade-off
between the three tests, as the ASJ test has overall less power for the case of symmetric jumps.

Table 3. Empirical Power of Daily Fixed Time Span Tests.

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

ASJ

λ = 0.1
0.127
0.068

0.124
0.067

0.143
0.077

0.135
0.077

0.160
0.093

0.160
0.093

0.186
0.118

0.185
0.125

λ = 0.4
0.183
0.104

0.170
0.103

0.244
0.150

0.232
0.143

0.285
0.167

0.284
0.172

0.353
0.262

0.353
0.262

λ = 0.8
0.232
0.137

0.242
0.138

0.345
0.210

0.356
0.219

0.415
0.240

0.431
0.252

0.548
0.411

0.533
0.425

BNS

λ = 0.1
0.201
0.154

0.185
0.124

0.222
0.179

0.208
0.150

0.247
0.208

0.230
0.177

0.250
0.211

0.232
0.179

λ = 0.4
0.315
0.264

0.274
0.225

0.379
0.339

0.359
0.313

0.432
0.403

0.404
0.371

0.441
0.413

0.411
0.378

λ = 0.8
0.427
0.377

0.392
0.336

0.560
0.526

0.534
0.499

0.625
0.600

0.611
0.583

0.633
0.612

0.615
0.588

PZ

λ = 0.1
0.191
0.107

0.182
0.101

0.218
0.136

0.211
0.131

0.239
0.159

0.234
0.157

0.241
0.163

0.235
0.158

λ = 0.4
0.295
0.217

0.287
0.210

0.377
0.311

0.369
0.298

0.425
0.366

0.416
0.352

0.431
0.372

0.424
0.360

λ = 0.8
0.424
0.357

0.397
0.339

0.560
0.510

0.548
0.498

0.634
0.589

0.624
0.587

0.640
0.595

0.628
0.591

* Notes: See notes to Table 2. Rejection frequencies are given based on repeated daily applications of jump tests
across T = 500 days, for each Monte Carlo replication. Thus, one can think of these experiments as reporting rejection
frequencies of 500,000 tests (since T = 500 and there are 1000 Monte Carlo replications). Note that DGPs 3–10 are all
jump diffusions, i.e., with λ > 0. However, as λ is finite, jumps may not occur on some days. For more details, see
Section 6.

Tables 4–7 report findings from experiments where the “entire” sample of T days was used in a
single application of the fixed time span tests. This testing strategy is of interest, because there is no
reason that fixed time span tests need be implemented using only one day worth of data; and when
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they are implemented in this manner, they constitute a direct alternative to the use of our long time
span tests. First, turn to Table 4, where empirical size is reported. Among the three tests, ASJ is the
clear winner, with size remaining stable even when T = 500. This is an interesting and surprising
result, suggesting the broad usefulness of the ASJ test. The BNS and PZ tests perform as expected, on
the other hand. For example, the empirical size of the PZ test approaches unity very quickly, and is
already approximately 0.5, even for T = 50, indicating the weak ability of this test to control size as
the time span increases. As expected, and as can be seen upon inspection of Table 5–7, the empirical
power of all three tests approaches unity quickly as T increases. For example, the empirical power of
the ASJ test is over 0.9 for almost all DGPs, when T = 50. In summary, the ASJ test is well sized and
has great power under long time span testing. This test, thus, is a clear alternative to the long time
span tests discussed in the sequel.

Tables 8–12 contain the results of our experiments run using long time span jump tests (i.e., the
CSS1, C̃SS1 and CSS tests). As discussed above, the leverage-robust CSS1 test (i.e., C̃SS1) sacrifices
power in order to ensure robustness against leverage effects. Specifically, in Equation (11), due to
the extra term, 1

T1/2+ε , the leverage-robust test statistic diverges at rate 1
Tε∆ and 1

T1/2+ε∆ , under the
alternatives of asymmetric and symmetric jumps, respectively. In practice, the sampling interval,
∆, is usually small and fixed, and the test statistic under the alternatives shrinks with an increasing
time span, particularly when jumps are symmetric, while the bootstrapped critical values are of order
1/∆̃. As a result, when constructing the leverage-robust test, we propose a rule-of-thumb called
our “T-varying” strategy, in order to choose the subsampling interval, ∆̃, used in bootstrapping
(see notes to Table 8 for details). This rule-of-thumb results in improved power in our experiments.
However, it is an ad hoc data driven method, and further research into its properties remains to be
done. Summarizing, we utilize coarser ∆̃, as T grows. Some choices of ∆̃ in our experiments can be
sub-optimal. For instance, consider ∆̃ = 2 and 3.2 when T = 300 and 500, respectively. However, these
choices appear sub-optimal only when T is very long. Thus, the subsamples used are still adequate for
bootstrap resampling. Since a coarser value for ∆̃ (i.e., a larger subsampling interval) diminishes the
magnitude of our bootstrap critical values, this strategy reduces the magnitude of decreases in power
that are due to the adjustment term being inversely proportional to T. The effect of this ad hoc data
driven method for improving power on empirical size is found to be negligible, and hence the method
is utilized in all of our leverage-robust testing experiments, and later in our empirical analysis.

Turning to the results reported in these tables, first consider the empirical size of the CSS1 and
C̃SS1 tests (see Table 8). It is immediately apparent that the CSS1 test has good empirical size for DGP
1 (i.e., the “no leverage” case). However, and as expected, size diverges when there is leverage. Again
as expected (see Equation (12)), C̃SS1 has zero empirical size, regardless of the presence of leverage,
for values of T greater than 5. Interestingly, when T = 5, the test is approximately correctly sized; thus
indicating that our long time span test is an alternative to the short time span tests discussed earlier
for small values of T. Of course, T should clearly not be equal to one for the application of the long
time span tests. In Table 9, we report the empirical size of the CSS test, for different permutations of T
and ∆. We find several interesting results. First, rejection frequencies are lower when κ = T+/T is
closer to unity, especially for shorter T, given ∆.12 This is not surprising because for T+ = T the test
statistic is degenerate under the null (see Corradi et al. (2018)). Thus, it is advisable to use a reasonably
large value for κ, such as κ = 10, given the assumption that T+/T → ∞. Next, consider the results
for the case where ρ = 0. The CSS test is correctly sized for T = 60, 70, 80, when ∆ = 1/78, and is
slightly undersized even for T = 220, when ∆ = 1/156. This finding suggests that the ratio of T to ∆ is
extremely crucial to the finite sample performance of the CSS test. Again, this is not surprising given
the key assumption that 1/∆ < T < 1/∆2. Finally, we observe that the test becomes oversized even

12 We assume that the sample over an increasing time span, T+ used in the construction of the test, is observed and we examine
a subsample with time span, T. For more details, see Corradi et al. (2018).
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faster when there is leverage (i.e., the case with ρ = −0.5). However, as long as T and ∆ are carefully
chosen, the finite sample performance of the CSS test is adequate.

Next, notice in Table 10 that the empirical power of the CSS1 is good across all cases. This result
even holds for the case where jumps are symmetric and σ = 0.25 (i.e., DGPs 3 and 4), where power is
still reasonable, although tests are naturally less powerful than the case where jumps are asymmetric.
Turning to Table 11, where empirical power of the C̃SS1 is reported. As expected, empirical power is
sacrificed, particularly when jumps are symmetric and σ = 0.25 (i.e., DGPs 3 and 4). However, when
σ = 1.25 (i.e., DGPs 5 and 6), this sacrifice is substantially reduced, and power is reasonably good
in almost all cases, even when λ is small. Finally, the empirical power of the CSS test is reported in
Table 12.13 The CSS test is much more powerful than the C̃SS1 test for all cases. For example, when
jumps are less frequent and are symmetric and very weak (i.e., DGPs 3 and 4 with λ = 0.1), the power
of CSS test is over 47%, when T = 50 and ∆ = 1/78, at a 10% nominal level, while the power of the
C̃SS1 test is less than 20%. Furthermore, the power of the CSS test increases as T grows, for a fixed ∆.
In contrast, as discussed above, the power of the C̃SS1 test decreases as T grows, for fixed ∆. Coupled
with our earlier findings concerning size, we thus have strong evidence that the C̃SS1 and the CSS
tests are adequate tests for evaluating the presence of jumps in long time spans.

Table 4. Empirical size of Fixed Time Span tests when utilized using Long Samples.

Test T = 5 T = 25 T = 50 T = 150 T = 300 T = 500

DGP 1

ASJ
0.113
0.051

0.109
0.057

0.119
0.067

0.114
0.066

0.135
0.072

0.147
0.072

DGP 2

0.106
0.045

0.131
0.075

0.148
0.069

0.136
0.065

0.132
0.072

0.145
0.080

DGP 1

BNS
0.132
0.070

0.136
0.071

0.142
0.075

0.150
0.081

0.194
0.109

0.215
0.127

DGP 2

0.127
0.081

0.122
0.065

0.142
0.080

0.162
0.095

0.192
0.104

0.227
0.132

DGP 1

PZ
0.116
0.069

0.288
0.279

0.504
0.484

0.849
0.846

0.962
0.950

0.994
0.993

DGP 2

0.119
0.071

0.290
0.265

0.504
0.482

0.869
0.856

0.974
0.964

0.995
0.995

* Notes: See notes to Table 2. Entries are rejection frequencies based on a single application of the ASJ, BNS
and PZ tests using long time span samples with T days, for each Monte Carlo replication. For all values of T,
1000 replications are run.

13 We only report results associated with less frequent and weak jumps (i.e., λ = 0.1 and 0.4) and for jump sizes that are
i.i.d normally distributed with µ = 0, σJ = 0.25 and 1.25 (i.e., small and symmetric jumps, corresponding to the “worst”
alternatives considered). Complete results are available upon request.



Econometrics 2019, 7, 13 17 of 32

Table 5. Empirical Power of the ASJ Jump Test when utilized using Long Samples.

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.214
0.151

0.227
0.169

0.341
0.285

0.352
0.286

0.409
0.345

0.408
0.351

0.436
0.395

0.447
0.405

λ = 0.4
0.498
0.401

0.482
0.400

0.750
0.678

0.731
0.668

0.838
0.769

0.846
0.784

0.876
0.856

0.872
0.854

λ = 0.8
0.670
0.565

0.653
0.563

0.901
0.839

0.899
0.833

0.941
0.897

0.936
0.895

0.947
0.934

0.939
0.923

T = 25

λ = 0.1
0.544
0.480

0.510
0.454

0.835
0.812

0.803
0.779

0.913
0.907

0.913
0.900

0.924
0.921

0.924
0.918

λ = 0.4
0.908
0.872

0.898
0.870

0.993
0.993

0.996
0.994

0.992
0.991

0.991
0.991

0.986
0.986

0.984
0.984

λ = 0.8
0.988
0.985

0.988
0.977

0.995
0.995

0.995
0.994

0.979
0.978

0.984
0.980

0.989
0.986

0.985
0.978

T = 50

λ = 0.1
0.711
0.663

0.714
0.655

0.960
0.954

0.956
0.949

0.989
0.985

0.986
0.985

0.991
0.990

0.990
0.990

λ = 0.4
0.987
0.979

0.989
0.983

0.997
0.997

0.998
0.997

0.992
0.992

0.996
0.994

0.993
0.993

0.994
0.992

λ = 0.8
0.995
0.995

0.997
0.994

0.996
0.995

0.996
0.995

0.990
0.989

0.990
0.988

0.997
0.995

0.996
0.994

T = 150

λ = 0.1
0.965
0.954

0.961
0.947

0.999
0.999

0.999
0.999

0.998
0.997

0.997
0.997

0.996
0.996

0.996
0.996

λ = 0.4
0.998
0.998

1.000
0.999

1.000
1.000

1.000
1.000

0.998
0.998

0.999
0.998

1.000
1.000

1.000
1.000

λ = 0.8
0.999
0.999

0.999
0.999

0.999
0.999

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.996
0.995

0.996
0.995

0.999
0.999

0.999
0.999

0.998
0.998

0.998
0.998

0.999
0.999

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
0.998
0.998

0.999
0.999

0.999
0.999

0.999
0.999

0.999
0.999

0.999
0.999

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

* Notes: See notes to Tables 3 and 4.
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Table 6. Empirical Power of the BNS Jump Test when utilized using Long Samples.

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.264
0.197

0.270
0.207

0.396
0.340

0.390
0.344

0.452
0.408

0.446
0.410

0.464
0.423

0.458
0.423

λ = 0.4
0.588
0.533

0.599
0.540

0.802
0.771

0.798
0.768

0.885
0.871

0.883
0.872

0.889
0.880

0.887
0.878

λ = 0.8
0.817
0.768

0.815
0.776

0.948
0.942

0.961
0.953

0.983
0.979

0.981
0.978

0.986
0.984

0.984
0.981

T = 25

λ = 0.1
0.537
0.471

0.550
0.476

0.824
0.796

0.833
0.804

0.915
0.906

0.917
0.907

0.928
0.923

0.930
0.923

λ = 0.4
0.945
0.923

0.943
0.928

0.998
0.998

0.997
0.997

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.707
0.625

0.720
0.650

0.950
0.946

0.958
0.944

0.987
0.983

0.988
0.985

0.993
0.993

0.995
0.994

λ = 0.4
0.997
0.994

0.996
0.995

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 150

λ = 0.1
0.947
0.917

0.958
0.934

1.000
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.994
0.993

0.996
0.994

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

* Notes: See notes to Tables 3 and 4.
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Table 7. Empirical Power of the PZ Jump Test when utilized using Long Samples.

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.316
0.277

0.317
0.284

0.418
0.385

0.413
0.387

0.465
0.433

0.456
0.433

0.471
0.439

0.464
0.441

λ = 0.4
0.682
0.656

0.661
0.645

0.829
0.818

0.810
0.801

0.888
0.881

0.879
0.874

0.890
0.883

0.880
0.875

λ = 0.8
0.874
0.864

0.865
0.851

0.962
0.960

0.965
0.960

0.981
0.979

0.984
0.980

0.982
0.980

0.985
0.981

T = 25

λ = 0.1
0.788
0.780

0.777
0.766

0.911
0.907

0.900
0.896

0.936
0.934

0.935
0.933

0.939
0.937

0.939
0.937

λ = 0.4
0.993
0.993

0.992
0.992

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.960
0.956

0.954
0.950

0.991
0.991

0.987
0.987

0.997
0.997

0.993
0.993

0.998
0.998

0.994
0.994

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 150

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

* Notes: See notes to Tables 3 and 4.
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Table 8. Empirical Size of the CSS1 and C̃SS1 Jump Tests.

Test Statistic Leverage T = 5 T = 25 T = 50 T = 150 T = 300 T = 500

CSS1
∅ 0.202

0.145
0.151
0.094

0.129
0.072

0.123
0.076

0.106
0.055

0.112
0.057

√ 0.264
0.185

0.316
0.221

0.461
0.341

0.858
0.775

0.987
0.968

0.999
0.997

C̃SS1
∅ 0.075

0.048
0.007
0.003

0.001
0.000

0.000
0.000

0.000
0.000

0.000
0.000

√ 0.089
0.053

0.002
0.001

0.000
0.000

0.000
0.000

0.000
0.000

0.000
0.000

* Notes: As in Tables 2–7, jump test rejection frequencies are reported. As discussed in Section 6, the subsampling
interval, ∆̃, used in constructing critical values for the tests has been selected using a simple rule. Namely, {T = 25
and 50, ∆̃1

n = 1/3, ∆̃2
n = 1/26}; {T = 150, ∆̃1

n = 1, ∆̃2
n = 1/13}; {T = 300, ∆̃1

n = 2, ∆̃2
n = 1/13}; {T = 500, ∆̃1

n = 3.2, ∆̃2
n = 1/10},

where ∆̃1
n is the subsampling interval used in bootstrapping critical values for C̃SS1 and ∆̃2

n is the subsampling
interval used in bootstrapping critical values for CSS1.

Table 9. Empirical size of the CSS Jump Test.

T = 40 T = 50 T = 60 T = 70 T = 80 T = 90

No Leverage

κ = 2
0.049
0.019

0.057
0.032

0.114
0.057

0.105
0.060

0.147
0.079

0.169
0.103

∆

κ = 5
0.055
0.025

0.078
0.042

0.089
0.048

0.117
0.053

0.111
0.059

0.153
0.097

κ = 10
0.061
0.021

0.076
0.033

0.091
0.042

0.113
0.067

0.123
0.067

0.152
0.089

Leverage

κ = 2
0.047
0.021

0.117
0.059

0.176
0.099

0.269
0.189

0.341
0.242

0.459
0.361

κ = 5
0.085
0.046

0.136
0.077

0.203
0.128

0.275
0.182

0.350
0.249

0.437
0.330

κ = 10
0.085
0.046

0.128
0.062

0.180
0.116

0.284
0.171

0.386
0.253

0.436
0.332

T = 120 T = 140 T = 160 T = 180 T = 200 T = 220

No Leverage

κ = 2
0.030
0.008

0.024
0.004

0.046
0.015

0.057
0.020

0.068
0.033

0.083
0.045

κ = 5
0.033
0.015

0.047
0.020

0.038
0.021

0.068
0.029

0.070
0.037

0.083
0.040

κ = 10
0.046
0.015

0.056
0.022

0.067
0.028

0.075
0.032

0.079
0.038

0.089
0.048

∆/2 Leverage

κ = 2
0.041
0.017

0.075
0.042

0.123
0.066

0.160
0.086

0.234
0.151

0.270
0.174

κ = 5
0.062
0.032

0.087
0.043

0.127
0.064

0.170
0.086

0.227
0.139

0.290
0.185

κ = 10
0.071
0.027

0.101
0.050

0.156
0.091

0.167
0.084

0.246
0.138

0.283
0.187

* Notes: Rejection frequencies are reported based on application of CSS test. Sampling intervals are either ∆ =
1/78 or ∆/2 = 1/156. κ = T+/T, where T+ is the longer time span. Different combinations of ∆, T and T+ are
specified in order to find a suitable set of parameters for which adequate finite sample properties characterize the
test. For complete details, see Section 6.
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Table 10. Empirical Power of CSS1 Jump Test.

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.346
0.274

0.361
0.291

0.435
0.374

0.463
0.396

0.487
0.436

0.517
0.463

0.507
0.461

0.540
0.491

λ = 0.4
0.572
0.498

0.585
0.514

0.717
0.665

0.712
0.650

0.895
0.879

0.883
0.865

0.901
0.890

0.895
0.887

λ = 0.8
0.664
0.600

0.677
0.615

0.790
0.752

0.784
0.737

0.968
0.962

0.973
0.964

0.969
0.964

0.976
0.970

T = 25

λ = 0.1
0.472
0.400

0.535
0.447

0.713
0.656

0.733
0.670

0.913
0.895

0.921
0.896

0.926
0.917

0.941
0.928

λ = 0.4
0.630
0.560

0.634
0.537

0.690
0.604

0.676
0.598

0.997
0.996

0.998
0.997

1.000
0.998

1.000
1.000

λ = 0.8
0.650
0.583

0.645
0.569

0.647
0.580

0.650
0.572

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.559
0.459

0.587
0.492

0.719
0.644

0.736
0.657

0.982
0.977

0.981
0.975

0.990
0.989

0.990
0.988

λ = 0.4
0.641
0.557

0.656
0.561

0.642
0.548

0.628
0.559

1.000
1.000

1.000
1.000

0.999
0.999

0.999
0.999

λ = 0.8
0.623
0.534

0.604
0.527

0.628
0.531

0.627
0.539

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 150

λ = 0.1
0.763
0.722

0.786
0.732

0.847
0.804

0.828
0.788

1.000
1.000

1.000
0.999

1.000
1.000

1.000
1.000

λ = 0.4
0.762
0.716

0.768
0.717

0.807
0.759

0.802
0.764

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.761
0.715

0.750
0.704

0.805
0.756

0.795
0.751

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.766
0.709

0.784
0.738

0.819
0.784

0.825
0.786

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.789
0.742

0.768
0.713

0.780
0.733

0.791
0.755

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.759
0.711

0.756
0.702

0.808
0.764

0.802
0.757

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
0.791
0.755

0.819
0.790

0.865
0.833

0.855
0.825

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.819
0.771

0.808
0.774

0.838
0.804

0.827
0.795

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.786
0.753

0.776
0.739

0.823
0.784

0.836
0.795

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

* Notes: See notes to Tables 3, 4 and 8.
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Table 11. Empirical Power of C̃SS1 Jump Test.

Jump Intensity DGP 3 DGP 4 DGP 5 DGP 6 DGP 7 DGP 8 DGP 9 DGP 10

T = 5

λ = 0.1
0.181
0.145

0.221
0.162

0.300
0.272

0.337
0.287

0.374
0.348

0.401
0.355

0.406
0.390

0.438
0.407

λ = 0.4
0.428
0.371

0.443
0.388

0.651
0.597

0.642
0.585

0.856
0.835

0.837
0.819

0.871
0.865

0.866
0.863

λ = 0.8
0.596
0.515

0.586
0.513

0.761
0.717

0.738
0.710

0.950
0.943

0.951
0.944

0.951
0.948

0.952
0.948

T = 25

λ = 0.1
0.262
0.228

0.278
0.233

0.670
0.644

0.680
0.656

0.887
0.875

0.879
0.863

0.915
0.915

0.918
0.915

λ = 0.4
0.567
0.505

0.565
0.492

0.824
0.798

0.811
0.783

0.998
0.996

0.999
0.998

0.998
0.998

0.998
0.998

λ = 0.8
0.646
0.602

0.643
0.579

0.793
0.766

0.801
0.766

0.997
0.997

0.998
0.996

1.000
1.000

1.000
1.000

T = 50

λ = 0.1
0.169
0.129

0.192
0.149

0.694
0.630

0.687
0.624

0.946
0.933

0.959
0.947

0.983
0.978

0.983
0.978

λ = 0.4
0.436
0.349

0.416
0.342

0.708
0.632

0.696
0.634

0.998
0.998

0.999
0.997

0.998
0.995

0.997
0.996

λ = 0.8
0.489
0.411

0.469
0.386

0.654
0.584

0.635
0.586

0.996
0.995

0.993
0.990

0.999
0.997

0.999
0.997

T = 150

λ = 0.1
0.163
0.120

0.149
0.099

0.766
0.726

0.740
0.695

0.997
0.996

1.000
0.998

1.000
1.000

1.000
1.000

λ = 0.4
0.320
0.245

0.307
0.215

0.743
0.701

0.742
0.709

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.390
0.311

0.353
0.286

0.709
0.659

0.712
0.657

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 300

λ = 0.1
0.090
0.058

0.093
0.064

0.769
0.728

0.753
0.719

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.223
0.158

0.216
0.154

0.733
0.696

0.744
0.708

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.274
0.199

0.248
0.188

0.702
0.659

0.708
0.646

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

T = 500

λ = 0.1
0.054
0.026

0.063
0.038

0.757
0.710

0.751
0.700

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.4
0.153
0.091

0.158
0.106

0.717
0.650

0.700
0.651

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

λ = 0.8
0.188
0.126

0.171
0.129

0.667
0.607

0.649
0.585

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

* Notes: See notes to Tables 3, 4 and 8.
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Table 12. Empirical Power of the CSS Jump Test.

T = 40 T = 50 T = 60 T = 70 T = 80 T = 90

λ = 0.1

DGP 3
0.450
0.411

0.473
0.429

0.514
0.455

0.571
0.513

0.633
0.565

0.617
0.559

∆

DGP 4
0.465
0.412

0.485
0.438

0.550
0.499

0.647
0.594

0.652
0.593

0.702
0.642

DGP 5
0.821
0.810

0.872
0.863

0.922
0.917

0.952
0.947

0.965
0.964

0.975
0.968

DGP 6
0.829
0.817

0.876
0.867

0.928
0.918

0.953
0.948

0.974
0.968

0.978
0.972

λ = 0.4

DGP 3
0.806
0.762

0.835
0.812

0.843
0.822

0.847
0.819

0.868
0.846

0.872
0.859

DGP 4
0.792
0.753

0.831
0.807

0.828
0.804

0.862
0.829

0.866
0.831

0.887
0.865

DGP 5
0.997
0.996

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

DGP 6
0.996
0.994

0.997
0.997

0.997
0.997

1.000
1.000

1.000
1.000

1.000
1.000

T = 120 T = 140 T = 160 T = 180 T = 200 T = 220

λ = 0.1

DGP 3
0.863
0.838

0.890
0.872

0.884
0.862

0.899
0.889

0.919
0.905

0.917
0.894

∆/2

DGP 4
0.865
0.835

0.892
0.869

0.907
0.895

0.903
0.885

0.913
0.898

0.918
0.903

DGP 5
1.000
1.000

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

DGP 6
0.997
0.997

1.000
1.000

0.999
0.998

0.998
0.998

0.998
0.998

0.999
0.999

λ = 0.4

DGP 3
0.946
0.939

0.943
0.938

0.944
0.938

0.958
0.950

0.962
0.954

0.965
0.959

DGP 4
0.964
0.958

0.954
0.949

0.961
0.952

0.957
0.949

0.959
0.948

0.967
0.958

DGP 5
1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

DGP 6
1.000
1.000

0.999
0.999

1.000
1.000

1.000
1.000

1.000
1.000

1.000
1.000

* Notes: See notes to Table 9.
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7. Empirical Examination of Stock Market Data

7.1. Data

We analyze intraday TAQ stock price data sampled at a 5-min frequency, for the period including
observations from the beginning of 2006 through 2013.14 In particular, we examine: (i) 12 individual
stocks including American Express Company (AXP), Bank of America Corporation (BAC), Cisco
Systems, Inc. (CSCO), Citigroup Inc. (C), The Coca-Cola Company (KO), Intel Corporation (INTC),
JPMorgan Chase & Co. (JPM), Merck & Co., Inc. (MRK), Microsoft Corporation (MSFT), The Procter
& Gamble Company (PG), Pfizer Inc. (PFE) and Wal-Mart Stores, Inc. (WMT)); (ii) nine sector ETFs
including Materials Select Sector SPDR ETF (XLB), Energy Select Sector SPDR ETF (XLE), Financial
Select Sector SPDR ETF (XLF), Industrial Select Sector SPDR ETF (XLI), Technology Select Sector SPDR
ETF (XLK), Consumer Staples Select Sector SPDR ETF (XLP), Utilities Select Sector SPDR ETF (XLU),
Health Care Select Sector SPDR ETF (XLV) and Consumer Discretionary Select Sector SPDR ETF (XLY);
and (iii) the SPDR S&P 500 ETF (SPY). Overnight returns are excluded from our dataset.

7.2. Empirical Findings

Turning our discussion first to Figures 1 and 2, note that the bar charts in these figures depict
annual ratios of jump days for all of our stocks and ETFs, based on application of the ASJ, BNS, and PZ
tests (see legend to Figure 1). For example, 0.2 indicates that there were jumps founds on 20% of the
trading days in a given year. As expected, jumps are widely detected in asset prices and indexes over
almost any year. Sometimes, the annual percentage of jump days even appears to be inconceivably
large, at near 50%. Additionally, while the alternative tests often perform similarly (e.g., all three
testing methods find jumps during around 40% of the days in 2006 for XLU and XLP), there are
substantial differences for some stocks (e.g., in 2013 the PZ tests detect jumps twice as frequently as
the other fixed time span tests).

As expected, the ASJ test is the most conservative among the three tests. In almost all cases, the
ASJ test detects the fewest number of “jump days”. For instance, in 2008, ASJ test only finds 7.5% jump
days for XLK, while the PZ and BNS tests find jumps on 17.4% and 22.5% of days, respectively. For SPY,
the ASJ test finds around 1/3 as many jumps as the other tests, in 2009. This finding is consistent with
evidence from our Monte Carlo experiments (see Table 3). However, even with the most conservative
test, we regularly detect over 15% jump days for many assets, including XLV for 2006 through 2010,
XLB and XLY in 2006, and XLF and XLI for 2006 and 2007. Additionally, jump-day percentages are
generally larger for our sector ETFs than for individual stocks. This is not surprising, considering that
the individual stocks that we consider are all much larger than the sector ETFs, in terms of the trading
volume, for the periods from 2006 to 2013. Still, it is also apparent, upon inspection of the figures, that
the percentage of jumps detected in our ETFs is declining over time, on an annual basis. This pattern
does not characterize individual stocks, however. We conjecture that a possible reason for this is that
sector ETFs were not as frequently traded in the early years of our sample. For instance, typical daily
trading volume for XLP or XLY was around 1 million, including pre-market trading and after-hours
trading volumes, between 2006 and 2008. This volume is around 1% to 10% of the trading volume of
BAC, and 0.15% to 2.5% of the trading volume of SPY, over the same period.

14 It will be interesting to use data sampled at a higher frequency, as suggested in Christensen et al. (2014), and to carry out
inference on the relative discovery rate of the jump tests, as recommended by a referee. However, given that the tests
considered in this paper do not address microstructure noise, this is left to future research.
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Figure 1. Annual Ratios of Jump Days for ETFs. Entries in the above charts denote annual ratios of
detected jump days, based on daily applications of ASJ, BNS and PZ fixed time span jump tests. See
Sections 5 and 7 for complete details.

Figure 2. Annual Ratios of Jump Days for Individual Stocks. For more details, see Figure 1.

We now turn to a discussion of the results tabulated in Tables 13–19. In these tables, jump tests
results based on the examination of long time spans are reported for the ASJ, CSS1, C̃SS1 and CSS
tests. In these tables, tabulated entries are test statistics, and those entries with *, **, and *** indicate
rejections of the “no-jump” null at 0.10, 0.05, and 0.01 significance levels, respectively. In these tables,
the “long span” considered is one year for the ASJ, CSS1 and C̃SS1, corresponding to the period of
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time for which annual jump-day ratios were reported in Figures 1 and 2, and is one quarter for the CSS
test. Consider first the results of the ASJ test reported in Table 13 for our ETFs. Interestingly, there are
various ETFs for which no jumps are found. For example, for XLE, no jumps are found in 2006, 2008,
2010, and 2011. In 2011, no jumps are found for seven of 10 ETFs. Still, in 2007, jumps are found for all
nine ETFs, and in 2008, jumps are found for seven ETFs. Thus, the evidence concerning jumps appears
much more nuanced when the ASJ tests are utilized using long time spans. Of course, however, the
discussion above concerning trading volume effects during the early years of our sample still applies.
Thus, it is difficult to be sure whether the increase in the frequency of jumps found in earlier years
for our sector ETFs is an indicator of the ensuing financial collapse of 2008, or whether this finding is
simply an artifact of the data. We leave further investigation of this issue to future research.

Turning to Tables 14 and 15, which again report on ETFs, note that these tables include results
for the CSS1 (Table 14) and C̃SS1 (Table 15) tests. As expected, given our Monte Carlo findings, and
assuming the presence of leverage, rejections based on the CSS1 test are not only frequent, but are
actually more frequent than rejections based on the ASJ test. Indeed, given the presence of leverage,
these results carry little weight. However, we know that the C̃SS1 performs adequately, given the
presence of leverage. It is perhaps not surprising, then, that the number of years for which jumps
are found decreases substantially when C̃SS1 is used, relative to when testing using CSS1. Indeed, in
Table 15, note that there are many ETFs for which no jumps are found across multiple different years.
Still, it should be stressed that while C̃SS1 is robust to the presence of leverage, the cost of making it
thus is a reduction in power, as discussed in the previous sections of this paper. Thus, our conjecture is
that the “truth” likely lies somewhere between the results reported based on application of the ASJ
and the C̃SS1 tests. Still, either way, it is clear that application of long time span tests results in fewer
findings of jumps. It is this feature of the tests that is most intriguing, given its implications on the
specification and estimation of diffusion models.

Tables 16–18 contain results that are analogous to those reported in Tables 13–15, except that
individual stocks are analyzed. Interestingly, the test rejection patterns that appear upon inspection
of the entire in these tables confirms our above discussion based on ETF analysis. Namely, there are
various years for which no jumps are found based on application of the ASJ test, and this incidence of
“non-rejections” increases when one utilizes the C̃SS1 test.

Table 13. ASJ Jump Test Results for ETFs.

2006 2007 2008 2009 2010 2011 2012 2013

SPY 3.264 (***) 1.694 (**) 0.002 2.579 (***) 5.213 (***) 0.745 0.874 1.745 (**)
XLB 5.011 (***) 2.528 (***) 1.941 (**) 3.207 (***) 4.161 (***) 0.870 2.682 (***) 0.986
XLE 0.952 4.862 (***) 0.019 7.023 (***) 1.061 0.058 5.665 (***) 1.772 (**)
XLF 3.207 (***) 4.128 (***) 1.825 (**) 1.774 (**) 0.843 0.822 1.286 (*) 1.663 (**)
XLI 4.233 (***) 5.903 (***) 1.625 (*) 1.827 (**) 7.367 (***) 1.486 (*) 0.951 1.813 (**)
XLK 7.909 (***) 4.214 (***) 0.991 1.766 (**) 1.384 (*) 0.759 0.922 2.492 (***)
XLP 3.180 (***) 8.996 (***) 7.979 (***) 4.212 (***) 0.373 1.493 (*) 6.078 (***) 1.565 (*)
XLU 7.066 (***) 2.730 (***) 1.481 (*) 10.000 (***) 0.528 0.642 2.769 (***) 3.324 (***)
XLV 7.030 (***) 6.084 (***) 1.828 (**) 2.386 (***) 2.352 (***) 1.729 (**) 0.866 2.530 (***)
XLY 3.368 (***) 1.845 (**) 3.279 (***) 4.399 (***) 0.457 0.735 0.022 2.721 (***)

* Notes: See notes to Tables 4 and 5. Entries are jump test statistics, and (***), (**), and (*) indicate rejections of the
“no jump” null hypothesis at 0.01, 0.05 and 0.1 significance levels, respectively.
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Table 14. CSS1 Jump Test Results for ETFs.

2006 2007 2008 2009 2010 2011 2012 2013

SPY 2.04 × 10−7 −3.88 × 10−6 4.87 × 10−4 (***) 2.65 × 10−5 1.65 × 10−6 −1.19 × 10−5 −3.15 × 10−7 −2.90 × 10−6 (**)
XLB −1.40 × 10−5 −8.45 × 10−5 (***) 1.35 × 10−3 (***) −1.90 × 10−4 (***) −9.21 × 10−5 (***) 9.39 × 10−6 −1.33 × 10−6 1.87 × 10−6

XLE 2.38 × 10−5 (***) −2.43 × 10−5 (**) 1.07 × 10−3 (**) −9.77 × 10−5 (**) 4.74 × 10−5 (***) −4.76 × 10−5 −6.35 × 10−6 (**) −4.45 × 10−5

XLF −1.11 × 10−5 (***) −2.58 × 10−4 (***) 2.00 × 10−3 (***) −2.26 × 10−6 −5.04 × 10−5 (**) −3.69 × 10−5 3.76 × 10−6 −6.79 × 10−6 (**)
XLI −2.03 × 10−5 (***) 9.96 × 10−5 (***) 7.23 × 10−4 (***) −9.39 × 10−5 (**) 3.24 × 10−4 (***) 9.48 × 10−6 1.98 × 10−6 −2.93 × 10−6 (**)
XLK −1.99 × 10−4 (***) −6.68 × 10−5 (***) 1.86 × 10−3 (***) −2.68 × 10−5 −1.45 × 10−4 (***) −9.44 × 10−6 −2.63 × 10−6 −3.39 × 10−6 (***)
XLP 5.92 × 10−6 (***) 1.83 × 10−5 (***) −2.02 × 10−3 (***) −5.91 × 10−5 (***) −2.19 × 10−5 (**) −4.69 × 10−6 −4.30 × 10−5 (***) 8.25 × 10−7

XLU −9.42 × 10−5 (***) 1.67 × 10−4 (***) −8.17 × 10−5 −1.04 × 10−1 (***) 1.75 × 10−4 (***) −1.91 × 10−5 7.89 × 10−6 (***) −7.47 × 10−6

XLV −1.17 × 10−4 (***) 9.52 × 10−5 (***) 4.08 × 10−4 (***) −4.11 × 10−5 (***) −1.71 × 10−4 (***) 1.24 × 10−5 −8.03 × 10−7 −2.53 × 10−6

XLY −8.05 × 10−5 (***) −1.06 × 10−4 (***) −2.97 × 10−3 (***) −2.72 × 10−4 (***) 1.62 × 10−5 −1.56 × 10−5 −5.33 × 10−6 (**) 2.57 × 10−7

* Notes: See notes to Tables 8 and 13.

Table 15. C̃SS1 Jump Test Results for ETFs.

2006 2007 2008 2009 2010 2011 2012 2013

SPY 1.28 × 10−8 −2.43 × 10−7 (*) 3.05 × 10−5 1.66 × 10−6 1.03 × 10−7 −7.46 × 10−7 −1.98 × 10−8 (*) −1.82 × 10−7

XLB −8.78 × 10−7 (*) −5.31 × 10−6 (**) 8.41 × 10−5 −1.19 × 10−5 −5.77 × 10−6 5.88 × 10−7 −8.38 × 10−8 (*) 1.17 × 10−7

XLE 1.49 × 10−6 −1.53 × 10−6 6.71 × 10−5 −6.12 × 10−6 2.97 × 10−6 −2.98 × 10−6 −3.99 × 10−7 −2.79 × 10−7

XLF −6.97 × 10−7 −1.62 × 10−5 (**) 1.25 × 10−4 −1.42 × 10−6 −3.16 × 10−6 −2.31 × 10−6 2.36 × 10−7 (*) −4.26 × 10−7

XLI −1.27 × 10−6 6.25 × 10−6 4.52 × 10−5 −5.88 × 10−6 2.03 × 10−5 (***) 5.94 × 10−7 1.24 × 10−7 (*) −1.83 × 10−7

XLK −1.25 × 10−5 (***) −4.19 × 10−6 (**) 1.16 × 10−4 −1.68 × 10−6 −9.06 × 10−6 (**) −5.91 × 10−7 −1.66 × 10−7 −2.12 × 10−7

XLP 3.71 × 10−7 (*) 1.15 × 10−6 −1.26 × 10−4 (***) −3.70 × 10−6 (**) −1.37 × 10−6 (*) −2.94 × 10−7 −2.70 × 10−6 (***) 5.17 × 10−8

XLU −5.92 × 10−6 1.05 × 10−5 (***) −5.11 × 10−6 (*) −6.49 × 10−3 (***) 1.10 × 10−5 (***) −1.19 × 10−6 4.96 × 10−7 −4.68 × 10−7

XLV −7.37 × 10−6 (***) 5.98 × 10−6 2.55 × 10−5 −2.57 × 10−6 −1.07 × 10−5 (***) 7.76 × 10−7 −5.05 × 10−8 (*) −1.58 × 10−7

XLY −5.05 × 10−6 −6.68 × 10−6 (**) −1.86 × 10−4 (**) −1.71 × 10−5 1.01 × 10−6 −9.79 × 10−7 −3.35 × 10−7 (*) 1.61 × 10−8

* Notes: See notes to Tables 8 and 13.
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Table 16. ASJ Jump Test Results for Individual Stocks.

2006 2007 2008 2009 2010 2011 2012 2013

American Express 3.115 (***) 4.248 (***) 2.044 (**) 2.672 (***) 0.996 2.343 (***) 3.555 (***) 2.464 (***)
Bank of America 2.914 (***) 3.014 (***) 1.529 (*) 3.576 (***) 0.819 3.171 (***) 1.784 (**) 0.803

Cisco 3.811 (***) 5.997 (***) 0.180 1.818 (**) 2.865 (***) 1.665 (**) 2.581 (***) 0.922
Citigroup 3.215 (***) 0.802 0.520 3.302 (***) 6.023 (***) 0.752 0.197 0.895
Coca-Cola 8.039 (***) 10.005 (***) 6.134 (***) 4.563 (***) 0.826 1.774 (**) 2.551 (***) 3.476 (***)

Intel 2.632 (***) 4.142 (***) 3.332 (***) 0.914 5.627 (***) 6.425 (***) 1.821 (**) 1.772 (**)
JPMorgan 3.446 (***) 2.532 (***) 3.232 (***) 0.962 1.733 (**) 3.461 (***) 0.987 0.983

Merck & Co. 5.700 (***) 8.016 (***) 1.909 (**) 3.184 (***) 0.051 1.559 (*) 2.648 (***) 0.246
Microsoft 2.982 (***) 6.997 (***) 0.909 0.811 0.652 3.434 (***) 4.579 (***) 0.370

Procter & Gamble 3.285 (***) 4.933 (***) 1.814 (**) 9.998 (***) 2.387 (***) 3.218 (***) 9.003 (***) 1.745 (**)
Pfizer 2.356 (***) 4.024 (***) 0.845 0.890 7.436 (***) 1.960 (**) 1.740 (**) 2.516 (***)

Wal-Mart 0.823 4.011 (***) 1.187 1.730 (**) 0.799 2.439 (***) 0.131 3.461 (***)

* Notes: See notes to Tables 8 and 13.

Table 17. CSS1 Jump Test Results for Individual Stocks.

2006 2007 2008 2009 2010 2011 2012 2013

American Express 1.45 × 10−4 (***) −8.03 × 10−5 (***) 4.57 × 10−3 (***) 1.30 × 10−3 (**) −7.80 × 10−5 −1.34 × 10−4 (**) −6.61 × 10−5 (***) 6.24 × 10−5 (***)
Bank of America −8.20 × 10−4 (***) −1.58 × 10−4 (***) 4.16 × 10−3 (***) −2.26 × 10−2 (**) −1.29 × 10−4 −1.39 × 10−3 (***) 4.47 × 10−5 −3.16 × 10−5

Cisco 6.94 × 10−5 (***) −7.64 × 102 (***) 9.32 × 10−4 (***) 9.61 × 10−5 −2.02 × 10−4 (***) 1.31 × 10−4 (***) −1.85 × 10−5 8.56 × 10−6

Citigroup −3.93 × 10−5 (***) −7.93 × 10−5 −1.13 × 10−2 −1.60 × 10−2 −1.64 × 10−3 (***) −2.61 × 10−4 6.52 × 10−5 (**) −2.26 × 10−5

Coca-Cola 8.49 × 10−5 (***) 5.56 × 10−5 (***) −2.05 × 10−3 (***) 1.06 × 10−4 (***) −3.79 × 10−5 −5.11 × 10−6 −2.31 × 10−5 (***) −1.46 × 10−5 (***)
Intel 5.55 × 10−5 (***) −1.49 × 10−4 (***) 1.57 × 10−3 (***) 2.10 × 10−4 (**) 1.72 × 10−4 (***) −3.69 × 10−5 −1.74 × 10−5 4.64 × 10−5 (***)

JPMorgan 4.15 × 10−5 −1.83 × 10−4 (***) 1.98 × 10−3 −2.43 × 10−4 3.88 × 10−5 3.54 × 10−4 (***) 7.16 × 10−5 1.96 × 10−5

Merck & Co. 1.39 × 10−4 (***) 2.12 × 10−4 (***) −6.85 × 10−3 (***) −5.17 × 10−4 (***) 3.81 × 10−4 (***) 4.54 × 10−6 2.80 × 10−5 (***) 6.49 × 10−6

Microsoft 9.93 × 10−6 (**) −7.46 × 102 (***) 1.76 × 10−4 6.35 × 10−5 −4.09 × 10−5 −1.23 × 10−5 −6.93 × 10−5 (***) 1.34 × 10−5

Procter & Gamble 2.76 × 10−5 (***) 8.05 × 10−5 (***) 1.37 × 10−4 −1.29 × 10−3 (***) 2.33 × 10−3 (***) −2.88 × 10−5 (***) 2.47 × 10−5 (***) 5.72 × 10−6

Pfizer 2.08 × 10−4 (***) −2.74 × 10−3 (***) 1.11 × 10−4 6.97 × 10−5 3.96 × 10−6 8.69 × 10−5 (**) 9.01 × 10−6 1.78 × 10−5 (***)
Wal-Mart 6.75 × 10−5 8.67 × 10−5 (***) 8.60 × 10−4 (***) 5.27 × 10−5 (***) −9.57 × 10−6 3.19 × 10−5 (**) 6.87 × 10−6 −9.51 × 10−6

* Notes: See notes to Tables 8 and 13.
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Table 18. C̃SS1 Jump Test Results for Individual Stocks.

2006 2007 2008 2009 2010 2011 2012 2013

American Express 9.09 × 10−6 (***) −5.04 × 10−6 (*) 2.86 × 10−4 8.13 × 10−5 −4.88 × 10−6 −8.42 × 10−6 −4.16 × 10−6 3.91 × 10−6 (**)
Bank of America −5.15 × 10−5 (***) −9.94 × 10−6 (**) 2.60 × 10−4 (*) −1.42 × 10−3 −8.10 × 10−6 −8.69 × 10−5 2.81 × 10−6 (**) −1.98 × 10−6

Cisco 4.36 × 10−6 (*) −4.79 × 101 (***) 5.82 × 10−5 6.02 × 10−6 −1.27 × 10−5 (*) 8.23 × 10−6 −1.17 × 10−6 5.36 × 10−7

Citigroup −2.47 × 10−6 −4.98 × 10−6 (*) −7.08 × 10−4 (**) −1.00 × 10−3 −1.03 × 10−4 (***) −1.64 × 10−5 4.10 × 10−6 (*) −1.42 × 10−6

Coca-Cola 5.33 × 10−6 (***) 3.49 × 10−6 (**) −1.28 × 10−4 (**) 6.64 × 10−6 −2.37 × 10−6 (**) −3.20 × 10−7 −1.45 × 10−6 (**) −9.15 × 10−7

Intel 3.48 × 10−6 (*) −9.33 × 10−6 9.83 × 10−5 (**) 1.32 × 10−5 1.08 × 10−5 (*) −2.31 × 10−6 −1.10 × 10−6 2.91 × 10−6

JPMorgan 2.61 × 10−6 (*) −1.15 × 10−5 (**) 1.24 × 10−4 −1.52 × 10−5 2.43 × 10−6 2.22 × 10−5 (*) 4.50 × 10−6 (*) 1.23 × 10−6

Merck & Co. 8.72 × 10−6 (*) 1.33 × 10−5 (***) −4.28 × 10−4 (***) −3.24 × 10−5 2.39 × 10−5 (***) 2.84 × 10−7 1.76 × 10−6 (**) 4.07 × 10−7

Microsoft 6.23 × 10−7 (*) −4.68 × 101 (***) 1.10 × 10−5 (*) 3.98 × 10−6 −2.56 × 10−6 −7.71 × 10−7 −4.36 × 10−6 (**) 8.42 × 10−7

Procter & Gamble 1.73 × 10−6 (*) 5.05 × 10−6 (*) 8.58 × 10−6 −8.06 × 10−5 (***) 1.46 × 10−4 (***) −1.81 × 10−6 1.55 × 10−6 (**) 3.58 × 10−7

Pfizer 1.30 × 10−5 (**) −1.72 × 10−4 (***) 6.94 × 10−6 (*) 4.37 × 10−6 2.48 × 10−7 5.44 × 10−6 5.67 × 10−7 (*) 1.11 × 10−6

Wal-Mart 4.24 × 10−6 (**) 5.44 × 10−6 5.38 × 10−5 (***) 3.30 × 10−6 −6.00 × 10−7 2.00 × 10−6 4.32 × 10−7 (*) −5.96 × 10−7

* Notes: See notes to Tables 8 and 13.

Table 19. CSS Jump Test Results for Individual Stocks and The Market ETF.

Bank of America Coca-Cola Intel JPMorgan Merck & Co. Pfizer Wal-Mart SPY

2007-Q1 10.877 *** 23.301 *** 3.148 *** −2.86 *** 26.875 *** −831.206 *** 16.069 *** 1.169
2007-Q2 −14.713 *** 79.895 *** −1.112 −6.327 *** 17.705 *** 0.065 33.324 *** −2.671 ***
2007-Q3 14.278 *** −12.575 *** 9.296 *** 2.648 *** −5.986 *** −2.877 *** 5.97 *** 5.733 ***
2007-Q4 −7.383 *** −6.614 *** 10.763 *** −7.326 *** 14.327 *** 2.291 ** 4.186 *** −7.235 ***
2008-Q1 11.617 *** −7.086 *** 4.034 *** 5.499 *** −279.804 *** 8.011 *** 9.386 *** 3.354 ***
2008-Q2 0.412 −65.435 *** −0.965 1.722 * −3.815 *** −11.948 *** 4.083 *** −0.623
2008-Q3 3.122 *** −171.387 *** 2.249 ** 1.184 −41.319 *** 1.016 0.694 −2.105 **
2008-Q4 5.546 *** −15.662 *** −2.057 ** 4.072 *** 11.769 *** 1.692 * 11.442 *** 8.688 ***
2012-Q1 1.875 * −6.077 *** −2.785 *** 8.731 *** −9.687 *** −0.516 −1.131 −2.851 ***
2012-Q2 −2.154 ** −10.595 *** −4.255 *** 1.547 8.977 *** 8.513 *** 19.704 *** 0.5
2012-Q3 2.442 ** −7.287 *** 6.378 *** 6.126 *** 26.943 *** 3.99 *** 6.503 *** 2.551 **
2012-Q4 3.051 *** −6.527 *** −7.281 *** −2.976 *** −0.216 −7.034 *** −13.85 *** −0.427
2013-Q1 −5.007 *** −2.223 ** 0.194 −1.537 −24.992 *** 5.515 *** −11.386 *** −3.096 ***
2013-Q2 −4.247 *** −0.084 11.553 *** −0.671 4.179 *** 0.318 −3.669 *** −6.975 ***
2013-Q3 0.853 −1.13 −1.009 4.574 *** 17.83 *** 1.873 * 3.665 *** 0.826
2013-Q4 8.199 *** −12.131 *** 4.526 *** 11.233 *** −0.141 10.736 *** 8.329 *** 6.538 ***

* Notes: See notes to Tables 9 and 13.
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Finally, Table 19 includes results based on the application of the CSS test.15 We observe more
rejections in this table, which is not surprising, given the results of our Monte Carlo experiments,
which indicate that the CSS test is much more powerful than the C̃SS1 test, even when jumps are
infrequent and weak. However, there is a possibility that some of these rejections are spurious, due to
the fact that when there is leverage, the test bias associated with the CSS test increases with T, for a
fixed sampling frequency, at a faster rate than does the bias associated with the C̃SS1 test. Regardless,
when the CSS is used, we once again find multiple quarters that exhibit no evidence of jumps.

In summary, we conclude that the usual “toolbox” used by financial econometricians might
be usefully augmented by including in it long time span jump tests. If application of the C̃SS1 test
results in rejection of the no-jumps null hypothesis, then we have very strong evidence of jumps in the
DGPs. If application of the C̃SS1 does not result in rejection, then it is advisable to check this result by
applying the ASJ test and CSS tests, which are more powerful.

8. Concluding Remarks

In this paper, we carry out a Monte Carlo investigation of long time span jump tests, which are
designed to indicate whether the jump intensity in the underlying DGP is identically zero. The finite
sample performance of these tests is compared with that of various fixed time span jump tests. We find
that the long time span tests have good finite sample properties. However, we also find that fixed time
span tests suffer not only from sequential bias (as is well documented), but are also severely over-sized
when they are directly used to test for jumps with long time spans of data. These results confirm the
findings of Huang and Tauchen (2005) that using asymptotic approximations associated with finite
time span tests in order to study long time spans of data can lead to test failure. The exception to these
findings is the ASJ of Aït-Sahalia and Jacod (2009), which performs favorably, when compared with
Corradi et al. (2014, 2018) type long time span jump tests. In an empirical illustration, we show that all
of the jump tests that are designed to be consistent, for T → ∞, find lower prevalence of jumps than
when fixed time span jump tests are applied using daily data.
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