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Abstract: We develop novel multivariate state-space models wherein the latent states evolve on the
Stiefel manifold and follow a conditional matrix Langevin distribution. The latent states correspond
to time-varying reduced rank parameter matrices, like the loadings in dynamic factor models and the
parameters of cointegrating relations in vector error-correction models. The corresponding nonlinear
filtering algorithms are developed and evaluated by means of simulation experiments.
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1. Introduction

The coefficient matrix of explanatory variables in multivariate time series models can be rank
deficient due to some modelling assumptions, and the parameter constancy of the rank deficient
matrix may be questionable. This may happen, for example, in the factor model, which construct
very few factors by using a large number of macroeconomic and financial predictors, while the factor
loadings are suspect to be time-varying. Stock and Watson (2002) state that it is reasonable to suspect
temporal instability taking place in factor loadings, and later Stock and Watson (2009) and Breitung and
Eickmeier (2011) find empirical evidence of instability. Another setting where instability may arise
is in cointegrating relations (see e.g., Bierens and Martins (2010)), hence in the the reduced rank
cointegrating parameter matrix of a vector error-correction model.

There are solutions in the literature to the modelling of the temporal instability of reduced rank
parameter matrices. Such parameters are typically regarded as unobserved random components and
in most cases are modelled as random walks on a Euclidean space; see, for example, Del Negro and
Otrok (2008) and Eickmeier et al. (2014). In these works, the noise component of the latent processes
(factor loading) is assumed to have a diagonal covariance matrix in order to alleviate the computational
complexity and make the estimation feasible, especially when the dimension of the system is high.
However, the random walk assumption on the Euclidean space cannot guarantee the orthonormality
of the factor loading (or cointegration) matrix, while this type of assumption identifies the loading
(or cointegration) space. Hence, other identification restrictions on the Euclidean space are needed.
Moreover, the diagonality of the error covariance matrix of the latent processes contradicts itself when
a permutation of the variables is performed.

In this work, we develop new state-space models on the Stiefel manifold, which do not suffer from
the problems on the Euclidean space. It is noteworthy that Chikuse (2006) also develops state-space
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models on the Stiefel manifold. The key difference between Chikuse (2006) and our work is that
we keep the Euclidean space for the measurement evolution of the observable variables, while
Chikuse (2006) puts them on the Stiefel manifold, which is not relevant for modelling economic
time series. By specifying the time-varying reduced rank parameter matrices on the Stiefel manifold,
their orthonormality is obtained by construction, and therefore their identification is guaranteed.

The corresponding recursive nonlinear filtering algorithms are developed to estimate the
a posteriori distributions of the latent processes of the reduced rank matrices. By applying the
matrix Langevin distribution on the a priori distributions of the latent processes, conjugate a posteriori
distributions are achieved, which gives great convenience in the computational implementation of
the filtering algorithms. The predictive step of the filtering requires solving an integral on the Stiefel
manifold, which does not have a closed form. To compute this integral, we resort to a Laplace method.

The paper is organized as follows. Section 2 introduces the general framework of the vector
models with time-varying reduced rank parameters. Two specific forms of the time-varying reduced
rank parameters, which the paper is focused on, are given. Section 3 discusses some problems in the
prevalent literature on modelling the time dependence of the time-varying reduced rank parameters,
which underlie our modelling choices. Then, in Section 4, we present the novel state-space models on
the Stiefel manifold. Section 5 presents the nonlinear filtering algorithms that we develop for the new
state-space models. Section 6 presents several simulation based examples. Finally, Section 7 concludes
and gives possible research extensions.

2. Vector Models with Time-Varying Reduced Rank Parameters

Consider the multivariate time series model with partly time-varying parameters

yt = Atxt + Bzt + εt, t = 1, . . . , T, (1)

where yt is a (column) vector of dependent variables of dimension p, xt and zt are vectors of explanatory
variables of dimensions q1 and q2, At and B are p× q1 and p× q2 matrices of parameters, and εt is a
vector belonging to a white noise process of dimension p, with positive-definite covariance matrix Ω.
For quasi-maximum likelihood estimation, we further assume that εt ∼ Np(0, Ω).

The distinction between xt and zt is introduced to separate the explanatory variables between
those that have time-varying coefficients (At) from those that have fixed coefficients (B). In the
sequel, we always consider that xt is not void (i.e., q1 > 0). The explanatory variables may contain
lags of yt, and the remaining stochastic elements (if any) of these vectors are assumed to be weakly
exogenous. Equation (1) provides a general linear framework for modelling time-series observations
with time-varying parameters, embedding multivariate regressions and vector autoregressions. For an
exposition of the treatment of such a model using the Kalman filter, we refer to Chapter 13 of
Hamilton (1994).

We assume furthermore that the time-varying parameter matrix At has reduced rank r < min(p, q1).
This assumption can be formalized by decomposing At as αtβ

′
t, where αt and βt are p× r and q1 × r

full rank matrices, respectively. If we allow both αt and βt to be time-varying, the model is not well
focused and hard to explain, and its identification is very difficult. Hence, we focus on the cases where
either αt or βt is time-varying, that is, on the following two cases:

Case 1: At = αtβ
′, (2)

Case 2: At = αβ′t. (3)

Next, we explain how the two cases give interesting alternatives to modelling different kinds of
temporal instability in parameters.

The case 1 model (Equations (1) and (2)) ensures that the subspace spanned by β is constant over
time. This specification can be viewed as a cointegration model allowing for time-varying short-run
adjustment coefficients (the entries of αt) but with time-invariant long-run relations (cointegrating
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subspace). To see this, consider that model (1) corresponds to a vector error-correction form of a
cointegrated vector autoregressive model of order k with X t as the dependent variables, if yt = ∆X t,
xt = X t−1, zt contains ∆X t−i for i = 1, . . . , k− 1, as well as some predetermined variables. There are
papers in the literature arguing that the temporal instability of the parameters in both stationary and
non-stationary macroeconomic data does exist and cannot be overlooked. For example, Swanson (1998)
and Rothman et al. (2001) give convincing examples in investigating the Granger causal relationship
between money and output using a nonlinear vector error-correction model. They model the instability
in α by means of regime-switching mechanisms governed by some observable variable. An alternative
to that modelling approach is to regard αt as a totally latent process.

The case 1 model also includes as a particular case the factor model with time-varying factor
loadings. In the factor model context, the factors f t are extracted from a number of observable
predictors xt by using the r linear combinations f t = β′xt. Note that f t is latent since β is unknown.
Then, the corresponding factor model (neglecting the Bzt term) takes the form

yt = αt f t + εt, (4)

where αt is a matrix of the time-varying factor loadings. The representation is quite flexible in the
sense that yt can be equal to xt and then we reach exactly the same representation as Stock and
Watson (2002), but we also allow them to be distinct. In Stock and Watson (2002), the factor loading
matrix α is time-invariant and the identification is obtained by imposing the constraints q1α = β

and α′β = β′α = α′α/q1 = q1β′β = Ir. Notice that, if α is time-varying but β time-invariant, these
constraints cannot be imposed.

The case 2 model (Equations (1) and (3)) can be used to account for time-varying long-run relations
in cointegrated time series, as βt is changing. Bierens and Martins (2010) show that this may be the case
for the long run purchasing power parity. In the case 2 model, there exist p− r linearly independent
vectors α⊥ that span the left null space of α, such that α′⊥At = 0. Therefore, the case 2 model implies
that the time-varying parameter matrix βt vanishes in the structural vector model

γ′yt = γ′Bzt + γ′εt, (5)

for any column vector γ ∈ sp(α⊥), where sp(α⊥) denotes the space spanned by α⊥, thus implying that
the temporal instability can be removed in the above way. Moreover, xt does not explain any variation
of γ′yt.

Another possible application for the case 2 model is the instability in the factor composition.
Considering the factor model yt = α f t + εt, with time-invariant factor loading α, the factor composition
may be slightly evolving through βt in f t = β′txt.

3. Issues about the Specification of the Time-Varying Reduced Rank Parameter

In the previous section, we have introduced two models with time-varying reduced rank parameters.
In this section, in order to motivate our choices presented in Section 4, we discuss the specification in the
literature of the dynamic process governing the evolution of the time-varying parameters.

Since the sequences αt or βt in the two cases are unobservable in practice, it is quite natural
to write the two models into the state-space form with a measurement equation like (1) for the
observable variables and transition equations for αt or βt. To build the time dependence in the
sequences of αt or βt is of great practical interest as it enables one to use the historical time series
data for conditional forecasting, especially by using the prevalent state-space model based approach.
How to model the evolution of these time-varying parameters, nevertheless, is an open issue and
needs careful investigation. Almost all the works in the literature of time series analysis hitherto only
deal with state-space models on the Euclidean space. See, for example, the books by Hannan (1970);
Anderson (1971); Koopman (1974); Durbin and Koopman (2012); and more recently Casals et al. (2016).
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Consider, for example, the factor model (4) with time-varying factor loading αt, but notice
that the following discussion can be easily adapted to the cointegration model, where only βt is
time-varying. The traditional state-space framework on the Euclidean space assumes that the elements
of the time-varying matrix αt evolve like random walks on the Euclidean space, see for example
Del Negro and Otrok (2008) and Eickmeier et al. (2014). That is,

vec(αt+1) = vec(αt) + ηt, (6)

where vec denotes the vectorization operator, and the sequence of ηt is assumed to be a Gaussian
strong white noise process with constant positive definite covariance matrix Ση . Thus, Labels (1) and
(6) form a vector state-space model, and the Kalman filter technique can be applied for estimating αt.

A first problem of the model (6) is that the latent random walk evolution on the Euclidean space is
strange. Consider the special case p = 2 and r = 1: in Figure 1, points 1–3 are possible locations of the
latent variable vec(αt) = (α1t, α2t)

′. Suppose that the next state αt+1 evolves as in (6) with a diagonal
covariance matrix Ση . The circles centered around points 1–3 are contour lines such that, say, almost
all the probability mass lies inside the circles. The straight lines OA and OB are tangent lines to circle 1
with A and B the tangent points; the straight lines OC and OD are tangent lines to circle 2; and the
straight lines OE and OF are tangent lines to circle 3. The angles between the tangent lines depend
on the location of the points 1-2-3: generally, the more distant a point from the origin, the smaller the
corresponding angle despite some special ellipses. The plot shows that the distributions of the next
subspace based on the current point differ for different subspaces (angles for 3 and 2 smaller than the
angle for 1); even for the same subspace (points 2 and 3), the distribution of the subspace is different
(angle for 3 smaller than angle for 2).

Figure 1. Euclidean state space for p = 2 and r = 1. Points 1–3 are possible locations of the
latent variable (α1t, α2t)

′. Circles are isodensity contours assuming (α1,t+1, α2,t+1)
′|(α1t, α2t)

′ ∼
N2((α1t, α2t)

′, I2).
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A second problem is the identification issue. The pair of αt and β should be identified before
we can proceed with the estimation of (1) and (6). If both α and β are time-invariant, it is common to
assume the orthonormality (or asymptotic orthonormality) α′α/q1 = Ir or α′α = Ir to identify the
factors and then to estimate them by using the principle components method. However, when αt is
evolving as (6), the orthonormality of αt can never be guaranteed for all t on the Euclidean space.

The alternative solution to the identification problem is to normalize the time-invariant part β as
(Ir, b′)′. The normalization is valid when the upper block of β is invertible, but if the upper block of β

is not invertible, one can always permute the rows of β to find an invertible submatrix of order r rows
for such a normalization. The permutation can be performed by left-multiplying β by a permutation
matrix P to make its upper block invertible. In practice, it should be noted that the choice of the
permutation matrix P is usually arbitrary and casual.

Even though the model defined by (1) and (6) is identified by some normalized β, if one does not
impose any constraint on the elements of the positive definite covariance matrix Ση , the estimation
can be very difficult due to computational complexity. A feasible solution is to assume that ηt is
cross-sectionally uncorrelated. This restriction reduces the number of parameters, alleviates the
complexity of the model, and makes the estimation much more efficient, but it may be too strong and
imposes a priori information on the data. However, a third problem then arises. In the following two
propositions, we show that any design like (1) and (6) with the restriction that Ση is diagonal is casual
in the sense that it may lead to contradiction since the normalization of β is arbitrarily chosen.

Proposition 1. Suppose that the reduced rank coefficient matrix At in (1) with rank r has the decomposition (2).
By choosing some permutation matrix Pβ (p× p), the time-invariant component β can be linearly normalized if
the r× r upper block b1 in

Pββ =

(
b1

b2

)
(7)

is invertible. Then, the corresponding linear normalization is

β̃ = Pββb−1
1 =

(
Ir

b2b−1
1

)
, (8)

and the time-varying component is re-identified as α̃t = αtb′1.
Assuming that the time-varying component evolves by following

vec(α̃t+1) = vec(α̃t) + ηα
t . (9)

Consider another permutation P∗β 6= Pβ with the corresponding α̃∗t , β̃
∗, b∗1 and ηα∗

t . The variance–
covariance matrices of ηα

t and ηα∗
t are both diagonal if and only if b1 = b∗1 .

Proof. See Appendix A.

Proposition 2. Suppose that the reduced rank coefficient matrix At in (1) with rank r has the decomposition (3).
By choosing some permutation matrix Pα (p× p), the constant component α can be linearly normalized if the
r× r upper block a1 in

Pαα =

(
a1

a2

)
(10)

is invertible. The corresponding linear normalization is

α̃ = Pααa−1
1 =

(
Ir

a2a−1
1

)
, (11)
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and the time-varying component is re-identified as β̃t = βta
′
1. Assuming that the time-varying component

evolves by following
vec(β̃t+1) = vec(β̃t) + η

β
t . (12)

Consider another permutation P∗α 6= Pα with the corresponding α̃∗, β̃
∗
t , a∗1 and η

β∗
t . The variance–covariance

matrices of η
β
t and η

β∗
t are both diagonal if and only if a1 = a∗1 .

Proof. See Appendix B.

The two corollaries below follow Propositions 1 and 2 immediately, showing that the assumption
that the variance–covariance matrix Ση is always diagonal for any linear normalization is inappropriate.

Corollary 1. Given the settings in Propostion 1, the variance–covariance matrices of the error vectors in forms
like (9) based on different linear normalizations cannot be both diagonal if b1 6= b∗1 where b1 and b∗1 are the
upper block square matrices in forms like (7).

Corollary 2. Given the settings in Proposition 2, the variance–covariance matrices of the error vectors in forms
like (12) based on different linear normalizations cannot be both diagonal if a1 6= a∗1 where a1 and a∗1 are the
upper block square matrices in forms like (10).

One may argue that there is a chance for the two covariance matrices to be both diagonal, i.e.,
when b1 = b∗1 . It should be noticed that the condition b1 = b∗1 does not imply that P = P∗. Instead,
it implies that the permutation matrices move the same variables to the upper part of β with the same
order. If this is the case, the two permutation matrices P and P∗ are distinct but equivalent as the order
of the variables in the lower part is trivial for linear normalization.

Since the choice of the permutation P and the corresponding linear normalization is arbitrary in
practice, which is simply the order of xt (yt for case 2), the models with different P are telling different
stories about the data. In fact, the model has been over-identified by the assumption that Ση must be
diagonal. Consequently, the model becomes β-normalization dependent, and the β-normalization
imposes some additional information on the data. This can be serious when the forecasts from the
models with distinct normalizations of α give totally different results. A solution to this ”unexpected”
problem may be to try all possible normalizations of α and do model selection, that is, after estimating
every possible model, pick the best model according to an information criterion. However, this solution
is not always feasible because the number of possible permutations for α , which is equal to q1(q1 −
1) . . . (q1 − r + 1), can be huge. When the number of predictors is large, which is common in practice,
the estimation of each possible model based on different normalization becomes a very demanding
task.

Stock and Watson (2002) propose the assumption that the cross-sectional dependence between the
elements in ηt is weak and the variances of the elements are shrinking with the increase of the sample
size. Then, the aforementioned problem may not be so serious, as, intuitively, different normalizations
with diagonal covariance matrix Ση may produce approximately or asymptotically the same results.

We have shown that the modelling of the time-varying parameter matrix in (2) as a process like (6)
on the Euclidean space involves some problems. Firstly, the evolution of the subspace spanned by
the latent process on the Euclidean space is strange. Secondly, the process does not comply with the
orthonormality assumption to identify the pair of αt and β. Thus, a linear normalization is employed
instead of the orthonormality. Thirdly, the state-space model on the Euclidean space suffers from the
curse of dimensionality, and hence the diagonality of the covariance of the errors is often used with the
linear normalization in order to alleviate the computational complexity when the dimension is high.
This leads to two other problems: firstly, the diagonality assumption is inappropriate in the sense that
different linear normalizations may lead to a contradiction; secondly, the model selection can be a
tremendous task when there are many predictors.
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In the following section, we propose that the time-varying parameter matrices αt and βt evolve on
the Stiefel manifold, instead of the Euclidean space, and we show that the corresponding state-space
models do not suffer from the aforementioned problems.

4. State-Space Models on the Stiefel Manifold

4.1. The Stiefel Manifold and the Matrix Langevin Distribution

Before presenting the state-space models on the Stiefel manifold, we introduce some concepts
and terms. The Stiefel manifold Va,b, for dimensions a and b such that a ≥ b, is a space whose points are
b-frames in Ra. A set of b orthonormal vectors in Ra is called a b-frame in Ra. The Stiefel manifold is a
collection of a× b full rank matrices X such that X ′X = Ib; if b = 1, the Stiefel manifold is the unit
circle if a = 2, sphere if a = 3, and hypersphere if a > 3. The link with the modelling presented in
Section 2 and developed in the next subsection is that the time-varying matrix αt of (2) is assumed to
be evolving in Vp,r (instead of a Euclidean space), and βt of (3) in Vq1,r. Hence, each αt and βt is by
definition orthonormal.

We also need to replace the assumption (6) that the distribution of vec(αt+1) conditional on
vec(αt) is Np×r(vec(αt), Ση) by an appropriate distribution defined on Vp,r, and likewise for vec(βt+1).
A convenient distribution for this purpose is the matrix Langevin distribution (also known as von
Mises–Fisher distribution) denoted by ML(a, b, F). A random matrix X ∈ Va,b follows a matrix Langevin
distribution if and only if it has the probability density function

fML(X|a, b, F) =
etr {F ′X}

0F1(
a
2 ; 1

4 F ′F)
, (13)

where etr{Q} stands for exp{tr{Q}} for any full rank square matrix Q, F is a a × b matrix,
and 0F1(a/2; F ′F/4) is called (0, 1)-type hypergeometric function with arguments a/2 and F ′F/4.
The hypergeometric function 0F1 is unusual due to a matrix argument, see Herz (1955), and it is actually
the normalizing constant of the density defined in (13), that is,

0F1

(
a
2

;
1
4

F ′F
)
=
∫

etr
{

F ′X
}
[ dX], (14)

where [ dX] = ∧a−b
j=1 ∧

b
i=1 x′b+j dxi ∧i<j x′j dxi, stands for the differential form of a Haar measure on the

Stiefel manifold, xi is a column vector of X, and ∧ is the exterior product of vectors.
The density function (13) is obtained from a normal density for a random matrix Z of dimension

a× b, defined as vec(Z) ∼ Na×b(vec(M), Ia ⊗ Σ) (where M is a matrix of dimension a× b, and Σ is
a positive definite matrix of dimension b× b) by imposing that Z′Z = Ib. The parameter F of (13) is
then equal to MΣ−1.

The matrix F has a singular value decomposition UDV ′, where U ∈ Va,b, V is a b× b orthogonal
matrix, and D = diag{d1, d2, . . . , db} is a diagonal matrix with singular values d1 ≥ d2 . . . ≥ db ≥ 0.
Each pair of the column vectors in U and V corresponds to a singular value in D. Notice that the
hypergeometric function in (13) has the property that

0F1

(
a
2

;
1
4

F ′F
)
= 0F1

(
a
2

;
1
4

D2
)

, (15)

see Khatri and Mardia (1977).
It can be shown that the density function (13) has maximum value exp(∑b

i=1 di) at Xm = UV ′,
called the modal orientation of the matrix Langevin distribution. The mode is unique if min(di) > 0.
The diagonal matrix D is called concentration as it controls how tight the distribution is in the following
sense: the larger di, the tighter the distribution is around the corresponding i-th column vector of the
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modal orientation matrix. For more details about the matrix Langevin distribution, see, for example,
Prentice (1982); Chikuse (2003); Khatri and Mardia (1977); and Mardia (1975).

The density function (13) is rotationally symmetric around Xm, in the sense that the density at
H1XH′

2 is the same as that at X for all orthogonal matrices H1 (of dimension a× a) and H2 (of dimension
b× b) such that H1U = U and H2V = V (hence H1Xm H′

2 = Xm).
Figure 2 illustrates the Stiefel manifold and Figure 3 three matrix Langevin (not normalized)

densities ML(2, 1, F) where F = UDV′ = (1/
√

2, 1/
√

2)′D, setting V (a scalar) equal to 1, for three
values of D (a scalar); the smaller D, the flatter the density. In Figure 2, the modal orientation
U = (1/

√
2, 1/
√

2)′ is shown for the densities of Figure 3, and the point at which the density values
are minimal, this point being equal to −U. The densities are shown on Figure 3 as functions of the
angle θ shown on Figure 2, for θ between 0 and 2π, instead of being shown as lines above the unit
circle. Rotational symmetry in this example means that, if we premultiply the random vector X by any
orthogonal 2× 2 matrix H1 that does not modify the modal orientation, the densities are not changed.

θ

α1

α2

modal orientation

minimum

−1 − 1
2

1
2

1

−1

− 1
2

1
2

1

Figure 2. Stiefel manifold for p = 2 and r = 1.
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Figure 3. Matrix Langevin density kernels for p = 2 and r = 1.

4.2. Models

Chikuse (2006) develops a state-space model whose observable and latent variables are both
evolving on Stiefel manifolds. For economic data, it is not appropriate to assume that the observable
variables evolve on a Stiefel manifold, so that we keep the assumption that yt evolves on a Euclidean
space in the measurement Equation (1).

We define two state space models corresponding to the case 1 and case 2 models introduced in
Section 2, with latent processes evolving over the Stiefel manifold and following conditional matrix
Langevin distributions:

Model 1: yt = αtβ
′xt + Bzt + εt,

αt+1|αt ∼ ML(p, r, atDV ′), (16)

Model 2: yt = αβ′txt + Bzt + εt,

βt+1|βt ∼ ML(q1, r, btDV ′), (17)

with the constraints that atV ′ = αt and btV ′ = βt, respectively. We assume in addition that the
error εt and αt+1 or βt+1 are mutually independent. The parameters of the ML distributions of the
models are chosen so that the previous state of αt or βt is the modal orientation of the next state. Thus,
the transitions of the latent processes are random walks on the Stiefel manifold and evolve in the
matrix Langevin way.

The models (16) and (17) are not yet identified due to the fact that the pairs between at or bt and
the nuisance parameter V can be arbitrarily chosen, and therefore the time-invariant β and α are not
identified as well. The identification problem can be solved by imposing V = Ir. Then, the identified
version of the models is

Model 1: yt = αtβ
′xt + Bzt + εt,

αt+1|αt ∼ ML(p, r, αtD), (18)

Model 2: yt = αβ′txt + Bzt + εt,

βt+1|βt ∼ ML(q1, r, βtD). (19)
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The new state-space models in (18) and (19) do not have the problems mentioned in Section 3,
due to the fact that both αt and βt are points in the Stiefel manifold. By construction, orthonormality
is ensured, which is α′tαt = Ir for Model 1, and similarly β′tβt = Ir for Model 2. If the space spanned
by the columns of αt (or the columns of βt) is subjected to a rotation, the model is fundamentally
unchanged. Indeed, in the case of Model 1, let H be an orthogonal matrix (p× p), and define the
rotation α̃t = Hαt. Then, α̃′tα̃t = α′tH′Hαt = α′tαt = Ir. A similar reasoning holds for Model 2.

More simple versions of the models in (18) and (19) are obtained by assuming that the evolutions
of αt and βt are independent of their previous states, with the same modal orientations α∗ and β∗

across time:

Model 1∗ : yt = αtβ
′xt + Bzt + εt,

αt ∼ ML(p, r, α0D), (20)

Model 2∗ : yt = αβ′txt + Bzt + εt,

βt ∼ ML(q1, r, β0D). (21)

If we assume that the random variation of αt+1 in (18) or βt+1 in (19) are inside the subspace
spanned by αt or βt (hence α0 or β0), then we have another two state space models. The corresponding
conditional distributions of αt+1 and βt+1 become truncated matrix Langevin distributions with the
density functions:

f (αt+1|αt)

{
∝ etr {Dα′tαt+1} , if sp(αt+1) = sp(αt) or sp(α0)

= 0, otherwise.
(22)

f (βt+1|βt)

{
∝ etr

{
Dβ′tβt+1

}
, if sp(βt+1) = sp(βt) or sp(β0)

= 0, otherwise.
(23)

These two models can be interesting if the spaces spanned by the time-varying αt and βt are
expected to be invariant over time.

Denote ∆ = (α1, . . . , αT) in Model 1 or (β1, . . . , βT) in Model 2; and let Ft−1 =

(x1, z1, y1, . . . , yt−1, xt, zt) represent all the observable information up to time t − 1, such that
E(yt|Ft−1) = A′txt + Bzt; and let Y = (y1, . . . , yT).

The quasi-likelihood function for Model 1 based on Gaussian errors takes the form

f (Y , ∆|θ) =
T

∏
t=1

(2π)−
p
2 |Ω|−

1
2 exp

{
−1

2
ε′tΩ

−1εt

}
etr
{

Dα′t−1αt
}

0F1(
p
2 ; 1

4 D2)
, (24)

where θ = (β, B, Ω, D, α0), εt = yt − αtβ
′xt − Bzt.

The quasi-likelihood function for Model 2 based on Gaussian errors takes the form

f (Y , ∆|θ) =
T

∏
t=1

(2π)−
p
2 |Ω|−

1
2 exp

{
−1

2
ε′tΩ

−1εt

}
etr
{

Dβ′t−1βt
}

0F1(
p
2 ; 1

4 D2)
, (25)

where θ = (α, B, Ω, D, β0), εt = yt − αβ′txt − Bzt.
We treat the initial values α0 and β0 as the parameters to be estimated, but of course they can be

regarded as given.

5. The Filtering Algorithms

In this section, for the models (18) and (19) defined in the previous section, we propose nonlinear
filtering algorithms to estimate the a posteriori distributions of the latent processes based on the
Gaussian error assumption in the measurement equations.



Econometrics 2018, 6, 48 11 of 22

We start with Model 1 which has time-varying αt. The filtering algorithm consists of two steps:

Predict : f (αt|Ft−1) =
∫

f (αt|αt−1) f (αt−1|Ft−1)[dαt−1], (26)

Update : f (αt|Ft) ∝ f (yt|αt,Ft−1) f (αt|Ft−1), (27)

where the symbol [dαt−1] stands for the differential form for a Haar measure on the Stiefel manifold.
The predictive density in (26) represents the a priori distribution of the latent variable before observing
the information at time t. The updating density, which is also called the filtering density, represents
the a posteriori distribution of the latent variable after observing the information at time t.

The prediction step is quite tricky in the sense that, even if we can find the joint distribution of
αt and αt−1, which is the product f (αt|αt−1) f (αt−1|Ft−1), we must integrate out αt−1 over the Stiefel
manifold. The density kernel f (αt−1|Ft−1) appearing in the integral in the first line of (27) comes from
the previous updating step and is quite straightforward as it is proportional to the product of the
density function of yt−1 and the predicted density of αt−1 (see the updating step in (27)).

The initial condition for the filtering algorithm can be a Dirac delta function f (α0|F0) such that
f (α0|F0) = ∞ when α0 = U0 where U0 is the modal orientation and zero otherwise, but the integral∫

f (α0|F0)[dα0] is exactly equal to one.
The corresponding nonlinear filtering algorithm is recursive like the Kalman filter in linear

dynamic systems. We start the algorithm with

f (α1|F0) ∝ etr{DU ′0α1}, (28)

and proceed to the updating step for α1 as follows:

f (α1|F1) ∝ etr{H1α′1 Jα1 + C′1α1}, (29)

where H1 = − 1
2 β′x1x′1β, J = Ω−1, C1 = U0D + Ω−1(y1 − Bz1)x′1β. Then, we move to the prediction

step for α2 and obtain the integral as follows:

f (α2|F1) =
∫

f (α2|α1) f (α1|F1)[dα1], (30)

where

f (α2|α1) =
etr {Dα1

′α2}
0F1(

a
2 ; 1

4 D2)
, (31)

due to (13) and (15), and f (α1|F1) in (29). Hence, we have

f (α2|α1) f (α1|F1) = ξ · etr{Dα′1α2} · etr{Hα′1 Jα1 + C′1α1}, (32)

where ξ does not depend on α1 and α2. Unfortunately, there is no closed form solution to the
integral (30) in the literature.

Another contribution of this paper is that we propose to approximate this integral by using the
Laplace method. (see Wong (1989, chps. 2 and 9) for a detailed exposition). Rewrite the integral (30) as

f (α2|F1) = ξ
∫

h(α1) exp{p · g(α1)}[dα1], (33)

where p is the dimension of yt,

h(α1) = etr{Dα′1α2} ≤ exp

{
r

∑
i=1

di

}
, (34)
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is bounded, and
g(α1) = tr{H1α′1 Jα1 + C′1α1}/p, (35)

which is twice differentiable with respect to α1 and is assumed to be convergent to some nonzero value
when p→ ∞.

Then, the Laplace method can be applied since the Taylor expansion on which it is based is valid in
the neighbourhood for any point on the Stiefel manifold. It follows that, with p→ ∞, the integral (30)
can be approximated by

f (α2|F1) ≈ ξ h(U1) exp{p g(U1)},
∝ etr{DU ′1α2} (36)

where
U1 = arg max

α1∈Vp,r

etr{H1α′1 Jα1 + C′1α1}. (37)

Given f (α2|F1) ∝ etr{DU ′1α2}, then it can be shown that f (α2|F2) has the same form as (29) with
H2 = − 1

2 β′x2x′2β, C2 = U1D + Ω−1(y2 − Bz2)x′2β.
Thus, by induction, we have the following proposition for the recursive filtering algorithm for

state-space Model 1.

Proposition 3. Given the state-space Model 1 in (18) with the quasi-likelihood function (24) based on Gaussian
errors, the Laplace approximation based recursive filtering algorithm for αt is given by

Predict : f (αt|Ft−1) ∝ etr{DU ′t−1αt}, (38)

Update : f (αt|Ft) ∝ etr{Htα
′
t Jαt + C′tαt}, (39)

where Ht = − 1
2 β′xtx′tβ, J = Ω−1, Ct = U t−1D + Ω−1(yt − Bzt)x′tβ, and

U t−1 = arg max
αt−1∈Vp,r

etr{Ht−1α′t−1 Jαt−1 + C′t−1αt−1}. (40)

Likewise, we have the recursive filtering algorithm for the state-space Model 2.

Proposition 4. Given the state-space Model 2 in (19) with the quasi-likelihood function (25) based on Gaussian
errors, the Laplace approximation based recursive filtering algorithm for βt is given by

Predict : f (βt|Ft−1) ∝ etr{DU ′t−1βt}, (41)

Update : f (βt|Ft) ∝ etr{Hβ′t Jtβt + C′tβt}, (42)

where H = − 1
2 α′Ω−1α, Jt = xtx′t, Ct = U t−1D + xt(yt − Bzt)′Ω

−1α, and

U t−1 = arg max
βt−1∈Vq1,r

etr{Hβ′t−1 Jt−1βt−1 + C′t−1βt−1}. (43)

Several remarks related to the propositions follow.

Remark 1. The distributions of predicted and updated αt and βt in the recursive filtering algorithms
are conjugate.

The predictive distribution and the updating or filtering distribution are both known as the
matrix Langevin–Bingham (or matrix Bingham–von Mises–Fisher) distribution; see, for example,
Khatri and Mardia (1977). This feature is desirable as it gives great convenience in the computational
implementation of the filtering algorithms.
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Remark 2. When estimating the predicted distribution of αt and βt, a numerical optimization for finding U t−1

is required.

There are several efficient line-search based optimization algorithms available in the literature
which can be easily implemented and applied. See Absil et al. (2008, chp. 4) for a detailed exposition.

Remark 3. The predictive distributions in (38) and (41) are Laplace type approximations. Therefore,
the dimensions of the data yt in Model 1 and the predictors in Model 2 are expected to be high enough in
order to achieve good approximations.

For the high-dimensional factor models that use a large number of predictors, the filtering
algorithms are natural choices to model the possible temporal instability, while a small value of the
rank r implies the dimension reduction in forecasting. In the next section, our finding from simulation
is that, even for small p and q1, the approximations of the modal orientations can be very good.

Remark 4. The recursive filtering algorithms make it possible to use both maximum likelihood estimation and
the Bayesian analysis for the proposed state-space models.

Next, we consider the models in (20) and (21). The corresponding filtering algorithms are similar
to Propositions 3 and 4. The filtering algorithm for Model 1∗ is given by

Predict : f (αt|Ft−1) ∝ etr{Dα′0αt}, (44)

Update : f (αt|Ft) ∝ etr{Htα
′
t Jαt + C′tαt}, (45)

where Ht = − 1
2 β′xtx′tβ, J = Ω−1, Ct = α0D + Ω−1(yt − Bzt)x′tβ. In addition, for Model 2∗, we have

Predict : f (βt|Ft−1) ∝ etr{Dβ′0βt}, (46)

Update : f (βt|Ft) ∝ etr{Hβ′t Jtβt + C′tβt}, (47)

where H = − 1
2 α′Ω−1α, Jt = xtx′t, Ct = β0D + xt(yt − Bzt)′Ω

−1α. We have the following remarks for
both models.

Remark 5. The predictive distributions do not depend on any previous information, which is due to the
assumption of sequentially independent latent processes.

Remark 6. The predictive and filtering distributions for Model 1∗ and Model 2∗ are not approximations.

We do not need to approximate integral like (30). Since f (αt|Ft−1) does not depend on αt−1 in
Model 1∗ and f (βt|Ft−1) does not depend on βt−1 in Model 2∗, f (αt|Ft−1) and f (βt|Ft−1) can be
directly moved outside the integral.

The smoothing distribution is defined to be the a posteriori distribution of the latent parameters
given all the observations. We have the following two propositions for the smoothing distributions of
the state-space models.

Proposition 5. The smoothing distribution of Model 1 is given by

f (∆|θ, Y) ∝
T

∏
t=1

etr{Htαt
′ Jαt + C′tαt}, (48)

where Ht = − 1
2 β′xtx′tβ, J = Ω−1, and Ct = αt−1D + Ω−1(yt − Bzt)x′tβ.
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Proposition 6. The smoothing distribution of Model 2 is given by

f (∆|θ, Y) ∝
T

∏
t=1

etr{Hβt
′ Jtβt + C′tβt}, (49)

H = − 1
2 α′Ω−1α, Jt = xtx′t, Ct = βt−1D + xt(yt − Bzt)′Ω

−1α.

There is no closed form for the smoothing distributions as the corresponding normalizing
constants are unknown. Hoff (2009) develops a Gibbs sampling algorithm that can be used to sample
from these smoothing distributions.

6. Evaluation of the Filtering Algorithms by Simulation Experiments

To investigate the performance of the filtering algorithm in Proposition 3, we consider several
settings based on data generated from Model 1 in (18) for different values of its parameters.

Recall that at each iteration of the recursive algorithm, the predictive density kernel in (38) is
a Laplace type approximation of the true predictive density which takes an integral form as (30),
and hence the resulting filtering density is an approximation as well. It is of great interest to check
the performance of the approximation under different settings. Since the exact filtering distributions
of the latent process are not available, we resort to comparing the true (i.e., generated) value αt and
the filtered modal orientation at time t from the filtering distribution f (αt|Ft), which is U t as defined
in (40). The modal orientations are expected to be distributed around the true values across time if the
algorithm performs well.

Then, a measure of distance between two points in the Stiefel manifold is needed for the
comparison. We consider the squared Frobenius norm of the difference between two matrices or
column vectors:

F2(X, Y) = ||X−Y||2 = tr{(X−Y)′(X−Y)}
= tr{X′X + Y′Y− X′Y−Y′X}. (50)

If the two matrices or column vectors X and Y are points in the Stiefel manifold, then it holds that
F2(X, Y) = 2r− 2tr{X′Y} ∈ [0, 4r], and F2(X, Y) takes the minimum 0 when X = Y (closest) and the
maximum 4r when X = −Y (furthest). Thus, we employ the normalized distance

δ(X, Y) = F2(X, Y)/4r ∈ [0, 1], (51)

which is matrix dimension free.
Note that the modal orientation of the filtering distribution is not supposed to be consistent to the

true value of the latent process with the increase of the sample size T. As a matter of fact, the sample
size is irrelevant to the consistency which can be seen from the filtering density (39). We should note
that the filtering distribution in (39) also has concentration or dispersion which is determined by Ht,
J (the inverse of Ω) and Ct (the current information, i.e. yt, xt and zt), together with the parameters,
while the previous information has limited influence only through the orthonormal matrix U t−1. Since
the concentration of the filtering distribution does not shrink with the increase of the sample size,
we use T = 100 in all the experiments. If the filtering distribution has big concentration, the filtered
modal orientations are expected to be close to the true values and hence the normalized distances close
to zero and less dispersed.

The data generating process follows Model 1 in (18). Since we input the true parameters in the
filtering algorithm, the difference yt − Bzt is perfectly known and then there is no need to consider the
effect of Bzt. Thus, it is natural to exclude Bzt from the data generating process.

We consider the settings with different combinations of

• T = 100, the sample size,
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• p ∈ {2, 3, 10, 20}, the dimension of the dependent variable yt,
• r ∈ {1, 2}, the rank of the matrix At,
• xt, the explanatory variable vector has dimension q1 = 3 ensuring that q1 > r always holds,

and each xt is sampled independently (over time) from a N3(0, I3),
• β = (1,−1, 1)′/

√
3,

• α0 = (1,−1, 1, . . .)′/
√

p, the initial value of αt sequence for the data generating process,
• Ω = ρIp, the covariance matrix of the errors is diagonal with ρ ∈ {0.1, 0.5, 1},
• D = dIr, and d ∈ {5, 50, 500, 800}.

The simulation based experiment of each setting consists of the following three steps:

1. We sample from Model 1 by using the identified version in (18). First, simulate αt given αt−1,
and then yt given αt. We save the sequence of the latent process αt, t = 1, . . . , T.

2. Then, we apply the filtering algorithm on the sampled data to obtain the filtered modal orientation
U t, t = 1, . . . , T.

3. We compute the normalized distances δt(αt, U t) and report by plotting them against the time t.

We use the same seed, which is one, for the underlying random number generator throughout
the experiments so that all the results can be replicated. Sampling values form the matrix Langevin
distribution can be done by the rejection method described in Section 2.5.2 of Chikuse (2003).

Figure 4 depicts the results from the setting p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and d = 50. We see
that the sequences of the normalized distances δt are persistent. This is a common phenomenon
throughout the experiments, and, intuitively, it can be attributed to the fact that the current δt depends
on the previous one through the pair of U t and αt. For the low dimensional case p = 2, almost all
the distances are very close to 0, which means that the filtered modal orientations are very close to
the true ones, despite few exceptions. However, for the higher dimensional cases p = 10 and 20,
the distances are at higher levels and are more dispersed. This is consistent with the fact that, given
the same concentration d = 50, an increase of the dimension the orthonormal matrix or vector goes
along with an increase of the dispersion of the corresponding distributions on the Stiefel manifold,
as the volume of the manifold explodes with the increase of the dimensions (both p and r).

Figure 4. Normalized distances δt for the settings p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and d = 50.
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Figure 5 displays the results for the same setting p ∈ {2, 10, 20}, r = 1, ρ = 0.1 but with a much
higher concentration d = 500. We see that the curse of dimensionality can be remedied through a
higher concentration as the distances for the high dimensional cases are much closer to zero than when
d = 50.

Figure 5. Normalized distances δt for the settings p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and d = 500.

The magnitude ρ of the variance of the errors affects the results of the filtering algorithm as well,
as it determines the concentration of the filtering distribution, which can be seen from (39) through J
and Ct (both depend on the inverse of Ω). The following experiments apply the settings p = 2, r = 1
and d ∈ {5, 50, 500} showing the impact of different ρ on the filtering results. Figure 6 depicts the
results with ρ = 1, and Figure 7 with ρ = 0.1. We see that the normalized distances become closer
to zero when a lower ρ is applied. Their variability also decreases for the lowest value of d = 5 and
for the intermediate value d = 50. It is worth mentioning that, in the two cases corresponding to the
two bottom plots of the figures, the matrix Ct dominates the density function, which implies that the
filtering distribution resembles a highly concentrated matrix Langevin.

In the following experiments, our focus is on the investigation of the filtering algorithm when
r approaches p. We consider the setting p = 3 with the rank number r ∈ {1, 2}, with ρ = 0.1 and
d = 500. Figure 8 depicts the results. The normalized distances are stable at a low level for the case
p = 3 with r = 1, but a high level (around 0.5) in the case p = 3 with r = 2. A higher concentration
(d = 800) reduces the latter level to about 0.12, as can be seen on the lower plot of Figure 8. We conclude
that the approximation of the true filtering distribution tends to fail when the matrix αt tends to a
square matrix, that is, p ≈ r, and therefore the filtering algorithms proposed in this paper seems to be
appropriate when p is sufficiently larger than r.
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Figure 6. Normalized distances δt for the settings p = 2, r = 1, ρ = 1 and d ∈ {5, 50, 500}.

Figure 7. Normalized distances δt for the settings p = 2, r = 1, ρ = 0.1 and d ∈ {5, 50, 500}.
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Figure 8. Normalized distances δt for the settings p = 3, r ∈ {1, 2}, ρ = 0.1 and d = {500, 800}.

All the previous experiments are based on the true initial value α0, but, in practice, this is unknown.
The filtering algorithm may be sensitive to the choice of the initial value. In the following experiments,
we look into the effect of a wrong initial value. The setting is p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and d = 50,
and we use as initial value −α0, which is the furthest point in the Stiefel manifold away from the true
one. Figure 9 depicts the results. We see that in all the experiments the normalized distances move
towards zero, hence the filtered values approach the true values in no more than 20 steps. After that,
the level and dispersion of the distance series are similar to what they are in Figure 4 where the
true initial value is used. Thus, we can conclude that the effect of a wrongly chosen initial value
is temporary.

We have conducted similar simulation experiments for Model 2 in (19) to investigate the
performance of the algorithm proposed in Proposition 4. We find similar results to those for
Model 1. All the experiments that we have conducted are replicable using the R code available
at https://github.com/yukai-yang/SMFilter_Experiments, and the corresponding R package SMFilter
implementing the filtering algorithms of this paper is available at the Comprehensive R Archive
Network (CRAN).

https://github.com/yukai-yang/SMFilter_Experiments
https://CRAN.R-project.org/package=SMFilter
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Figure 9. Normalized distances δt for the settings p ∈ {2, 10, 20}, r = 1, ρ = 0.1 and d = 50. The initial
value of the filtering algorithm is −α0.

7. Conclusions

In this paper, we discuss the modelling of the time dependence of the time-varying reduced rank
parameters in multivariate time series models and develop novel state-space models whose latent
states evolve on the Stiefel manifold. Almost all the existing models in the past literature only deal with
the case where the evolution of the latent processes takes places on the Euclidean space, and we point
out that this approach can be problematic. These problems motivate the development of the novel
state-space models. The matrix Langevin distribution is proposed to specify the sequential evolution
of the corresponding latent processes over the Stiefel manifold. Nonlinear filtering algorithms for the
new models are designed, wherein the integral for computing the predictive step is approximated by
applying the Laplace method. An advantage of the matrix Langevin distribution is that the a priori and
a posteriori distributions of the latent variables are conjugate. The new models can be useful when the
temporal instability of some parameters of multvariate models is suspected, for example, cointegration
models with time-varying short-run adjustment or time-varying long-run relations, and factor models
with time-varying factor loading.

Further research is needed in several directions. The most obvious one is the implementation of
estimation methods, which can be maximum likelihood or Bayesian inference, and the investigation
of their properties. This will enable us to apply the models to data. In this paper, we only consider
the case where the latent variables evolve on the Stiefel manifold in a ‘random walk’ way. It will
be interesting to consider the case where the latent variables evolve on the Stiefel manifold but in a
mean-reverting way.
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Appendix A. Proof of Proposition 1

In the model (1) with the decomposition (2), both the rows of β and the order of the variables xt

are permuted by Pβ as follows:
Atxt = αtβ

′xt = αtβ
′P′βPβxt. (A1)

The time-invariant component β can be linearly normalized if the r× r upper block b1 in (7) is
invertible. It follows that the corresponding linear normalization defined in (8) is due to

αtβ
′P′βPβxt = αt(b′1, b′2)Pβxt = αtb′1(b

′
1)
−1(b′1, b′2)Pβxt = α̃t β̃

′Pβxt, (A2)

where α̃t = αtb′1 is the new time-varying component following the evolution (9).
Consider another permutation P∗β 6= Pβ. Similarly, we have

Atxt = αtβ
′P∗′β P∗βxt, (A3)

together with

P∗ββ =

(
b∗1
b∗2

)
, β̃

∗
= P∗ββb∗−1

1 =

(
Ir

b∗2b∗−1
1

)
, α̃∗t = αtb∗′1 , (A4)

where b∗1 is also invertible. Then, we can have the evolution

vec(α̃∗t+1) = vec(α̃∗t ) + ηα∗
t . (A5)

Assume that the error vector ηα
t in (9) has zero mean and a diagonal variance–covariance matrix.

From (A1)–(A3), we have
At = α̃t β̃

′Pβ = α̃∗t β̃
∗′P∗β, (A6)

and hence it follows that
α̃∗t = α̃t β̃

′PβP∗′β κ, (A7)

where the q1 × r matrix κ satisfies β̃
∗′

κ = Ir. The existence of κ is guaranteed by the fact that β has
full rank and so does β̃

∗.
Thus, the vectorized α̃∗t+1 can be written as

vec(α̃∗t+1) = vec(α̃t+1β̃
′PβP∗′β κ) = ((κ′P∗βP′β β̃)⊗ Ip) vec(α̃t+1)

= ((κ′P∗βP′β β̃)⊗ Ip) vec(α̃t) + ((κ′P∗βP′β β̃)⊗ Ip) ηα
t (A8)

= vec(α̃∗t ) + ηα∗
t ,

due to (9) and (A5). Hence, it can be seen that ηα∗
t = ((κ′P∗βP′β β̃) ⊗ Ip) ηα

t , and that ηα∗
t has

diagonal variance–covariance matrix if and only if κ′P∗βP′β β̃ is diagonal given that ηα
t has diagonal

variance–covariance matrix.
Next, we need to verify whether κ′P∗βP′β β̃ is diagonal and investigate under what condition it

will be diagonal. By substituting β̃ with (8), we obtain

κ′P∗βP′β β̃ = κ′P∗βP′βPββb−1
1 = κ′P∗ββb−1

1 . (A9)

In addition, we know that, by substituting β̃
∗ with (A4),

κ′ β̃
∗
= κ′P∗ββb∗−1

1 = Ir. (A10)
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Since the r × r square matrix κ′P∗ββ has full rank, it can be seen that ηα∗
t has diagonal

variance–covariance matrix if and only if b1 = b∗1 .

Appendix B. Proof of Proposition 2

In the model (1) with the decomposition (3), the rows of α are permuted by Pα as follows:

Atxt = αβ′txt = P′αPααβ′txt. (A11)

Notice that we can remove P′α in the equation, which means that we choose not to permute back
to the original order of the dependent variables yt. The linear normalization (11) is obtained by

P′αPααβ′txt = P′α

(
a1

a2

)
β′txt = P′α

(
a1

a2

)
a−1

1 a1β′txt = P′αα̃β̃
′
txt, (A12)

where β̃t = βta
′
1 is the new time-varying component following evolution (12).

Consider another permutation P∗α 6= Pα, such that

Atxt = P∗′α P∗ααβ′txt, (A13)

together with

P∗αα =

(
a∗1
a∗2

)
, α̃∗ = P∗ααa∗−1

1 =

(
Ir

a∗2 a∗−1
1

)
, β̃

∗
t = βta

∗′
1 , (A14)

where a∗1 is invertible. Then, we can have the evolution

vec(β̃
∗
t+1) = vec(β̃

∗
t ) + η

β∗
t . (A15)

We assume that the error vector η
β
t in (12) has zero mean and diagonal variance–covariance matrix.

From (A11)–(A13), we have
At = P′αα̃β̃

′
t = P∗′α α̃∗ β̃

∗′
t , (A16)

and hence it follows that
β̃
∗
t = β̃tα̃

′PαP∗′α δ, (A17)

where the p× r matrix δ satisfies α̃∗′δ = Ir. The existence of δ is guaranteed by the fact that α has full
rank and so does α̃∗.

Then, we get the vectorized β̃
∗
t+1:

vec(β̃
∗
t+1) = vec(β̃t+1α̃′PαP∗′α δ) = ((δ′P∗αP′αα̃)⊗ Iq1) vec(β̃t+1)

= ((δ′P∗αP′αα̃)⊗ Iq1) vec(β̃t) + ((δ′P∗αP′αα̃)⊗ Iq1) η
β
t (A18)

= vec(β̃
∗
t ) + η

β∗
t ,

due to (12) and (A15). Hence, it can be seen that η
β∗
t = ((δ′P∗αP′αα̃) ⊗ Iq1) η

β
t , and that η

β∗
t has a

diagonal variance–covariance matrix if and only if δ′P∗αP′αα̃ is diagonal given that η
β
t has a diagonal

variance–covariance matrix.
The investigation of under what condition δ′P∗αP′αα̃ is diagonal is similar to the previous proof.

By substituting α̃ with (11), we obtain

δ′P∗αP′αα̃ = δ′P∗αP′αPααa−1
1 = δ′P∗ααa−1

1 . (A19)

By substituting β̃
∗ with (A14), we obtain that
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δ′α̃∗ = δ′P∗ααa∗−1
1 = Ir. (A20)

Since the r × r square matrix δ′P∗αα has full rank, it can be seen that η
β∗
t has diagonal

variance–covariance matrix if and only if a1 = a∗1 .
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