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Abstract: A novel class of dimension reduction methods is combined with a stochastic multi-factor
panel regression-based state-space model in order to model the dynamics of yield curves whilst
incorporating regression factors. This is achieved via Probabilistic Principal Component Analysis
(PPCA) in which new statistically-robust variants are derived also treating missing data. We embed
the rank reduced feature extractions into a stochastic representation for state-space models for yield
curve dynamics and compare the results to classical multi-factor dynamic Nelson–Siegel state-space
models. This leads to important new representations of yield curve models that can be practically
important for addressing questions of financial stress testing and monetary policy interventions,
which can incorporate efficiently financial big data. We illustrate our results on various financial and
macroeconomic datasets from the Euro Zone and international market.
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1. Introduction

The increased collection and accessibility to complex financial and macroeconomic data are
transforming the way in which financial services operate. Therefore, the methods that study such
data for financial applications should acknowledge this progress in methodological developments and
utilise increasingly big financial datasets to understand and reinterpret key financial applications such
as interest rate dynamics. Furthermore, the increasing volume of market data poses both an opportunity
and a challenge for financial institutions to deepen their understanding of market-wide and
country-specific sources of risk present in financial markets and their implications for modelling and
forecasting markets’ dynamics. Such information is of key importance for efficient investment decision
making, understanding the influence of unconventional monetary policies and risk management
procedures such as stress testing.

In this paper, we focus on providing a coherent methodology that utilises global macroeconomic
and financial market datasets in modelling one of the most popular indicators of economic activity,
the London Interbank Offered Rate (Libor). Libors are broadly used as benchmark rates for a wide
collection of financial products. In order to use the information available in a range of financial
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datasets in a meaningful and parsimonious way to help explain the dynamics of Libor, we apply the
feature extraction methodology with special tailoring for handling irregular time series (missing data)
and outliers.

1.1. Multifactor Models for Yield Curve Dynamics

Before the financial crisis of 2007–2008, it was widely believed that interest rate dynamics were
well specified by single interest rate models such as short-rate models, rational pricing kernels,
forward single rate models (Heath–Jarrow–Morton or Libor market models) with a leading assumption
that there were no arbitrage relations between the instruments associated with different tenors, and
hence, the rates were feasibly modelled separately. The financial crisis changed this perception,
uncovering not only the significant spreads between the rates of different tenors, which are no longer
negligible, but also the arising discrepancies between the rates, which were very close before the crisis,
such as Libor rates and Overnight-Index swaps. This resulted in the emergence of multi-curve interest
rate models, which aim to capture the simultaneous presence of various interest rates and to reflect
the implications of liquidity and credit risks resulting from lending in the interbank money market.
For a discussion on the theory of interest models and the post-crisis challenges, the reader may refer to
Grbac and Runggaldier (2015) or Cuchiero et al. (2016b). The study of Filipovic and Trolle (2013)
discusses multiple factors, which are not captured by single rate models, but are proven to have
a significant impact on the term structure of Libor. The authors indicated the influence of the default
risk, which increases with a rate’s maturity and is a dominant driver of long maturities. The study
highlights the importance of modelling the term structure of Libor rates.

The existing literature on modelling the term structure of interest rates can be divided into two sets.
The first group of methodologies aims to perform the exact replication of observed market rates via
stochastic interpolations. These models are useful for daily calibration on the term structure, but
they are often not consistent on intraday dynamics. These term structure models are used in pricing
or hedging applications. For details of methodological developments in the first class of models,
the reader may refer to the recent studies of Chib and Ergashev (2009), Cuchiero et al. (2016b) or
Cuchiero et al. (2016a) and notably the consistent prediction framework of Teichmann and Wuthrich (2016).
The second class of approaches performs regression as opposed to interpolation. Such methods produce
models more applicable to risk management, monetary policy and econometrics application such as
stress testing, as they can be used as consistent in-sample estimations and forecasting applications.

The present study belongs to the second group of methods. We aim to develop under a regression
state-space setting the incorporation of features extracted from macroeconomic and financial
information present in big datasets, which explain the Euro Libor yield curve over time and are not
associated with traditional yield curve factors. The current literature on incorporating macroeconomic
and financial big data into financial modelling mostly focuses on the prediction of portfolio returns.
The reader may refer to the well-known works of Cao and Tay (2003), Armano et al. (2005) or
Kwon and Moon (2007) or the more recent studies of Geva and Zahavi (2014) and Kercheval and Zhang
(2015) and Sirignano (2016) and Borovykh et al. (2017) for applications of advanced learning algorithms in
finance. These approaches have one significant disadvantage: they leave the interpretation of the results
behind without addressing the question of the individual influence of financial and macroeconomic
features. Therefore, they are not applicable for policy making and stress testing purposes when one
wants to source the information on interactions between market components.

The existing literature on incorporating market-specific information into yield curve modelling
mostly focuses on using raw macroeconomic time series as exogenous, explanatory variables and
incorporating them into a yield curve model by tracking the dynamics of their contributions to yield
curve calibration over time. Other methods use compressed information obtained using feature extraction
techniques from financial data. For instance, the authors of Diebold and Li (2006) used various
economy condition proxies in addition to the components of the Nelson–Siegel model, introduced by
Nelson and Siegel (1987), to show their significant link to U.S. Treasury yield and improve the forecast
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of the yield. The interactions between U.K. government bond yields and inflation, monetary rates and
unemployment related proxies were combined in a stochastic volatility Nelson–Siegel model setting
in Bianchi et al. (2009). Particular attention is focused on the contribution to the yield curve volatility
under monetary policy shocks that introduces developments of a coherent stress testing methodology.
The study of Joslin et al. (2014) further confirmed the substantial effects of inflation and economic activity
on the U.S. Treasury yield curve by introducing the affine, arbitrage-free methodology, which incorporates
the relevant macroeconomic factors. The approach to model simultaneously yield curve and filter
unobserved macroeconomic variables using macroeconomic factors not spanned by classic yield curve
components of the Nelson–Siegel model class is discussed in Coroneo et al. (2016), where the authors
applied a dynamic factor methodology to the U.S. Treasury yields. More recently, Karimalis et al. (2017)
proposed a multiple-country stress testing framework to efficiently capture the effects on the set
of European government yield curves from shocks in country-specific liquidity and credit-related
variables by employing two procedures: modelling of the dynamics of country-specific yield curves by
employing the dynamic macro-finance Nelson–Siegel model of Diebold and Li (2006) and a robust
covariance regression model applied to yield curves, both with the inclusion of macro-finance factors.

1.2. Feature Extraction Methods for Financial Data

The modelling of the yield curve in the presence of a data-rich environment requires an
application of feature extraction methodologies in order to reduce the required model parameters
and focus only on the incorporation of meaningful information into the model. A common
practice in yield curve modelling is to use principal component analysis in order to reduce the
dimensionality of the data and obtain features that explain the highest portion of the variance.
Beginning with the study of Ang and Piazzesi (2003) or Emanuel Moench (2008), the authors used
reduced information from inflation-linked and real economic activity-linked sets of U.S. financial
markets by extracting the first principal component from each group of datasets and then adopting
the Factor-Augmented Vector Autoregressive (FAVAR) model to calibrate the U.S. Treasury yield.
The factor-augmented regression with static factors obtained by principal component analysis was
introduced in Ludvigson and Ng (2010) to study the relation between bond excess returns and
the macroeconomy. The use of international sovereign yield curves from leading economies in
modelling, so-called, global yield curves, the sets of rates from leading countries, was investigated in
Abbritti et al. (2013). The authors utilised the FAVAR framework to combine traditional determinants
of the yield curve level, slope and curvature and three global factors. The other applications of
incorporating features extracted from the sets of international sovereign yield curves in a term
structure calibration are the work of Joslin et al. (2010), for the U.S. Treasury bond yields, or the
study Wright (2011) that investigated the decomposition of the forward rates into expected future
short-term interest rates and term premiums.

Hence, the following study contributes to the latter group of works in combining the financial
market data feature extraction and modelling of the structure of yield curves. However, the novelty
is largely in the attention to the efficient and statistically-robust feature extraction methodologies.
We use international macroeconomic and financial big datasets to study the effects of global economies
on the dynamics of the EUR Libor market. In order to handle the presence of irregularities in the
real data time series and the possibility of outliers, we develop a novel statistically-robust class of
methods for feature extraction based on probabilistic principal component analysis introduced by
Tipping and Bishop (1999). Our extension uses reference distributions based on two versions of the
multivariate t-Student. The extracted features are used as predictors and are incorporated into a novel
dynamic state-space formulation of Nelson–Siegel model of Nelson and Siegel (1987) following the
work of Diebold and Li (2006), with application to the EUR Libor yield curve.

Principal Component Analysis (PCA) and related matrix factorisation methodologies are widely
used in data-rich environments as dimensionality reduction, data compression or feature extraction
techniques. The methodologies identify a lower dimensional subspace to represent the data, which
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captures second order dominant information contained in the data. The general matrix representation
of the problem assumes that the observation data matrix can be decomposed into the sum of
a lower-rank matrix and a matrix of observation noise. In practice, we may identify the four most
straightforward distant patterns of possible noise matrices, which are exemplified in Zhou et al. (2010).
According to their abundance and the magnitude of their values, the noise matrices may have sparse
or dense noise values and small or large values. Since standard PCA assumes a quadratic loss function,
it is only efficient in the cases of small and dense noise. Due to this fact, the methodology is highly
sensitive to distant data points, called outliers, which corrupt the sample set. In order to improve the
robustness of PCA, there have been many extensions to the standard methodology proposed. The most
straightforward approach is to improve the estimation of the sample moments in the PCA procedure
by using their robust alternatives as in Hubert et al. (2005). The concept of robust estimators has been
further extended in Huber (1964), Rousseeuw and Yohai (1984), Rousseeuw (1985) and Tyler (1987) and
is broadly discussed in the existing literature in the context of robust methods for principal component
analysis as in Maronna (2005) or Huber and Ronchetti (2009).

The other studies improve PCA by replacing the standard quadratic error function by
some more robust alternatives, which weight the squared loss of each observation. The study
De la Torre and Black (2001) investigates an M-estimation weighting algorithm for a minimisation
of the error function. Another approach is based on using a loss function, which resembles the
assumption on the heavy tail distribution of the data according to a Laplace Ke and Kanade (2005),
Ding et al. (2006), Eriksson and Hengel (2012) or Cauchy Xie and Xing (2015) type of error function.
The Laplace loss function is very convenient to work with datasets that exhibit large, sparse noises,
as the L1 norm forces sparsity of the solution, as shown in Tibshirani (1996). When working with
larger and dense noises, it is more convenient to use the Cauchy type of loss function. The authors of
Candes et al. (2009) or Zhou et al. (2010) proposed stable principal component pursuit, a methodology
that combines both of these noise patterns. They investigate the model for PCA, which decomposes the
data into the lower rank, small and dense noise matrices and a large and sparse noise matrix.

However, the non-probabilistic frameworks are difficult when one wants to specify various a priori
assumptions about the distribution of the observation process in order to achieve some desirable
probabilistic model properties, which are especially efficient in handling the presence of missing data
or incomplete observations. The probabilistic paradigm of standard PCA has been introduced by
Tipping and Bishop (1999) as Probabilistic Principal Component Analysis (PPCA), where the noise
vector is assumed to follow a Gaussian distribution. In order to robustify the framework, the studies
Khan and Dellaert (2003), Archambeau et al. (2006), Fang and Jeong (2008) and Chen et al. (2009)
suggested to use an independent in time t-Student assumption on the noise distribution. Deriving
the PPCA results then follows by remarking that t-Student is an infinite mixture of Gaussian random
variables. To improve the resistance of PPCA to large, sparse noises, the authors of Ke and Kanade (2005)
and Eriksson and Hengel (2012) replaced the Gaussian distribution with the Laplace distribution.
All of these methodologies assumed latent vectors and the error terms to be mutually independently
distributed variables with the same degrees of freedom denoted by v and independent over time with
different probability functions over time, and they can be perceived as independent variables, which is
not always the case in practice.

In the following study, we extend the PPCA models by forcing all observations to be distributed
identically and, hence, examining the elements of the sample set as the realisations of one random
variable in time. We derive and examine the proposed methodology for the t-Student distribution,
which is a heavy-tailed alternative to the Gaussian distribution and is suitable to work with financial
and macroeconomic data that are corrupted by dense gross errors.

1.3. Contributions and Structure

The manuscript can be split into two main parts corresponding to our two main contributions to
feature extraction and dynamic yield curve modelling.
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Our first contribution is a novel identical and conditional t-Student PPCA methodology and
its estimation framework, which allows for efficient statistical estimation in the presence of missing
data. In the first part of this manuscript, we show how to compress the information available in
the big datasets in a meaningful manner. We discuss extensions of the probabilistic approach to
feature extraction based on the widely-adopted principal component analysis. We assume that the
multivariate observation vector follows a t-Student distribution in order to tackle the possibility
of distant data points, distinguishing between two cases: when the observations are independent
over time or identically distributed. The developed methodology ensures robustness by allowing
various prior assumptions on the heaviness of tails of the examined data. In addition, the probabilistic
methodology efficiently handles the missing values of the time series in big datasets. We illustrate how
to use this framework for econometric studies on financial big datasets.

Our second contribution is extending the state space structure of the Nelson–Siegel yield curve
model to efficiently incorporate additional factors. We discuss the methodology of incorporating
meaningful market information into an econometric model of a yield curve. We show how to extend
the model, which calibrates and forecasts the Euro Libor yield curve in order to utilize available
market information. Such a model can serve as a useful tool for a parsimonious stress testing exercise.
The introduction of the methodology is followed by the discussion of an optimal estimation technique
based on the Kalman filter studied by Kalman and Bucy (1961). We perform comprehensive state-space
model selection and structuring, and the in-sample and out-of-sample analysis confirms that our
methodology outperforms the standard method.

The utilisation of the market information in yield curve modelling is well documented in
the current literature. In the study of Diebold and Li (2006), the authors extended the dynamic
Nelson–Siegel model of Nelson and Siegel (1987) by including observable macroeconomic variables in
order to investigate the interaction between the macroeconomy and a yield curve. Nevertheless, given
the current availability of the data, we find this approach disadvantageous due to two aforementioned
reasons: the high possibility of the model over parametrization and hidden links between various
datasets that may spoil the modelling quality. Therefore, instead of incorporating raw data, we discuss
how to use the derived market features.

The paper is organised as follows. The list of datasets used in this study is detailed in Section 2.
The novel extensions to the probabilistic principal component analysis are discussed in Section 3,
whereas the steps of the employed estimation procedure, the expectation-maximisation algorithm,
is derived in Section 4. The detailed proofs of the steps of derivations are provided in the Appendix
which can be accessed online as Supplementary Material. Section 5 introduces the concept of yield
curve modelling, as well as extends the framework by showing how to incorporate the market-specific
features in an econometric manner. The subsequent parts of the section overview the employed
methodology of the model estimation and selection. The outcomes of the derived methodologies of
feature extraction applied to real datasets are discussed in Section 6. The framework for the calibration
and forecasting Euro Libor yield curve is examined on real data studies presented in Section 7. The last
section concludes.

2. International Macroeconomic and Financial Big Datasets

In the following section, we briefly overview various international macroeconomic and financial
datasets that are investigated in this study, summarized in Table 1. We advise the reader to refer to
Appendix A in the Supplementary Material for a detailed discussion and insight into the investigated
time series.

Our attention is focused on investigating features that measure Euro Zone market conditions and
their decomposition into their influences from the domestic and international markets. The Euro Zone
market is represented by the Euro Libor yield curve. We collect the data from leading domestic and
global economies, in total 12 countries, categorized as follows:
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Domestic economies: Germany (DE), France (FR), Portugal (PO), Spain (ES), Italy (IT), Ireland (IR)
and the United Kingdom (GB);

International economies: Japan (JP), United States (U.S.), Australia (AU), Brazil (BR) and South
Africa (SA).

The subsets of data that serve to investigate various domestic and global influences are categorized
as follows:

GOV: the panel valued time series, which measure the interactions between country-specific
sovereign yield curves;

INF: the panel valued time series, which measures the influence of country-specific inflation risks
represented by inflation-linked yield curves and Consumer Price Indexes;

PRD: the time series that measures the influence of country-specific productivity proxies
represented by Gross Domestic Product (GDP), unemployment rates and Labour
productivity;

FX: the time series that measures the interactions between leading foreign exchange markets and
the Euro Zone market given by exchange rates for the Euro (EUR) and Japanese Yen (JPY),
United States dollar (USD) and Australian dollar (AUD);

LIQ: the time series that serves as a proxy of Euro Zone liquidity represented by 3M Euro Repo
and Euribor rates and German Bund Open Interest;

CR: the time series that are used as proxies of the credit quality of the Euro Zone given by the
5YMarkit Intraxx Index.

The instruments described by the three first rows of Table 1 are country-specific yield
curves, which have a term structure. Therefore, their one observation is a multidimensional
vector with elements corresponding to the rates with specific maturities belonging to the set
τ ∈

{
1 months (M), 3 months (M), . . . , 20 years (Y)

}
.

Table 1. The list of collected financial and macroeconomic time series investigated in the study.
The first three columns of the table correspond to the name, sector category and frequency of the
quotes of an instrument. The rest of the columns indicate country-specific availabilities of the
collected data. The Bloomberg identifiers of the data are listed in Tables 2 and 3 in Appendix A
in the Supplementary Material.

Instrument Cat Freq.
Availability

EU DE FR PO ES IT IR GB JP U.S. AU BR SA
Libor Curve daily 3

Sovereign Curve GOV daily 3 3 3 3 3 3 3 3 3 3 3 3
Inflation Curve INF daily 3 3 3 3 3 3 3 3

FXRates FX daily 3 3 3 3
CPI INF monthly 3 3 3 3 3 3 3 3 3 3 3 3
GDP PRD yearly 3 3 3 3 3 3 3 3 3 3 3 3

Unemployment Rates PRD yearly 3 3 3 3 3 3 3 3 3 3 3 3
Labour Productivity PRD yearly 3 3 3 3 3 3 3 3 3 3

German Bund OI LIQ daily
Euro Repo and Euribor 3M LIQ daily

Markit iTraxx 5Y CR daily

3. Novel Feature Extraction via Probabilistic Principal Component Methods Using the
t-Student Formulation

In the following part, we discuss the existing PPCA methodologies, as well as provide our
novel model extending the standard methods in the presence of missing data in an efficient and
statistically-robust manner.

We discuss the feature extraction methodologies that adapt principle component analysis to
a probabilistic formulation in order to reduce the dimensionality in the presence of data that contain
realistic features such as missingness, as well as outliers and noise. Such techniques should be
applicable to very large time series datasets.
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We choose to focus on robust alternatives to the Gaussian PPCA, and we demonstrate how
to use the t-Student distribution in order to account for heavy tail assumptions, which result in
the methodology being statistically robust to the distant observations in a sample set of outliers.
We investigate two t-Student frameworks, one in which the observations are assumed to be
independent over time, which leads to different probability density functions over time, and the
second in which the observation vectors are assumed to be identically distributed and conditionally
independent over time. The first concept had been partially introduced by Lange et al. (1989), whereas
the latter is our novel contribution to the existing literature on the probabilistic principal component
analysis. The extended frameworks of the derived methodologies provides the consistent statistical
incorporation of missingness.

3.1. Introduction to Probabilistic Principal Component Analysis

Let us define the random vector with observations in time t, Yt ∈ Rd and the random vector of
latent (unobserved) variables Xt ∈ Rk for d, k ∈ N. The relation between the observed values Yt and
the hidden variable, Xt is defined by the following model:

Yt = µ + XtWT
d×k + εt (1)

for εt being a d-dimensional error term with covariance matrix σ2Id, W a real valued d× k matrix and
µ a d-dimensional intercept vector.

The existing literature introduces the concept of using the t-Student distribution to achieve this
purpose. The reader may refer to Lange et al. (1989), Archambeau et al. (2006), Fang and Jeong (2008) or
Chen et al. (2009) where the latent vectors and the error terms are mutually independently distributed
t-Student variables with the same degrees of freedom denoted by v and independent over time. In addition,
the authors assume the vectors of the response variable, Yt, to be independent over time, which forces
each of the observations to be treated as an individual random variable with different probability
functions. This assumption also requires Xt and εt to have different probability distributions over time.
The assumptions provide the PPCA framework with the flexibility to treat each of the observations
individually; however, this adds additional degrees of freedoms to an estimation problem, which may
cause unnecessary difficulties when the sample size is not sufficiently large. Further, the statistical
characteristic of the observation set, as well as the latent processes over time are limited since every
realisation of the variables over time is distributed separately.

As a possible remedy to the listed limitations of Independent t-Student PPCA (t-Student IND
PPCA), we propose an extension to the methodology by assuming Xt and εt to be identically distributed,
that is the observations have the same probability distribution over time and therefore are treated
as realisations of one random variable. The reader will see that the assumption of the identical
distribution preserves the mutual independence of Xt and εt, but restricts them to be only conditionally
independent over time. In addition, we add a second important extension not previously explored in
this literature, which allows dealing with the general missingness structures in the response vectors Yt

over time.

3.2. t-Student Principal Component Analysis

Let us denote Ψ as a vector of all static parameters of model (1), that is Ψ = [W, µ, σ2, v].
Consider the definition of the t-Student random variable density (see Gupta and Nagar 1999) rewritten
as a mixture of Gaussian and Gamma random variables. One may then define the sequence of scalar
Gamma random variables Ut ∼ Γ( v

2 , v
2 ) for t = 1, . . . N, whose elements are independent over time.

The stochastic representations of t-Student random vectors Xt and εt may then be expressed by:

Xt =
1√
Ut

Zx,t, εt =

√
σ2

Ut
Zε,t, (2)
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where Zε,t and Zx,t are mutually independent d and k-dimensional standard normal random vectors,
respectively, which are independent over time. The joint probability functions of model (1) in the
independent t-Student case, for N realisations of Yt, is then given by:

πY1:N ,X1:N ,U1:N |Ψ
(
y1:N , x1:N , u1:N

)
=

N

∏
t=1

πYt |Xt ,Ut ,Ψ(yt)πXt |Ut ,Ψ(xt)πUt |Ψ(ut), (3)

where the conditional distributions of Yt|Xt, Ut, Ψ and Xt|Ut, Ψ are Gaussian such that:

Yt|Xt, Ut, Ψ ∼ N
(

µ + XtWT ,
σ2

Ut
Id

)
andXt|Ut, Ψ ∼ N

(
0,

1
Ut

Ik

)
.

We extend the concept of t-Student IND PPCA by proposing a more parsimonious model requiring
a reduction of integrals from N to 1 when marginalizing to get the distribution of Y1:N . The latent
variable U is no longer time dependent, and the methodology assumes one realisation of U ∼ Γ

( v
2 , v

2
)

for the sample set. Consequently, the variables Xt and εt are identically distributed. The stochastic
representations of Xt and εt under the identical and conditionally independent t-Student distributed
model is given by:

Xt =
1√
U

Zx,t, εt =

√
σ2

U
Zε,t. (4)

The vectors Xt and εt are independent over time only when conditioned on U. Under these
assumptions, the observation vector Yt is still conditionally multivariate Gaussian:

Yt|Xt, U, Ψ ∼ N
(

µ + XtWT ,
σ2

U
Id

)
,

but is not marginally independent over time, which results in the following joint probability density
function of the model (1) in the identical and conditionally independent t-Student PPCA (t-Student
IID PPCA) case:

πY1:N ,X1:N ,U|Ψ(y1:N , x1:N , u) = πY1:N |X1:N ,U,Ψ(y1:N) · πX1:N |U,Ψ(x1:N) · πU|Ψ(u)

= πU|Ψ(u)
N

∏
t=1

πYt |Xt ,UΨ(yt) · πXt |U,Ψ(xt).
(5)

3.3. Novel Extension of Probabilistic Principal Component Analysis for a Missing Data Setting

The probabilistic principal component analysis is especially efficient in the presence of missing
data. In the following, we show how to model the incompleteness of the observations in
a PPCA framework.

To achieve this, the vector Yt is partitioned into two subvectors, one that contains observed values
Yo

t and the second that indicates missing entries Ym
t , such that Yt =

[
Yo

t , Ym
t
]
. We denote do as the

number of observed elements of the vector Yt and dm = d− do the number of missing entries in time t.
Let us define an indicator random variable Rt ∈ {0, 1}d that decides which entries of Yt are

missing, one indicating not missing and zero otherwise. In the incomplete data setting, a single
observation consists of the pair (Yo

t , Rt) with some distribution parameters (Ψ, Ψr), respectively.
We assume the parameters to be distinct. The likelihood of the parameters is proportional to the
conditional probability Yo

t , Rt|Ψ, Ψr, given by:

πYo
t ,Rt |Ψ,Ψr (yo

t , rt) =
∫

πYo
t ,Ym

t ,Rt |Ψ,Ψr (yo
t , ym

t , rt)dym
t

=
∫

πRt |Yt ,Ψ,Ψr (rt) · πYt |Ψ,Ψr (yt)dym
t .

(6)
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In this study, we assume a Missing-At-Random (MAR) statistical framework, as defined in
Little and Rubin (2002). This restricts the missingness to appear independently of the magnitude of
the unobserved values. Given this assumption, we will demonstrate in the following (see further
details in Section 4) how this result will be critical in an expectation maximisation algorithm. We will
demonstrate importantly that under such a framework, the required expectations do not account for
the distribution of the indicator variable since the vector Yt under MAR satisfies:

πRt |Yt ,Ψr (rt) = πRt |Yo
t ,Ψr (rt).

resulting in:

πYo
t ,Rt |Ψ,Ψr (yo

t , rt) = πRt |Yo
t ,Ψr (rt)

∫
πYt |Ψ(yt)dym

t = πRt |Yo
t ,Ψr (rt) · πYo

t |Ψ(y
o
t ).

Under the MAR assumption, the estimation of Ψ via the maximum likelihood of the joint
distribution Yo

t , Rt|Ψ, Ψr is equivalent to the maximisation of the likelihood of the marginal distribution
Yo

t |Ψ. Hence, we are not concerned about the distribution of the indicator random variable Rt and the
distribution of Yo

t and Rt. If the assumption about MAR does not hold, one needs to solve the integral
from Equation (6) in order to maximize the joint likelihood.

In the incomplete data case-related sections, we denote by Wo and Wm the do × k and dm × k
non-squared submatrices of W with corresponding rows to the elements of the vector Yt, which are
observed and missing, respectively. In general, by lower index o and m, we further refer to the elements
of some objects corresponding to observed and missing values of Yt, respectively.

4. EM Algorithm for the Probabilistic Principal Component with t-Student Distribution

In order to develop a procedure for estimating the static parameters and extracting the filtered
hidden variables, the factor loadings of the principal components from the model (1) under various
assumptions specified in Section 3, we employ an Expectation-Maximisation (EM) Algorithm
introduced by Dempster et al. (1977). The algorithm is particularly useful when we need to calculate the
likelihood of incomplete data by integrating with respect to latent variables. It is efficiently achieved in
two iterative steps, which jointly maximize the expected log-likelihood of the data, both observed and
hidden variables. Given the models from the exponential family, this technique ensures that the local
maximum of the incomplete data likelihood is reached. Given the presence of missing information,
the two steps of the EM algorithm for the model (1) are given by:

Step 1: Expectation step (E-step):
The expectation of the conditional distribution Ym

1:N , X1:N |Yo
1:N over the logarithm of the joint

probability function of the observed and hidden variables of the model (1) given N realisations
of the variables as a function of the two vectors with static parameters Ψ = [W, µ, σ2] and
Ψ∗ = [W∗, µ∗, σ∗2], that is:

Q
(
Ψ, Ψ∗

)
= EYm

1:N ,X1:N |Yo
1:N ,Ψ

[
log πY1:N ,X1:N |ψ∗

(
y1:N , x1:N

)]
(7)

Step 2: Maximisation step (M-step):
Re-estimation of the vector of static parameters Ψ is carried out via maximisation of the
resulting function Q with respect to the vector Ψ∗:

Ψ̂∗ = argmax
Ψ∗

Q
(
Ψ, Ψ∗

)
(8)

Recall that the vectors Ψ and Ψ∗ are, respectively, an old and updated version of the static parameters.
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In the following section, we derive novel closed-form solutions to evaluate each step of the
EM algorithm for t-Student PPCA cases. We show how to incorporate prior assumptions about the
presence of missing data in the model, and we derive a novel robust missing data EM algorithm,
which adapts the t-Student distribution to handle the incomplete data case. Each of the versions of the
algorithm is derived for the two PPCA cases described in Section 3. The proofs of the theorems from
the section are explained in Appendix D in the Supplementary Material.

The EM algorithm for t-Student variants of PPCA is used to estimate the parameters W, µ, σ2 and
the filtered values of unobserved processes. Recall that the models introduced in Section 3 depend on
one additional parameter, v, corresponding to the degrees of freedom, which determine the t-Student
probability function. We will show in Appendix E in the Supplementary Material that the likelihood
profile of the EM algorithms for the two variances of t-Student PPCA is very flat over the grid of
degrees of freedom, and we recommend against using the EM algorithm to specify v. Therefore, we
employ an independent grid-based search to choose v by setting v and proceeding with EM algorithms
for W, µ, σ2, which are derived in this section. The value of the scale parameter that obtains the highest
log-likelihood is then chosen as an estimate of v.

As discussed in Section 3.3, We assume that random components of the observation process are
unobservable, i.e., each observation of the process Yt can be partitioned into the two do- and dm-dimensional
subvectors Yt = [Yo

t , Ym
t ]. The sample, which contains N realisations of the process Yt, is denoted by

y1:N =
{

y1, . . . , yN
}

, which can be partitioned into the subsamples y1:N = [yo
1:N , ym

1:N ], which contain
observations of the subvectors Yo

t and missing entries of Ym
t for t = 1, . . . , N.

4.1. EM Algorithm for the Probabilistic Principal Component with the Independent t-Student Distribution in
the Presence of Missing Data

The EM algorithm treats the vectors of missing observations Ym
t as an additional hidden variable.

Therefore, the E-step for the independent t-Student PPCA case with missingness needs to adjust for
this latent process. The E-step is calculated as an expectation of the joint probability function from
Equation (3) with respect to the conditional distribution Ym

1:N , X1:N , U1:N |Y1:N , Ψ given the assumption
in Equation (2). The expectation denoted as Q is given in Theorem 1. The maximizers of the function
Q with respect to the vector of static parameters Ψ∗ are specified in Theorem 2

Theorem 1. The E-step of the EM algorithm for t-Student IND PPCA given realisations of N observation
vectors Yo

1:N denoted by yo
1:N =

{
yo

1, . . . , yo
N
}

is given by:

Q(Ψ, Ψ∗) = EYm
1:N ,X1:N ,U1:N |Yo

1:N ,Ψ

[
log πY1:N ,X1:N ,U1:N |Ψ∗(Y1:N , X1:N , U1:N)

]
= − 1

2 ∑N
t=1

[(
d + k− v∗

2

)
log 2π + d log σ∗2 + 1

σ∗2
Tr
{
EYm

t ,Ut |Yo
t ,Ψ
[
Ut (Yt − µ∗)T (Yt − µ∗)

]}
−(d + k + v∗ − 2)EUt |Yo

t ,Ψ
[

log Ut
]
− 2

σ∗2
tr
{

W∗
(
EYm

t ,Xt ,Ut |Yo
t ,Ψ
[
UtXT

t Yt
]
−EYm

t ,Xt ,Ut |Yo
t ,Ψ
[
UtXt

]T
µ∗
)}

+tr
{(

1
σ∗2

W∗TW∗ + Ik

)
EYm

t ,Xt ,Ut |Yo
t ,Ψ
[
UtXT

t Xt
]}

+ v∗EUt |Yo
t ,Ψ
[
Ut
]
− 2 log

( ( v∗
2

) v∗
2

Γ( v∗
2 )

)]
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for the corresponding moments of the conditional distribution Ym
t , Xt, Ut|Yo

t , Ψ:

EUt |Yo
t ,Ψ
[
Ut
]
= v+do

v+Do
t
,

EUt |Yo
t ,Ψ
[

log Ut
]
= ψ

(
v+do

2

)
− log

(
v+Do

t
2

)
,

EYm
t |Yo

t ,UtΨ
[
Yt
]

1×d =

[
yo

t

µm + (yo
t − µo)

(
WoWT

o + σ2Ido

)−1 WoWT
m

]
,

EYm
t ,Ut |Yo

t ,Ψ
[
UtYt

]
1×d = EUt |Yo

t ,Ψ
[
Ut
]
EYm

t |Yo
t ,UtΨ(Yt),

EYm
t ,Ut |Yo

t ,Ψ
[
UtYT

t Yt
]

d×d =

[
00

0Cmm −WmWT
o C−1

oo WoWT
m

]
+EUt |Yo

t ,Ψ
[
Ut
]
EYm

t |Yo
t ,Ut ,Ψ

[
Yt
]TEYm

t |Yo
t ,Ut ,Ψ

[
Yt
]
,

EYm
t ,Xt ,Ut |Yo

t ,Ψ
[
UtXt

]
1×k = EUt |Yo

t ,Ψ
[
Ut
]
EYm

t |Yo
t ,UtΨ

[
Yt
]
WM−1,

EYm
t ,Xt ,Ut |Yo

t ,Ψ
[
UtXT

t Xt
]

k×k = σ2M−1 + M−1WTEYm
t ,Ut |Yo

t ,Ψ
[
Ut (Yt − µ)T (Yt − µ)

]
WM−1,

EYm
t ,Ut |Yo

t ,Ψ
[
Ut (Yt − µ)T (Yt − µ)

]
= EYm

t ,Ut |Yo
t ,Ψ
[
UtYT

t Yt
]
− 2µTEYm

t ,Ut |Yo
t ,Ψ
[
UtYt

]
+EUt |Yo

t ,Ψ
[
Ut
]
µTµ,

EYm
t ,Ut |Yo

t ,Ψ
[
UtYT

t Xt
]

d×k =
(
EYm

t ,Ut |Yo
t ,Ψ
[
UtYT

t Yt
]
−EYm

t ,Ut |Yo
t ,Ψ
[
UtYt

]T
µ
)

WM−1.

for C = WWT + σ2Id, Mk×k = WTW + σ2Ik, Do
t (y

o
1:N ; Ψ) = (yo

t − µo)C−1
oo (yo

t − µo)
T and ψ(·) the

digamma function.

Proof. The proof of Theorem 1 is given in Appendix D.2.1. in the Supplementary Material.

Theorem 2. The maximizers of Q (Ψ, Ψ∗) are the solution to the set of equations given by ∇Ψ∗Q = 0.
The maximizers with respect to µ∗, W∗ and σ∗2 can be obtained in closed-form according to the
following solutions:

µ∗ = 1
ū(yo

1:N ;Ψ)

(
µ̄ts(yo

1:N ; Ψ)
(
Id −WM−1W∗T

)
+ ū(yo

1:N ; Ψ)µWM−1W∗T
)

,

W∗ = C̄ts
µ,µ∗(y

o
1:N ; Ψ, Ψ∗)WM−1

(
σ2M−1 + M−1WTC̄ts

µ (yo
1:N ; Ψ)WM−1

)−1
,

σ∗2 = 1
d tr
{

C̄ts
µ∗(y

o
1:N ; Ψ, Ψ∗)− 2W∗M−1WTC̄ts

µ,µ∗(y
o
1:N ; Ψ, Ψ∗) + W∗TW∗

(
σ2M−1 + M−1WTC̄ts

µ (yo
1:N ; Ψ)WM−1

)}

where:

ū(yo
1:N ; Ψ) =

1
N

N

∑
t=1

v + do

v + Do
t

,

µ̄ts(yo
1:N ; Ψ) =

1
N

N

∑
t=1

v + do

v + Do
t
EYm

t |Yo
t ,Ut ,Ψ

(
Yt
)
,

S̄ts(yo
1:N ; Ψ) =

1
N

N

∑
t=1

v + do

v + Do
t (y

o
1:N ; Ψ)

EYm
t |Yo

t ,Ut ,Ψ
(
Yt
)TEYm

t |Yo
t ,Ut ,Ψ

(
Yt
)
,

Q̄ =

[
0 0
0 WmWT

m + σ2Idm −WmWT
o
(
WoWT

o + σ2Ido

)−1 WoWT
m

]
,

C̄ts
µ (y

o
1:N ; Ψ) = S̄ts(yo

1:N ; Ψ) + Q̄− 2µT µ̄ts(yo
1:N ; Ψ) + ū(yo

1:N ; Ψ)µTµ,

C̄ts
µ∗(y

o
1:N ; Ψ, Ψ∗) = S̄ts(yo

1:N ; Ψ) + Q̄− 2µ∗T µ̄ts(yo
1:N ; Ψ) + ū(yo

1:N ; Ψ)µ∗Tµ∗,

C̄ts
µ,µ∗(y

o
1:N ; Ψ, Ψ∗) = S̄ts(yo

1:N ; Ψ) + Q̄−
(
µ + µ∗

)T
µ̄ts(yo

1:N ; Ψ) + ū(yo
1:N ; Ψ, Ψ∗)µ∗Tµ,

for Mk×k = WTW + σ2Ik, Do
t (y

o
1:N ; Ψ) = (yo

t − µo)C−1
oo (yo

t − µo)
T where Coo = WoWT

o + σ2Ido .

Proof. The proof of Theorem 2 is given in Appendix D.2.2. in the Supplementary Material.
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4.2. EM Algorithm for the Probabilistic Principal Component with the Identical and Conditionally Independent
t-Student Distribution in the Presence of Missing Data

Analogously to the previous subsection, we provide the E-Step and M-step for t-Student IID
PPCA in Theorems 3 and 4. In this framework, we assume the identical probability model of Xt and εt;
however, now, we only assume a restricted conditional independence and identical distribution of the
variables Xt and εt over time. This restriction we show still admits a closed-form solution.

Theorem 3. The E-step of the EM algorithm for the t-Student IID PPCA given N realisations of the observation
vector Yo

t , denoted by yo
1:N =

{
yo

1, . . . , yo
N
}

, is given by:

Q̃(Ψ, Ψ∗) = EX1:N ,Ym
1:N ,U|Yo

1:N ,Ψ

[
log πY1:N ,X1:N ,U|Ψ∗

(
Y1:N , X1:N , U

)]
=

CH(Ψ)Cβ(yo
1:N , Ψ)

πYo
1:N |Ψ(y

o
1:N)

{ ∫
R+

π̃U|Ψ(u) log πU|Ψ∗(u)du +
∫
R+

π̃U|Ψ(u)
N

∑
t=1

w̃(yo
t , u; Ψ, Ψ∗) du

}

where the scalar CH is defined as in Lemma S4, the function w̃ : Rdo×N × R+ → R in Lemma S5 and
the functions Cβ : Rdo×N → R and the density π̃U|Ψ(u) are derived in Lemma S6. Each of these ancillary
lemmas and function definitions are contained in Appendix D.3.1. in the Supplementary Material.

Proof. The proof of Theorem 3 is contained in Appendix D.3.2. in the Supplementary Material.

Theorem 4. The maximizers of Q̃ (Ψ, Ψ∗) are the solution to the set of equations ∇Ψ∗ Q̃ = 0. The maximizers
with respect to µ∗, W∗ and σ∗2 can be obtained in closed-form according to the following solutions:

µ∗ = µ̄(yo
1:N ; Ψ)

(
Id −WM−1W∗T

)
+ µWM−1W∗T ,

W∗ =
(

σ2Q̄ +
α

β(yo
1:N ; Ψ)

C̄µ,µ∗(yo
1:N ; Ψ, Ψ∗)

)
WM−1

×
(

M−1WT
(

σ2Q̄ +
α

β(yo
1:N ; Ψ)

C̄µ(yo
1:N ; Ψ)

)
WM−1 + σ2M−1

)−1

,

σ∗2 =
1
d

(
σ2 Tr

{
M−1W∗ TW∗

}
+ Tr

{
σ2Q̄ +

α

β(yo
1:N ; Ψ)

C̄µ∗(yo
1:N ; Ψ, Ψ∗)

}
− 2 Tr

{(
σ2Q̄ +

α

β(yo
1:N ; Ψ)

C̄µ,µ∗(yo
1:N ; Ψ, Ψ∗)

)
W∗M−1WT

}
+ Tr

{
M−1WT

(
σ2Q̄ +

α

β(yo
1:N ; Ψ, Ψ∗)

C̄µ(yo
1:N ; Ψ)

)
WM−1W∗TW∗

}
for the scalar α = v

2 + do N
2 and the function β : Rdo×N → R:

β(yo
1:N ; Ψ) =

v
2
+

1
2σ2

N

∑
t=1

(
yo

t − µo
)
Voo
(
yo

t − µo
)T .

defined as in Lemma 6 in Appendix D.3.1. in the Supplementary Material, the matrices Vd×d = Id−WM−1WT

and Mk×k = WTW + σ2Ik and the following function of yo
1:N ,

EYm
t |Yo

t ,U,Ψ
[
Yt
]
=

[
yo

t
µm + (yo

t − µo)VooV−1
om

]
,

µ̄(yo
1:N ; Ψ) =

1
N

N

∑
t=1

EYm
t |Yo

t ,U,Ψ
[
Yt
]
,
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S̄(yo
1:N ; Ψ) =

1
N

N

∑
t=1

EYm
t |Yo

t ,U,Ψ
[
Yt
]TEYm

t |Yo
t ,U,Ψ

[
Yt
]
,

Q̄ =
1
N

N

∑
t=1

[
0 0
0 V−1

mm −V−1
moVooV−1

om

]
,

C̄µ,µ∗(yo
1:N ; Ψ, Ψ∗) = S̄(yo

1:N ; Ψ)− µ̄(yo
1:N ; Ψ, Ψ∗)

(
µ + µ∗

)T
+ µ∗ Tµ,

C̄µ(yo
1:N ; Ψ) = S̄(yo

1:N ; Ψ)− µ̄(yo
1:N ; Ψ, Ψ∗)µT + µTµ,

C̄µ∗(yo
1:N ; Ψ, Ψ∗) = S̄(yo

1:N ; Ψ)− µ̄(yo
1:N ; Ψ, Ψ∗)µ∗ T + µ∗ Tµ∗.

Proof. The proof of Theorem 4 is given in the Appendix D.3.3. in Supplementary Material.

5. Multifactor Model with Macroeconomic Factors for the EUR Libor Yield Curve

In this section, we show how to utilize the features extracted using PPCA to incorporate into
statistical models as exogenous factors in state or observation equations. In particular, we consider
latent factor term structure yield curve dynamic regression models, which we use to calibrate
and forecast EUR Libor yields over time. The Nelson–Siegel model was initially proposed by
Nelson and Siegel (1987) and subsequently extended, by Diebold and Li (2006), to a dynamic latent
factor model to allow for time-varying parameters. The dynamic approach provides not only a good
quality of the calibration of the yield curves, but in addition, supplies information about interactions
between the explanatory components of the level, slope and curvature over time, allowing both
efficient and optimal estimation, as well as direct model interpretation. Furthermore, the class of
models we develop improves the forecast performance and interpretation of the model. We start by
discussing the classic version of the model to later show the extension to its dynamic version, which
utilizes exogenous factors. The section is finished with a brief overview of the estimation and model
selection methodology.

5.1. The Dynamic Nelson–Siegel Model

The dynamic version of the Nelson–Siegel model is an extension to the classic, regression-based
model introduced in Nelson and Siegel (1987). Let y1:N = [y1, . . . , yN ] be a set of N observations
of a yield curve. Each observation is a d-dimensional vector of yields corresponding to rates at
different maturities τ1 ≤ . . . ≤ τd, that is yt = [y1

t , . . . , yd
t ] where yi

t is a rate at maturity τi available in
calendar time t. Following the work of Diebold and Li (2006), the term structure of yields at maturities
τ1 ≤ . . . ≤ τd in time t is modelled by the set of equations:


yτ1

t
yτ2

t
...

yτd
t

 =


1 1−e−λτ1

λτ1
1−e−λτ1

λτ1
− e−λτ1

1 1−e−λτ2
λτ2

1−e−λτ2
λτ2

− e−λτ2

...

1 1−e−λτd
λτd

1−e−λτd
λτd

− e−λτd


Lt

St

Ct

+


ετ1

t
ετ2

t
...

ε
τd
t

 ,

Lt

St

Ct

 =

cL

cS

cC

+

aL,L aL,S aL,C

aS,L aS,S aS,C

aC,L aC,S aC,C


Lt−1

St−1

Ct−1

+

ηL
t

ηS
t

ηC
t

 .

(9)

which we summarize as follows:

yt = Λβt + εt

βt = c3×1 + A3×3βt−1 + ηt (10)
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for the matrix Λd×3 := Λ(λ) with Nelson–Siegel factor loading being a function of the static parameter
λ. The (i, j)-th element is given by:

Λij(λ) =


1 , for j = 1 ,

(1− e−λ·τi )/λ · τi , for j = 2 ,

(1− e−λ·τi − λ · τi e−λ·τi )/λ · τi , for j = 3 .

The measurement (top) equation in Equation (9) or Equation (10) relates observed variables to the
unobserved vector βt, that is a set of d yields of bonds to the three latent factors Lt, St and Ct. The vector
of unobserved variables is modelled by the state (bottom) equation in (9) or (10). The error terms
of the observation and state equations, εt ∼ N (0d×1, Qd×d) and ηt ∼ N (03×1, R3×3), respectively,
are assumed to be mutually independent and independent over time. In this study, the vector of
latent process βt = [Lt, St, Ct] follows a vector autoregressive process of first order, VAR(1), but this
assumption can be easily extended.

We assume that the matrix with factor loading, Λ(λ), does not vary over time, i.e., we assume
one value of λ for the whole period of the examination per a given yield. The rationale behind this
assumption is the interpretability of the Nelson–Siegel polynomials, which can be seen as a level,
slope and curvature of a yield curve. The loading on the first factor from the matrix Λ equals one
and is interpreted as the level of the yield curve since it affects all components of the yield equally.
The second loading is called the slope because, as a function that starts at one and converges quickly
and monotonically to zero as τi increases, it affects short rates more heavily than long rates and, as
a consequence, changes the slope of the yield curve. The last factor from the matrix Λ loads medium
rates more heavily since it rapidly starts from zero and, after a hump, decays towards zero. Therefore,
the third factor changes the yield curve curvature.

Given the fixed λ, the magnitude of the impact of each of the factors on the shape of a yield is
given by the values of coefficients Lt, St and Ct over time. In order to capture the interactions between
Lt, St and Ct and construct the forecasting distribution, the vector of coefficients βt = [Lt, St, Ct] is
assumed to have a time series structure.

5.2. Extending the Dynamic Nelson–Siegel to the Macroeconomic Factor Model

We demonstrate a general approach one may adopt to extend the state-space model formulations
from Equation (10) to incorporate additional observable factors, which contain compressed information
about the market. The features extracted from the various datasets as macroeconomic, financial or
demographic datasets are added to the dynamic Nelson–Siegel model in a static form, but with
dynamic coefficient on factor loadings, the latent state processes. Thus, we are able to assess the impact
of the factors on a yield over time. This approach has the advantage that we do not have to model
explicitly the macroeconomic data, which may have a complex structure.

Let us define Ft as a d× k-dimensional matrix with various market features, where k represents
a number of the maturity-related factors. We can obtain Ft as a matrix with leading eigenvectors
from datasets that are assumed to be exogenous observable input that is believed to have a potential
influence on the term structure of yield curve dynamics under study in the responses. Each feature
vector regressor, extracted from the exogenous data, we add to the state-space model (10).

There are numerous structural ways to achieve this in a state-space model. For instance, the factors
may either influence the whole term structure by entering the factor into the state equation or it may
influence components of the yield curve differently by adding them to the observation equation at
different tenors on the term structure. We can also try a combination of such approaches, dependent on
which macroeconomic data the feature was extracted from in the context of the model construction.
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We assume that the influence of features varies over time. Therefore, we specify a time dynamic
for the processes, which are coefficient factor loadings, the latent variable, a d · k-dimensional vector $t,
which is modelled by the VAR(1) process given by:

ρt = Ψ + Ωρt−1 + ωt, ωt
iid∼ N (0, Hdk×dk)

with the homogeneous covariance matrix of the error term ωt. ρt is a dynamic regression parameter,
which specifies the impact of an i-th market’s features corresponding to the i-th column of [Ft].
Depending on the interpretation of the desired model, one may incorporate Ft into observation, the
top equation of Equation (10) (Case 1), the latent dynamic of βt (Case 2), that is the bottom equation
of Equation (10) or both (Case 3). The new class of the hybrid models, which combines the standard
Nelson–Siegel model with exogenous features, named the extended Nelson–Siegel class, is defined
as follows:

yt = Λ̃t β̃t + εt, εt
iid∼ N (0, Q), (11a)

β̃t = c̃ + Ãt β̃t−1 + η̃t, η̃t
iid∼ N (0, R̃) (11b)

where β̃t = [βt, $t] is a (3 + dk)-dimensional latent process vector and:

c̃ =

(
c3×1

Ψpk×1

)
(3+dk)×1

is an interception term of the state equation. The covariance matrix of the error terms of state equation,
η̃t, is given by:

R̃ =

(
R Υ

Υ H

)
(3+dk)×(3+dk)

where Υ defines the correlation structure between latent processes βt and $t. Let us specify the
following two objects, F̃t =

⊕k
j=1[Ft]j,·, for

⊕
being a direct sum operator and f̃t = vec

(
FT

t
)
, that is:

F̃t =


[Ft]1,· 0 0 · · · 0

0 [Ft]2,· 0 · · · 0
...

. . .
...

0 · · · [Ft]p,·


dk×dk

and f̃t =


[Ft]1,1
[Ft]1,2

...
[Ft]d,k


dk×1
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where [Ft]j,· and [Ft]j,m represent the vector of the j-th row of the matrix Ft and the element
corresponding to j-th row and m-th column, respectively. The case-specific formulations of the
transition matrices of the observation and state equations of the extended model (11) are the following:

Λ̃t d×(3+dk) =


(

Λd×3 F̃t

)
for Case 1,(

Λd×3 0d×dk

)
otherwise,

Ãt, (3+dk)×(3+dk) =



(
A3×3 03×dk

0dk×3 Ωdk×dk

)
for Case 1,


A3×3

f̃T
t

f̃T
t

f̃T
t

0dk×3 Ωdk×dk

 for Case 2.

5.3. Estimation Based on the Kalman Filter

Given the fact that the transition matrix Λ of the observation Equation (9), as well as the version
incorporating exogenous factors (11) are non-linear functions of the static parameter λ, both the
dynamic Nelson–Siegel model and its extensions are non-linear Gaussian models. However, as pointed
out in Cairns and Pritchard (2001), the non-linear estimators are extremely sensitive to the initialisation
values of an estimation process, and the probability of getting local optima is high. The existence of
more than one maximum can lead to miscalibration of a yield curve. To overcome this problem while
working with the Nelson–Siegel class of models, a common approach is to work with the conditionally
linear model (10) (equivalently, the model in Equations (11)), that is to fix the parameters λ in the
estimation process of the other static parameters and specify it separately. The parameter λ is treated
as a part of a model selection stage, rather than the estimation one, and its selection is carried out as
a λ-based grid search given some score function of the estimation, usually the likelihood function of
a model.

When we treat λ as a model selection criterion, the dynamic Nelson–Siegel model (10) and
its extension (11) are linear Gaussian state-space models. Hence, the vector of latent variable βt is
optimally estimated by means of the Kalman filter introduced by Kalman and Bucy (1961) given the
historical and current observations. The reader may refer to Harvey (1990) for more detailed discussion
of the properties of the Kalman filter. The conditional distributions involved in the multivariate
Kalman filter recursions are given by:

β̃t−1|y1:t−1 ∼ N (β̃t−1|t−1, Pt−1|t−1),
β̃t|y1:t−1 ∼ N (β̃t|t−1, Pt|t−1),
yt|y1:t−1 ∼ N (ft, Ft)

(12)

where:

β̃t−1|t = c̃ + Ãβ̃t−1|t−1

Pt|t−1 = ÃPt−1|t−1ÃT + R̃

ft = Λ̃t β̃t|t−1

Ft = Λ̃tPt|t−1Λ̃T
t + Q

β̃t|t = β̃t−1|t + Pt|t−1Λ̃T
t F−1

t (yt − ft)

Pt|t = Pt|t−1 − Pt|t−1Λ̃T
t FtΛ̃tPt|t−1
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for t = 1, . . . , T. The initial states of the latent vector are assumed to be Gaussian variables,
β̃0 ∼ N (b0, P0), with an initial mean b0 and an initial covariance matrix P0. The estimation of
the vector of static parameters Ψ = [Q, c, Ψ, A, Ω, R, H] is carried out by maximising the log-likelihood
function of the Kalman filter based on the conditional distribution of the prediction errors et := yt − ft,
that is:

l(Ψ) = −dT
2

log π − 1
2

T

∑
t=1

log |Ft| −
1
2

T

∑
t=1

eT
t F−1

t et. (13)

given T observations of yt. The value of λ that obtains the highest value of the likelihood function (13)
of a given model (the same assumption about Q̃, Ã and R̃) is then chosen as an estimator of the
shape parameter.

5.3.1. Kalman Filter Estimation of Missing Data

An appealing feature of the state-space framework (11) is its efficiency in handling missing data
in the observation set, i.e., irregular time series. Let us suppose that the observation vector at time
t, yt, can be partitioned into two subvectors that correspond to its observed and unobserved entries,
yt = [yo

t , ym
t ] that are d0- and dm-dimensional for do + dm = d. For instance, we may not have the

whole information about the yield curve at some maturities for a given period of time since there was
no financial instruments to construct it. The state equation of the model (11) can be re-expressed in
terms of the subvectors yo

t and ym
t as follows:(

yo
t

ym
t

)
=

(
Λ̃o

t
Λ̃m

t

)
β̃t +

(
εo

t
εm

t

)
,

(
εo

t
εm

t

)
iid∼ N

(
0,

(
Qoo Qom

Qmo Qmm

))

where Λ̃o
t and Λ̃m

t are do × (d + k) and dm × (3 + k) submatrices of Λ̃t with rows corresponding to
observed and missing entries of the observation vector yt, respectively, the square do × do and dm × dm

matrices Qoo and Qmm are submatrices of Q corresponding to the rows and columns of observed and
missing entries of the observation vector yt.

The Kalman filter framework proceeds exactly as in the standard case, provided that yt, Λt and Q
are replaced by yo

t , Λo
t and Qoo, respectively, at relevant time points that do not affect the validity of

the filtering recursion. Given the estimates of the static vector Ψ, the missing entries of the observation
vector at time t can be optimally predicted as follows:

ym
t|t = Λ̃m

t β̃t|t + c
√

Λ̃m
t Pt|tΛ̃

m T
t

for c being a scale parameter, which controls the deviation of the missing observation from its
expected value.

5.4. Model Selection Methodology for the Nelson–Siegel Class of Models

Given the state-space representation of the extended Nelson–Siegel model in Equation (11),
we have multiple choices for the model calibration. In the work of Diebold and Li (2006), the authors
assumed the matrix Q to be diagonal, whereas the matrix R̃ to be unrestricted, that is non-diagonal.
The assumption of a diagonal Q matrix, which implies mutually uncorrelated deviations of yield
elements at various maturities, is quite common as one may expect the measurement errors to be
independent across a term structure. The dynamic Nelson–Siegel models allow accounting for serial
correlation between components of the latent vector. The form of the transition matrix Ã and the
covariance matrix R̃ specifies the strength of the linear dependencies between the elements of β̃t.
Therefore, in this study, we examine the following collection of models:
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Model 1: diagonal Q, Ã, R̃
Model 2: diagonal Q, Ã,

Model 3: diagonal Q, R̃,
Model 4: diagonal Q.

In addition, we examine two covariance structures: heterogeneous (‘hete’) and homogeneous
(‘homo’). In addition, we assume that the subvectors of β̃t, the latent vectors βt and $t, are orthogonal,
and hence, the matrices Ã and R̃ are block-diagonal.

In order to avoid the possibility of selecting a model that overfits the data, we use a criterion that
penalizes the number of parameters. A natural candidate for such a measure is the Akaike Information
Criterion (AIC) introduced in Akaike (1973), a popular estimator of the quality of statistical models
founded on information theory and having the Bayesian interpretation:

AIC(Ψ) = 2|Ψ| − 2l(Ψ), (14)

where |Ψ| denotes the number of free parameters in the model to estimate. The preferred model is
selected as the one that minimizes AIC.

6. Feature Extraction Using Cross-Country Macroeconomic Datasets

We undertook excessive synthetic data case studies on setting up the PPCA EM algorithm detailed
in Appendix E in the Supplementary Material. From this, we learned that the robust initialisation
step and the robust estimation of the data’s moments increase the sensitivity of the algorithms to the
initialisation step without significantly improving the quality of the estimation (recovery) of PPCA
models’ static parameters (such as the matrix W in the model (1)).

In addition, the studies aim to identify which methodology is the most robust in the presence
of two different perturbation patterns: when the whole observation is perturbed or its individual
elements are perturbed. We examine the methodology under different input parameters: length of the
sample, the dimensionality of an observation, the proportion of missing values and the proportion of
the corrupted sample. These synthetic studies performed, shown in Appendix E in the Supplementary
Material, taught us that in the presence of the element-wise perturbation, the best methodology that
estimates the mean vector µ is the t-Student IND regardless of the input parameters. The three first
eigenvectors of the estimated covariance matrix are the most accurately estimated, either t-Student
IND or Gaussian PPCA in most of the cases, except for the high dimensions and highest perturbation
when the t-Student IID outperforms the other methodologies. When we perturb the data row-wise,
the t-Student IID is most accurate in estimating the three eigenvectors when the dimensionality of the
data is high.

In this section, we detail the feature extraction, using the described PPCA methodologies, which
is conducted yearly on the real datasets outlined in Section 2, summarized in Table 1. As a consequence
of the synthetic data studies, we decided to exclude the robust initialisation and the robust Gaussian
PPCA from the examined methodologies.

The features extracted using PPCA represent the relevant directions of the most meaningful
variation of a dataset, described by the spectral information in the form of eigenvectors of the robust
factor model estimated covariance matrix via PPCA frameworks. The eigenvectors determine the
directions along which the dataset can be orthogonally decomposed in decreasing degree of variability.
The first eigenvector explains the projection direction of the data with most variability.

The three first subsections discuss the features extracted from country-specific sovereign yield
curves from Appendix A.2. in the Supplementary Material, the various inflation-linked yield curves
from Appendix A.3.2. in the Supplementary Material and the dataset that consists of proxies to
the Euro Zone market condition: the liquidity, credit and foreign exchange risk from Appendix A.5.
in the Supplementary Material. The last subsection examines the correlation between the features
among various datasets per year and the PPCA framework. We use the following acronyms for the
analysed datasets:
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D2 the country-specific government yield curves for countries listed in Table 2 in Appendix A in the
Supplementary Material;

D3 the set of country-specific inflation-linked sovereign yield curves for Germany, France,
the United Kingdom, Italy, Japan and the United States of America, mixed with inflation-linked
swap curves for countries in which inflation-linked government instruments are not available, that is
Australia and Spain;

D3b the set of country-specific inflation-linked sovereign yield curves;
D3s the set of country-specific inflation-linked swap curves;
D4 the set of the Euro Zone activity proxies: the four FX rates against EUR: AUDEUR, JPYEUR,

GBPEUR and USDEUR; the proxies for Euro Zone liquidity risk: the open interest of the front
future contract on Euro Bund and the spread between three-month Euribor and three-month
Euro Repo rate; and the proxy for the credit risk of the Euro Zone: the 5Y Markit iTraxx Index.

We test and compare each of the PPCA methods on each dataset D2–D4, treating the presence of
missing values, which are illustrated in the corresponding figures in Section 2. Some results are
matrix values time series (such as sets D2–D3b), containing information across various maturities
and countries; others are vector valued. We assess the discrepancies between leading eigenvectors
obtained from considered PPCA frameworks.

The feature extraction for the sets of time series from Table 1, the observations of which arrive
with yearly or monthly frequencies (such as CPI, GDP, unemployment rates and labour productivity),
is not discussed in this section. For these datasets, we employ a different feature extraction procedure,
which is done by carrying forward the step-function of the observed signal until the next observed
value of the variable is recorded. Therefore, we replicate less frequent values in order to match the
daily frequency of Libor yield curve, that is if a CPI is recorded monthly, all daily records in a given
month related to this CPI are equal to the monthly value. The procedure results in the data matrix of
daily variables corresponding to the blocks of yearly or monthly values of GDP, labour productivity,
unemployment rates and CPIs.

6.1. Feature Extraction for Country-Specific Sovereign Yield Curves

The daily observations of the instruments from the dataset D2 are multidimensional, that is
their entries correspond to the points on the term structure of a country-specific sovereign yield.
Consequently, the eigenvectors of the data’s covariance matrix, which have the same dimensionality,
can be partitioned into the country-specific sub-vectors. The dimensionality of each such sub-eigenvector
equals the number of tenors of the corresponding term structures for a given country.

The plots in Figure 1 show the yearly logarithms of three eigenvalues for the dataset D2 (the left
panel) and the optimal degrees of freedom for t-Student PPCA methodologies (the right panel) across
different years. When we compare the difference in magnitude between the logarithms of the three
eigenvalues, we notice that the eigenvalues obtained by t-Student IID PPCA are the most consistent,
especially the distance between the second and third eigenvalue. What is more, the t-Student IID
PPCA provides the highest three first eigenvalues among considered methodologies.

The degrees of freedom chosen for t-Student IND PPCA are more volatile across years than
for t-Student IID PPCA, which most frequently equal one, the lowest possible value on the
grid. Let us recall that the t-Student IID PPCA down-weights the whole set of the observations
in order to estimate the moments of the distribution, whereas the t-Student IND PPCA treats
each observation individually and calculates the moments using observation-specific weights.
Therefore, the independent methodology leans toward the lighter tails, for the same sample set.
Intuitively, when an individual point of a sample is extreme, we would expect that one needs larger
degrees of freedom to capture it as a distant point since the observation-specific weight diminishes
the information about the tails more than if we consider the aggregated sample with one weight as
in the case of t-Student IID PPCA. The synthetic data study in Appendix E.2. in the Supplementary
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Material confirms this reasoning, especially for the higher dimensionality of the data and the presence
of missing entries.

The relative difference between logarithms of the first and second eigenvalue in Figure 1a indicates
that the first eigenvectors of the D2 dataset explain at least a ten-times higher portion of the variance
than the second eigenvectors and remain significantly dominant for the whole period 2006–2016.

Figure 2 illustrates the first eigenvectors, which were obtained on yearly non-overlapping subsets
of the D2 data corresponding to the period 2006–2016. The column-wise order of the panels illustrates
the results for subsequent years, whereas the row-wise order corresponds to the country-specific
sub-vectors. The term structure of the eigenvectors is given on the x-axis of the plots. We show the
results for different frameworks: Gaussian PPCA (red line), t-Student IND PPCA (green line) and
t-Student IND PPCA (blue line).

It is worth recalling that the eigenvectors obtained by different PPCA methodologies can be
rotated, that is they may have the opposite signs (+/−1), but still provide similar directions. As
an example, let us consider the plot of South Africa’s sub-eigenvector for the year 2007. The green
and blue lines have the maximum point in 5Y maturity, whereas the red line indicates the minimum
is the same point. If we multiply the red line by ‘−1’, all three lines would be consistently pointing
towards the maximum in 5Y, but would indicate different magnitudes. Therefore, when analysing the
resulting eigenvectors, we must distinguish between the difference in a rotation and the difference in
the information given by the eigenvectors obtained by various PPCA methodologies.
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Figure 1. The left panel (a): the logarithms of the three highest eigenvalues of the covariance matrix;
the‘right panel (b): the optimal values of the degrees of freedom for t-Student PPCA frameworks
over years (x-axis) for the datasets D2, which consists of country-specific sovereign yields. IND,
Independent; IID, identical and conditionally independent.
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Figure 2. The first eigenvector of a covariance matrix for the D2 set of country-specific sovereign yield
curves across different years (column-wise) partitioned into country-specific subvectors (row-wise) and
their term structure (x-axis). The colours of lines correspond to different PPCA frameworks: Gaussian
PPCA (red line), t-Student IND PPCA (green line) and t-Student IID PPCA (blue line).

The eigenvectors for the years 2008, 2011 and 2016 are very similar among all PPCA frameworks.
The Gaussian PPCA and t-Student IID PPCA provide consistent features for the years 2009, 2012 and
2014, whereas the eigenvectors extracted using t-Student IND PPCA are smoother and shifted one term
structure point backwards. The shift shows that t-Student IND PPCA indicates the heavier loadings on
the shorter terms. For the year 2013, the features extracted using Gaussian and t-Student IND PPCA
are both smoother across the term structure of a given country. The two t-Student methodologies
agree in 2010 with the terms at maturities, which have the heaviest loadings. The vectors obtained by
Gaussian PPCA highlighted longer points of maturities having the highest values.

With regards to the pre-crisis period 2006–2007, we notice strong differences between the t-Student
and Gaussian PPCA frameworks. The values of the vectors provided by the non-robust methodology
are consistent across the term structures and indicate non-varying decomposition of the features
without pointing towards any subset of maturities. The contradicting information is given by t-Student
PPCA methodologies, which highlight particular points on the term structures. It is an interesting
outcome that illustrates the discrepancies between information provided by robust and non-robust
frameworks and highlighting the importance of real data for adopting our proposed new methodology
in such feature extraction in practice.

When analysing the country-specific panels year by year, one may remark that each methodology
provides a consistent set of maturities for all examined countries, which have the highest loadings.
The outcome gives us the intuition that the variability of the country-specific yield curves is determined
by a common set of maturities across countries. The results differ on a yearly basis. In 2006,
the eigenvectors point in the direction of the South African curve as the main source of the variability,
which is complemented for most of the European countries. The source of the dominant variability
of the dataset D2 in 2007 corresponds to the middle maturities from Brazil, the United Kingdom,
South Africa and the United States.

In addition, one of the exceptional findings is the changed order of the degrees of freedom for
the two t-Student PPCA frameworks in 2007. The optimal degrees of freedom chosen for t-Student
IID PPCA in 2007 are higher than for the Student IND PPCA. One may expect that the reason for
the increase in the degrees of freedom for the former methodology reflects the smaller variability of
the yields. The first column of the panels in Figure 11 in the Supplementary Material illustrates the
sovereign yields for 2006 and 2007 across various countries (row-wise) and maturities (the colours of
the lines). The dynamics of the yields of European countries and the United States does not support
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this reasoning as the yields have started to decline in the middle of 2007 (the middle components of the
United States yield even earlier). In addition, the optimal degrees of freedom for t-Student IND PPCA
decreased in 2007, and consequently, the individual weights of the observations are lower in 2007 than
in 2006. The assumed distribution in 2007 is more heavy-tailed than in 2006. The eigenvectors obtained
by the two t-Student PPCA frameworks illustrated in Figure 2 are similar for most of the considered
countries. The two methodologies agree that one of the main sources of the data’s variability is the
middle tenors of the United States (U.S.) and United Kingdom (GB) yields. The strongest discrepancies
between the results obtained by the two PPCA frameworks relate to the eigenvector components
corresponding to Brazilian (BZ) and South African (SA) yields. The t-Student IID PPCA assumes the
greater impact of the Brazilian yield on the variability of the dataset and loads more heavily on the
middle terms of the yield, whereas t-Student IND PPCA selects the South African yield.

The Brazilian and South African yields are characterized by the moderate and strong missingness,
respectively, as shown in the corresponding panels in Figure 5 in the Supplementary Material.
The projections that are used to handle the presence of missing values in Brazilian and South African
yields are determined by the conditional means of the corresponding distributions. We suspect that
the source of this discrepancy is the difference in how the missing values present in the Brazilian and
South African yields are projected. To verify this explanation, we check the eigenvectors and optimal
degrees of freedom of the two t-Student frameworks for 2007 when the South African or Brazilian
yields are removed from the dataset. The panels in Figure 3 show the obtained eigenvectors across the
term structures (x-axis) and examined countries (row-wise). When either of the time series is removed
from the dataset, the order of degrees of freedom reverts. In addition, when the South African yield is
removed, the two PPCA methodologies provide consistent eigenvectors. Therefore, the South African
yield is the source of the disagreement between the two t-Student frameworks in 2007.
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(b) D2 without Brazil
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Figure 3. The first eigenvector of a covariance matrix for the D2 dataset of country-specific sovereign
yield curves without South African or Brazilian yields in 2007 partitioned into country-specific
subvectors (row-wise) and their term structure (x-axis). The colours of lines correspond to
different PPCA frameworks: t-Student IND PPCA (green line) and t-Student IID PPCA (blue line).
The optimal degrees of freedom chosen for t-Student IND PPCA and t-Student IID PPCA are six and
one, respectively.
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6.2. Feature Extraction for Country-Specific Inflation-Linked Yield Curves

The eigenvectors of the datasets D3, D3b and D3s correspond to the country-specific
inflation-linked yield curves and their term structures’ points. The first eigenvectors over different
periods of time and across countries are illustrated in Figures 4–6. The corresponding eigenvalues over
years are also displayed in Figure 7a.

Interestingly, the eigenvectors of the sets D3 and D3b provide different information even
though D3 contains all time series included in D3b in addition to two inflation-indexed swap
yields, from Australia (AU) and Spain (ES). Surprisingly, the eigenvectors for swap curves in D3
are significantly different from their equivalents in the set D3s for Australia (AU) and Spain (ES).

The eigenvectors extracted from datasets D3 and D3b differ more significantly across the three
examined PPCA methodologies than the corresponding results of the D2 dataset. If the choice of the
fixed maturities was the same across these datasets, we would expect the information contained in
eigenvectors of inflation-linked sovereign bond yield curves to be more consistent with the direction
calculated from the conventional sovereign bonds. We notice smaller discrepancies when we compare
the features between D3s and D2, especially when we analyse the yearly and country-specific patterns
highlighting maturities with highest loadings.

The plots of eigenvalues are displayed in Figure 7a. The magnitude of the values is similar among
the sets with various inflation-linked instruments. The yearly sequences of the second and third
eigenvalues are consistent for the sets D3 and D3b, whereas the results for D3s are greater.

The choices of the degrees of freedom for two t-Student frameworks for three sets of
inflation-linked rates are illustrated in Figure 8a. The IND t-Student PPCA exhibits more variability of
the sequences of selected degrees of freedom, but it fluctuates around small values, indicating that
robust weights are beneficial.
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Figure 4. The first eigenvector of a covariance matrix for the D3 set of inflation-linked mixed yield
curves across different years (column-wise) partitioned into country-specific subvectors (row-wise) and
their term structure (x-axis). The colours of lines correspond to different PPCA frameworks: Gaussian
PPCA (red line), t-Student IND PPCA (green line) and t-Student IID PPCA (blue line).
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Figure 5. The first eigenvector of a covariance matrix for the D3b set of inflation-linked bond-only yield
curves across different years (column-wise) partitioned into country-specific subvectors (row-wise) and
their term structure (x-axis). The colours of lines correspond to different PPCA frameworks: Gaussian
PPCA (red line), t-Student IND PPCA (green line) and t-Student IID PPCA (blue line).
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Figure 6. The first eigenvector of a covariance matrix for the D3s set of inflation-linked swap-only yield
curves across different years (column-wise) partitioned into country-specific subvectors (row-wise) and
their term structure (x-axis). The colours of lines correspond to different PPCA frameworks: Gaussian
PPCA (red line), t-Student IND PPCA (green line) and t-Student IID PPCA (blue line).
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Figure 7. The evolution of three highest eigenvalues of covariance matrix for the D3, D3b and D3s
datasets of country-specific inflation-linked yield curves over years (x-axis).
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Figure 8. The evolution of degrees of freedom for the D3, D3b and D3c datasets of country-specific
inflation-linked yield curves over years (x-axis).

6.3. Feature Extraction for Macroeconomic Proxies of Euro Zone Activity

The features extracted from the dataset D4 are considered in this section. Since the instruments
included in the dataset are vector-valued rather than matrix-valued, the resulting eigenvectors have
the length corresponding to the number of instruments. Figure 9 shows the eigenvectors, which are
extracted on yearly non-overlapping windows. The row-wise order of the panels illustrates the yearly
sequences of the instrument-related elements of the three most significant eigenvectors, whereas the
corresponding eigenvalues and selected degrees of freedom are shown in the panels of Figure 10b.

The two t-Student methodologies select the parameters of degrees of freedom, which differ
significantly across years except for 2010–2012 and 2014–2016. The discrepancies are the highest
among all examined datasets. Interestingly, the extracted features are very consistent across three
PPCA frameworks and exhibit stronger differences only in the third eigenvector, which explains the
insignificant portion of the data’s variability, as shown in Figure 10a.

The first eigenvector is indifferent across years and resembles a straight line for most of the
instruments, except for the element that corresponds to the open interests of the Euro Bund features.
The open interests are indicated as the most influential directions of the data’s variability.

Starting with 2011, we notice the increase in the importance of the second eigenvector, which is
related to the presence of the Markit iTraxx Index, which started to be available from 2011. The presence
of the index changes the yearly structure of the second eigenvector. Until 2011, its highest values
corresponded to the exchange rates USDEUR, AUDEUR and GDPEUR, whereas after 2011, the only
non-zero elements were related to the index.
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Wit the dominance of the open interests over years in the variability of the set D4 given both
by the values of corresponding elements of the eigenvector and the significance in the disproportion
between the first and second eigenvalue, we can freely use only this dataset as a predictor of Euro Zone
economic activity. The other time series contributes more negligibly to the shape of proxy indicators.
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Figure 9. The first eigenvector of a covariance matrix for the D4 dataset of Euro Zone activity proxies
across different years (row-wise) partitioned into country-specific subvectors (column-wise) and their
term structure (x-axis). The colours of lines correspond to different PPCA frameworks: Gaussian PPCA
(red line), t-Student IND PPCA (green line) and t-Student IID PPCA (blue line).
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Figure 10. The evolution of three highest eigenvalues of the covariance matrix (a) and the evolution of
degrees of freedom of the t-Student PPCA framework (b) over years (x-axis) for the datasets, which
consist of country-specific sovereign yield.

6.4. Similarity of Extracted Features across Various Financial Datasets

Having extracted spectral features via different PPCA methods, for a range of different financial
datasets, we seek to study the statistical similarities among the resulting features. To achieve this,
we analyse the strength of the matrix correlation between yearly features extracted from the datasets
D2–D4 discussed in Sections 6.1–6.3. This is performed using a multivariate generalization of the
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squared Pearson correlation coefficient Robert and Escoufier (1976) taken between two real m× n and
m× l matrices A and B according to:

RV(A, B) =
Tr
{

AATBBT}
Tr
{

AAT
}2 Tr

{
BBT

}2 .

Since the matrices with features are incorporated as exogenous factors of the extended
Nelson–Siegel model for the Euro Libor yield curve, we need to ensure that the rows of matrices
with features correspond to the term structure of Euro Libor curve. Consequently, we obtain the
matrices with features that have consistent number of rows and are ready to calculate the correlation
between them.

The last set of features extracted from datasets consists of proxies for Euro Zone credit,
liquidity and foreign exchange risks and does not have a term structure, that is an extracted feature
for yearly data is represented as a deuro-dimensional vector, where deuro denotes the number of scalar
financial instruments in the dataset D4. Therefore, we replicate the vector with features across the
terms structure in order to obtain a new d× deuro matrix, denoted as F4

t . The new matrix has identical
values across the term structure corresponding to the Euro Libor yield curve.

Figure 11 illustrates RVcoefficients across years (x-axis) between features extracted yearly from
different examined datasets and using different PPCA frameworks. The bars correspond to pairwise
RV coefficients for a given year between factors obtained using different methodologies and given
different datasets. The row-wise and column-wise order specifies the coefficient over years for matrices
and PPCA methodologies given by the row’s and column’s labels. The strength of similarity reaches
values between zero and one, one being identical matrices. Both the height of the bars, as well as the
colours correspond to the values of the RV coefficient.

The indicators of strong correlations between matrices are highlighted by values above 0.75 and
support the previous discussion related to the eigenvectors of dataset M4 in Figure 9, which are
consistent among examined PPCA methodologies. One may notice the strong yearly autocorrelation
between features extracted from the dataset D4 within different PPCA methodologies highlighted
by dark blue pars in the bottom right corner of the plots, which correspond by rows and columns
to factors from the D4 set. In general, we see resulting higher values of the RV coefficient for factors
from the same datasets. The strength of similarity between the factors across different sets is mostly
weak, which indicates that our different classes of extracted exogenous factors may act as distinct sets
of possible predictors to enter into our dynamic Nelson–Siegel term structure multi-factor models.
As expected, the yearly factors from the D3 and D3b datasets usually exhibit high correlation due to
their common attributes. Interestingly, we see strong autocorrelation between yearly factors from the
D2 and D3s datasets, which is higher than between the factors from the country-specific sovereign
yield curves dataset and other examined inflation-linked datasets.
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Figure 11. The RV coefficients between various factors over different years (x-axis). The row-wise and
column-wise orders of the panels correspond to the RV between different features extracted from sets
of data using different PPCA methodologies in the same calendar year. The colours of bars refer to the
value of the coefficient and the strength of similarity.

7. Hybrid Multi-Factor Dynamic Nelson–Siegel Yield Curve Model of Euro Libor

In the following section, we examine the predictive and explanatory ability of extracted features
from macroeconomic and financial datasets. Our goal is to verify whether the yearly market features
provide us with additional explanatory power in the presence of the Nelson–Siegel yield regression
state-space model. Given the extended model of Nelson–Siegel from Section 5, we use the yearly
extracted features from datasets D2–D4, discussed in Section 6, as exogenous factors. The features
consist of the first eigenvectors of the sets’ covariance matrix calculated yearly.

Since the analysis of eigenvectors from the dataset D4 highlights that the Euro Bund Open
Interests dominate the variance of the dataset, we utilise the daily time series of Open Interests
as an exogenous variable in the observation equation. In addition, we examine the information
contained in macroeconomic datasets with monthly or yearly observations, the raw time series of
GDP, labour productivity, unemployment rates and CPI discussed in Appendix A.5. and A.3.1 in the
Supplementary Material.
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The analysed Euro Libor yield consists of two points at maturity 1Y, which correspond to either
the 12-month Euro Libor rate provided by ICEor the 12-month Euro Libor swap rate. In the following
section, we verify which of these two rates is the most informative in predicting and in-sample
estimation of the Euro Libor yield model.

7.1. The Specification of the Optimal Models for EUR Libor Yield Dynamic Analysis

The selection of the set of assumptions for the models of the extended Nelson–Siegel class is a
multiple step procedure. Therefore, before presenting the calibration results for the Euro Libor yield,
we describe the four steps that we follow in order to find an optimal model per year.

Step 1: The choice of λ

The parameter λ specifies the shape of the Nelson–Siegel basis regression functions, which
affects the concavity and convexity of the fitted yield curve model. The first step of the model
selection is to select the best values of the parameter per year for all possible variants of the standard
Nelson–Siegel model (all possible combinations of variants for matrices A, Q, R: diagonal or
non-diagonal, heterogeneous or homogeneous, described in Section 5.4).

A grid of λ is fixed for every year and is specified by obtaining daily estimates of λ from the
static daily fits of the static Nelson–Siegel model using non-linear regression for the period of time
2006–2016. The grid consists of 20 equally-spaced points between the 97.5% and 2.5% quantiles of the
daily estimated λ. Next, we calculate the yearly estimates of the matrices A, Q, R for all values of λ,
which belong to the grid, given different assumptions on the structure of the matrices. The estimates
are obtained by maximising the likelihood of the corresponding Kalman filter estimations. This step
provides us with 20 × 24 = 320 different Nelson–Siegel models per year: (the number of points
on the λ-grid) × (diagonal or non-diagonal matrix A) × (diagonal or non-diagonal matrix Q) ×
(diagonal or non-diagonal matrix R) × (heterogeneous or homogeneous matrix Q) × (heterogeneous
or homogeneous matrix R). Hence, we have 20 possible different values of λ for each of the 24

variants of the Nelson–Siegel model. Within 20 values of λ, we select the one that provides the
highest value of the marginalized likelihood obtained from the Kalman Filter for each variant of the
Nelson–Siegel model.

Step 2: The specification of the baseline model: the assumptions on matrices A, Q, R per year

In the previous step, we selected the optimal values of λ for each of 24 examined variants of the
Nelson–Siegel model per year. We use the Akaike Information Criterion (AIC) in order to compare
between 24 different Nelson–Siegel models per year penalising for model complexity. The goal of this
study is to examine the supplementary information provided by the various market features to the
factors of the standard Nelson–Siegel model: the levels, slope and curvature of a yield. Hence, we
first chose a baseline model for the Nelson–Siegel class of models, and as a next step, we plugged in
additional factors, the yearly market features, to the model under the baseline’s model assumptions.
We follow the two selection criteria for determining the Nelson–Siegel baseline model per year:

1. minAIC
We select two standard Nelson–Siegel models with different restrictions on the static parameters
that provided the lowest AIC;

2. diagAll
We choose two models with a low complexity (the number of parameters to estimate) per
year: the matrices of the model (10) are all diagonal; the covariance matrix Q is heterogeneous;
the covariance matrix R is heterogeneous or homogeneous.

Step 2 left us with at most four models per year: the two models with the smallest AIC and the two
models with low complexity.
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Step 3: The choice of the yearly market features

The number of yearly country-specific market features is equal to 3× 4 = 12. The number four
reflects the number of datasets D2–D3s discussed in Section 6, and three is the number of different
PPCA frameworks used to obtain the features: Gaussian PPCA, t-Student IND PPCA and t-Student
IID PPCA. The analysis of the pairwise correlation discussed in Section 6.4 indicates the presence of
strong correlations between some of the features. Therefore, we proceed with the preliminary feature
selection methodology in order to remove the features that provide duplicated information. We choose
as a yearly benchmark feature the first eigenvector from the dataset D2 obtained by the Gaussian
PPCA framework. Every set of features contains at least the benchmark feature. Any other vector with
features, the correlation of which with the benchmark feature, or any other feature already included
in the analysis, is lower than 0.75, is also added to the set of yearly market features. Hence, the sets
of features might be of different sizes across years (maximum of nine) and consist of at least one
element: the benchmark feature. The yearly choices of features are listed in Table 4 in Appendix F in
the Supplementary Material. We denote the sets of models with different features by M2–M3s, where
the digits correspond to the datasets D2–D3s.

We subset the obtained matrices of features from country-specific sovereign and inflation-linked
yield curves in order to take only these elements, which correspond to Euro Libor term structure. If the
datasets do not provide the feature for particular maturity, we set the corresponding elements of the
new factor matrices to zero. Hence, the new F2

t , F3
t , F3b

t and F3s
t matrices with features extracted as

the first eigenvectors of datasets D2–D3s are d× dgovt-, d× din f -, d× din f b- and d× din f s-dimensional,
respectively, where d denotes the number of elements in the term structure of the Euro Libor curve,
dgovt denotes the number of country-specific sovereign yield curves, din f the number of country-specific
bond-base filled with swaps inflation-linked yield curves, din f bthe number of country-specific
inflation-linked government bond yield curves and din f s the number of country-specific inflation-linked
swap yield curves.

Furthermore, we separately examine the forecasting and calibration performance of the daily Euro
Bund Open Interests since the time series of the instrument significantly dominate the variability of
the dataset D4, as has been discussed in Section 6.3. The daily observations are added to the standard
Nelson–Siegel models as the exogenous variable. The model that utilizes daily values of the Euro
Bund Open Interests is denoted by M4.

The daily features of monthly and yearly time series of GDP, labour productivity and
unemployment rate enter the base-line Nelson–Siegel model into the observation equation with
the same magnitude across all maturities. Before the features are used for modelling, we verify that the
columns of the loading matrix are collinear on a yearly basis. We detect the collinearity between the
time series using the variance inflation factors test. The test discards all the positions in the datasets
except the monthly-provided CPIs. We denote the model with the raw values of CPI, which are added
to standard Nelson–Siegel models as an exogenous variable, by M1.

The standard Nelson–Siegel model is denoted by M0.

Step 4: The choice of the optimal model per year

After adding the additional explanatory variables (features from the datasets D2–D3,
daily observations of Open Interests or monthly observations of country-specific CPIs) to the standard
Nelson–Siegel model, we use the Kalman filter to re-estimates the matrices A, Q, R under the reference
model’s assumptions for all selected features. We compare the values of AIC in order to select the
optimal model per year from the considered set of models: M0–M4.

7.2. The Comparison of the Baseline Model Selection Methodologies

Tables 5 and 6 in Appendix F in the Supplementary Material compare the two baseline model
selection methodologies described in Step 2 from the previous subsection within the considered
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two datasets of Euro Libor rates: with the one-year ICE Euro Libor rate or with the one-year swap
Euro Libor rate, respectively. The table consists of the columns with yearly model’s specifications,
its in-sample and out-of-sample performance. If the model belongs to the class of the extended
Nelson–Siegel models, the last two columns describe which PPCA framework and the market-related
dataset were utilized in the optimal model in a particular year.

The green colours of cells correspond to the years when the two baseline model selection
methodologies agree on the best standard Nelson–Siegel model. The blue colour of cells correspond to
the years when the extended Nelson–Siegel models chosen using the minAIC methodology obtained
better in-sample performance than the extended Nelson–Siegel models with the lower complexity,
whereas the yellow colour of cells corresponds to the years when it achieved better out-of-sample
performance measured by mean square errors of 1-day, 1-week or 1-month predictions over the
next calendar year. The upper index ‘*’ correspond to the yearly models belonging to the extended
Nelson–Siegel family, which obtained poorer in-sample performance than the reference models from
the standard Nelson–Siegel class.

Table S6 shows that the models that provide the best in-sample and out-of-sample fit for Euro
Libor rates with the one-year ICE Euro Libor rate according to the minAIC criterion have mostly either
non-diagonal transition matrix Ã or the covariance matrix R̃. The models chosen according to the
selection methodology diagAll outperformed these models according to the in-sample calibration only
in 2007 and according to the out-of-sample performance (one-day prediction) in 2008, 2009, 2011, 2012
and 2015.

The best models that are selected for Euro Libor rates with the one-year swap rate have mostly
all matrices diagonal. The exceptions are the years 2006–2007 and 2014–2015. It is observed that for
this dataset, we see particular years when the models with market features achieved poorer in-sample
performance than their reference models. This is the case for the models selected according to minAIC
in the years 2007, 2009 and 2010. What is more, we observe only three years when the models selected
according to the minAIC methodology performed better than the models with lower complexity,
the years 2006 and 2014–2015, and the improvement of the in-sample performance did not ensure
better forecasting results.

In general, the differences between the models selected according to the two baseline model
selection methodologies, which are highlighted by blue and yellow colours, are not significant in
terms of their in-sample and out-of-sample performance. Considering the fact that the extended
Nelson–Siegel models specified according to the minAIC methodology are more prone to calibrate
the curve poorer than their simpler reference model, we drop this group of results from the following
analysis.

7.3. In-Sample Fit of the Best Models for the Euro Libor Yield Curve

The calibration of the Euro Libor yield curve with either the 1Y ICE Libor rate or 1Y swap rate is
the most accurate for the hybrid models from the extended Nelson–Siegel family, which significantly
outperform the standard Nelson–Siegel model fits. We show that only for the short rates in the crisis
period, the estimation of the yields carried by the standard Nelson–Siegel models is as good as by
more complex models.

Table 2 provides the description of the extended Nelson–Siegel and the standard Nelson–Siegel
models, which are selected on a yearly basis (the first column) as the best models for two Euro Libor
yields, as well as their in-sample performance results. The column Model lists the acronyms of the best
models corresponding to Step 3 in Section 7.1 (in case of the extended Nelson–Siegel family, it refers to
a specific dataset of features). If applicable, the column PPCA indicates the PPCA framework used
to obtain the market feature, the column R describes the structure of the covariance matrix R̃ and,
lastly, the column log λ informs about the value of the shape parameter of the Nelson–Siegel model.
The models across the years have diagonal transition and covariance matrices and heterogeneous
matrix Q as imposed by the baseline model selection methodology diagQ. The repeatedly-chosen
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structure of R̃ is heterogeneous, allowing for differences in the magnitude of the latent vector’s
elements’ variability. The smallest values of λ for the Euro Libor dataset with the 1Y swap rate are
selected at the beginning and the end of the sample set, the years 2006 and 2007 indicating that the
shape of the yield across the term structure is the flattest among examined periods. The highest
values of the shape parameter correspond to the crisis period, 2008–2009, when the relative differences
between the Euro Libor rates are the biggest. The shapes of the Euro Libor yield with the 1Y ICE Euro
Libor rate do not follow this pattern, indicating a rapid decline of the parameter’s value in the middle
of the sample period, in 2010.

Regardless of the different 1Y rates, we observe the agreement in the choice of the sets of
assumptions on the static parameters for Nelson–Siegel and extended Nelson–Siegel models per
year. Recall that the estimates of the parameters may still differ. The utilized market features mostly
belong to the dataset D2 (the model M2) with the country-specific sovereign yields discussed in
Section 6.1, except for the years 2008 and 2011, when the inflation-linked features from the dataset D3
are chosen to be more relevant. Most of the features selected for the extended Nelson–Siegel models
are extracted using robust frameworks highlighting the importance of the information one may omit
when it does not account for outliers in the data. The robust features are confirmed to provide more
explanatory power in most of the cases.

The features from the dataset D2 in the year 2006 extracted by the two t-Student PPCA
frameworks are characterized by a strong correlation reaching 0.7. However, the independent
t-Student methodology provides better in-sample performance. The reader may recall the discussion
of the features from the dataset D2 in 2007 in Section 6.1, which are extracted using different
PPCA frameworks. In 2007, all the features from the dataset D2 are very distant, but the smoother
eigenvectors obtained by Gaussian PPCA are shown to obtain the explanatory power of the Euro Libor
dynamics. In 2009, the most informative features are obtained using the independent t-Student PPCA
framework, whereas the features from the same set next year obtained by two t-Student frameworks
reveal high correlation and are similarly informative. The best features selected for 2011, which contain
inflation-related information, are extracted using a non-robust methodology. In 2012, the Gaussian and
t-Student IID PPCA provide similar eigenvectors, which have less explanatory power than the vectors
obtained by t-Student IND PPCA. The opposite relation is present in 2013, when the results of the
t-Student IND PPCA agree with the Gaussian PPCA, but capture fewer dynamics of corresponding
Euro Libor yields. The features selected to model the yields in 2014 and 2013 are distant from the other
choices of factors from the dataset D2, whereas the three vectors with features align in 2016.
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Table 2. The model specification and in-sample statistics for the best standard Nelson–Siegel model and the extended Nelson–Siegel models chosen by diagAll per
calendar year (the first column) for the two sets of Euro Libor yield: with the 1Y ICE Euro Libor rate or the 1Y swap rate. The column Model lists the acronyms of the
best models corresponding to Step 3 in Section 7.1 (in the case of the extended Nelson–Siegel family, it refers to a specific dataset of features). The column PPCA
indicates the PPCA framework used to obtain the market feature (1, Gaussian PPCA; 2, t-Student IND PPCA; 3, t-Student IID PPCA). The column R describes the
structure of the covariance matrix R̃, and the column log λ informs about the value of the shape parameter of the Nelson–Siegel model. The columns l, AIC and
logMSE provide the yearly values of measures of the estimation accuracy: the log-likelihood of the Kalman filter, the Akaike information criterion statistics from
Equation (14) and the logarithm of the mean squared error from Equation (15). hete, heterogeneous.

Year
1Y ICE Euro Libor Rate 1Y Swap Rate

Model PPCA R log λ l AIC logMSE Model PPCA R log λ L AIC logMSE

2006 M0 hete −1.42 5922.73 −11,843.46 −3.99 M0 hete −1.42 6164.91 −12,327.83 −4.07
M2 2 hete −1.42 7898.12 −15,794.25 −4.30 M2 2 hete −1.42 8101.40 −16,200.80 −4.36

2007 M0 hete −0.76 5965.95 −11,929.90 −3.16 M0 hete −0.96 6256.79 −12,511.59 −3.23
M2 1 hete −0.76 7305.62 −14,609.24 −3.67 M2 1 hete −0.96 7114.59 −14,227.19 −3.99

2008 M0 hete −0.52 3331.25 −6660.50 −3.03 M0 hete −0.48 3581.24 −7160.47 −2.64
M3 3 hete −0.52 4841.08 −9680.15 −3.98 M3 3 hete −0.48 5077.73 −10,153.47 −3.81

2009 M0 hete −0.52 5184.72 −10,367.44 −4.27 M0 hete −0.48 5679.58 −11,357.15 −4.47
M2 2 hete −0.52 6764.61 −13,527.22 −5.64 M2 2 hete −0.48 7108.11 −14,214.22 −5.77

2010 M0 hete −2.18 5422.09 −10,842.19 −3.66 M0 hete −0.64 6027.31 −12,052.63 −4.31
M2 2 hete −2.18 7650.23 −15,298.46 −6.20 M2 2 hete −0.64 7450.24 −14,898.48 −5.81

2011 M0 hete −0.52 4357.33 −8712.66 −3.40 M0 hete −0.56 5191.04 −10,380.08 −4.26
M3 1 hete −0.52 6502.81 −13,003.63 −5.19 M3 1 hete −0.56 6513.74 −13,025.47 −5.07

2012 M0 hete −0.52 4368.44 −8734.87 −2.90 M0 hete −0.74 4377.26 −8752.52 −4.66
M2 2 hete −0.52 7773.09 −15,544.17 −6.23 M2 2 hete −0.74 7535.36 −15,068.73 −5.76

2013 M0 hete −0.83 5738.36 −11,474.72 −4.69 M0 hete −0.74 5390.17 −10,778.33 −5.29
M2 3 hete −0.83 7854.03 −15,706.06 −6.55 M2 3 hete −0.74 8128.64 −16,255.27 −6.72

2014 M0 hete −0.91 5225.34 −10,448.68 −4.43 M0 hete −0.96 5638.23 −11,274.46 −5.40
M2 2 hete −0.91 8462.48 −16,922.96 −6.42 M2 2 hete −0.96 8525.73 −17,049.46 −6.47

2015 M0 hete −0.99 6243.56 −12,485.13 −4.93 M0 hete −0.96 6639.60 −13,277.21 −5.87
M2 1 hete −0.99 8886.02 −17,770.05 −6.63 M2 1 hete −0.96 8927.51 −17,853.02 −6.67

2016 M0 hete −0.99 5150.36 −10,298.73 −4.69 M0 hete −1.09 6108.33 −12,214.66 −5.54
M2 1 hete −0.99 8595.78 −17,189.57 −6.98 M2 1 hete −1.09 8908.23 −17,814.46 −7.15
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7.3.1. The Calibration of the Euro Libor Yield Curve Using the 1Y ICE Euro Libor or 1Y Swap Rates

We observe that the difference of the time series of the rates at 1Y maturity impacts the resulting
values of AIC, especially related to the standard Nelson–Siegel models’ fit. Before and during the
crisis period, 2006–2010, the optimal models for the set with the 1Y swap rate obtained lower AIC
values, whereas after 2012, this trend reverts. We want to verify if the information contained in
different 1Y rates influences the calibration of the other terms of the Euro Libor yield. Figure 12
illustrates the yearly mean square errors of in-sample fit on the log scale across the term structure for
different classes of the models and datasets. We define the mean square errors (MSE) for the considered
models as a conditional mean of the difference between the observed data, yt, and the mean of the
in-sample one-step ahead model forecast given by the Kalman filter, yt|t−1 = E[yt|ψ, y1:(t−1)] given
in Equation (12). Therefore, we calculate the mean square error of in-sample prediction (MSE) as the
following average:

MSE := E
[(

yt − yt|t−1

) (
yt − yt|t−1

)T
]

(15)

when T is the end of an in-sample period.
Recall that the only difference between the two datasets is a time series of the rate at 1Y maturity.

Hence, all the results illustrated in Figure 12, except the ones corresponding to the 1Y rate, give us the
intuition about which of the time series of the 1Y rate performs better in the calibration of the other
tenors of the yield according to MSE. The column-wise order of the panels in Figure 12 corresponds
to the calendar years, whereas the row-wise order of the panels refers to the results for different
maturities. Every panel shows the MSE statistics for a particular year and rate. The grey bars present
the results for the Nelson–Siegel models and the green ones for the extended Nelson–Siegel models.
The colour of the borders corresponds to the different datasets: red, with the 1Y ICE Euro Libor rate;
blue, with the 1Y swap rate. Comparing the two model classes, we observe that in all maturities and all
years, the extended Nelson–Siegel family of models outperformed the classical standard Nelson–Siegel
model. Hence, we can conclude that using market features benefited all tenors of the yield. The results
do not provide the clear information about which rate is more informative for calibration of the yield
in the considered period. The Nelson–Siegel model calibrated using the 1Y ICE Euro Libor rate more
accurately estimates the rates at the 1M and 3M rate than the model fitted on the dataset containing
the swap rate, with the exceptions in 2009 and 2012 for the 1M rate and 2010 and 2013 for the 3M rate.
In general, the corresponding extended Nelson–Siegel model performs better in the calibration of the
short end of the curve, when the one-year swap rate is present in the sample set. Only in 2011 does
the hybrid model, which is fitted to the Euro Libor data with the 1Y ICE rate, outperform all other
examined models. Recall that for the hybrid model estimated this year, we use the market features
extracted from the dataset D3 with national inflation-linked yields.

The impact of the datasets on the calibration of the rates at 2Y–5Y maturity is the highest for
2006–2013 when the choice of the rate at 1Y maturity is year-specific. The middle terms, 7Y–20Y,
are calibrated with the consistent accuracy regardless of the dataset. Furthermore, the rates at the
maturities between 5Y and 10Y are similarly estimated by both classes of models. The rates at
longest maturities are more successfully calibrated using the set containing the 1Y swap rate and
market-related features.

The panels in Figure 13 show the resulting estimates of the Euro Libor rates at various maturities
against their actual values over time. The column-wise order of the panels corresponds to different
model classes and the datasets. The red colour of lines and shading correspond to the one-step
ahead in-sample predictions given by yt|t−1 with corresponding 97.5% confidence intervals, which
are carried out on the dataset containing the 1Y ICE Euro Libor rate. The blue colour of lines and
shading refer to the results for the dataset with the 1Y swap rate. Again, the displayed time series of
the actual observations differ only for the rate at 1Y maturity. Hence, the reference observation over
time in the panels corresponding to 1Y maturity is different for the results highlighted by red and blue
colour. We can observe the aforementioned lower accuracy of the estimation given by the extended
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Nelson–Siegel model for the rates at short maturities, 1M and 3M for a crisis period. The gap between
the actual observations and their predictions is visible for the hybrid models, and the corresponding
confidence intervals are wide. On the other hand, the estimation given by the standard Nelson–Siegel
model is very volatile (it jumps around the actual curve), which results in the comparable values of
MSE as discussed above. In 2011, we see that the red extended Nelson–Siegel model is most accurate
in estimating the 1M rate and is the worst for the 3M rate, whereas the pattern reveres for the extended
Nelson–Siegel model fitted to the dataset with the swap rate. In addition, the panels that refer to the
estimation of the rates at the longer maturities confirm that the extended Nelson–Siegel models should
be used in the calibration of these rates.
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Figure 12. The logarithms of mean square errors (MSE) per year (column-wise) and tenor (row-wise) of
the best Nelson–Siegel( grey colour of bars) and extended Nelson–Siegel (green colour of bars) models.
The colour of the bar corresponds to different datasets, Euro Libor yield with the one-year ICE Euro
Libor rate (red) or the one-year swap Euro Libor rate (blue).

7.3.2. Filtering of Latent Variables

Since the market features utilized in the extended Nelson–Siegel model are country-specific,
we can analyse the results in terms of the strength of the influence of each examined country on
the Euro Libor yield. The panels in Figures 14 and 15 show the filtered values of the coefficient
loadings, the latent state vector, over time given by the conditional mean β̃t|t from Equation (12) with
corresponding 97.5% confidence intervals, for the Nelson–Siegel and the extended Nelson–Siegel
models over time, respectively. The illustrated time series are continuous only within a on- year
period since the models are optimized every year. The blue colour of lines corresponds to the results
associated with the dataset containing the 1Y swap rate. The dynamics of different components of the
latent process are ordered by rows. The latent processes corresponding to level, slope and curvature
have consistent dynamics for the two datasets. The only exception is the year 2010, when the levels
of the latent processes shifted upwards when the 1Y ICE Euro Libor rate was present in the dataset.
The reader may recall the model’s specification given in Table 2 and the rapid decrease of the shape
parameter λ for this year. Hence, the reason for the shift is the significant change in the shape of the
polynomials of the baseline Nelson–Siegel model for the dataset with the 1Y ICE Euro Libor rate. When
considering the other country-specific components of the latent vectors of the extended Nelson–Siegel
model, we may specify the list of countries that have the biggest impact on the Euro Libor yields across
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the examined period of time. Recall that the majority of the extended Nelson–Siegel models utilized
the market features extracted from the datasets D2 with international sovereign yields. Only in 2008
and 2011, we use the features from the dataset D3 with inflation-linked yield curves.
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Figure 13. The market observed yields of the Euro Libor rates at various maturities over time against
the conditional mean of in-sample one-step ahead prediction yt|t−1 with corresponding predictive 97.5%
confidence intervals. The column-wise order of the panels corresponds to the results of the models that
belong to different model classes, the standard Nelson–Siegel or the extended Nelson–Siegel family,
and to the different set of the data Euro Libor yield with the one-year ICE Euro Libor rate (red lines
and shading) or the one-year swap Euro Libor rate (blue lines and shading). The row-wise order of the
panels corresponds to different terms of the yield.
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Figure 14. The conditional mean of filtered latent states βt|t of the coefficient loadings with
corresponding confidence intervals of the Nelson–Siegel models over time, which are optimal in
term of the AIC criterion. The column-wise order of the panels corresponds to the models for the Euro
Libor yield with the one-year ICE Euro Libor rate (the left column) or the one-year swap Euro Libor
rate (the right column). The row-wise order of the panels corresponds to different terms of the yield.
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Figure 15. The conditional mean of filtered latent states β̃t|t with corresponding confidence intervals
of the extended Nelson–Siegel models over time, which are optimal in term of the AIC criterion.
The column-wise order of the panels corresponds to the models for Euro Libor yield with the one-year
ICE Euro Libor rate (the left column) or the one-year swap Euro Libor rate (the right column).
The row-wise order of the panels corresponds to different terms of the yield.
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The country-specific time series that fluctuate around zero inform us that this specific country
does not have an impact on Euro Libor yields. With the beginning of the crisis, we can observe that all
the latent vectors corresponding to the European countries are characterized by non-zero dynamics
with increased volatility, especially Portugal, Ireland, Spain and France. In addition, we see the
increased activity of the processes corresponding to international markets, Australia, Japan and Brazil.
The influences of other countries start to grow in 2009. However, for this year, we see the discrepancies
between the information provided by the two different Euro Libor dataset. The dataset with the 1Y
swap rate indicates the lack of influence of the French features, whereas the other set is the opposite.
In recent years, we observed that most of the country-specific latent processes fluctuated around zero,
which agrees with the previous remark that the fits provided by the standard Nelson–Siegel are closely
informative for the fits of the models with the market features. We observe the higher shifts in the
levels of the processes and the increase of their volatility in 2016.

In the majority of the considered periods, the difference between the inclusion of either the
original 1Y Euro Libor rate or the swap rate affects only the magnitude of the movements of the
country-specific processes, which is also linked to the different estimates of the models’ static
parameters. Mostly, the two sets with different 1Y time series indicate a similar set of countries
having an impact on the Euro Libor curve per year.

7.4. Forecasting Performance of the Extended Nelson–Siegel Models with Macroeconomic Factors

We use our models to produce term-structure forecasts at 1-day, 1-week and 1-month horizons,
with encouraging results. The out-of-sample prediction of the Euro Libor yield with one and five
steps ahead using extended Nelson–Siegel models outperforms the results provided by the standard
models. When we increase the forecast horizon to one month, the discrepancies between the models
from different families decrease and the Nelson–Siegel models provide a more accurate out-of-sample
prediction, especially for shorter rates before 2011. What is more, the two model classes provide mostly
consistent forecasts for the rates at middle term maturities, between 5Y and 20Y.

The prediction is performed on the one-day sliding window. Let us denote k as a forecasting
horizon. We fit the models in the calendar year Y0 (T observations) and take as an out-of-sample period
the next calendar year, Y1 (T1 observation points). Then, we predict the value of a rate in time T + t + k
where t = 1, . . . , T1 − T, using the window of T consecutive observations from t, . . . , T + t. Recall that
the model was previously fitted to the data in time 1, . . . , T.

We use the Kalman filter in order to obtain the forecasting distribution. The Bayesian state-space
framework allows us to obtain the forecasting distributions given by the Kalman filter, that is:

β̃T+t+k ∼ N
(

c̃ + Ãβ̃T+t+k−1, PT+t+k|T+t+k−1

)
yT+t+k ∼ N

(
Λ̃T β̃T+t+k, FT+s+k

)
.

where Λ̃T is a coefficient matrix with features up to the end of the in-sample period, the time T. Let us
define the mean squared error of the out-of-sample prediction (MSEP) of k steps ahead as follows:

MSEP(k) = E
[(

yT+t+k −E
[
yT+t+k|yt:(T+t)

] )(
yT+t+k −E

[
yT+y+k|yt:(T+t)

] )T
]

(16)

Table 3 compares the forecasting performance of the examined models for different sets of sample
data, with the 1Y swap rate and the 1Y ICE Euro Libor rate, respectively. The MSEP-related columns
show the logarithms of the mean square errors of 1-day, 1-week and 1-month ahead predictions of the
Euro Libor yield given the data from the next calendar year using the following conditional means:
yt|t−1, yt|t−5, yt|t−22. The yellow shading of the cells highlights the examples when the standard
Nelson–Siegel model outperforms the hybrid model. The reader can observe that for the majority
of years and the prediction horizons of one day and one week, the extended Nelson–Siegel models
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provide better out-of-sample forecasting performance and, hence, the information contained in the
market features is meaningful for the out-of-sample prediction of the Euro Libor yield in addition to
the in-sample calibration properties. The discrepancies between the two classes of models decline
when we move to one-month ahead prediction, especially for the calendar years belonging to the
pre-crisis and crisis period. The Nelson–Siegel model for one-month ahead prediction obtains better
results for 2008 and 2011 when the 1Y swap rate is present in the dataset or only in 2011 when we use
the corresponding swap rate.

Similarly to the in-sample analysis, we can study the tenor-specific out-of-sample forecasting
performance of the models and verify if the quality of prediction is consistent across the tenors.
We calculate the maturity and calendar year-specific MSEP for two datasets with different 1Y rates and
two families of models. Figures 16–18 illustrate the MSEP of 1-day, 1-week and 1-month predictions
across different years and maturities. Regardless of the prediction horizon, the dependencies between
the forecasting performance between the two classes of models, the standard and hybrid one, are the
smallest for the rates at maturities between 2Y and 20Y. It is worth remarking that the prediction of
the models calibrated on the dataset with the 1Y ICE Euro Libor rate provides in majority of cases the
best results for the rates with maturities longer than 5Y for all prediction horizons. The exceptions
is the year 2012 for the rate at 25Y maturity for prediction one-day and one-week ahead, when the
extended Nelson–Siegel model calibrated on the dataset with the 1Y ICE rate obtained the poorest
results among all examined models. Except for 2006 and 2012, the hybrid models exhibit significantly
better forecasting properties of the rate at highest maturity.

Table 3. The forecasting performance of the best extended Nelson–Siegel and Nelson–Siegel models
for the Euro Libor yield curve with 1-year ICE Euro Libor rate and the 1-year swap rate per year.

Year
1Y ICE Euro Libor Rate 1Y Swap Rate

Model log MSEP Model log MSEP

1D 1W 1M 1D 1W 1M
2006 M0 −3.93 −3.78 −2.94 M0 −4.01 −3.85 −3.26

M2 −6.35 −4.93 −3.41 M2 −6.20 −4.96 −3.59
2007 M0 −1.95 −2.09 −1.88 M0 −2.24 −2.36 −1.75

M2 −4.90 −3.33 −2.01 M2 −4.92 −3.42 −1.94
2008 M0 −4.10 −3.74 −2.81 M0 −4.43 −3.89 −2.65

M3 −5.70 −3.96 −2.57 M3 −5.46 −3.56 −2.05
2009 M0 −3.77 −2.77 −1.26 M0 −3.80 −2.76 −1.38

M2 −5.60 −3.07 −1.45 M2 −5.66 −3.16 −1.53
2010 M0 −2.29 −2.29 −1.78 M0 −4.18 −3.62 −2.34

M2 −5.52 −3.69 −2.22 M2 −6.02 −4.51 −2.68
2011 M0 −2.90 −2.90 −2.23 M0 −3.49 −3.18 −2.12

M3 −6.16 −4.23 −1.99 M3 −6.02 −3.98 −1.70
2012 M0 −3.86 −3.69 −3.03 M0 −4.79 −4.43 −3.52

M2 −7.31 −5.79 −4.13 M2 −7.26 −5.82 −4.17
2013 M0 −4.30 −4.24 −2.97 M0 −4.91 −4.81 −2.85

M2 −7.18 −5.74 −3.73 M2 −7.19 −5.88 −3.74
2014 M0 −4.86 −4.42 −2.92 M0 −5.83 −4.93 −2.92

M2 −7.05 −5.25 −3.17 M2 −7.01 −5.21 −3.01
2015 M0 −4.34 −4.17 −3.55 M0 −5.32 −5.05 −3.97

M2 −7.77 −6.31 −4.49 M2 −7.69 −6.29 −4.38

With regards to the rates at short maturities, there is no clear pattern that indicates a model with
the best prediction across years for a particular maturity. The rates at shortest maturities, 1M and
3M, are more successfully predicted one-step ahead by extended Nelson–Siegel models, except for
3M rates in 2008 and 2011 when the standard Nelson–Siegel model calibrated on the dataset with
the 1Y ICE rate obtained the smallest MSEP. The similar pattern refers to the one-week prediction
of these rates. However, when we move the forecasting horizon to one month, the less complex
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standard Nelson–Siegel models predict the short end of the Euro Libor curve at least as successfully
as the hybrid models with the country-specific market features, especially for the years 2007–2011.
Hence, the better performance one-month ahead prediction by the Nelson–Siegel models in 2008 and
2011 noted in Table 3 is a consequence of their more accurate forecast of the short end of the yields.
In addition, the results of the one-month ahead prediction are characterized by the biggest discrepancies
between the models calibrated on different Euro Libor datasets. It is not a surprising outcome since
the inaccuracy of the prediction starts to dominate the results due to the long forecast horizon.

The panels in Figures S23 and 19 show the one-step ahead out-of-sample prediction with
corresponding 97.5% confidence intervals across different maturities and for different models. Figure 19
illustrates the portions of the forecast when the biggest discrepancies are present. The blue colour
of lines highlights the results for models calibrated on the dataset with the 1Y swap rate. Hence,
the panels, which show the results for 1Y rate, consist of the different sets of data for models stressed
by blue and red lines and shading. Recall that the out-of-sample prediction is conducted in the
next calendar year from the year when a model was estimated. Hence, the results plotted in the
panels of Figure S23 for the year Y0 show the forecasting ability of a model calibrated in the year
Y1. The most remarkable discrepancies of the various model’s forecast are noted for short maturities,
1M and 3M, and the longest maturity 25Y, especially for the year before 2013. We see substantial
differences between two classes of models predicting the 1Y ICE Euro Libor rate. The extended
Nelson–Siegel model more accurately captures the future movement of the rate. What is more, both
hybrid models are characterized by the higher confidence of the results for 1Y rates as in the majority
of case, the confidence intervals of the reference Nelson–Siegel model are wider.
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Figure 16. The logarithms of mean squared errors of one-day prediction per year (column-wise) and
tenor (row-wise) of the optimal Nelson–Siegel (NS) and Extended Nelson–Siegel (ENS) models (x-axis).
The colours of the bar correspond to different datasets, Euro Libor yield with the one-year ICE Euro
Libor rate (red) or the one-year swap Euro Libor rate (blue).
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Figure 17. The logarithms of mean squared errors of one-week prediction per year (column-wise) and
tenor (row-wise) of the optimal Nelson–Siegel (NS) and Extended Nelson–Siegel (ENS) models (x-axis).
The colours of the bar correspond to different datasets, Euro Libor yield with the one-year ICE Euro
Libor rate (red) or the one-year swap Euro Libor rate (blue).
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Figure 18. The logarithms of mean squared errors of one-month prediction per year (column-wise) and
tenor (row-wise) of optimal NS and ENS models (x-axis). The colours of the bar correspond to different
datasets, Euro Libor yield with the one-year ICE Euro Libor rate (red) or the one-year swap Euro Libor
rate (blue).
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Figure 19. The Euro Libor rates at 1M, 3M, 1Y and 25Y maturities (black line) with the one-step ahead
out-of-sample prediction given by the conditional mean yT+s+1|T+s with the corresponding predictive
97.5% confidence intervals over the considered period. The column-wise order of panels corresponds
to different classes of models, the Nelson–Siegel or extended Nelson–Siegel model, calibration on
two datasets with different 1Y rates (colours of lines and shading). The row-wise order corresponds to
the evolution of rates at different maturities over time.

8. Conclusions

In this work, we undertook three studies. We have shown the extensive analysis of the real
data for what we believe is the most complete analysis of yield curve modelling to date in the
literature, which has incorporated the country-specific financial and macroeconomic factors and
comprehensively examined the variant of the models’ structure. Secondly, in order to conduct
a parsimonious dimensionality reduction of big datasets, we extended the probabilistic principal
component analysis in order to deal with missingness and robustness. We develop the novel PPCA
methodology utilising the t-Student distribution in a new way and provide the efficient estimation
framework, which is robust in the presence of missing data. We examined the derived framework both
on synthetics and real data, conducting an excessive analysis of results.

As a third result, we combined these results together in order to create a hybrid multi-factor
regression state-space model, and we assessed the performance of that on the real data with promising
outcomes. The hybrid multi-factor model outperforms the standard Nelson–Siegel model in both
forecast and in-sample analysis of Euro Libor yield.

Supplementary Materials: The following are available online at http://www.mdpi.com/2225-1146/6/3/34/s1.
In Appendix A we provide the detailed overview of the time series analysed in this study and discussed in
Section 2 along with their Bloomberg identifiers; in Appendix B we provide supplementary material to Section
6; in Appendix C we describe the EM algorithm for the standard Gaussian PPCA and its robust variant, robust
Gaussian PPCA, as a complementary theory to Section 4; in Appendix D we show the proofs to the theorems
related to the steps of EM algorithm and discussed in Section 4. The section is divided into the part corresponding
to the EM algorithms for t-Student IND and t-Student IID PPCA, respectively; in Appendix E we illustrate the
results of the synthetic data studies which we conducted to examine the sensitivity, convergence and robustness of
various PPCA frameworks. We study the behaviour of the methodologies under various data characteristics such
as dimensionality, sample size, proportions of missingness and perturbation and types of the data corruption; in
Appendix F we detail the supplementary results to the real data case studies.
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