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1. Introduction

Does an efficient financial system enhance growth? Does uncertainty depress private investment?
Do private schools provide better education than public schools? In answering these and many other
empirical questions instrumental variables play a central role.

In a recent paper Swamy et al. (2015) argue that valid instruments cannot exist in the presence of
any model misspecification. Such mis-specifications include wrong functional form, omission of relevant
explanatory variables, and the presence of measurement error in explanatory variables. As a consequence,
instrumental variables (IV) and generalized method of moments (GMM) would not work.

No doubt, instruments may be hard to find or difficult to justify in empirical applications. The claim
that instruments cannot exist appears to be too strong, however. This note discusses three simple
examples where valid instruments can exist and where IV methods will work.

This note proceeds as follows. The next section reproduces the derivations in Swamy et al. (2015)
for a simple linear model. This example helps to explain the logic of their nonexistence result for
instrumental variables.

Section 3 briefly discusses the nature of structural models. The aim is to clarify some misconceptions
that bedevil the interpretation of structural models.

Section 4 reexamines the basic arguments of Swamy et al. (2015) in the context of three extremely
simple structural models. All three regressions for estimating the structural parameter of interest are
misspecified in these cases. In the first two cases one of the two explanatory variables has been omitted.
In the third case the single explanatory variable contains measurement error.

The following will be shown. In the first case the existence of a valid instruments depends on the
purpose of the analysis. In the second case instruments can exist and will produce consistent estimates
of the structural parameter of interest. In the third example instruments can solve the measurement
error problem.
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2. Non-Existence of Instruments

The central argument in Swamy et al. (2015) is that the explanatory variables that must be
instrumented in an empirical model to obtain consistent estimates are at the same time also part of
the error term of the model. All potential instruments are therefor necessarily correlated with the error
term. The requirement that instruments must be uncorrelated with the error term is always violated.
Hence, valid instruments cannot exist.

Swamy et al. (2015) start with a very general theoretical relationship

y∗t = ft(x∗1t, ..., x∗L(t)t) (1)

with unknown functional form, where a possibly time dependent number L(t) of variables x∗it determine
y∗t . This theoretical relationship is assumed to be exact. Thus there is no need for an error term.

The derivations in Swamy et al. (2015) are now repeated for a simple linear model where y∗t is exactly
determined by two variables x∗1t and x∗2t. This model can be written as

y∗t = α0 + α1x∗1t + α2x∗2t. (2)

Equation (2) is the true model.
Let us assume that we can only observe the measurements yt = y∗t + ν0t and x1t = x∗1t + ν1t where

ν0t and ν1t are measurement errors. Thus, the model that we can estimate has the correct functional form,
but suffers from measurement error and an omitted variable.

Swamy et al. (2015) argue that the relationship between the unobserved and the observed
determinant can always be written as

x∗2t = λ0t + λ1tx∗1t (3)

where λ0t is the portion of x∗2t that remains after the effect of x∗1t is removed. Substituting (3) into (2) yields

y∗t = α0 + α2λ0t + (α1 + α2λ1t)x∗1t. (4)

Accounting for the measurement errors in (4) gives

yt = α0 + α2λ0t + ν0t + (α1 + α2λ1t)(1−
ν1t
x1t

)x1t (5)

This equation includes the bias arising from omitting x∗2t , the bias from measurement error in x1t, and the
measurement error in yt. It is a simple version of the fully general expression (8) in Swamy et al. (2015).
This model can be written as yt = γ0t + γ1tx1t where the parameters γ0t = α0 + α2λ0t + ν0t and
γ1t = (α1 + α2λ1t)(1− ν1t

x1t
) are time-varying.

Let us now consider two of the cases discussed in Swamy et al. (2015). In the first case the model is
linear. Adding and subtracting the constant parameter model β0 + β1x1t to (5) yields

yt = β0 + β1x1t + (α0 + α2λ0t + ν0t − β0 + (α1 + α2λ1t)(1−
ν1t
x1t

)− β1)x1t) (6)

where the last two terms become the error term in the model to be estimated. A valid instrument must be
correlated with x1t and uncorrelated with the error term. But x1t is also in the error term of (6). Thus,
every instrument for x1t must be correlated with the error. No valid instrument exists in model (6).

The other case is a simple example of a model with a measurement error in the explanatory variable.
This model is

y∗t = βx∗t (7)
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where the measured value of the explanatory variable is xt = x∗t + νt. The model that can be estimated is

y∗t = βxt − βνt (8)

where −βνt is the error term. Written as time-varying coefficient model (8) becomes

y∗t = βtxt (9)

where βt = β(1− νt
xt
). Adding and subtracting a fixed coefficient model where β∗∗ 6= β yields

y∗t = β∗∗xt + (βt − β∗∗)xt (10)

and xt is again also in the error term of Equation (8). No instrument for xt would work.

3. Structural Models

Before we reexamine the arguments in Section 2 we need to clarify what structural models are and
what kind of assumptions they encode. This note cannot give a full exposition, of course. Pearl (2009a)
provides a comprehensive treatment of structural models and causal inference in general. In particular,
Chapter 5 in Pearl (2009a) discusses the interpretation of structural parameters and the error term in
structural models in great detail. This section draws heavily on Pearl (2009b) which gives an excellent
overview of the foundations of causal modeling with structural equations.

Let us consider the simple linear structural equation

y = βx + ν0. (11)

where y depends on x and ν0, a variable that stands for all other factors that affect y when x is held
constant. Particular values of x and ν0 assign a particular value y = βx + ν0.

Equation (11) encodes the causal assumption that changing or manipulating x causes y to vary.
The strength of the this effect is β. Note that the interpretation of β does not depend on ν0. The equation
says that the effect of a unit change in x on y is β, regardless of the values taken by the other variables
in the model. Whether or not x is correlated with ν0 plays no role. Equation (11) describes a causal
mechanism, not statistical associations. The correlation between x and ν0 becomes important, however,
when one attempts to estimate the causal parameter β from observational data.

Furthermore, the relation between x and y is asymmetric. The equality sign is therefore somewhat
misleading. Rewriting (11) as

x = (y− ν0)/β (12)

would lead to the miss-interpretation that y causes x. For example, when y is a symptom of a disease x
than (12) would imply that the symptom causes the disease. This makes of course no sense.

The graph in Figure 1 makes the causal relationship between x and y explicit. The arrow that points
from x to y shows the direction of causality between these variables. The solid nodes indicate that x and
y are observable variables. The hollow node indicates that the variable ν0 is unobserved. The absence of
a link between x and ν0 in this graph indicate the these two variables are assumed to be independent.

Another important assumption in Equation (11) is the invariance of the target parameter β. This is
an identifying assumption. The assumption implies that the causal link between x and y is stable.
One could of course assume that β changes over time in some way. But this would imply a very different
structural model.
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Figure 1. Graph of the structural relationship (11).

Until now nothing was said about estimating Equation (11). The question is whether the
causal effect β can be estimated from observational data. When x is uncorrelated with ν0 then β is
identified and consistently estimable from data on y and x. When x and ν0 are dependent, however,
then we need additional information to consistently estimate β. This information may come from an
instrumental variable.

4. Non-Existence Revisited: Instruments Do Exist

Let us now turn again to our simple model given by Equation (2) and let us assume that we can
only observe y∗ and x∗1 . We cannot observe x∗2 . For simplicity the intercept α0 is set to zero. The time
subscript t is superfluous and therefore dropped.

Figure 2 shows two possible structural models. In model (a) x∗1 affects y∗ directly and indirectly
via its effect on x∗2 . In model (b) the variable x∗2 is a confounding variable that jointly affects y∗ and x∗1 .
In both graphs z is an instrumental variable.
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Figure 2. Two possible structural relationships.

The regression model that is actually estimated is

y∗ = βx∗1 + ǫ (13)

where the error term ǫ = α2x∗2 . Thus, the model is misspecified because x∗2 is omitted. In both cases x∗1
is correlated with the error. Let us now compute the ordinary least squares (OLS) and IV estimates for
both cases.

Case (a): Easy computations show that OLS yields

βOLS
(a) =

Cov(y∗, x∗1)
Var(x∗1)

=
(α1 + α2λ12)Var(x∗1)

Var(x∗1)
= α1 + α2λ12 (14)

This is the total (i.e., direct + indirect) effect of x∗1 on y∗. The IV estimate for β is

βIV
(a) =

Cov(y∗, z)
Cov(x∗1 , z)

=
(α1 + α2λ12)δVar(z)

δVar(z)
= α1 + α2λ12 (15)
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Figure 2. Two possible structural relationships.

The regression model that is actually estimated is

y∗ = βx∗1 + ε (13)

where the error term ε = α2x∗2 . Thus, the model is misspecified because x∗2 is omitted. In both cases x∗1
is correlated with the error. Let us now compute the ordinary least squares (OLS) and IV estimates for
both cases.

Case (a): Easy computations show that OLS yields

βOLS
(a) =

Cov(y∗, x∗1)
Var(x∗1)

=
(α1 + α2λ12)Var(x∗1)

Var(x∗1)
= α1 + α2λ12 (14)

This is the total (i.e., direct + indirect) effect of x∗1 on y∗. The IV estimate for β is

βIV
(a) =

Cov(y∗, z)
Cov(x∗1 , z)

=
(α1 + α2λ12)δVar(z)

δVar(z)
= α1 + α2λ12 (15)

and therefore the same as the OLS estimate. When the goal is to estimate only the direct effect of x∗1 on y∗

no instrument for x∗1 works as argued in Swamy et al. (2015). If one is interested in the total effect no
instrument is needed anyway.
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Case (b): Now x∗2 is a confounding variable. As already mentioned, this model is miss-specified and
Swamy et al. (2015) would conclude that a valid instrument cannot exist. But in fact a valid instrument
can exist. OLS wont work but IV estimation will.

OLS yields

βOLS
(b) =

α1λ2
21Var(x∗2) + α2λ21Var(x∗2)

λ2
21Var(x∗2)

= α1 + α2(1/λ21) (16)

where the second term is the well known omitted variable bias. The term (1/λ21) is the coefficient from
a regression of x∗2 on x∗1 . Note that this auxiliary regression has no causal content. The regression just
measures the statistical association between x∗2 and x∗1 . Some simple algebra shows that IV estimation
yields now

βIV
(b) =

α1δVar(z)
δVar(z)

= α1 (17)

which is the structural parameter that we wanted to estimate.
Why can an instrument work in case (b) but not in case (a)? In case (a) the error term ε = α2x∗2 =

α2λ12x∗1 is caused by the included variable. The error term is thus indeed a function of x∗1 . No instrument
for x∗1 will therefore work if one wants to estimate the direct effect of x∗1 on y∗.

Case (b) is quite different. in Figure 2b the error is not a function of the included explanatory variable.
Equation (3) in Section 2 is thus not consistent with the underlying structural model. Varying x∗1 does
not affect x∗2 . Instead the omitted variable x∗2 in the error term is a cause of the explanatory variable x∗1 .
The instrument z is another cause of x∗1 that is independent of x∗2 . Thus the error and the instrument
are uncorrelated. Moreover, the instrument affects the dependent variable y∗ only via x∗1 . IV estimation
works with a proper instrument.

Let us now turn to the second example in Section 2 where y∗t = βx∗t and the explanatory variable
xt = x∗t + νt is measured with error. If y∗t = βx∗t is the true structural model then the causal effect of x∗t
on y∗t is stable. The constant parameter β reflects this. Hence, we cannot simply transform this model
into a time-varying coefficient model. Such a model states that the causal effect is unstable and changes
over time. The transformed model is therefore inconsistent with the true structural model that we want
to estimate. The transformed model has very different implications for the causal link between x∗t and y∗t .
It is a different structural model.

To be consistent with the original structural model one should estimate the model y∗t = βxt − βνt.
Here the error is not a function of xt and instruments can in principle be found. For example, any cause
of x∗t that is unrelated to the measurement error νt and does not directly cause y∗t would be a valid
instrument for xt.

5. Conclusions

The examples presented in this note demonstrate that instruments can exist. The arguments in
Swamy et al. (2015) hold when the structural error is indeed a function of the included explanatory
variables. But this is rarely the case in a structural model. For instance, omitted confounding variables are
not functions of included variables. The three variable model (b) in Figure 2 provides a simple example.
The model is misspecified, but a valid instrument exists since the omitted confounding variable is not a
function of the included variable.

Furthermore, Swamy et al. (2015) assume that any model can be expressed as a time varying
coefficient (TVC) model. The true model would then be a special case of this general model.

Of course, a constant parameter model is a special case of a TVC model. A true structural model
with constant parameters cannot be turned into an equivalent TVC model, however. A structural model
with constant parameters cannot at the same time be expressed as a model where the parameters vary
over time. The later model has very different causal implications.
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