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Abstract: Factor modeling is a popular strategy to induce sparsity in multivariate models as they scale
to higher dimensions. We develop Bayesian inference for a recently proposed latent factor copula model,
which utilizes a pair copula construction to couple the variables with the latent factor. We use adaptive
rejection Metropolis sampling (ARMS) within Gibbs sampling for posterior simulation: Gibbs sampling
enables application to Bayesian problems, while ARMS is an adaptive strategy that replaces traditional
Metropolis-Hastings updates, which typically require careful tuning. Our simulation study shows
favorable performance of our proposed approach both in terms of sampling efficiency and accuracy.
We provide an extensive application example using historical data on European financial stocks that
forecasts portfolio Value at Risk (VaR) and Expected Shortfall (ES).

Keywords: Bayesian inference; dependence modeling; factor copulas; factor models; factor analysis;
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1. Introduction

Copulas (Sklar 1959) are powerful models of multivariate dependence. Copula modeling has
had profound impact on the field of financial econometrics by substantially improving the quality
of key metrics of financial risk of portfolios such as Value at Risk (VaR) and Expected Shortfall (ES)
(see Embrechts et al. (1999)).

Even in the simplest multivariate Gaussian model the number of correlation parameters increases
quadratically in the number of variables d, and the quadratic growth in dependence parameters
also extends to more general copula models. This illustrates that sparse modeling of multivariate
dependence becomes critical for robust estimation and forecasting in increasingly high-dimensional
problems. One approach to achieve parsimony is to use dynamic latent factors to capture dependence
induced by common underlying economic activity components. Dynamic factor models, also known
as index models, were first suggested by Geweke (1978) and Sargent and Sims (1977) based on
ideas of Burns and Mitchell (1946), and later generalized by Forni et al. (2000, 2012), among
others. Factor modeling has become popular in credit risk modeling (see for example Gordy (2000);
Crouhy et al. (2000)), with the multivariate Gaussian and t copulas serving as the backbone of many
credit risk models (Frey and McNeil 2003).

We present a Bayesian latent factor copula model that reduces the quadratic growth rate of the
number of parameters to a linear one. Factor copulas have previously been successfully employed to
scale the dimension of multivariate dependence models (Murray et al. (2013); Krupskii and Joe (2013,
2015); Oh and Patton (2017)). The pair copula construction-based factor model includes the Gaussian
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factor model as a special case, and allows much more flexible fine-tuning to capture elaborate
dependence characteristics than Murray et al. (2013) and Oh and Patton (2017)’s factor copula models.

Our proposed model builds on Krupskii and Joe (2013)’s, and shares their strategy to use bivariate
pair copulas to couple the marginal variables with a latent factor. In contrast to their work, we present
a Bayesian learning strategy that replaces frequentist uniform integration over the latent factor with
Bayesian posterior simulation. A key advantage of Bayesian modeling over frequentist modeling is
that credible intervals of the predictive distributions of derived quantities such as value at risk or
expected shortfall can be easily obtained.

Copula models are typically estimated in two stages (see, for example, (Joe and Xu 1996) and
(Joe 2005)): first, univariate marginal models are estimated to make the observed data independent
and identically distributed on each of the margins by applying the cumulative distribution function
of the marginal models to the observed data; second, a (multivariate) copula is estimated based on
the transformed, marginally i.i.d. input data. The generally unfavorable view of two stage estimation
procedures must be suspended in the context of copula estimation: the definition a copula requires
that the marginal distributions of a copula be uniform on the unit interval; hence marginal models
must be estimated to obtain said marginally i.i.d. uniform data before any copula modeling can be
performed. Indeed, Czado et al. (2011)’s study confirms that joint Bayesian estimation of the marginal
models and copula does not lead to improved estimates; the Markov chain Monte Carlo (MCMC)
iterations until convergence of the marginal models produce non-uniform marginal input data for the
copula, which leads to substantially increased MCMC runtime. An added benefit of estimating the
marginal and dependence models separately is that inference methods for the copula can be applied
universally as they do not depend on characteristics of the marginal data (which is marginally i.i.d.
uniform, by definition).

We use adaptive rejection Metropolis sampling (ARMS) within Gibbs sampling (Gilks et al. 1995)
for posterior simulation to eliminate the need for lengthy pilot runs to fine-tune proposal parameters:
this strategy retains the Gibbs sampler’s main conceptual idea to recursively simulate from the full
conditional distributions, but uses ARMS to generate samples from full conditionals that cannot be
drawn from directly. This way, there is no need for Metropolis-Hastings updates (Metropolis et al. (1953);
Hastings (1970)), which typically require substantial effort from the user to carefully tune the proposals.

The proposed approach is then illustrated to forecast the VaR and ES of a portfolio of European
bank stocks. The Bayesian factor copula model combines univariate daily one-day ahead from the
marginal return time series, which are modeled by dynamic linear models (DLMs) with ARMA(1,1)
structure (West and Harrison 1997).

The paper is organized as follows: we define the latent factor copula in Section 2, and present
Bayesian theory as well as several MCMC-based strategies for posterior simulation in Section 3.
Section 4 presents a simulation study that investigates the sampling performance of our simulation
strategies, and Section 5 discusses an application to financial time series data. The paper concludes
with summary comments in Section 6.

2. Latent Factor Copulas

A latent factor copula models the dependence among d variables uj∼Uni f (0, 1), j = 1:d, by
a linking copula cj(uj, v; θj) with copula parameter θj for each variable uj and one common latent
variable v. Each of the linking copulas cj can be any bivariate copula; a detailed discussion of many
bivariate copulas can be found in Joe (1997). Conditionally on the latent variable v, the density function
of the latent factor copula is

c(u1, . . . , ud|v) = ∏
j=1:d

cj(uj, v; θj). (1)
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Linking Copulas

We will use the bivariate Gaussian and Gumbel copulas (Joe 1997) as candidate linking copulas;
these are the same linking copulas used by Krupskii and Joe (2013). The Gaussian copula is
tail-independent and symmetric, while the Gumbel copula is asymmetric and lower tail-dependent.
Density functions and properties about these copulas are summarized in Table 1, while Table 2 shows
pairs plots for several different parameter values. To further reduce model complexity, we assume
a common linking copula family for all margins, but allow for a margin-specific copula parameter, that
is, cj(uj, ν, θj) = c(uj, ν, θj).

Table 1. Density functions and Kendall’s τ as a function of the parameter of the Gaussian and Gumbel
pair copulas.

Copula Density Function τ = h(θ)

Gaussian
cN (u1, u2; θ) = 1√

1−δ22πφ(Φ−1(u1))φ(Φ−1(u2))
×

exp
(
−Φ−1(u1)+Φ−1(u2)−2δΦ−1(u1)Φ−1(u2)

2(1−δ2)

) hN (θ) = 2
π arcsin(θ)

Gumbel

cG (u1, u2; θ) = 1
u1u2

(x1x2)
θ−1 × exp

(
−x1

θ−x2
θ

θ

)
×(

(1− θ)
(
−x1

θ − x2
θ
) 1

θ−2
+
(
−x1

θ − xθ
2

) 2
θ−2
)

,

where x1 = − ln u1 and x2 = − ln u2

hG (θ) = 1− 1
θ

Survival Gumbel cSG (u1, u2; θ) = cG (1− u1, 1− u2; θ) hSG (θ) = 1− 1
θ

Table 2. Pairs plots for the Gaussian, Gumbel and survival Gumbel copulas for different parameter
values. As the Gumbel and survival Gumbel copulas only exhibit positive dependence, the 90◦ and
270◦ rotations of the Gumbel copulas are shown for negative Fisher z parameters.

Fisher’s z z = −1.2 z = −0.5 z = 0.7 z = 1
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We parameterize the linking copulas by the Fisher z-transformation of Kendall’s τ, given by
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z = z(τ) =
1
2

ln
(

1 + τ

1− τ

)
, τ ∈ (−1, 1), (2)

τ = z−1(z) = 1− 2
e2z + 1

, z ∈ R. (3)

This is a more convenient parameterization for analysis across different copula families than the
copulas’ natural parameters, because it makes the parameters comparable across different copula
families. The domains of the Fisher z-transformation depend on the copula family; for example, the
Fisher z parameter of a Gumbel copula takes values in (0, ∞), while that of the Gaussian copulas takes
values in (−∞, ∞).

Likelihood

Let u = (utj)t=1:T,j=1:d be T i.i.d. d-dimensional observations ut = (ut1, . . . , utd), t = 1:T, in the
copula domain [0, 1]d; and denote the states of the latent factor by v = (vt)t=1:T . The joint likelihood
function `(θ, v; u) of the latent factor v and copula parameters θ = (θj)j=1:d follows from (1) as

`(θ, v; u) = ∏
t=1:T

∏
j=1:d

cj(utj, vt; θj). (4)

Substituting the Fisher z parameters z = (z1, . . . , zd), where zi := z(hj(θj) (see (2) for z(·) and
Table 1 for h(·)), for the natural copula parameters θ, the joint likelihood of the latent factor v and
Fisher z parameters z = (zj)j=1:d follows as

`(z, v; u) = ∏
t=1:T

∏
j=1:d

cj

(
utj, vt; h−1

j

(
z−1(zj)

))
. (5)

Frequentist Inference

Frequentist inference (Krupskii and Joe 2013) integrates over the latent variable v to obtain the
unconditional density function of the latent factor copulas as

c(u1, . . . , ud) =
∫ 1

0
∏

j=1:d
cj(uj, v; θj) dv, (6)

and then maximizes the unconditional likelihood function with respect to the copula parameters.

3. Bayesian Posterior Analysis

In Bayesian analyses, prior information about the unknown parameters is quantified in a “prior
distribution.” Once data is observed, the prior distribution and likelihood are combined to derive
the posterior distribution—the distribution of the unknown parameters given the observed data.
As the posterior distribution typically can not be derived in a closed form, Markov chain Monte Carlo
(MCMC) methods are used to simulate from the posterior distribution.

3.1. Prior Distributions

Prior for Copula Parameters z

Each linking copula’s Fisher z parameter can take values in DSG = DG = (0, ∞) or
DN = (−∞, ∞), depending on whether it is a Gaussian or Gumbel copula. We propose
normally-distributed priors on the Fisher z parameter, truncated to the allowable parameter range
DSG = DG and DN , respectively. Furthermore, we assume that the priors are independent over all
linking copulas j = 1:d:
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zj ∼ NDj(0, σ2
j ),

π(z) = ∏
j=1:d

nDj(zj; 0, σ2
j ), (7)

where ND(µ, σ2) denotes a normal distribution with mean µ and variance σ2 truncated to D with
corresponding probability density function nD(·; µ, σ2).

Prior for Latent Factor v

In line with the frequentist assumption that integrates out the latent factor v using a uniform
density, we choose a uniform prior for v, independent across observations t = 1:T,

vt ∼ Uni f (0, 1),

π(v) = ∏
t=1:T

π(vt) ≡ 1. (8)

Given that the latent factor vt feeds directly into a copula distribution, the uniform distribution on the
unit interval is the only natural choice that does not violate the requirement of uniform copula margins.

Joint Prior for z and v

We assume no dependence between the latent factor v and copula parameters z, and choose the
joint prior density π(z, v) of z and v as the product of the individual prior densities,

π(z, v) = π(z)π(v). (9)

Independence priors are a common choice in Bayesian modeling, and they do not prevent
the posterior from exhibiting data-induced dependence; more comments below after the posterior
density (10).

3.2. Posterior Distribution and Full Conditionals

Posterior Density

An analytical expression of the joint posterior density p(z, v|u) of the copula parameters z and
latent factor v, given observations u can only be obtained up to a normalizing constant,

p(z, v|u) ∝ `(z, v; u)π(z, v). (10)

Indeed, this posterior density cannot be factorized into independent marginal distributions for
z and v, given that the likelihood function does not exhibit such a product form and thus induces
multivariate dependencies in the posterior distribution.

Full Conditionals

The full conditionals of the latent factor v = (vt)t=1:T and Fisher z parameters z = (zj)j=1:d can be
derived by straightforward calculation.

The joint posterior density p(z, v|u) of z and v, given observations u can be written as

p(z, v | u) ∝ `(z, v; u)π(z, v) = `(z, v; u)π(z)π(v) = `(z, v; u) ∏
j=1:d

NDj(zj)

=

(
∏

t=1:T
∏

j=1:d
cj

(
utj, vt; h−1

j

(
z−1(zj)

)))
∏

j=1:d
nDj(zj; 0, σ2

j ); (11)
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here we used the likelihood from (5) and priors from (7) to (9). Then, for all t = 1 : T, the full
conditional of vt, given all other latent factor states v−t := (v1, . . . , vt−1, vt+1, . . . , vT), observations u
and Fisher z copula parameters z is

p(vt | v−t, u, z) =
p(z, v|u)

p(z, v−t|u)
∝ p(z, v | u) ∝ ∏

j=1:d
cj(utj, vt; zj), (12)

where the prior densities of vt and z are constant factors independent of vt.
Similarly to (12), the full conditional of zl , given all other Fisher z copula parameters z−j,

observations u and latent factor v, can be derived as

p(zj | z−j, u, v) ∝

(
∏

t=1:T
cj(utj, vt; zj)

)
nDj(zj; 0, σ2

j ). (13)

3.3. MCMC Methods for Posterior Simulation

The complex forms of the posterior and full conditional densities render direct sampling infeasible.
We investigate the performance characteristics of several different sampling strategies:

• Metropolis-Hastings within Gibbs sampling (Metropolis et al. (1953); Hastings (1970); Gelfand
and Smith (1990)):

– MCM: Truncated normal proposals for z and Beta proposals for v; proposal mode and
curvature match those of the full conditionals;

– EVM: Gamma proposals for z and Beta proposals for v; proposal expectation and variance
match those of the full conditionals;

– IRW: Truncated normal random walk proposals for z and uniform independence proposals
v; and

• ARMGS: Adaptive rejection Metropolis sampling within Gibbs sampling (Gelfand and Smith (1990);
Gilks et al. (1995)).

Details of the sampling schemes are given in Appendix A.1. We will investigate these strategies
in a simulation study using Gumbel linking copulas (Section 4), and then adapt the best-performing
method to also work for Gaussian linking copulas. Here the main difference will be the extension from
only non-negative Fisher z values to positive and negative values.

4. Simulation Study

We test our four different MCMC sampling strategies in strong, weak, and mixed dependence
scenarios. The goal is to verify that these samplers provide good estimates, and to determine if some
perform better than others.

4.1. Simulation Setup

Scenarios

To explore the behavior of the Gibbs sampler under different dependence characteristics between
the marginal data u and the latent factor v, we consider three different scenarios: in the first scenario,
all linking copulas show weak dependence, with Kendall’s τ values of 0.1 ≤ τ ≤ 0.2; in the second
scenario, we use high Kendall’s τ values of 0.5 ≤ τ ≤ 0.8; and in the third scenario, we use
a combination of strong and weak dependence between the marginal data and latent factor with
Kendall’s τ’s of the linking copulas varying between 0.1 ≤ τ ≤ 0.8. Table 3 summarizes the Kendall’s
τ’s, copula parameters θ, and Fisher z parameters z of all scenarios.
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Table 3. Copula parameters used in the simulation to model the dependence between each marginal
series u:,j := (u1j, . . . , uTj) and the latent factor v.

c1 c2 c3 c4 c5

Low τ

τ 0.10 0.12 0.15 0.18 0.20
θ 1.11 1.14 1.18 1.21 1.25
z 0.10 0.13 0.15 0.18 0.20

High τ

τ 0.50 0.57 0.65 0.73 0.80
θ 2.00 2.35 2.86 3.64 5.00
z 0.55 0.65 0.78 0.92 1.10

Mixed τ

τ 0.10 0.28 0.45 0.62 0.80
θ 1.11 1.38 1.82 2.67 5.00
z 0.10 0.28 0.48 0.73 1.10

Simulation Data

We investigate N = 100 data sets from the latent factor copula model in three different scenarios.
Each simulation data set contains T = 200 observations of dimension d = 5. We use Gumbel linking
copulas for each pair c1, . . . , c5. As an asymmetric extreme value copula with upper tail dependence
and lower tail independence, the bivariate Gumbel copula can be a good fit to model financial data
such as large negative stock returns: the probability of many stocks selling off simultaneously tends
to be much higher than the probability of many stocks all making outsize gains on the same day.
The density of the bivariate Gumbel copula quickly tends to infinity for (u, u) ↓ (0, 0) or (u, u) ↑ (1, 1),
allowing to test the robustness of our proposed sampling routines for linking copulas that show
difficult numerical behavior.

Posterior Simulation

For each of the N = 100 simulation data sets from the three scenarios described in Section 4.1,
we generated 10, 000 MCMC samples with each sampling method from Section 3.3, using the
starting values from our heuristic of Appendix A.2 and prior variances σ2

j = 1002 for the Fisher
z copula parameters.

The proposal variance for our IRW method were tuned in pilot runs with 1, 000 iterations each to
achieve acceptance rates between 20% and 30% for each Fisher z parameter z1, . . . , z5; we specified
this range of desirous acceptance rates in line with Roberts et al. (1997)’s suggestion for tuning to 23%.
Uniform Uni f (0, 1) proposals for the latent factor v = (v1, . . . , vT) lead to acceptance rates around
20%, which we accepted as good enough. These settings performed well across all three scenarios.

4.2. Results

Kendall’s τ Pair Copula Parameters

For ease of interpretation, we analyze the results posterior samples in terms of Kendall’s τ,
which is a simple transformation from Fisher’s z. Posterior trace plots show immediate convergence
to an equilibrium state as well as good mixing behavior (see Figure 1); the latter is confirmed by
posterior density plots. The runtimes of our different sampling strategies varied substantially: the
slowest method (EVM) took 14 times as long as the fastest (IRW) to generate 10, 000 posterior samples
(Table 4); the faster methods, IRW and ARMGS, also out-performed the slower ones in terms of effective
sample size (ESS; Thiébaux and Zwiers (1984)) per minute. Table 4 shows that Metropolis-Hastings
within Gibbs sampling with IRW updates was marginally faster than adaptive rejection Metropolis
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sampling within Gibbs sampling (ARMGS), but the latter’s coverage of credible intervals was better.
Metropolis-Hastings within Gibbs Sampling with MCM updates provided the smallest point estimation
errors (both mean absolute deviation and mean squared errors) of all analyzed Bayesian procedures,
but it still trails frequentist maximum likelihood estimation (MLE). Overall, our ARMGS and IRW
performed substantially better than MCM and EVM. As an adaptive procedure, ARMGS requires less
effort of the user than IRW, making it the grand winner.
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Figure 1. Trace plots and density plots of a single run from each of our four sampling methods on
Kendall’s τ scale. The output is based on 10, 000 posterior samples of z1 in the mixed τ scenario.
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Table 4. Mean absolute deviation (MAD), mean squared error (MSE), effective sample size (ESS) per
minute, and realized coverage of 95% credible intervals (C.I.) averaged across all variables τ1, . . . , τ5

and N = 100 replications. Runtime is for 10,000 MCMC iterations on a 16-core node.

ARMGS MCM EVM IRW MLE

Low τ

MAD 0.1088 0.0900 0.1105 0.1032 0.0739
MSE 0.0314 0.0129 0.0327 0.0262 0.0105
ESS/min 6.1 0.5 0.2 9.2 n/a
95% C.I. 0.96 0.61 0.94 0.93 n/a

High τ

MAD 0.0292 0.0292 0.0293 0.0294 0.0212
MSE 0.0014 0.0014 0.0014 0.0014 0.0007
ESS/min 23.7 1.6 1.4 22.2 n/a
95% C.I. 0.95 0.91 0.95 0.95 n/a

Mixed τ

MAD 0.0509 0.0434 0.0517 0.0506 0.0339
MSE 0.0043 0.0030 0.0045 0.0042 0.0017
ESS/min 21.4 1.9 1.1 29.2 n/a
95% C.I. 0.93 0.84 0.93 0.90 n/a

Average across All Scenarios

Runtime 165s 664s 776s 55s

Latent Factor States

Bayesian inference of our latent factor copula also provides posterior samples of the latent factor
v, which can enable a more thorough analysis of dependence patterns in real-world applications.
Again, adaptive rejection Metropolis sampling within Gibbs sampling (ARMGS) is the grand winner,
showing the best combination of sampling efficiency (ESS/min), coverage of credible intervals and
accuracy of point estimates (Table 5). The MCM and EVM methods produced very slightly better point
estimates that ARMGS and IRW, but the latter two methods realized a more than 10 times higher
effective sample size during the benchmark 10 min runtime than MCM and EVM.

Table 5. Mean absolute deviation (MAD), mean squared error (MSE), effective sample size (ESS) per
minute, and realized coverage of 95% credible intervals (C.I.) averaged across all latent variables
v1, . . . , vT and N = 100 replications.

ARMGS MCM EVM IRW

Low τ

MAD 0.2808 0.2975 0.2805 0.2811
MSE 0.1248 0.1397 0.1248 0.1251
ESS/min 25.7 0.5 1.1 63.5
95% C.I. 0.91 0.71 0.89 0.88

High τ

MAD 0.0709 0.0678 0.0710 0.0709
MSE 0.0095 0.0087 0.0095 0.0095
ESS/min 43.7 1.6 2.6 38.8
95% C.I. 0.95 0.80 0.95 0.94

Mixed τ

MAD 0.0828 0.0898 0.0824 0.0826
MSE 0.0132 0.0154 0.0131 0.0131
ESS/min 25.8 1.5 2.0 34.3
95% C.I. 0.88 0.78 0.87 0.83
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5. Application: Portfolio Value at Risk of European Financial Stocks

This section presents a case study to forecast value at risk (VaR) and expected shortfall (ES) using
a dynamic multivariate model that consists of our latent factor copula and univariate time series DLMs.
We analyze the daily log-returns of eight European bank stocks that are head-quartered in euro zone
countries over a ten year period from January 2004 through December 2013. We use adjusted closing
prices, which correct for dividends, (reverse) stock splits, and other measures to calculate the daily
log-returns (data are downloaded from http://finance.yahoo.com). Table 6 lists details of the selected
stocks, including their ticker symbols, which we will use to identify stocks in this section, as well as
the exchange they are traded on.

Table 6. Ticker symbol, company name and exchange of the selected bank stocks.

Ticker Company Name Exchange

ACA.PA Credit Agricole S.A. Euronext - Paris
BBVA.MC Banco Bilbao Vizcaya Argentaria Madrid Stock Exchange
BNP.PA BNP Paribas SA Euronext - Paris
CBK.DE Commerzbank AG XETRA
DBK.DE Deutsche Bank AG XETRA
GLE.PA Societe Generale Group Euronext - Paris
ISP.MI Intesa Sanpaolo S.p.A. Borsa Italiana
SAN.MC Banco Santander Madrid Stock Exchange

Since the data set includes stocks from several European countries, trading days may differ due
to varying bank holidays for each exchange. Therefore, we use the union of all trading days, where for
stocks that are not traded at a given day, the asset value of the previous day is reused. This method
introduces some additional zero returns into the data, but avoids altering actual historical returns
which would happen if we intersected the trading days of different exchanges. The so expanded data
set consists of 2, 606 daily 8-dimensional log-returns.

5.1. Marginal Analysis

Figure 2 shows the daily log-returns of Credit Agricole (ACA); the historical returns of the other
stocks look very similar. The initial period from 2004 through 2007 was relatively calm, and was
followed by a more turbulent period beginning in 2008. Market nervousness intensified during the
second half of 2008, when, at the height of the sub-prime mortgage crisis, Lehman Brothers collapsed.
Volatility receded in the second half of 2009 and remained subdued until the second half of 2011, when
the European debt crisis hit the markets. Volatility remained at elevated levels through 2012, and then
showed a gradual decline in 2013.
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Figure 2. Daily log-returns (grey) of ACA from 2004 through 2013 with DLM one-day ahead 90%
confidence bands (blue) and forecast value (dark blue).

http://finance.yahoo.com
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Time Series DLMs

Since we are interested in online learning and forecasting of the return time series, we use
the dynamic linear model (DLM), which is also a model of dynamic stochastic volatility. While the
economics literature tends to favor GARCH models to model financial time series data, we view the
DLM as a better choice as it allows for fast and efficient fully Bayesian online learning and forecasting
based on analytical expressions of the posterior and predictive distributions, which can be evaluated in
fractions of a second, and can also model stochastic, time-varying volatilities. If we were using GARCH
models, we would have to perform lengthy MCMC-based posterior simulation for each trading day
t in our dataset to generate sequential out-of-sample predictions; this computational disadvantage
disqualifies GARCH models from further consideration in our study.

We use an ARMA(1,1)-structure in our marginal time series DLM with beta discounting for on-line
learning of stochastic observational variances (West and Harrison 1997). Denote the daily log-returns
of the j-th series by (yjt)t=1:T ; the model is defined by observation Equation (14)

yjt = µjt + φjtyj,t−1 + ψjtεj,t−1 + εjt =: F ′jtθjt + εjt, (14)

which relates the observations yjt to a time-varying local level µjt, ARMA(1,1)-structure with
dynamic regression coefficients φjt and ψjt, and conditionally normally-distributed observation
error εjt∼N(0, 1/λjt); the predictors Fjt = (1, yj,t−1, εj,t−1)

> are just those of a regular local-level
ARMA(1,1) model.

Appendix C summarizes the analytic filtering equations to sequentially learn the model, and
elaborates on the system equations for the prior evolutions of the states θjt = (µjt, φjt, ψjt)

> and
observational precision λjt > 0 (see Equations (A8) and (A10)).

Results

We started the analysis with initial normal-gamma priors as follows:

(θj1, λj1)|D0 ∼ NG(aj1, Rj1, rj1, cj1), (15)

where aj1 = (0, 0, 0)>, Rj1 = 10−3 · I3, rj1 = 5 and cj1 = 10−3, and the NG notation is as explained in
Appendix C. For forward filtering, we used the discount factors β = 0.97 and δ = 0.99; these values
provide a desirable balance between robustness of forecasts and rate of adaption to market movements,
and are similar to those used in existing literature (e.g., Gruber and West 2016).

Figure 2 shows the DLM’s sequential out-of-sample trend forecasts and confidence bands for
ACA. It can be seen that the one-day ahead forecasts quickly adapt to changes in the volatility of the
underlying stock. Table 7 shows that with our choice of discount factors, the coverage of the obtained
forecast confidence intervals are very close to their theoretical values.

Table 7. Percentage of observed log-returns above and below sequentially out-of-sample 90%
forecast interval.

ACA BBVA BNP CBK DBK GLE ISP SAN

Above 95% bound 4.90% 4.90% 4.43% 4.86% 4.22% 4.73% 4.73% 4.61%
Below 5% bound 4.35% 5.07% 4.65% 4.43% 5.29% 4.78% 5.33% 5.16%

Copula data is obtained by transforming the observed log-returns yjt using the cumulative
distribution function of the one-day ahead forecast t-distribution of yjt given information set Dt−1

(see Equation (A4) of Appendix C). The forecast t-distribution already accounts for uncertainty of the
model parameters; it is obtained by integrating out the parameters of the normal innovation/residual
distribution weighted by their respective step ahead prior distributions. The so transformed data lie in
the unit interval (0, 1), and we will denote it by ujt. We use the observations from 2004 as an initial
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learning data set and ignore them in further analyses; the 2, 345 remaining 8-dimensional transformed
observations (ujt) define our copula data set.

5.2. Bayesian Latent Factor Copula Analysis

We used the adaptive rejection Metropolis Gibbs sampler introduced in Section 3.3 for Bayesian
posterior simulation of the parameters and latent factors of our copula model. We partitioned the
resulting copula data (ujt) by calendar year (each year consists of roughly 260 daily observations), and
select a separate copula model for each year. These annually updated models allow proper out-of-sample
analysis, which would not be possible if we had estimated the model using the entire data set.

For each of the nine years, we considered three different linking copulas: the Gaussian, Gumbel
and survival Gumbel copulas. We simulated 11, 000 posterior samples for each year and choice of
bivariate linking copulas. We chose the starting values as discussed in Appendix A.2, and discarded
the first 1, 000 of MCMC iterations as burn-in, resulting in a posterior sample size of 10, 000.

The Kendall’s τ dependence parameters between each series j = 1:8 and the latent factor v are
solidly positive, taking values between 0.3 and 0.8. Furthermore, there is substantial variation of the
dependence parameters over the years (Figure 3). The posterior mode estimates for the three linking
copulas are generally similar, with slight differences noticeably only in the details. We stress again
that the credible intervals obtained through Bayesian posterior simulation allow for quantification of
estimation uncertainty, which is not available in frequentist analysis.

Next, we verify our implicit assumption that the bivariate distribution of every series’ copula data
and the latent factor v is the one of the selected linking copula. Figure 4 shows normalized contour
plots of the filtered Credit Agricole (ACA) and latent factor pairs (uACA,t, v̂t) for all three linking
copulas; here we estimated each latent factor state vt by its sample posterior mean across all 10, 000
MCMC iterations. The theoretical contours of the densities of the linking copulas (with posterior
mean parameter) are provided for context. A visual inspection of Figure 4 reveals that the data are
best modeled by a Gaussian linking copula, given that the data lack asymmetries so typical for the
(survival) Gumbel copula.

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

ACA

●

●

●

●

●

●
●

●

●

_

_

_

_
_

_ _
_

_
_

_

_

_
_

_ _
_

_

●

●

●

●

●

●

●

●

●

_
_

_

_
_

_ _
_

_

_
_

_

_
_

_ _
_

_

●

●

●

●

●

●

●

●

●

_
_

_

_
_

_ _
_

_

_
_

_
_

_
_ _

_
_

●

_

Posterior mode
MLE
90% CI

Gaussian
Gumbel
Survival Gumbel

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

BBVA

●
●

●

●

●

● ●

●

●

_ _
_

_
_

_ _
_

_
_ _ _

_ _
_ _

_
_

●

●
●

●

●

●

●

●

●

_
_ _

_
_

_
_

_
_

_ _ _

_
_

_
_

_
_

●

● ●

●

●

●

●

●

●

_
_ _

_

_

_
_

_
_

_
_ _

_
_

_
_

_
_

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

BNP

●

●

●

●

●

●

●

●

●

_
_

_

_

_

_
_

_

__
_

_

_

_
_

_
_

_

●

●

●

●

●

●

●

●

●

_
_

_

_

_
_ _

_

_
_

_

_

_

_
_ _

_

_

● ●

●

●

●

● ●

●

●

_ _

_

_

_
_ _

_

__ _

_

_

_
_ _

_
_

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

CBK

●

●

●

● ●

●

●

●

●

_

_
_

_ _ _

_

_

_

_

_ _ _ _ _

_

_

_

●

●

●

●

● ●

●

●

●_

_
_ _

_ _

_

_

_

_

_
_ _

_ _

_

_

_
●

●
●

●

●

●

●

●

●

_

_ _ _
_

_

_

_

_

_

_ _ _
_

_

_

_

_

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

DBK

●

●
●

●

●

●
●

●

●

_

_ _ _
_

_ _ _
__

_ _ _
_

_ _ _
_

●

● ●

●

●

●

●

●

●

_

_ _
_ _

_ _
_

__

_ _
_ _

_ _
_

_

●

● ●

●

●

●

●

●

●

_

_ _ _ _

_
_

_

_
_

_ _ _ _

_ _
_

_

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

GLE

●

●

●

●

●

●

●

●

●

_
_

_

_
_

_
_

_
__

_
_

_
_

_
_

_
_

●

●
●

●

●

●

●

●

●

_
_ _

_

_
_

_

_

__
_ _

_

_
_ _

_

_

●

● ●

●

●

●

●

●

●

_ _ _

_
_

_
_

_

__ _ _

_
_

_
_

_
_

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

ISP

●

●

●

●

●

●

●

●

●

_

_

_

_

_
_

_

_

_

_

_

_

_
_

_
_

_

_

●

●

●

●

●

●

●

●

●

_

_

_

_

_
_

_

_

_

_
_

_

_

_ _
_

_

_

●

●

●

●

●
●

●

●

●

_

_
_

_

_ _

_

_

_

_
_

_

_

_ _
_

_

_

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

2005 2006 2007 2008 2009 2010 2011 2012 2013

Year

K
en

da
ll'

s 
τ

SAN

●

●

●

●

●

● ●

●

●

_

_

_

_
_

_ _
_

_

_

_

_

_
_

_ _
_

_

●

●

●

●

●

●

●

●

●

_

_

_

_

_

_
_

_
_

_

_

_

_

_

_
_

_
_

●

●

●

●

●

●

●

●

●

_

_

_

_

_

_
_

_
_

_

_

_

_

_

_
_

_
_

Figure 3. Cont.
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Figure 3. Kendall’s τ posterior modes with corresponding 90% credible intervals of copula parameters
of the latent factor copula model with Gumbel (red), Gaussian (blue) and survival Gumbel (green)
linking copulas.
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Figure 4. Contour plots with standard normal margins for ACA and latent factor pairs (uACA,t, v̂t) for
2005 (Top) and 1 July 2008 to 30 June 2009 (Bottom). Empirical densities are indicated by solid black
lines, while dotted blue lines show the theoretical densities.
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5.3. Value at Risk and Expected Shortfall Forecasts

Value at risk (VaR) is one of the most widely used metrics to measure risk of financial assets.
Furthermore, many current industry regulations such as Basel II/III (Basel Committee on Banking
Supervision 2006, 2011) and Solvency II (European Parliament and Council 2009) use VaR to measure
the risk exposure of banks and insurance companies. In recognition of the importance of VaR in
real-world applications, we provide a blueprint for implementation as well as rigorous statistical
verification of our model’s forecasting performance.

Expected shortfall (ES) is a risk measure that is based on VaR, and is slated to replace VaR as the prime
risk measure imposed by regulators (see, for example, Basel Committee on Banking Supervision (2013)).
In contrast to VaR, ES is a coherent risk measure, and a worst-case value can be derived by using
the comonotonic copula (McNeil et al. 2005, Remark 6.17.). However, ES is only defined for random
variables with a finite mean, which might be problematic when modeling operational losses or the
losses resulting from natural catastrophes.

Forecasting Method

As in Section 5.2, we estimated the copula dependence model using data from the previous year
so that the forecasts for the current year are obtained out-of-sample; for example, we learned the copula
using data from 2005, and used this copula without any further adjustments to generate forecasts for
each trading day in 2006. We combine the yearly changing copula with the daily updated DLMs to
obtain up-to-date forecasts for each trading day. Our DLM-filtered copula data cover the years 2005
to 2013, so the resulting forecasts were for 2006 to 2014. For each day, we drew 1, 000 samples from
that year’s copula, and transformed the (0, 1)-copula data to the observation scale using the sequential
step-ahead forecast t-distributions of the marginal time series DLMs.

We used a family-restricted regular vine copula (RVR) as a benchmark model to test our latent
factor copula against. We allowed the pair copula families to be Gaussian, Student’s t, (survival)
Gumbel, Frank or BB1; these copulas can describe tail-dependent and tail-independent, and symmetric
and asymmetric dependence characteristics. The tree structure and pair copula families were selected
using Dißmann et al. (2013)’s selection strategy as implemented in Schepsmeier et al. (2014)’s R
package VineCopula. We then generated Bayesian parameter estimates using Gruber and Czado (2015)’s
MCMC-based C++ software (we only used the within-model moves, not the between-model moves
for model selection). In a last step, we simulated (0, 1) copula observations from the posterior sample,
and transformed them to the observation level as above.

Portfolio Composition

We use a constant mix strategy with equal weights in all stocks and daily re-balancing; this is
without loss of generality. Figure 5 shows the portfolio value process of this portfolio. After an initial
gain of more than 40%, the portfolio value plunged to less 50% of the initial value, and never fully
recovered to pre-crisis highs; it should be noted that the dismal performance of this portfolio is the result
of investing in financials exclusively, and not the result of an overly poor portfolio weights strategy.
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Figure 5. Historical relative portfolio value of a constant mix strategy with equal weights in the 8 bank
stocks ACA, BBVA, BNP, CBK, DBK, GLE, ISP and SAN for years 2006 to 2013. Portfolio weights are
readjusted daily. The 90% empirical VaR is shown in blue and the 90% empirical ES is in green.

Value at Risk Forecasts

Figure 6 shows the dynamic VaR forecasts provided by our Gaussian latent factor copula
(in conjunction with marginal time series DLMs); our VaR forecasts are the 10% quantiles of each day’s
1, 000 simulated portfolio returns. This figure shows that our dynamic combined multivariate time
series model adapts quickly to changing market volatilities and eliminates the clustered occurrence
of VaR violations found in an empirical constant volatility model (see right sub-figure of Figure 5).
The realized frequency of VaR violations at the predicted levels was closest to the theoretical value of
10% for forecasts from the Bayesian Gumbel latent factor copula (10.17%), followed by the frequentist
Gumbel latent factor copula (10.60%), and the regular vine copula (9.64%); furthermore, the Bayesian
version of the latent factor copula always out-performed the frequentist version with the same choice
of linking copula (Table 8).
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Figure 6. Daily log-returns of the equally weighted constant mix portfolio with (negative) 90% VaR
(blue line) and ES (green line) forecasts.

In further analyses, we utilized the conditional coverage test suggested by (Christoffersen 2011,
Chapter 13) to evaluate the performance of our models’ VaR forecasts. This test jointly analyzes the
rate of VaR violations as well as whether they occur independently. Specifically, the null hypothesis
of this test is that the hit sequence of (1− α%) VaR violations is a first-order Markov chain, where
violations happen with probability α and are independent of the current state of the chain. Again, the
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Bayesian latent factor copula with Gumbel linking copulas fares best, showing the highest p-value of
0.44 (Table 8). Most noteworthy is that all frequentist latent factor copula models can be rejected at the
10% level, while all Bayesian latent factor copulas and the Bayesian regular vine copula pass.

Table 8. Frequency of 90% VaR violations and 90% ES of an equals weights portfolio of all eight
selected financial stocks, and p-values of conditional coverage test of VaR violations. RVR denotes the
multivariate regular vine copula model; the other columns are for the dynamic factor copula model
with the respective linking copula families. The best values are emphasized in bold.

Gumbel Gaussian Survival Gumbel

RVR ARMGS MLE ARMGS MLE ARMGS MLE

90% VaR viol. 9.64% 10.17% 10.60% 9.59% 9.36% 9.35% 9.17%
90% ES 4.07% 4.00% 3.88% 4.10% 4.08% 4.13% 4.08%
p-value, cond. coverage test 0.24 0.44 0.07 0.30 0.01 0.10 0.03

Although regulators often require higher confidence levels such as 99%, 99.5% or even 99.9%,
producing robust estimates at these levels is not statistically feasible unless unrealistically big training
data is available (see, e.g., McNeil et al. 2005, Example 7.15). In our study, no reliable results could be
obtained about such extreme quantiles.

Expected Shortfall Forecasts

The empirical 90% ES of our equal weights portfolio from 2006 through 2014 was 4.58%, and
the forecasts range between 4.00% and 4.13% for Bayesian latent factor copulas, 3.88% and 3.08% for
frequentist latent factor copulas, and 4.07% for the regular vine copula (Table 8).

There are no universally accepted backtests for ES, as academic and regulatory discussions are
ongoing (Embrechts et al. 2014). Part of the problem is that ES is not elicitable, which means that
there is no obvious way to compare different ES forecasts. In this paper, we compare ES forecasts
with the observed ES at the 90% level instead: using this decision criterion, our Bayesian latent factor
model with survival Gumbel linking copulas yields performed best. Again, all frequentist latent factor
copulas are out-performed by their Bayesian peers (Table 8).

6. Summary Comments

Latent factor copulas offer a simple and elegant way to parsimoniously model multivariate
dependence and achieve scalability to high dimensions. Allowing for different choices of linking
copulas, they provide sufficient flexibility to be used in a wide range of multivariate applications.

Our proposed Bayesian inference strategy utilizes adaptive rejection Metropolis sampling within
Gibbs sampling for posterior simulation (Section 3). A main benefit to the end-user is that no tuning
of MCMC proposals is required, given that ARMS is an adaptive method. At the same time, our
analyses showed that adaptive rejection Metropolis sampling within Gibbs sampling (“ARMGS” in
earlier sections) is a potent strategy that out-performed regular Metropolis-Hastings samplers with
ease (see Section 4).

Our case study on forecasting the portfolio Value at Risk (VaR) and Expected Shortfall (ES)
demonstrated that Bayesian latent factor copulas generated substantially improved risk forecasts
than frequentist ones, and also out-performed the benchmark regular vine copula in terms of forecast
accuracy (Section 5). We expect that these findings will impact industry best practices as well as
regulatory requirements to potentially increase resilience of world financial markets.

Methods for model selection of linking copulas as well as time-varying extensions of the latent
factor copula model are the subject of ongoing research. For example, we could potentially expect that
the dependence parameters of the linking copulas change over time. Furthermore, Bayesian extensions
allowing for several latent factors and/or structured factor copulas as proposed in Krupskii and Joe (2015)
are future research directions.
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Appendix A. MCMC Sampling Methods

Appendix A.1. Details on MCMC Sampling Schemes

Mode and Curvature Matching (MCM)

This strategy uses Beta(αt, βt)-distributed (αt, βt > 0) proposal distributions for each latent factor
vt ∈ (0, 1), and a truncated normal distribution N[a,b](µj, σ2

j ) for the Fisher z parameters zj of each
linking copula.

The mode and curvature of the Beta(αt, βt) distribution with density f (vt; αt, βt) are

modevt(αt, βt) =
αt − 1

αt + βt − 2
for αt, βt > 1; and

curvvt(vt, αt, βt) :=
∂2 f (vt; αt, βt)

∂v2
t

=
1

B(αt, βt)

(
vαt−3

t (1− vt)
βt−3

(
α2

t + v2
t (αt + βt − 3)(αt + βt − 2)

−2(αt − 1)vt(αt + βt − 3)− 3αt + 2)) .

The mode and curvature of the truncated normal N[a,b](µj, σ2
j ) proposals for zj are

modezj(µj) = µj for a ≤ µj ≤ b; and

curvzj(zj, µj, σj) =
e
−

(zj−µj)
2

2σ2
j (µ2

j − σ2
j + z2

j − 2µjzj)
√

2π σ5
j

(
Φ
( b−zj

σj

)
−Φ

( a−zj
σj

)) for zj ∈ [a, b].

Numerically unstable behavior of the copula density functions at perfect dependence requires
truncation of the allowable parameter range of the linking copulas. We limit the range of allowable
Kendall’s τ to [0, 0.99], which translates to allowable Fisher z parameters zj ∈ [z(0), z(0.99)] =: [a, b].

The proposal parameters αt, βt, µj and σ2
j are chosen such that the mode and curvature of

the proposal distributions agree with the ones of the respective full conditional distributions. The
calculations are performed using numerical methods.

Expectation and Variance Matching (EVM)

This strategy is basically the same as the previous one, but it matches the proposals’ and full
conditionals’ expectation and variances instead of their modes and curvatures. In another deviation
from the previous approach, we use Gamma-distributed proposals for the Fisher z parameters here
instead of truncated normal proposals used above.

The expectation and variance of the Beta(αt, βt) proposals for the latent factor vt are

Evt(αt, βt) =
αt

αt + βt
; and

Vvt(αt, βt) =
αtβt

(αt + βt)
2(αt + βt + 1)

.
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Given expectation 0 < Evt < 1 and variance 0 < Vvt < ∞ of the full conditional distribution
of vt, this simple functional form enables analytic solution for the parameters αt and βt of the
proposal distribution:

αt =
−Evt(E2

vt −Evt +Vvt)

Vvt

; and

βt = αt

(
1
Evt

− 1
)

.

For non-negative Fisher z parameters zj, j = 1 : d, of the linking copulas, we utilize
Gamma(sj, rj)-distributed proposals, sj, rj > 0, with expectation and variance

Ezj(sj, rj) =
sj

rj
; and

Vzj(sj, rj) =
sj

r2
j

.

Given expectation 0 < Ezj < ∞ and variance 0 < Vzj < ∞ of the full conditional distribution of
zj, the proposal parameters sj and rj follow as

sj =
E2

zj

Vzj

; and

rj =
sj

Ezj

.

Again, the expectation and variance of the full conditional distributions are evaluated using
a numerical scheme.

Independence and Random Walk Samplers (IRW)

A numerically less complex alternative to the previous methods, this strategy employs
an independence sampler for the latent factors vt, t = 1 : T, and a random walk sampler for the
Fisher z parameters zj, j = 1 : d.

Proposals for each latent factor vt are drawn from a Uni f (0, 1) distribution, and are independent
of the current state of the sampling chain.

The proposal for the (r + 1)-st iteration zr+1
j of parameter zj is drawn from a truncated normal

distribution N[a,b](µ
r+1
j , σ2

j ) with random walk means µr+1
j = zr

j . The proposal variances σ2
j are chosen

such that the acceptance rate is roughly 23%, which is the optimal acceptance rate for multivariate
normal random walk proposals (Roberts et al. 1997).

Adaptive Rejection Metropolis within Gibbs Sampling (ARMGS)

The last sampling method is adaptive rejection Metropolis sampling (ARMS) from the full
conditionals of each variable vt, t = 1 : T, and zj, j = 1 : d; this strategy is called adaptive rejection
Metropolis sampling within Gibbs sampling (ARMGS; Gilks et al. (1995)). ARMS extends acceptance
rejection sampling by a adaptive exponential envelope and a Metropolis-Hastings acceptance/rejection
step. The acceptance/rejection step ensures proper sampling in case of a density that is not fully
covered by the exponential envelope.

A major advantage of ARMS is that it adapts automatically to characteristics of the target
distribution. For univariate log-concave target densities, ARMS creates an envelope for rejection
sampling, while for other univariate target densities, ARMS uses acceptance/rejection sampling.
In spite of being applicable to sample from general univariate target distributions, ARMS demonstrates
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good performance in many situations and is particularly appealing in the context of Gibbs sampling
with complex full conditional distributions.

Block ARMS is a multivariate extension to ARMS. Instead of sampling each vt, t = 1 : T,
and zj, j = 1 : d, individually, some or all of them can be sampled jointly from their multivariate
block full conditional distribution. As this strategy did not perform well in our initial analyses
(Schamberger 2015, Chapter 8), we will not discuss it here.

Appendix A.2. Strategy to Find Starting Values for MCMC

All methods discussed above require starting values for all parameters v and z. Good starting
values can improve convergence speed of these MCMC methods and can also be used as an initial
values for maximum likelihood estimation.

We propose a two-step heuristic that first chooses starting values for the Fisher z parameters z of
the linking copulas, and then chooses starting values for the latent factor v.

Starting Values for z:

In order to estimate z, one series j ∈ {1, . . . , d} is chosen as a proxy for latent factor v. We do
this by selecting the 1-truncated c-vine copula that maximizes the sum of absolute Kendall’s τ’s of all
linking copulas and choosing the root node variable j∗ of this c-vine as the proxy for v. The starting
values of the Fisher z parameters z−j∗ = (zj)j∈{1:d}\{j∗} are set to the Fisher z parameter of the pair
copula linking the corresponding series u:,j, j ∈ {1:d} \ {j∗}, with the root node variable u:,j∗ . For the
Fisher z parameter zj∗ of the linking copula that connects the root node variable u:,j∗ to the latent factor
v, we use the highest absolute value of Fisher z parameters appearing in the c-vine as the starting value.

Starting Values for v:

Given starting values for the Fisher z parameters z, we set the latent factors v = (v1, . . . , vT) to
the modes of their full conditional densities.

Formal Procedure:

We generate starting values for posterior sampling of z and v, given T observations of
d-dimensional data u = (ut,:)t=1:T with uniform marginals as follows.

1. Calculate the empirical d× d Kendall’s τ matrix T = (τij)i=1:d,j=1:d, where τij denotes the empirical
Kendall’s τ between series u:,i and u:,j.

2. Find the column j∗ of T that maximizes the sum of absolute Kendall’s τ’s,

j∗ = arg max
j=1:d

{
∑

i=1:d
|τij|

}

3. Set the starting values z0 = (z0
1, . . . , z0

d) for the Fisher z parameters z of the linking copulas to

z0
i = z

(
τij∗
)

for i ∈ {1 : d} \ {j∗}

z0
j∗ = z

(
max

i={1:d}\{j∗}
τij∗

)

4. Set the starting values v0 = (v0
t )t=1:T of the latent factor v to

v0
t = arg max

v∈(0,1)

{
p(v | ut, z0)

}
,

where p is the full conditional density of vt given by (12).
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Appendix B. Detailed Simulation Results

Table A1. Mean absolute deviation (MAD), mean squared errors (MSE), effective sample size (ESS) per minute, and coverage of 90% and 95% credible intervals for
Kendall’s τ posterior sample. Results are averages over 100 independent replications of the analysis.

Low τ High τ Mixed τ

ARMGS MCM EVM IRW MLE ARMGS MCM EVM IRW MLE ARMGS MCM EVM IRW MLE

τ1

MAD 0.0829 0.0762 0.0898 0.0829 0.0656 0.0359 0.0352 0.0359 0.0357 0.0260 0.0431 0.0427 0.0432 0.0431 0.0321
MSE 0.0203 0.0104 0.0269 0.0203 0.0099 0.0020 0.0020 0.0020 0.0020 0.0011 0.0029 0.0028 0.0029 0.0029 0.0016
ESS/min 9.5 0.5 0.3 13.7 n/a 37.2 2.5 2.1 35.5 n/a 46.8 3.1 1.6 60.2 n/a
90% C.I. 0.92 0.65 0.93 0.92 n/a 0.89 0.88 0.89 0.88 n/a 0.97 0.96 0.97 0.97 n/a
95% C.I. 0.97 0.76 0.96 0.95 n/a 0.94 0.94 0.94 0.94 n/a 0.98 0.98 0.97 0.98 n/a

τ2

MAD 0.0936 0.0832 0.0831 0.0916 0.0652 0.0334 0.0338 0.0335 0.0336 0.0259 0.0487 0.0486 0.0483 0.0492 0.0388
MSE 0.0246 0.0116 0.0156 0.0229 0.0076 0.0017 0.0018 0.0017 0.0018 0.0010 0.0037 0.0037 0.0036 0.0038 0.0022
ESS/min 7.9 0.6 0.2 11.6 n/a 33.2 2.2 1.8 31.5 n/a 37.6 2.9 1.8 46.7 n/a
90% C.I. 0.91 0.58 0.92 0.89 n/a 0.83 0.81 0.84 0.81 n/a 0.85 0.85 0.87 0.82 n/a
95% C.I. 0.96 0.67 0.96 0.93 n/a 0.92 0.88 0.92 0.92 n/a 0.92 0.91 0.92 0.92 n/a

τ3

MAD 0.1070 0.0913 0.1144 0.0930 0.0811 0.0276 0.0279 0.0276 0.0277 0.0198 0.0406 0.0399 0.0407 0.0406 0.0290
MSE 0.0298 0.0131 0.0354 0.0163 0.0137 0.0012 0.0012 0.0012 0.0012 0.0006 0.0026 0.0025 0.0026 0.0026 0.0013
ESS/min 5.1 0.5 0.2 8.1 n/a 25.9 1.8 1.5 23.9 n/a 19.1 2.2 1.5 31.1 n/a
90% C.I. 0.91 0.50 0.86 0.88 n/a 0.90 0.87 0.90 0.90 n/a 0.87 0.87 0.86 0.84 n/a
95% C.I. 0.96 0.61 0.95 0.93 n/a 0.95 0.93 0.96 0.95 n/a 0.93 0.93 0.93 0.92 n/a

τ4

MAD 0.1142 0.0983 0.1144 0.1231 0.0787 0.0252 0.0239 0.0254 0.0253 0.0172 0.0404 0.0401 0.0407 0.0401 0.0288
MSE 0.0302 0.0145 0.0301 0.0369 0.0120 0.0010 0.0009 0.0010 0.0010 0.0005 0.0026 0.0025 0.0026 0.0026 0.0013
ESS/min 4.7 0.6 0.2 6.8 n/a 15.7 1.2 1.0 14.4 n/a 2.8 0.8 0.4 6.8 n/a
90% C.I. 0.88 0.42 0.89 0.83 n/a 0.86 0.86 0.86 0.87 n/a 0.84 0.74 0.86 0.82 n/a
95% C.I. 0.94 0.49 0.91 0.89 n/a 0.93 0.90 0.92 0.93 n/a 0.89 0.79 0.89 0.86 n/a

τ5

MAD 0.1463 0.1008 0.1507 0.1251 0.0787 0.0241 0.0249 0.0244 0.0245 0.0170 0.0817 0.0459 0.0855 0.0801 0.0406
MSE 0.0524 0.0150 0.0557 0.0346 0.0094 0.0009 0.0010 0.0010 0.0010 0.0004 0.0099 0.0034 0.0106 0.0094 0.0023
ESS/min 3.3 0.5 0.1 5.6 n/a 6.7 0.4 0.4 5.8 n/a 0.8 0.4 0.1 1.0 n/a
90% C.I. 0.94 0.49 0.91 0.92 n/a 0.97 0.80 0.98 0.97 n/a 0.81 0.48 0.82 0.71 n/a
95% C.I. 0.98 0.51 0.93 0.94 n/a 1.00 0.92 1.00 1.00 n/a 0.93 0.57 0.92 0.81 n/a



Econometrics 2017, 5, 21 21 of 23

Appendix C. Sequential Learning of DLMs

Priors at time t:

The prior for the states (θjt, λjt) given time t− 1 information set Dt−1 is normal-gamma

(θjt, λjt)|Dt−1 ∼ NG(ajt, Rjt, rjt, cjt) (A1)

with parameters ajt ∈ R3, Rjt ∈ R3×3, rjt, cjt > 0. The normal-gamma distribution is

θjt|λjt,Dt−1 ∼ N(ajt, Rjt/(cjtλjt)) (A2)

λjt|Dt−1 ∼ G(rjt/2, rjtcjt/2). (A3)

Forecasts at time t:

The unconditional forecast distribution of yjt given time t− 1 information set Dt−1 is obtained by
integrating observation Equation (14) over the prior distribution of θjt and λjt:

yjt|Dt−1 ∼ Trjt( f jt, qjt), (A4)

with degrees of freedom rjt, mean f jt = F ′jtajt and variance factor qjt = F ′jtRjtFjt + cjt. Here Trjt( f jt, qjt)

denotes a non-standard t distribution, which is a location-scale transformation of a t distribution with
rjt degrees of freedom, Trjt :

Trjt( f jt, qjt) = f jt +
√

qjtTrjt . (A5)

Posteriors at time t:

Upon observation of yjt, the posterior distribution of (θjt, λjt) given information set Dt :=
{Dt−1, yjt} is normal-gamma

(θjt, λjt)|Dt ∼ NG(mjt, Cjt, njt, sjt) (A6)

with parameters mjt = ajt + Ajtejt, Cjt = (Rjt − Ajt A′jtqjt)zjt, njt = rjt + 1, sjt = zjtcjt; these can
be calculated using the adaptive coefficient vector Ajt = RjtFjt/qjt, forecast error ejt = yjt − f jt,
and volatility update factor zjt = (rjt + e2

jt/qjt)/njt.

Evolution to time t + 1:

The step-ahead prior for (θj,t+1, λj,t+1) given time t information set Dt is normal-gamma

(θj,t+1, λj,t+1)|Dt ∼ NG(aj,t+1, Rj,t+1, rj,t+1, cj,t+1), (A7)

where aj,t+1 = mjt, Rj,t+1 = Cjt/δ, rj,t+1 = βnjt, cj,t+1 = sjt, and β, δ ∈ (0, 1) are discount factors.
This normal-gamma distribution is obtained via normal evolution of θjt in system Equation (A8) and
beta discount evolution of λjt in system Equation (A10).

The system equation for state vector θjt is

θj,t+1 = θjt + ωj,t+1, ωj,t+1 ∼ N(0, Wj,t+1), (A8)

where the innovation variances Wj,t+1 = (1− δ)/δCjt are set to inflate the posterior variance Cjt by
the reciprocal of discount factor δ:

Rj,t+1 = Cjt + Wj,t+1 = Cjt +
1− δ

δ
Cjt =

1
δ

Cjt. (A9)
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The precisions λjt evolve through the application of Beta-shocks with discount factor β,

λj,t+1 =
γj,t+1

β
λjt, γj,t+1 ∼ Beta

(
βnjt

2
,
(1− β)njt

2

)
. (A10)
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