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Abstract: We discuss several multivariate extensions of the Multiplicative Error Model to take into
account dynamic interdependence and contemporaneously correlated innovations (vector MEM or
vMEM). We suggest copula functions to link Gamma marginals of the innovations, in a specification
where past values and conditional expectations of the variables can be simultaneously estimated.
Results with realized volatility, volumes and number of trades of the JNJ stock show that significantly
superior realized volatility forecasts are delivered with a fully interdependent vMEM relative to
a single equation. Alternatives involving log-Normal or semiparametric formulations produce
substantially equivalent results.
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1. Introduction

Dynamics in financial markets can be characterized by many indicators of trading activity such as
absolute returns, high-low range, number of trades in a certain interval (possibly labeled as buys or
sells), volume, ultra-high frequency based measures of volatility, financial durations, spreads and so on.

Engle (2002) reckons that one striking regularity behind financial time series is that persistence
and clustering characterizes the evolution of such processes. As a result, the dynamics of such variables
can be specified as the product of a conditionally deterministic scale factor, which evolves according to
a GARCH-type equation, and an innovation term which is iid with unit mean. Such models are labeled
Multiplicative Error Models (MEM) and can be seen as a generalization of the GARCH (Bollerslev 1986)
and of the Autoregressive Conditional Duration (ACD, Engle and Russell (1998)) approaches. One
of the advantages of such a model is to avoid the need to resort to logs (not possible when zeros are
present in the data) and to provide conditional expectations of the variables of interest directly (rather
than expectations of the logs). Empirical results show a good performance of these types of models
in capturing the stylized facts of the observed series (e.g., for daily range, Chou (2005); for volatility,
volume and trading intensity Hautsch (2008)).

The model was specified by Engle and Gallo (2006) in a multivariate context (vector MEM or
vMEM) allowing just the lagged values of each variable of interest to affect the conditional expectation
of the other variables. Such a specification lends itself to producing multi-step ahead forecasts: in
Engle and Gallo (2006) three different measures of volatility (absolute returns, daily range and realized
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volatility), influence each other dynamically. Although such an equation-by—equation estimation
ensures consistency of the estimators in a quasi-maximum likelihood context, given the stationarity
conditions discussed by Engle (2002), correlation among the innovation terms is not taken into account
and leads to a loss in efficiency.

However, full interdependence is not allowed by an equation-by—equation approach both in the
form of past conditional expectations influencing the present and a contemporaneous correlations
of the innovations. The specification of a multivariate distribution of the innovations is far from
trivial: a straightforward extension to a joint Gamma probability distribution is not available except
in very special cases. In this paper, we want to compare the features of a novel maximum likelihood
estimation strategy adopting copula functions to other parametric and semiparametric alternatives.
Copula functions allow to link together marginal probability density functions for individual
innovations specified as Gamma as in Engle and Gallo (2006) or as zero—augmented distributions
(as in Hautsch et al. (2013), distinguishing between the zero occurrences and the strictly positive
realizations). Copula functions are used in a Multiplicative Error framework, but in a Dynamic
Conditional Correlation context by Bodnar and Hautsch (2016). Within a Maximum Likelihood
approach to the vector MEM, we want also to explore the performance of a multivariate log-Normal
specification for the joint distribution of the innovations and the semiparametric approach presented
in Cipollini et al. (2013) resulting in a GMM estimator. The range of potential applications of a vector
MEM is quite wide: dynamic interactions among different values of volatility, volatility spillovers
across markets (allowing multivariate-multi-step ahead forecasts and impulse response functions,
order execution dynamics Noss (2007) specifies a MEM for execution depths).

This paper aims at discussing merits of each approach and their performance in forecasting
realized volatility with augmented information derived from the dynamic interaction with other
measures of market activity (namely, the volumes and the number of trades). We want conditional
expectations to depend just on past values (not also on some contemporary information as in
Manganelli (2005) and Hautsch (2008)).

What the reader should expect is the following: in Section 2 we lay out the specification of
a vector Multiplicative Error Model, discussing the issues arising from the adoption of several types
of copula functions linking univariate Gamma marginal distributions. In Section 3 we describe the
Maximum Likelihood procedure leading to the inference on the parameters. In Section 4 we discuss
the features of a parametric specification with a log-Normal and of a semiparametric approach
suggested by Cipollini et al. (2013). In Section 5 we present the empirical application to three series of
market trading activity, namely realized kernel volatility, traded volumes and the number of trades.
The illustration is performed on the JNJ stock over a period between 2007 and 2013. What we find
is that specifying the joint distribution of the innovations allowing for contemporaneous correlation
dramatically improves the log-likelihood over an independent (i.e., equation-by—equation) approach.
Richer specifications (where simultaneous estimation is unavoidable) deliver a better fit, improved
serial correlation diagnostics, and a better performance in out—of-sample forecasting. The Student-T
copula possesses better features than the Normal copula. Overall, the indication is that we will
have significantly superior realized volatility forecasts when other trading activity indicators and
contemporaneous correlations are considered. Concluding remarks follow.

2. A Copula Approach to Multiplicative Error Models

Let x; be a K—dimensional process with non-negative components. A vector Multiplicative Error
Model (vMEM) for x; is defined as

xe = u © & = diag(pt)es, (1)
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where © indicates the Hadamard (element-by—element) product and diag(-) indicates a diagonal
matrix with its vector argument on the main diagonal. Conditionally upon the information set F;_1,
a fairly general specification for p; is

= w+axi 1+ ) + B, @)
where w is (K, 1) and «, ¢ and B are (K, K). The vector ng) has a generic element x; ; multiplied by
a function related to a signed variable, be it a positive or negative return (0,1 values) or a signed
trade (buy or sell 1, —1 values), as to capture asymmetric effects. Let the parameters relevant for y; be
collected in a vector 6.

Conditions for stationarity of y; are a simple generalization of those of the univariate case
(e.g., Bollerslev (1986); Hamilton (1994)): a vMEM(1,1) with y; defined as in Equation (2) is stationary
in mean if all characteristic roots of A = « + B + /2 are smaller than 1 in modulus. We can think of
A as the impact matrix in the expression

E (xt+1 |ft—1> =M1 = @+ Apyp g
If more lags are considered, the model is
- )
Bt = w + Z ["‘lxtfl + x|+ .Blﬂtfl} , 3)

I=1

where L is the maximum lag occurring in the dynamics. It is often convenient to represent the system (3)
in its equivalent companion form

]’lf+L|t71 =w+ A*”?JrLfl\tfl , 4)
where :”:+L|t—1 = (]‘t-i—L\t—l/'.ut+L—1\t—1/"-'/'.ut+1|t—1) is a KL x 1 vector obtained by stacking its
elements columnwise and

AF — A Ay Ar
=) Ox(—1)x

with Ay =+ B +7/2,1=1,...,L Igg_1)isaK(L — 1) x K(L — 1) identity matrix and Og(; 1) x
isa K(L — 1) x K matrix of zeros. The same stationarity condition holds in terms of eigenvalues of A*.

The innovation vector &; is a K-dimensional iid process with probability density function (pdf)
defined over a [0, +00)K support, the unit vector 1 as expectation and a general variance-covariance
matrix X,

et| Fr-1 ~ DT (1,X). @

The previous conditions guarantee that
E(xi|Fi1) = (6)
V(x| Fi—1) = ppy © T = diag(p;) Z diag(pr), (7)

where the latter is a positive definite matrix by construction.
The distribution of the error term &|F;_1 can be specified in different ways. We discuss here
a flexible approach using copula functions; different specifications are presented in Section 4.
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Using copulas (cf., among others, Joe (1997) and Nelsen (1999), Embrechts et al. (2002),
Cherubini et al. (2004), McNeil et al. (2005) and the review of Patton (2013) for financial applications),
the conditional pdf of &|F;_1 is given by

fe (Stlftq) = C(”t; 5) ﬁfi (Et,i; ¢i>/ 8

where c(uy; §) is the pdf of the copula, fi(e;; ¢;) and uy; = Fi(es;; ¢;) are the pdf and the cdf,
respectively, of the marginals, ¢ and ¢; are parameters. A copula approach, hence, requires the
specification of two objects: the distribution of the marginals and the copula function.

In view of the flexible properties shown elsewhere (Engle and Gallo 2006), for the first we
adopt Gamma pdf’s (but other choices are possible, such as Inverse-Gamma, Weibull, log-Normal,
and mixtures of them). This has the important feature of guaranteeing an interpretation of a Quasi
Maximum Likelihood Estimator even if the choice of the distribution is not appropriate. For the second,
we discuss some possible specifications within the class of Elliptical copulas which provides an unified
framework encompassing the Normal, the Student-T and any other member of this family endowed
with an explicit pdf.

Elliptical copulas have interesting features and widespread applicability in Finance (for details
see McNeil et al. (2005), Frahm et al. (2003), Schmidt (2002)). They are copulas generated by Elliptical
distributions, exactly in the same way as the Normal copula and the Student-T copula stem from the
multivariate Normal and Student-T distributions, respectively.!

We consider a copula generated by an Elliptical distribution whose univariate ‘standardized’
marginals (intended here with location parameter 0 and dispersion parameter 1) have an absolutely
continuous symmetric distribution, centered at zero, with pdf ¢(.;v) and cdf G(.;v) (v represents
a vector of shape parameters). The density of the copula can then be written as

g1 (q’R’lq; v, K)

| (q?; V) Y

CE (u; R,v) = K* (V,K) |R|’1/2

for suitable choices of K*(.,.), 1(.;.,.) and g2(.;.), where g = (q1;-.-;9x), i = G~ (u;; v).

Two notable cases will be considered. The first is the Normal copula (McNeil et al. (2005),
Cherubini et al. (2004), Bouyé et al. (2000)); with no explicit shape parameter v, we have K*(K) =1,
21(x;K) = g2(x) = exp(—x/2). The pdf in Equation (9) becomes:

. 1 -
enr ) = IR V2exp | (4R g —q'a) . 1o

where g = (q1;...;q9k), 9i = ® !(u;) and ®(x) denotes the cdf of the standard Normal distribution
computed at x.

The Normal copula has many interesting properties: the ability to reproduce a broad range of
dependencies (the bivariate version, according to the value of the correlation parameter, is capable of
attaining the lower Fréchet bound, the product copula and the upper Fréchet bound), the analytical
tractability, the ease of simulation. When combined with Gamma(¢;, $;) marginals, the resulting
multivariate distribution is a special case of dispersion distribution generated from a Gaussian copula

In some applications, especially involving returns, their elliptical symmetry may constitute a limit (cf., for example,
Patton (2006), Okimoto (2008), Cerrato et al. (2015) and reference therein). Copulas in the Archimedean family (Clayton,
Gumbel, Joe-Clayton, etc.) offer a way to bypass such a limitation but suffer from other drawbacks and, in any case, seem
to be less relevant for the variables of interest for a VMEM (here, different indicators of trading activity). They will not be
pursued in what follows.
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(Song 2000). We note that the conditional correlation matrix of & has generic element approximately
equal to R;;, which can assume negative values too.

One of the limitations of the Normal copula is the asymptotic independence of its tails.
Empirically, tail dependence is a behavior observed frequently in financial time series (see
McNeil et al. (2005), among others). Elements of x (being different indicators of the same asset or
different assets) tend to be affected by the same extreme events. For this reason, as an alternative,
we consider the Student-T copula which allows for asymptotically dependent tails. Differently from
the Normal copula, when R = I we get uncorrelated but not independent marginals (details in
McNeil et al. (2005)). Thus, when considering the Student-T copula in Equation (9), with a scalar

K-1
I'((v ch(lizl/j)ll;(/vz/)z) , 81(x5v,K) = (1+x/v)~ K72,
@ (x;v) = (14 x/v)~+1/2, and its explicit pdf is

(0" e
r((v+1)/§> HﬁlOfFﬁ/V>%W%V

where ¢ = (q1;...;9x), i = T '(u;;v) and T(x;v) denotes the cdf of the Student-T distribution
with v degrees of freedom computed at x. Further specifications of the Student-T copula are in
Demarta and McNeil (2005).

v shape parameter, we have K*(v;K) =

cT(u;R,v)rz (11)

3. Maximum Likelihood Inference

In this section we discuss how to get full Maximum Likelihood (ML) inferences from the vMEM
with the parametric specification (3) for y; (dependent on a parameter vector 8) and a copula-based
formulation f,(&|F;_1) of the conditional distribution of the vector error term (characterized by
the parameter vector A). Inference on 8 and A can be discussed in turn, given that from the model
assumptions the log-likelihood function / is

I = télnfx (xt|}"t_1> = t_illn (f‘E (st|}"t_1> liyf,i1>
T

K
Y [lnfg (€t|ft71) - Zlnyt,,’] ~ (12)
i-1

t=1

Considering a generic time ¢, it is useful to recall the sequence of calculations:
pi(0:) = xi/ppi = eri — Fi(eri i) =up; = c(up§)  i=1,... K (13)
where 6; is the parameter involved in the i-th element of the y; vector.

3.1. Parameters in the Conditional Mean

Irrespective of the specification chosen for f¢(&:|F;_1), the structure of the vMEM allows to
express the portion of the score function corresponding to 8 as

T
Vol =—Y Asw (14)
t=1
where
A; = Vou, diag(pu) 7}, (15)

wr =& Ob+1, (16)
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by = Ve, lnf<et|]-'t_1).
In order to have a zero expected score, we need E(w¢|F;_1) = 0 or, equivalently, E(e; ® by| F;_1) = —1.
As a consequence, the information matrix and the expected Hessian are given by
E [AJ@A;} (17)
and
E [AtH(E)AQ} ) (18)

respectively, where the matrices
/
7l — [(et ® bt) (é‘t © bt) |]:t—1] — 11’
and
HO = E[Vebi(ere)) | Fia| 1

depend only on A but not on 6.
For a particular parametric choice of the conditional distribution of &;, we need to plug the specific
expression of In f, (&¢|F;_1) into b;. For instance, considering the generic copula formulation (8), then

K
1nfs(£t|]:t—1) =Inc(u) + Zlnfi(et,i) (19)
i=1

so that b; has elements
bri = fi(eri)Vau, Inc(ur) + Ve, In fi(er). (20)

In what follows we provide specific formulas for the elliptical copula formulation (9) and its
main sub-cases.

3.2. Parameters in the pdf of the Error Term

Under a copula approach, the portion of the score function corresponding to the term
Y.L In f(&/|F;_1) (cf. Equation (12)) depends on a vector A = (& ¢) (& and ¢ are the parameters of
the copula function and of the marginals, respectively—cf. Section 2),

T T K
Vyl= \Zv/\lnf(gtp-‘t,l) = ZVAln (c(ut;f,’) Hﬁ(st,i;fl’i)) .
t=1 t=1

i=1

Therefore,
T
Vel = Zivglnc(ut).
=
and
T
Ve l=Y [v(,,,a- (et,i)vuu Inc(u;) + Vg, In f; (etriﬂ.
t=1

As detailed before, beside a possible shape parameter v, elliptical copulas are characterized
by a correlation matrix R which, in view of its full ML estimation, can be expressed (cf.
McNeEeil et al. (2005), p. 235) as

R = Dc'ceD, (21)

where c is an upper-triangular matrix with ones on the main diagonal and D is a diagonal matrix with

i -1/2
diagonal entries D; = 1and D; = (1 + ZL} cf-]) forj =2,...,K. By so doing, the estimation of R
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is transformed into an unconstrained problem, since the K(K — 1) /2 free elements of ¢ can vary into R.
We can then write £ = (c;v).

Let us introduce a compact notation as follows: C = ¢D, ¢ = (4;1;---;491x), 4ii = G H(uy ;v),
Gt =C g1, qf = R 'q1, G, = /R 'q; = §,4:. We can then write

Inc(us) = InK* — ZlnD +1Ingy( qt Zlngz qtl) (22)
i=2 i=1

where we used 1 In(|R|) = YK, InD;.
In specific cases we get:
e Normal copula: nK* =0,Ing;(x) =Ing(x) = —x/2;
X . I L((v+K)/2)T(v/2)K!
e Student-T copula: InK* = In N (CESAE) , Ingi(x)
g(x) == In(1+73).

— K (1+2),

v

I
N

Parameters entering the matrix c

The portion of the score relative to the free parameters of the ¢ matrix has elements

i<j. (23)
i=2 =1

K T ~
Ve 1=V, [—T Y InD;+ ) Ingi(q,)
Using some algebra we can show that
ch Z In(D D;C;

and
Ve, n1(@) = 295 (Ing1 (3 ) Diat (7 = Gy )
By replacing them into (23), we obtain

T o~
Vc,-]-l = TD]‘CI']' + ZD]' ; q;i] (C,’th,j — ﬁt,i) V“i (11‘1 21 (ﬁt)) .

Parameters entering the vector v

The portion of the score relative to v is

V=V,

T K
TInK* + Zlngl 7)— Y. Y Ing( qu)]

t=1i=1

The derivative of In K* = In K*(v; K) can sometimes be computed analytically. For instance, for the
Student-T copula we have

V,InK* (1K) = % [1/; (VJ;K> + (K—1)¢( ) Ky (”1)] .

For the remaining quantities, we suggest numerical derivatives when, as in the Student-T case, the
quantile function G~!(x; v) cannot be computed analytically.
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Parameters entering the vector ¢

The portion of the score relative to ¢ has elements

T ~ K K
Vol =V, ) [lngl(qt) — Y Inga(qiy) + Zlnfi(et,i)] :
t=1 i=1 i=1
After some algebra we obtain
V¢il = Z [V@Fi <5t,i)dt,i + V¢i lnfi (Et,i):| ’ (24)
t=1
where
_ 1 * YT =\ _ 2
dpi = @) [Z%,iqu} Ingy (%) Vg, Ing, (%,z‘)]- (25)

For instance, if a marginal has a distribution Gamma(¢;, $;) then

Vo, fileri) =In(¢i) — (i) +1In(eri) —eri +1,
whereas Vg, F;(¢; ;) can be computed numerically.

Parameters entering the vector 0

By exploiting the notation introduced in this section, we can now detail the structure of b; entering

into (16) and then into the portion of the score function relative to 8. From (22), & © by + 1 (cf. (16))
has elements

eribri+1=c¢pifi(eri)dri+e1iVe, Infi(er;) +1 (26)

where d; ; is given in (25). For our choice, f;(¢;;) is the pdf of a Gamma(¢;, ¢;) distribution, so that

e1iVe, Infi(er;) +1= i — e1i¢;. (27)

3.2.1. Expectation Targeting

Assuming weak-stationarity of the process, numerical stability and a reduction in the number
of parameters to be estimated can be achieved by expressing w in terms of the unconditional mean
of the process, say #, which can be easily estimated by the sample mean (expectation targeting?).
Since E(x¢) = E(u) = p is well defined and is equal to

-1

L
F‘Z[I—Z(“Hrﬁﬂrzl) w, (28)
=1
Equation (3) becomes
3 7 g (-)
pt = [1 -y (0‘1 + B+ 7) pty, (“sz + 7%, +.Blﬂtfl) . (29)
=1 =1

In a GARCH framework, the consequences of this practice have been been investigated by Kristensen
and Linton (2004) and, more recently, by Francq et al. (2011) who show its merits in terms of stability

This is equivalent to variance targeting in a GARCH context (Engle and Mezrich 1995), where the constant term of the
conditional variance model is assumed to be a function of the sample unconditional variance and of the other parameters.
In this context, other than a preference for the term expectation targeting since we are modeling a conditional mean, the
main argument stays unchanged.
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of estimation algorithms and accuracy in estimation of both coefficients and long term volatility
(cf. Appendix A for some details in the present context).

From a technical point of view, a trivial replacement of y by the sample mean ¥t followed by a
ML estimation of the remaining parameters, preserves consistency but leads to wrong standard errors
(Kristensen and Linton 2004). The issue can be faced by identifying the inference problem as involving
a two-step estimator (Newey and McFadden (1994, ch. 6)), namely by rearranging (6;A) as (u; 9),
where ¢ collects all model parameters but p. Under conditions able to guarantee consistency and
asymptotic normality of (#; 9) (in particular, the existence of E(p:p}): see Francq et al. (2011)), we can

adapt the notation of Newey and McFadden (1994) to write the asymptotic variance of v/T (3T - 19) as

Qy9 Qg I
Gy'| I —GM™! [ oo ] Ly | Gy (30)
[ } oy Q —(GuM™Y)
where
Gy = E(Vyylt)
GV = E(Vg”/lt)
M = E(V”/mt),
and
T T
m=)Y m=)Y (xr—p)
=1 =1

is the moment function giving the sample average X7 as an estimator of u. The ) matrix denotes the
variance-covariance matrix of (Vyly; m;) partitioned in the corresponding blocks.

To give account of the necessary modifications to be adopted with expectation targeting, we
provide sufficiently general and compact expressions for the parameters p (the unconditional mean)
and 0 (the remaining parameters) in the conditional mean expressed by (29).

Go = E (Vogl)) = E [AtH(E)AQ}
Gy = E(Vouly) = E (AtH(S) diag(yt)_l) A
M=-1I

Qgo = E (VeliVgli) = E [AJ,@)A;}

erﬂ/ =E (Veltm;) = —E At |:E [ (bt ® St> SHFt—l} + ]l]l/:| dlag(}lt) BAil/

Q0 = E (mm}) = A1 (BZUB’ + C(Zv ® 21) C’) AV

where
= V1
A=1- o+ B+ =
l;(’ ! 2)
L
B=1-) B
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The expression for Q, , is obtained by using the technique in Horvéth et al. (2006) and
Francq et al. (2011). In this sense, we extend the cited works to a multivariate formulation including
asymmetric effects as well.

Some further simplification is also possible when the model is correctly specified since, in such
acase, H®) = —Z(®) and E [(b; © &) €}| F;_1] = —11’ leading to O, = 0and to

E [AtI(S)AQ} +E (Atz@ diag(m)*l) [ZUB’ L C (20X c’] E (diag(yt)*lz@A;)

for what concerns the inner part of (30).

3.2.2. Concentrated Log-Likelihood

Some further numerical estimation stability and reduction in the number of parameters can be
achieved—if needed—within the framework of elliptical copulas: we can use current values of residuals
to compute current estimates of R (Kendall correlations are suggested by Lindskog et al. (2003)) and of
the shape parameter v (tail dependence indices are proposed by Kostadinov (2005)). This approach
may be fruitful with other copulas as well when sufficiently simple moment conditions can be
exploited. A similar strategy can be applied also to the parameters of the marginals. For instance,
if they are assumed Gamma(¢;, ¢;) distributed, the relationship V(e;;|Fi—1) = 1/¢; leads to very
simple estimator of ¢; from current values of residuals. By means of this approach, the remaining
parameters can be updated from a sort of pseudo-loglikelihood conditioned on current estimates of
the pre-estimated parameters.

In the case of a Normal copula a different strategy can be followed. The formula of the
(unconstrained) ML estimator of the R matrix (Cherubini et al. 2004, p. 155), namely

_ 44
Q_T

where g = (q};...;9%)isa T x Kmatrix, can be plugged into the log-likelihood in place of R obtaining
a sort of concentrated log-likelihood

% —In|Q| — K + trace (Q)} +iilnﬂ(€t,i|ft—l> (31)

t=1i=1

leading to a relatively simple structure of the score function. However, this estimator of R is obtained
without imposing any constraint relative to its nature as a correlation matrix (diag(R) = 1 and positive
definiteness). Computing directly the derivatives with respect to the off-diagonal elements of R we
obtain, after some algebra, that the constrained ML estimator of R satisfies the following equations:

(R_l)ij - (R_1>,-,q;1(R_l).j =0

fori #j=1,...,K, where R; and R; indicate, respectively, the i-th row and the j—th column of the
matrix R. Unfortunately, these equations do not have an explicit solution.> An acceptable compromise

3 Even when R is a (2,2) matrix, the value of Ry, has to satisfy the cubic equation:

/ ! ! /!
R}, — RS, 1192 Ry T191 i D2 _q| _ T2 _

T

T T T
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which should increase efficiency, although formally it cannot be interpreted as an ML estimator, is to
normalize the estimator Q obtained above in order to transform it to a correlation matrix:

~ _1 _1
— 2 2
R = DQ QDQ ,

where D = diag(Q11, - - ., Qkk)- This solution can be justified observing that the copula contribution
to the likelihood depends on R exactly as if it was the correlation matrix of iid rv’s g; normally
distributed with mean 0 and correlation matrix R (see also (McNeil et al. 2005, p. 235)). Using this
constrained estimator of R, the concentrated log-likelihood becomes

N[~

T K
[— In|R| — trace(R™'Q + trace(Q)} +)Y ) Inf <8t,i\]—"t,1). (32)

t=1i=1

It is interesting to note that, as long as (31), (32) too gives a relatively simple structure of the score
function. Using some tedious algebra, we can show that the components of the score corresponding to
0 and ¢ have exactly the same structure as above, with the quantity d; ; into (25) changed to

dpj = —— (33)

where the C matrix is here given by
C=Q'Dy?QDY?Q ™ — Q7! + Ik - R + D5 - D52 diag (Q7'DY?Q)

and ¢(.) indicates here the pdf of the standard normal computed at its argument. Of course, also in
this case the parameters of the marginals can be updated by means of moment estimators computed
from current residuals (instead that via ML) exactly as explained above.

3.3. Asymptotic Variance-Covariance Matrix

As customary in ML inference, the asymptotic variance-covariance matrix of parameter estimators
can be expressed by using the Outer-Product of Gradients (OPG), the Hessian matrix, or in the
sandwich form, more robust toward error distribution misspecification. The last option is what we use
in the application of Section 5.

4. Alternative Specifications of the Distribution of Errors

4.1. Multivariate Gamma

The generalization of the univariate gamma adopted by Engle and Gallo (2006) to a multivariate
counterpart is frustrated by the limitations of the multivariate Gamma distributions available in
the literature (all references below come from (Johnson et al. 2000, chapter 48)): many of them are
bivariate formulations, not sufficiently general for our purposes; others are defined via the joint
characteristic function, so that they require tedious numerical inversion formulas to find their pdf’s.
The formulation that is closest to our needs (it provides all univariate marginal probability functions
for ¢;; as Gamma(¢;, ¢;)), is a particular version of the multivariate Gamma’s by Cheriyan and
Ramabhadran (henceforth GammaCR, which is equivalent to other versions by Kowalckzyk and
Trycha and by Mathai and Moschopoulos):

&t| Fi—1 ~ GammaCR(¢o, P, P),



Econometrics 2017, 5, 16 12 of 24

where ¢ = (¢1;...;¢x) and 0 < ¢p < min(¢y,...,¢x) (Johnson et al. 2000, pp. 454-470).
The multivariate pdf is expressed in terms of a cumbersome integral and the conditional correlations
matrix of & has generic element

$o
Fio1) = ,
V Pid;
which is restricted to be positive and is strictly related to the variances 1/¢; and 1/¢;. Given these
drawbacks, Multivariate Gamma’s will not be adopted here.

p(gt,irst,j

4.2. Multivariate Lognormal

A different specification is obtained assuming &; conditionally log-Normal,
&|Fi_1 ~ LN(m,V) with m = —0.5diag(V) (34)

where m and V are, respectively, the mean vector and the variance-covariance matrix of In &|F;_1 and
the constraint in (34) is needed in order for E(&:|F;_1) to be equal to 1 (cf. Equation (5)).

The log-likelihood function is obtained by replacing the expression of In f(&|F;_1) coming
from (34) into Equation (12), leading to

T

Z ZlnxtZ - K In(27) — —ln|V| — % Y (Ing —m)' V1(Ing —m). (35)

t=1i= t=1

Accordingly, the portion of the score related to the derivative of / in 6 (the parameters in the conditional
mean) is given by Equation (14), with A; defined as in (15) and

wy =V (Ingy —m), (36)

leading to
T
Y Vou; diag(us) 'vV! (ln & — m) =0. (37)
=1

A full application of the ML principle would require optimization of (35) also in the elements of
the matrix V. However, differently from the maximization with respect to the same parameters of
a Gaussian log-likelihood, this approach is tedious since the diagonal elements of V appear also in the
term m, complicating the constraints to preserve its positive definiteness.

A possible approach to bypass this issue would be to resort to a reparameterization of V based
on its Cholesky decomposition, as we did in Section 3 to represent the correlation matrix R in the
copula-based specifications. Here we adopted a simpler approach, based on a method of moment
estimator of the V elements. The ensuing estimation algorithm follows the sequence:

e  We compute log-residuals In & (t = 1,...,T), according to the first two steps of (13), at the current
parameter estimates;
We then estimate their variance-covariance matrix V;
We estimate m = —0.5diag(V);
We use Equation (37) to update the estimate of 6,

iterating until convergence.
Following (Newey and McFadden 1994, ch. 6) once again, the resulting asymptotic
variance-covariance matrix of 8 can be expressed as

A Qg Qgy/ I 1
avar(8) = Gy ( 1 Gy ) ( A o ) | G ) O )
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where

T
Ggg = lim E [Va (T‘l Y gtﬂ
t=1

T—o0

T
. -1
Grg = 715205 lvA (T t_zlgtﬂ
T
Qpy = lim V (T—”z th>
t=1

T—o0
T ~
Qg = lim Cov (T‘Uz th, T'/? (A — /\))

T—o0 =1

O,y = lim V (TW (7\ - A))

T—o0

gt is the t-th addend in (37) and A = vech(V) is estimated with the corresponding portion of the
variance-covariance matrix of log-residuals In&; (t =1, ..., T). After some algebra we get

Goy = — gy = — lim [T—ltilE (Atv—lA;) (39)
T

Gro = —5 tim [T‘lgv,\diag(V)V_lE (Ay)

Qgr =0 (40)

Oy {z‘+ (j—1) (Kf %) i+ (k—1) (Kf g)} —ViiVik—ViVix  i=1,..,Kj=i..,K (41)
where A; is defined in (15) and Q,,/ {1, v} indicates the (1, v)-th element of 0, /.* Because of (39)
and (40), Equation (38) simplifies to

avar(8) = Q)

-1~/ -1
00’ + 099/ G}\B’QAN G/\BIQBB’

4.3. Semiparametric

As an alternative, we can use the semiparametric approach by Cipollini et al. (2013), where the
distribution of the error term &; is left unspecified. In this case the pseudo-score equation corresponding
to the 0 parameter is again given by Equation (14), with A; defined as in (15) and

w =L (e —1). (42)

leading to the equation
T
Z Vou} diag(,ut)_l)l_1 (gg—1)=0. (43)
t=1
The ensuing estimation algorithm works similarly to the log-INormal case iterating until convergence
the following sequence:

o  We compute residuals & (t = 1,...,T), according the first two steps of (13), at the current
parameter estimates;
We estimate X as their variance-covariance matrix;
We update the estimate of  using Equation (43).

4 (40) and (41) come from standard properties of the multivariate Normal distribution: the former is implied by the fact that
all centered odd moments of In ; are zero; the latter is implied by the structure of fourth centered moments of In &;.
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The asymptotic variance-covariance matrix of fis given by

T -1

avar(f) = lhm [Tl Y E (At):flAi)
=

T—o0 -1

the form of which looks very similar to 09*61, in Equation (39).

The (pseudo-)score Equations (37) and (43) look quite similar: beside a simpler expression of
the GMM asymptotic variance-covariance matrix of , the essential difference rests in the nature of
the martingale difference (MD) w; ‘driving’ the equation. The GMM wy relies on minimal model
assumptions and does not require logs; as a consequence, it is feasible also in case of zeros in the data.
Apart from the need to take logs, the expression of w; in the log—Normal case is a MD only if In & F;_1
has —0.5 diag(V) as its mean; if this is not true, we would have a corresponding bias in estimating the
w coefficient appearing in the conditional mean p;.

5. Trading Activity and Volatility within a vMEM

Trading activity produces a lot of indicators characterized by both simultaneous and dynamic
interdependence. In this application, we concentrate on the joint dynamics of three series
stemming from such trading activity, namely volatility (measured as realized kernel volatility, cf.
Barndorff-Nielsen et al. (2011), but also Andersen et al. (2006) and references therein), volume of
shares and number of shares traded daily. The relationship between volatility and volume as relating to
trading activity was documented, for example, in the early contribution by Andersen (1996). Ever since,
the evolution of the structure of financial markets, industry innovation, the increasing participation
of institutional investors and the adoption of automated trading practices have strengthened such a
relationship, and the number of trades clearly reflects an important aspect of trading strategies. For
the sake of parsimony, we choose to focus on the realized volatility forecasts as the main product of
interest from the multivariate model exploiting the extra information in the other indicators, as well as
the contemporaneous correlation in the error terms.

The availability of ultra high frequency data allows us to construct daily series of the variables
exploiting the most recent development in the volatility measurement literature.

As aleading example, we consider Johnson & Johnson (JN]) between 3 January 2007 to 30 June 2013
(1886 observations). Such a stock has desirable properties of liquidity and a limited riskiness
represented by a market beta generally smaller than 1. Raw trade data from TAQ are cleaned according
to the Brownlees and Gallo (2006) algorithm. Subsequently, we build the daily series of realized kernel
volatility, following Barndorff-Nielsen et al. (2011), computing the value at day t as

H
h
rko=| ). k<>7h =), XX
S\ H .

where k(x) is the Parzen kernel

1—6x2+6x3 ifxe[0,1/2]

k(x) =< 2(1—x)3 ifxe (1/2,1] ,
0 otherwise
2/5
n 2
b= 35105 B/
. ﬁ ~2 7
=17

x;j is the j-th high frequency return computed according to (Barndorff-Nielsen et al. 2009, Section 2.2)
and X; is the intradaily return of the j-th bin (equally spaced on 15 min intervals). For volumes (vol),
that is the total number of shares traded during the day, and the number of trades (nt) executed during
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the day (irrespective of their size), we simply aggregate the data (sum of intradaily volumes and count
of the number of trades, respectively).

According to Figure 1, the turmoil originating with the subprime mortgage crisis is clearly
affecting the profile of the series with an underlying low frequency component. For volatility, the
presence of a changing average level was analyzed by Gallo and Otranto (2015) with a number of
non-linear MEM'’s. Without adopting their approach, in what follows we implement a filter (separately
for each indicator) in order to identify short term interactions among series apart from lower frequency
movements. The presence of an upward slope in the first portion of the sample is apparent and is
reminiscent of the evidence produced by Andersen (1996) for volumes on an earlier period. Remarkably,
this upward movement is interrupted after the peak of the crisis in October 2008, with a substantial
and progressive reduction of the average level of the variables. To remove this pattern, we adopt
a solution similar to Andersen (1996), that is, a flexible function of time which smooths out the series.
Extracting low frequency movements in a financial market activity series with a spline is reminiscent
of the stream of literature initiated by Engle and Rangel (2008) with a spline-GARCH and carried out
in Brownlees and Gallo (2010) within a MEM context.

14
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Figure 1. Time series of the trading activity indices for JNJ (3 January 2007-30 June 2013). (a,c,e) original
data; (b,d,f) data after removing the low frequency component. (a,b) realized kernel volatility (annualized
percentage); (c,d) volumes (millions); (e,f) number of trades (thousands). The spike on 13 June 2012
corresponds to an important acquisition and a buy back of some of its common stock by a subsidiary.
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In detail, assuming that this component is multiplicative, we remove it in each indicator as follows:

we take the log of the original series;

e  we fit on each log-series a spline based regression with additive errors, using time f (a progressive
counter from the first to the last observation in the sample) as an independent variable;’

e the residuals of the previous regression are then exponentiated to get the adjusted series.

When used to produce out-of-sample forecasts of the original quantities, the described approach is
applied assuming that the low frequency component remains constant at the last in-sample estimate.
This strategy is simple to implement and fairly reliable for forecasting at moderate horizons.

Table 1 shows some similarities across original and adjusted series, with some expected increase
in the correlation between volumes and number of trades in the adjusted series (due to a smaller
correlation in the corresponding low frequency components). Although still quite large overall, after
adjustment, correlations are more spread apart: as mentioned, the value concerning volumes and the
number of trades, above 0.9, is the highest one; cor(rkv, vol) is about 0.6, whereas the cor(rkv, nt) is
still above 0.7, all confirming the intuition that the information contained in other variables related to
trading activity relevant.

Table 1. Correlations for JNJ (3 January 2007-30 June 2013). rkv = realized kernel volatility; vol =
volume; nt = number of trades.

Original Low Freq. Comp. Adjusted

vol nt vol nt vol nt
rkvo 0.646 0.778 0.800 0.847 0.609 0.743
vol 0.890 0.780 0.932

5.1. Modeling Results

In the application, we consider a vVMEM on adjusted data, where the conditional expectation p;
has the form (cf. Equation (3))

Bt =+ a1x; 1 +aox o+ lef:i + Bipi-1- (44)

In order to appreciate the contribution of the different model variables, we consider alternative
specifications for the coefficient matrices a1 and B1 (% and -y; are kept diagonal in all specifications),
and for the error term.

As of the former, we consider specifications with both #; and ; diagonal (labeled D); a1 full
and B; diagonal (labeled A); 1 diagonal and B; full (labeled B); both a1 and B4 full (labeled AB).
For the joint distribution of the errors, we adopt a Student-T, a Normal and an Independent copula
(T, N and I as respective labels), in all cases with Gamma distributed marginals. As a comparison,
the AB specification is also estimated by ML with log-Normal (AB-LN) and with GMM in the
semiparametric AB-S. The estimated specifications are summarized in Table 2. When coupled with
the conditional means in the table, the specifications with the Independent copula can be estimated
equation-by—equation.

5 Alternative methods, such as a moving average of fixed length (centered or uncentered), can be used but in practice they

deliver very similar results and will not be discussed in detail here. The spline regression is estimated with the gam()
function in the R package mgcv by using default settings.
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Table 2. Estimated specifications of the vMEM defined by (1) and (44), with error distribution specified,
alternatively, by (8), or (34), or (5). Notation: I for Independent copula with Gamma marginals; N
for Normal copula with Gamma marginals; T for Student-T copula with Gamma marginals; LN for
log—Normal; S for semiparametric.

Error Distribution

Conditional Mean (Parameters)

I N T LN S
D: a1, B1, v1, , &3 diagonal D-1
A: g full; By, 1, a diagonal A1 A-N A-T
B: B1 full; &, 71, ap diagonal B-N B-T
AB: w1, B1 full; 71, &y diagonal AB-N AB-T AB-LN AB-S

Estimation results are reported in Table 3, limiting ourselves to the equation for the realized
volatility.® Among copula-based specifications, the Student-T copula turns out to be the favorite
version, judging upon a significantly higher log-likelihood function value, and lower information
criteria;” the equation-by—equation approach (Independent copula) is dominated in both respects.?

An estimation of the Diagonal model with the Normal/Student-T copula function (details
not reported) shows log-likelihood values of 1947.91, respectively, 2034.07 (relative to the base
value of 205.53 in the first column), pointing to both a substantial improvement coming from the
contemporaneous correlation of the innovations and to the joint significance of the other indicators
when the A specification is adopted. The comparison of the A («; full; 1 and 7y; diagonal) versus the B
(B1 full; 1 and v; diagonal) formulations, seems to indicate a dominance of the former, at least judging
upon the overall log-likelihood values. It is also interesting to note that model residual autocorrelation
is substantially reduced only in the case of richer parameterizations (AB), where non—diagonality in
both a1 and B captures possible interdependencies, with a sharp improvement in the LB diagnostics
(although only marginally satisfying).

In general, it seems that the more relevant contribution in determining realized volatility comes
from the lagged number of trades, but only in the AB models (some collinearity effect, diminishing
individual significance, is to be expected); the relevance of such information is also highlighted by
the Granger Causality tests, to check whether lagged model components attributable to either vol
or nt have joint significance. In detail, using three indices where the first refers to the LHS variable,
the second to the conditioning variable, and the third the lag, we test Hp : a1,,1 = 0 (j = 2,3) in the
A-based formulations; Hp : B1,,1 = 0 (j = 2,3) in the B-based formulations; Hp : a1;1 = f1,1 = 0
(j = 2,3) in the AB-based formulations.

The own volatility coefficients at lag 2 are always significant (with negative signs); surprisingly,
the leverage effect related to the sign of the returns is not.

The Normal and the Student-T specifications appear to provide similar point estimates, except for
the non-diagonal f coefficients: for the latter, once again, the picture may be clouded by collinearity,
since a formal log-likelihood test does indicate joint significance.”

All models are estimated using Expectation Targeting (Section 3.2.1). The Normal copula based specifications are estimated
resorting to the concentrated log-likelihood approach (Section 3.2.2). We omit estimates of the constant term w.

7 The estimated degrees of freedom are 8.53 (s.e. 1.16) and 8.18 (s.e. 1.05), respectively, in the A-T and AB-T formulations.
We also tried full ML estimation of the AB-N specification getting a value of the log-likelihood equal to 2046.57, very close to
the concentrated log-likelihood approach (Section 3.2.2) used in Table 3.

The stark improvement in the likelihood functions, coming from the explicit consideration of the correlation structure,
does not guarantee similar gains in the forecasting ability of the same variables. This is similar to what happens in
modeling returns, when the likelihood function of ARMA models is improved by superimposing a GARCH structure on the
conditional variances: no substantive change in the fit of the conditional mean and no better predictive ability.

No attempt at pruning the structure of the model following the automated procedure suggested in Cipollini and Gallo
(2010) was performed.
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The overview of the estimation results is complete by examining the Table 4, where we report
the square root of the estimated elements on the main diagonal of L for all specifications, showing
substantial similarity.

Table 3. Estimated coefficients of the realized volatility equation for different model formulations
(cf. Table 2) for JNJ (3 January 2007-30 June 2013). Robust t-stats in parentheses. An empty space
indicates that the specification did not include the corresponding coefficient. Rows labeled vol and
nt report the p-values for causality tests (see the text for details). Overall model diagnostics report
Log-likelihood values, Akaike and Bayesian Information Criteria, and p-values of a joint Ljung-Box

test of no autocorrelation at various lags. Last row reports the estimation time (in seconds).

D-I A1 A-N A-T B-N B-T AB-N AB-T AB-LN  AB-S
o 04967 04575  0.4194 0.4165 0.4048 0.4019 0.3687 0.3724 03630 03777
=1 (58.10) (51.94)  (48.57) (48.72) (45.25) (47.42) (39.13) (40.77) (50.76)  (45.77)
ol —0.0300 —0.0339  —0.0265 —0.0230 —0.0337 —0.0318 —0.0298
=1 (-111)  (=0.97)  (=0.75) (-054)  (—0.78)  (=0.93)  (—0.75)
» 0.0668  0.0726 0.0606 0.1897 0.1890 01691  0.1726
t-1 (1.77) (1.57) (1.36) (2.83) (2.82) (3.95) (3.51)
o —02672 —02485 —0.1878 —0.1923 —0.1950 —02054 —01778 —01827 —0.1811 —0.1790
B2 (L512)  (=3.82) (=291) (=354 (—464) (=545  (=375)  (=4.19)  (=546) (—4.64)
(o) 00252 00266  0.0265 0.0308 0.0255 0.0297 0.0171 0.0223 0.0211  0.0222
ko1 (079 (0.79) (0.83) (1.00) (0.94) (1.13) (0.41) (0.53) 0.73) (0.67)
(ko) 07223 07067  0.6793 0.6918 0.7235 0.7410 0.7588 0.7675 07626 07428
B (14190 (9.99) (9.49) (11.41) (17.23) (20.73) (14.13) (16.46) (19.22)  (15.50)
(vol) —0.0317 —00139 01138 —0.0466 —0.0909 —0.0938
P (—0.68)  (—0.32)  (~0.96)  (—044)  (—0.95) (—0.86)
(nf) 0.0492 00297  —0.0984 —0.1568 —0.0867 —0.0839
P (0.99) (0.66) (-076)  (~126)  (—0.87)  (=0.73)
vol 02658 0329 0.4558 0.4970 0.7459 0.1705 0.2717 00853  0.1550
nt 00766  0.1153 0.1724 0.3202 0.5098 0.0051 0.0077 0.0001  0.0004
loglik 20553 23975 201239 208631  1967.02 204880 204581 212512  2153.79
AIC  —37507 —43149 —397078 —4116.61 —3880.05 —4041.60 —4025.62 —4182.23 —4241.57
BIC  -258.11 —27555 —379535 —3934.69 —3704.62 —3859.67 —3811.20 —3961.32 —4027.16
LB(12) 0.0000  0.0000  0.0001 0.0001 0.0000 0.0000 0.0388 0.0141 00450  0.0596
LB(22) 0.0000  0.0000  0.0000 0.0000 0.0000 0.0000 0.0178 0.0109 00229  0.0264
LB(32) 0.0000  0.0000  0.0003 0.0003 0.0000 0.0000 0.0192 0.0132 00291  0.0267
time  0.342 0.753 2.628 15.044 2.485 14.707 2714 14.859 0.155 0.132

Table 4. Square root of the estimated elements on the main diagonal of X (cf. Equation (5)).

D-1 A-1 A-N A-T B-N B-T AB-N AB-T AB-LN AB-S
op 0209 0208 0207 0212 0209 0214 0206 0.210 0.204 0.226
oy 0254 0251 0252 0256 0257 0262 0252 0.256 0.252 0.272
o3 0227 0227 0229 0236 0232 0240 0228 0.235 0.228 0.242

Finally, the correlation coefficients implied by the various specifications are reported in Table 5,
showing that a strong correlation among innovations further supports the need for taking simultaneity
into account.

Table 5. Estimated correlation matrices of the copula functions (specifications -N and -T), and of &;
(specifications -LN and -S).

A-N A-T AB-N AB-T AB-LN AB-S
voly nty vols nty vol nty voly nty voly nt; vols nty
rkvy 0483 0.610 0505 0.626 0485 0.612 0.505 0.628 0469 0.596 0.481 0.605
voly 0.902 0.917 0.903 0.918 0.902 0.906
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The alternative log-Normal and Semiparametric formulations deliver parameter inferences
qualitatively similar to the corresponding versions based on copulas. The AIC and BIC statistics of
the log—Normal are better than the copula based formulations (for the semiparametric they are not
available); also its Ljung-Box diagnostics are marginally better.

A comparison of the estimation times across specifications!? reveals some differences. Student-T
copula based formulations are the slowest; the Normal copula based estimated with the concentrated
likelihood approach takes about 1/6 of time; finally, the log-Normal and the Semiparametric are a lot
faster (about 1/20 of the Normal based). Differences notwithstanding, the largest times involved are
very low on an absolute scale.

0

Figure 2 shows a comparison between the estimated residuals against their theoretical
counterparts in the case of the Gamma and log—Normal distributions. In both cases, the fit
seems to break apart for the tail of the distribution, pointing to the need for some care about the
evolution of volatility of volatility (a mixture of distribution hypothesis is contemplated in, say,
De Luca and Gallo (2009) in a MEM model).

Gamma log-Normal
< - o < o
™ - ° ™ - °
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Figure 2. QQ-plot between theoretical and empirical residuals for the realized volatility of JNJ.
Comparison with Gamma and log-Normal distributions. Estimation period: 3 January 2007- 30 June 2013.

5.2. Forecasting

We left the period 1 July—-31 December 2013 (128 observations) for out-of-sample forecasting
comparisons. We adopt a Diebold and Mariano (1995) test statistic for superior predictive ability using

the error measures
1 Xt

eNt = E(Xt —u)? egr = % —1—-In <llt> . (45)
where x; and y; denote here the observed and the predicted values, respectively. ey ¢ is the squared
error, and can be interpreted as the loss behind an x; Normally distributed with mean y;; similarly, eg ;
can be interpreted as the loss we can derive considering x; as Gamma distributed with mean y; and
variance proportional to ?. Comparisons are performed on both Original and Adjusted (i.e., removing
the low frequency component) series.

10 Calculations with our routines written in R were performed on an Intel i7-5500U 2.4Ghz processor. We did not perform an

extensive comparison of estimation times and we did not optimize performance by removing tracing of intermediate results.
Moreover, the copula-based and the alternative specifications are optimized resorting to different algorithms: the first ones,
more cumbersome to optimize, are estimated toward a combination of NEWUOA (Powell 2006) and Newton-Raphson; for
the second ones we used a dogleg algorithm (Nocedal and Wright 2006, ch. 4).
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Table 6 reports the values of the Diebold-Mariano test statistic of different model formulations,
against the AB-T specification (which has the lowest values of the information criteria among
copula-based specifications, cf. Table 3), considering one-step ahead predictions.

There are no substantial differences in performance between the results on the original and
the adjusted series.!! We notice a definite improvement of the specification involving simultaneous
innovations over the equation-by-equation specifications (first two rows). The Student-T Copula
improves upon the Normal formulation (marginally, line AB-N), but is substantially equivalent to the
AB-LN (slightly better) and the AB-S (slightly worse).

Table 6. Diebold-Mariano test statistics for unidirectional comparisons, against the AB-T specification,
considering 1-step ahead forecasts (out-of-sample period 1 July-31 December 2013). The error
measures are defined as ey ; = 0.5(x; — yt)z (Normal loss) and e ; = x¢/pt — 1 —In(x;/p) (Gamma
loss), where x; and y; denote the observed and the predicted values, respectively (cf. Section 5.2 for the
interpretation). Boldface (italic) indicates 5% (10%) significant statistics.

o eN,t €G,t
Specification Adjusted Original Adjusted Original
D-I —2.490 —-2.107 —2.428 —2.132
A-1 —1.358 —1.200 —-1.277 -1.173
A-N —0.668 —0.621 —0.563 —0.591
A-T —0.510 —0.449 —0.422 —0.431
B-N —0.553 —0.557 —0.449 —0.560
B-T —0.474 —0.479 —0.389 —0.490
AB-N —0.768 —0.757 —0.737 —0.708
AB-LN 0.868 0.720 0.980 0.742

AB-S —0.277 —0.230 —0.180 —0.164

6. Conclusions

The Multiplicative Error Model was originally introduced by Engle (2002) as a positive valued
product process between a scale factor following a GARCH type dynamics and a unit mean innovation
process. In this paper we have presented a general discussion of a vector extension of such a model with
a dynamically interdependent formulation for the scale factors where lagged variables and conditional
expectations may be both allowed to impact each other’s conditional mean. Engle and Gallo (2006)
estimate a vVMIEM where the innovations are Gamma-distributed with a diagonal variance—covariance
matrix (estimated equation-by-equation). The extension to a truly multivariate process requires
a complete treatment of the interdependence among the innovation terms. One possibility is to avoid the
specification of the distribution and adopt a semiparametric GMM approach as in Cipollini et al. (2013).
In this paper we have derived a maximum likelihood estimator by framing the innovation vector as
a copula function linking Gamma marginals; a parametric alternative with a multivariate log-Normal
distribution is discussed, while we show that the specification using a multivariate Gamma distribution
has severe shortcomings.

We illustrate the procedure on three indicators related to market trading activity: realized volatility,
volumes, and number of trades. The empirical results are presented in reference to daily data on the
Johnson and Johnson (JNJ) stock. The data on the three variables show a (slowly moving) time varying
local average which was removed before estimating the parameters. The three components are highly
correlated with one another, but interestingly, their removal does not have a substantial impact on the
correlation among the adjusted series. The specifications adopted start from a diagonal structure where
no dynamic interaction is allowed, and an Independent copula (de facto an equation-by—equation

11" One-step ahead predictions at time ¢ for the original series are computed multiplying the corresponding forecast of the

adjusted indicator by the value of the low frequency component at ¢ — 1.
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specification). Refinements are obtained by inserting a Normal copula and a Student-T copula
(which dramatically improve the estimated log-likelihood function values) and then allowing for
the presence of dynamic interdependence in the form of links either between lagged variables, or
between lagged conditional means, or both. Although hindered by the presence of some collinearity,
the results clearly show a significant improvement for the fit of the equation for realized volatility
when volumes and number of trades are considered. This is highlighted by significantly better
model log-likelihoods, lower overall information criteria and improved autocorrelation diagnostics.
The results of an out-of-sample forecasting exercise confirm the need for a simultaneous approach
to model specification and estimation, with a substantial preference for the Student-T copula results
within the copula-based formulations. From a interpretive point of view, the results show that the past
realized volatility is not enough information by itself to reconstruct the dynamics: its modeling and
forecastability are clearly influenced by other indicators of market trading activity, and simultaneous
correlations in the innovations must be accounted for.

Under equal models for conditional means, the copula approach is substantially equivalent to other
forms of specifications, be they parametric with a multivariate log-Normal error, or semiparametric
(with GMM estimation). The advantage of a slightly more expensive (from a computational point of
view) procedure lies in gaining flexibility in the tail dependence offered by the Student-T copula, which
can be a plus when reconstructing joint conditional distributions, or when reproducing more realistic
behavior in simulation is desirable.
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Appendix A. Expectation Targeting

We show how to obtain the asymptotic distribution of the estimator of the parameters of the
vMEM when the constant w model is reparameterized, via expectation targeting (Section 3.2.1), by
exploiting the assumption of weak-stationarity of the process (Section 2). Under assumptions detailed
in what follows, the distribution of ¥ can be found by extending the results in Francq et al. (2011) and
Horvéth et al. (2006) to a multivariate framework and to asymmetric effects.

Appendix A.1. Framework

Let us assume a model defined by (1), (5) and (3) where the )
returns on the basis of assumptions detailed in Section 2.

Besides mean-stationarity, in order to get asymptotic normality also, we assume the stronger
condition that E(p:p}) exists (a similar condition on existence of the unconditional squared moment of

the conditional variance is assumed in the cited papers).

’s are associated with negative

Appendix A.2. Auxiliary results

In order to simplify the exposition we introduce two quantities employed in the following, namely
the zero mean residual
Ot = Xt — WUt (A1)

and
H=x" —x/2 (A2)
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Since vy = py © (e — 1), and x; = p; © & © (I — 1/2), we can easily check that

E(v) =0

V(vr) = E(up) OL = Lo
C(vs,v1) =0 s£t

E(x)=0

V(ft) =X, ©OXp
CE %) =0 st
C(uvs, %) =0 s, t.

We remark that I, represents also the unconditional average of x;x}. By consequence, the sample
averages o7 = T~ ' Y./, v; and ¥ = T~ Y], &; are such that

[ d 0 )2 0
A5 ) 0) (5 <)

Appendix A.3. The Asymptotic Distribution of the Sample Mean

. (A3)

By replacing (A1) and (A2) into Equation (3) and arranging it we get

L

il 3 L)
x =y (l’éz + B+ 7) X =w+o— Y Bro+ Y nx
=1 =1 =1

so that, averaging both sides,
L

I-Y B

=1

L p—
or+ Y mxr +Op(T71).
=1

lI—i(wl+ﬁl+’;) XT = w +

I=1

Deriving ¥t we get

L

I—Z(M-ﬁ-ﬁ[-ﬁ*%)

=1
pt+ Al [BﬁT + C?T} +0,(T Y,

Xr=p+ +0,(T™)

) [(1— iﬂz) 5T+i')’l§T

I=1 I=1

where p is given in (28).
By means of (A3), the asymptotic distribution of ¥7 follows immediately as

VT (¥ —p) 5 N 0,471 (BL,B' + C(Z, 0 2,) C) A" (A4)
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