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Abstract: This paper considers the problem of testing cross-sectional correlation in large panel data
models with serially-correlated errors. It finds that existing tests for cross-sectional correlation
encounter size distortions with serial correlation in the errors. To control the size, this paper proposes
a modification of Pesaran’s Cross-sectional Dependence (CD) test to account for serial correlation of
an unknown form in the error term. We derive the limiting distribution of this test as (N, T)→ ∞.
The test is distribution free and allows for unknown forms of serial correlation in the errors. Monte
Carlo simulations show that the test has good size and power for large panels when serial correlation
in the errors is present.
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1. Introduction

This paper studies testing for cross-sectional correlation in panel data when serial correlation
is also present in the disturbances. It does that for the case of strictly-exogenous regressors1.
Cross-sectional correlation could be due to unknown common shocks, spatial effects or interactions
within social networks. Ignoring cross-sectional correlation in panels can have serious consequences.
In time series with serial correlation, existing cross-sectional correlation leads to efficiency loss for least
squares and invalidates inference. In some cases, it results in inconsistent estimation; see Lee [1] and
Andrews [2]. Testing the cross-sectional correlation of panel residuals is therefore important.

One could test for a specific form of correlation in the error like spatial correlation; see
Anselin and Bera [3] for cross-sectional data and Baltagi et al. [4] for panel data, to mention
a few. Alternatively, one could test for correlation without imposing any structure on the form
of correlation among the disturbances. The null hypothesis, in that case, is testing the diagonality
of the covariance or correlation matrix of the N-dimensional disturbance vector ut = (u1t, . . . , uNt)

′,
which is usually assumed to be independent over time, for t = 1, . . . , T. When N is fixed and T is
large, the traditional multivariate statistics techniques, including log-likelihood ratio and Lagrange
multiplier tests, are applicable; see, for example, Breusch and Pagan [5], who propose a Lagrange

1 The inclusion of predetermined variables, which is the weakly-exogenous case, alters the results.
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Multiplier (LM) test, which is based on the average of the squared pair-wise correlation coefficients of
the least squares residuals.

However, as N becomes large because of the growing availability of the comprehensive databases
in macro and finance, this so-called “high dimensional” phenomenon brings challenges to classical
statistical inference. As shown in the Random Matrix Theory (RMT) literature, the sample covariance
and correlation matrices are ill-conditioned since their eigenvectors are not consistent with their
population counterparts; see Johnstone [6] and Jiang [7]. New approaches have been considered in the
statistics literature for the testing the diagonality of the sample covariance or correlation matrices; see
Ledoit and Wolf [8], Schott [9] and Chen et al. [10], to mention a few.

The above tests for raw data cannot be used directly to test cross-sectional correlation in panel
data regressions since the disturbances are not observable. Noise caused by substituting residuals
for the actual disturbances may accumulate due to large dimensions, and this in turn may lead to
biased inference. The bias for cross-sectional correlation tests in large panels depends on the model
specification, the estimation method and the sample sizes N and T, among other things. For example,
Pesaran et al. [11] consider an LM test and correct its bias in a large heterogeneous panel data model;
Baltagi et al. [12] extend Schott’s test [9] to a fixed effects panel data model and correct the bias
caused by estimating the disturbances with fixed effects residuals in a homogeneous panel data model.
Following Ledoit and Wolf [8], Baltagi et al. [13] propose a bias-adjusted test for testing the null of
sphericity in the fixed effects homogeneous panel data model. However, this method does not test
cross-sectional correlation directly. Rejection of the null could be due to cross-sectional correlation or
heteroscedasticity or both. A general test for cross-sectional correlation was proposed by Pesaran [14].
His test statistic is based on the average of pair-wise correlation coefficients, defined as CDP (CD,
Cross-sectional Dependence). The test is exactly centered at zero under the null and does not need bias
correction. Pesaran [15] extends his test statistic to test the null of weak cross-sectional correlation and
derives its asymptotic distribution using joint limits. This test is robust to many model specifications
and has many applications. Recent surveys for cross-sectional correlation or dependence tests in
large panels are provided by Moscone and Tosetti [16], Sarafidis and Wansbeek [17] and Chudik and
Pesaran [18].

The asymptotics and bias-correction of existing tests for cross-sectional correlation in large panels
are carried out under some, albeit restrictive, assumptions. For instance, the errors are normally
distributed; N/T → c ∈ (0, ∞) as (N, T) → ∞, and so on. One fundamental restriction is that the
errors are independent over time. In fact, the presence of serial correlation in panel data applications is
likely to be the rule rather than the exception, especially for macro applications and when T is large.
Ignoring serial correlation does not affect the consistency of estimates, but it leads to incorrect inference.
In RMT, when u1, u2, . . . , uT are independent across t = 1, . . . , T, and N is large, the Limiting Spectral
Distribution (LSD) of the corresponding sample covariance matrix is the Marchenko-Pastur (M-P) law;
see Bai and Silverstein [19]. Existing correlation among these disturbances may cause a deviation of the
LSD from the M-P law. Indeed, Bai and Zhou [20] show that the LSD of the sample covariance matrix
with correlations in columns is different from the M-P law. Gao et al. [21] show similar results for
the sample correlation matrix. Therefore, the cross-sectional correlation tests, which heavily depend
on the assumption of independence over time, could lead to misleading inference if there is a serial
correlation in the disturbances.

To better understand the effects of potential serial correlation on the existing tests of cross-sectional
correlation, let us assume that the T × 1 independent random vectors ui = (ui1, . . . , uiT)

′ , for
i = 1, . . . , N are observable. The correlation coefficients ρij of any ui and uj (i 6= j) are defined
by u′iuj/

(
‖ui‖ ·

∥∥uj
∥∥). Their means are zero vectors. If all of the elements of each ui are independent

and identically spherically distributed, Muirhead [22] shows that E
(

ρ2
ij

)
= 1/T. When N is fixed,

the summation of all distinct N(N − 1)/2 terms of ρ2
ij will be small, as T → ∞. In Section 3, we show

that if all of the elements of each ui follow a multiple Moving Average model of order one (MA(1))
with parameter θ, then E

(
ρ2

ij

)
=
[
1/T + θ2/(T + Tθ2)

]
. As N → ∞, the extra term θ2/(T + Tθ2) can
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accumulate and lead to extra bias for the existing LM type tests in panels. Although CDP is centered at
zero, it may still encounter size distortions because serial correlation is ignored.

This paper proposes a modification of Pesaran’s CD test of cross-sectional correlation when the
error terms are serially correlated in large panel data models. First, using results from RMT, we study
the first two moments of the test statistic and propose an unbiased and consistent estimate of the
variance with unknown serial correlation under the null. Second, we derive the limiting distribution of
the test under the asymptotic framework with (N, T)→ ∞ simultaneously in any order without any
distribution assumption. We also discuss its local power properties under a multi-factor alternative.
Monte Carlo simulations are conducted to study the performance of our test statistic in finite samples.
The results confirm our theoretical findings.

The plan for the paper is as follows. The next section introduces the model and notation, existing
LM type tests and the Cross-sectional Dependence (CD) test. It then presents our assumptions and the
proposed modified Pesaran’s CD test statistic. Section 3 derives the asymptotics of this test statistic.
Section 4 reports the results of the Monte Carlo experiments. Section 5 provides some concluding
remarks. All of the mathematical proofs are provided in the Appendix.

Throughout the paper, we adopt the following notation. For a squared matrix B, tr(B) is the
trace of B; ||B|| = (tr(B′B))1/2 denotes the Frobenius norm of a matrix or the Euclidean norm of a

vector B; d−→ denotes convergence in distribution; and
p−→ denotes convergence in probability. We use

(N, T)→ ∞ to denote the joint convergence of N and T when N and T pass to infinity simultaneously.
K is a generic positive number not depending on N nor T.

2. Model and Tests

Consider the following heterogeneous panel data model

yit = β′ixit + uit, for i = 1, . . . , N; t = 1, . . . , T, (1)

where i and t index the cross-section dimension and time dimension, respectively; yit is the dependent
variable, and xit is a k× 1 vector of exogenous regressors. The individual coefficients βi are defined on
a compact set and allowed to vary across i. The null hypothesis of no cross-sectional correlation is

H0 : cov(uit, ujt) = 0, for all t, i 6= j,

or equivalently as
H0 : ρij = 0, for i 6= j, (2)

where ρij is the pair-wise correlation coefficients of the disturbances defined by

ρij =
∑T

t=1 uitujt(
∑T

t=1 u2
it

)1/2 (
∑T

t=1 u2
jt

)1/2 .

Under the alternative, there exists at least one ρij 6= 0, for some i 6= j. For the panel regression model 1,
the residuals are unobservable. In this case, the test statistic is based on the residual-based correlation
coefficients ρ̂ij. Specifically,

ρ̂ij =
∑T

t=1 eitejt(
∑T

t=1 e2
it

)1/2 (
∑T

t=1 e2
jt

)1/2 , (3)

where eit is the Ordinary Least Squares (OLS) residuals using T observations for each i = 1, . . . , N.
These OLS residuals are given by

eit = yit − x′it β̂i, (4)
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with β̂i being the OLS estimates of βi from (1) for i = 1, . . . , N. Let Mi = IT − PXi , where

PXi = Xi
(
X′i Xi

)−1 X′i , and Xi is a T× k matrix of regressors with the t-th row being the 1× k vector x′it.
We also define ui = (ui1, . . . , uiT)

′, ei = (ei1, . . . , eiT)
′ and vi = ei/ ‖ei‖ , for i = 1, . . . , N. The OLS

residuals can be rewritten in vector form as ei = Miui, and the residual-based pair-wise correlation
coefficients can be rewritten as ρ̂ij = v′ivj, for any 1 ≤ i 6= j ≤ N.

2.1. LM and CD Tests

For N fixed and T → ∞, Breusch and Pagan [5] propose an LM test to test the null of no
cross-sectional correlation in (2) without imposing any structure on this correlation. It is given by

LMBP = T
N−1

∑
i=1

N

∑
j=i+1

ρ̂2
ij. (5)

LMBP is asymptotically distributed as a Chi-squared distribution with N(N− 1)/2 degrees of freedom
under the null. However, for a typical micro-panel dataset, N is larger than T; and the Breusch-Pagan
LM test statistic is not valid under this “large N, small T” setup. In fact, Pesaran [14] proposes a scaled
version of this LM test as follows

LMP =

√
1

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

(
Tρ̂2

ij − 1
)

. (6)

Pesaran [14] shows that LMP is distributed as N(0, 1) with T → ∞ first, then N → ∞ under
the null. However, E

(
Tρ̂2

ij − 1
)

is not correctly centered at zero with fixed T and large N.
Hence, Pesaran et al. [11] propose a bias-adjusted version of this LM test, denoted by LMPUY.
They show that the exact mean and variance of (T − k)ρ̂2

ij are given by

µTij = E
[
(T − k) ρ̂2

ij

]
=

1
T − k

tr
[
E(Mi Mj)

]
, (7)

and
ν2

Tij = var
[
(T − k) ρ̂2

ij

]
=
{

tr2 [E(Mi Mj)
]}

a1T + 2tr
{[

E(Mi Mj)
]2} a2T , (8)

where a1T = a2T − 1
(T−k)2 , and a2T = 3

[
(T−k−8)(T−k+2)

(T−k+2)(T−k−2)(T−k−4)

]2
. LMPUY is given by

LMPUY =

√
2

N(N − 1)

(T − k) ρ̂2
ij − µTij

νTij
. (9)

Pesaran et al. [11] show that LMPUY is asymptotically distributed as N(0, 1) under the null (2) and the
normality assumption of the disturbances as T → ∞ followed by N → ∞. Alternatively, Pesaran [14]
proposes a test based on the average of pair-wise correlation coefficients rather than their squares. The
test statistic is given by

CDP =

√
2T

N(N − 1)

N−1

∑
i=1

N

∑
j=i+1

ρ̂ij. (10)

Pesaran [15] shows that this test is asymptotically distributed as N (0, 1) with (N, T) → ∞. He also
extends this to test the null of weak cross-sectional correlation.

2.2. Assumptions and the Modified CD Test Statistic

So far, all of the methods surveyed above for testing cross-sectional correlation in panel data
models assume that the disturbances are independent over time. Ignoring serial correlation usually
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results in efficiency loss and biased inference. In fact, we show in Section 3 that the existence of
serial correlation leads to extra bias in the LM-type tests. For the CDP test in (10), it is still centered
at zero with serial correlation, but its variance is affected by serial correlation. As a result, we also
expect size distortions in CDP. To correct for this, we consider a modification of this test statistic
that accounts for an unknown form of serial correlation in the disturbances. First, we introduce the
assumptions needed:

Assumption 1. Define ξi = (ξi0, ξi1, . . . , ξiT)
′ and εi = (εi0, εi1, . . . , εiT)

′ . We also assume that ξi = σiεi,
for i = 1, . . . , N, where εi is a random vector with mean vector zero and covariance matrix IT . Let εit denote
the t-th entry of εi, for any i = 1, . . . , N. εit has a uniformly bounded fourth moment, and there exists a finite
constant ∆, such that E(ε4

it) = 3 + ∆. Following Bai and Zhou [20], the disturbances ut = (u1t, u2t, . . . , uNt)
′

are generated by

ut =
∞

∑
s=0

dsξt−s, for t = 1, . . . , T, (11)

where ξt = (ξ1t, ξ2t, . . . , ξNt)
′ , for t = 0, 1, . . . , T, are I ID random vectors across time, and {ds}∞

s=0 is
a sequence of numbers satisfying ∑∞

s=0 |ds| < K < ∞.

Assumption 1 allows the error term uit to be correlated over time. The condition ∑∞
s=0 |ds| < K < ∞

excludes long memory-type strong dependence. We need bounded moment conditions to ensure
large (N, T) asymptotics for panel data models with serial correlation. The conditions in Assumption 1
are quite relaxable; they are satisfied by many parametric weak dependence processes, such as
stationary and invertible finite-order Auto-Regressive and Moving Average (ARMA) models. Under
Assumption 1, the covariance matrix of each ui is Σi = σ2

i Σ, where Σ is a T× T symmetric positive
definite matrix. The random vector ui can be written as ui = σiΓεi, where ΓΓ′ = Σ. The generic
covariance matrix Σi of each ui captures the serial correlation. Bai and Zhou [20] use this representation
and show that 1/Ttr(Σκ) is bounded for any fixed positive integer κ. More specifically, considering a
multiple Moving Average model of order one (MA(1))

ut = ξt + θξt−1, t = 1, . . . , T, (12)

where |θ| < 1 and ut, ξt, ui and ξi are defined in Assumption 1. For this case, ΣMA = (δlr)T×T, where

δlr =


(1+ θ2), l = r;

θ, |l− r| = 1;
0, |l− r| > 1.

(13)

One can also verify that for (11), we have the following generic representation,

Σ = (vlr)T×T, where vlr =
∞

∑
s=0

dsd(|l−r|+s). (14)

We use this representation throughout the paper for convenience.

Assumption 2. The regressors, xit, are strictly exogenous, such that

E (uit|Xi) = 0, for all i = 1, . . . , N and t = 1, . . . , T, (15)

and X′i Xi is a positive definite matrix.

Assumption 3. T > k and the OLS residuals, eit, defined by (4), are not all zeros with probability
approaching one.

Assumptions 2 and 3 are standard for model (1); see Pesaran [14] and Pesaran et al. [11].
We impose the assumption that the regressors are strictly exogenous. We do not impose any restrictions
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on the distribution of the errors or the relative convergence speed of (N, T). This framework is quite
relaxable while LM-type tests usually impose the normality assumption and restrictions on the relative
speed of N and T, namely N/T→ c ∈ (0, ∞) .

Under these assumptions, the OLS estimates for model (1) are consistent, but inefficient. We focus
on the term used in Pesaran’s CD test [14]

Tn =

(
2

N(N− 1)

)1/2 N

∑
i=2

i−1

∑
j=1

ρ̂ij. (16)

In the next section, we derive the first two moments of this test statistic and later derive its limiting
distribution under this general unknown form of serial correlation over time.

3. Asymptotics

3.1. Asymptotic Distribution under the Null

In this section, we study the asymptotics of the test statistic Tn defined in (16). To derive its
limiting distribution, we first consider its first two moments.

Theorem 1. Under Assumptions 1–3 and the null given in (2),

E(Tn) = 0 (17)

and

γ2 = var (Tn) =
2

N(N− 1)

N

∑
i=2

i−1

∑
j=1

E(ρ̂2
ij) =

2
N(N− 1)

N

∑
i=2

i−1

∑
j=1

tr
(

MjΣMjMiΣMi
)

tr (MiΣ) tr
(

MjΣ
) , (18)

where Mi = IT −X′i(X
′
i Xi)

−1Xi, and Σ is defined by (14).

Theorem 1 shows that the mean of the test statistic is zero. Its variance depends on Σ, which is
a generic form containing serial correlation.

In fact, as shown in the proof of Theorem 1 (see the Appendix B), E
(

ρ̂2
ij

)
= tr

(
MjΣMjMiΣMi

)
/
[
tr (MiΣ) tr

(
MjΣ

)]
. In the special case where the error terms are independent over time, Σ = IT, and

E
(

ρ̂2
ij

)
reduces to tr

(
MjMi

)
/(T− k)2, which yields the results given in Equation (7) for the LMPUY test

statistic with no serial correlation. However, with serial correlation in the errors, an extra bias term is
introduced in LMPUY since

tr
(

MjΣMjMiΣMi
)

tr (MiΣ) tr
(

MjΣ
) − tr

(
MjMi

)
(T− k)2 6= 0, if Σ 6= IT.

More specifically, let us assume that ui, i = 1, . . . , N, are observable, then E
(

ρ2
ij

)
= tr

(
Σ2)/tr2 (Σ) . For

the MA(1) process defined by (12), tr
(
Σ2)/tr2 (Σ) = 1/T + θ2/(T + Tθ2) and tr

(
Σ2)/tr2 (Σ) = 1/T,

for θ = 0. The extra term θ2/(T + Tθ2) accumulates in the LM test statistic and leads to extra bias
as N → ∞. As discussed above, we expect that LMPUY to have serious size distortions when serial
correlation is present in the disturbances.

Unlike LM-type tests, the test statistic Tn is centered at zero; it does not need bias adjustment.
Note that if uit are independent over time, our model reduces to that of Pesaran [14]. Let γ2

0 be the
variance of Tn without serial correlation; it can be written as

γ2
0 =

2
N(N− 1)

N

∑
i=2

i−1

∑
j=1

[
T− 2k

(T− k)2 +
tr(PXi PXj)

(T− k)2

]
, (19)
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where PXi = Xi
(
X′i Xi

)−1 X′i and PXj = Xj

(
X′jXj

)−1
X′j. The above result is the exact variance for Tn

without serial correlation; it is derived by Pesaran [15]. A modified version of CDP is also given by
Pesaran [15] using this exact variance. From Theorem 1, γ2 is different from γ2

0 if Σ 6= IT. Hence, we
also expect CDP to have size distortions when serial correlation is present in the disturbances. Next, we
consider the limiting distribution of the proposed test. The result is given in the following theorem.

Theorem 2. Under Assumptions 1–3 and the null in (2), as (N, T)→ ∞, we have

γ−1Tn
d−→ N (0, 1) . (20)

Theorem 2 shows that appropriately standardized γ−1Tn is asymptotically distributed as
a standard normal. It is valid for N and T tending to infinity jointly in any order. However, we
do not observe Σ in a panel data regression model; and an estimate of the variance γ2 is needed for
practical applications. Following Chen and Qin [23], an unbiased and consistent estimator of γ2 under
the null is obtained using the cross-validation approach proposed in the following theorem:

Theorem 3. Let γ̂2 = 1
N(N−1) ∑N

i=2 ∑i−1
j=1 v′i(vj − v̄(i,j))v′j(vi − v̄(i,j)), where v̄(i,j) = 1

N−2 ∑
1≤τ 6=i,j≤N

vτ.

Under Assumptions 1–3 and the null in (2), E
(
γ̂2) = γ2. As (N, T)→ ∞,

γ̂2 p−→ γ2. (21)

Define CDR = γ̂−1Tn. As (N, T)→ ∞,

CDR
d−→ N (0, 1) . (22)

Theorem 3 shows that γ̂2 is a good approximation for the variance, and we do not need to specify
the structure of Σ. In other words, the test statistic allows the error terms of model (1) to be dependent
over time. Furthermore, CDR is a modified version of CDP, so they are likely to perform very similarly
with respect to many model specifications (see Pesaran [14]).

3.2. Local Power Properties

We now consider the power analysis of the test. Naturally, the power properties depend on
the specifications of the alternatives. One general alternative specification that allows for global
cross-sectional correlation in panels is the unobserved multi-factor model. Under this alternative, the
new error terms are defined by

u′i = ui + σiFλi = σi(Γεi + Fλi), (23)

where F = ( f1, f2, · · · , fT)
′ denotes the T× r common factor matrix and λi is the r factor loading vector.

Under the null hypothesis, λi = 0, for all i. We now consider the following Pitman-type
local alternative2

Ha : λi =
1

T1/4N1/2 δi, for some i, (24)

where δi is a non-random and non-zero r× 1 vector, which does not depend on N or T. To simplify the
analysis, we add the following assumption:

2 We only consider the case that the number of non-zero factor loading vectors is N or of order N, which means the model has
strong error cross-sectional correlation. For the weak error cross-sectional correlation case, we conjecture that it is similar to
Pesaran [15].
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Assumption 4. (1) ft ∼ I ID(0, Ir); (2) ft are independent of εit, xit, for all i and t; (3) for each i,
T−1/2 ∑T

t=1 uit ft = Op(1); T−1/2 ∑T
t=1 xit f ′t = Op(1) and T−1 ∑T

t=1 ft f ′t = Ir + Op(T−1/2);
(4) T−1/2X′iXj = Op(1) and T−1/2X′iui = Op(1), for all i and j.

The following theorem gives the power properties under the local alternative (24).

Theorem 4. Under Assumptions 1–4 and local alternative (24), as (N, T)→ ∞,

γ−1Tn
d−→ N(ψ, 1), (25)

where ψ = plim(N,T)→∞γ−1
(

2
N(N−1)

)1/2
∑N

i=2 ∑i−1
j=1

(
T1/2N−1δ′iδj

tr1/2(MiΣ)tr1/2(MjΣ)

)
6= 0.

From Theorem 4, the test has nontrivial power against the local alternative that contracts to the
null at the rate of T−1/4N−1/2. Hence, Theorem 4 establishes the consistency of the proposed test at the
rate of N

√
T under the alternative, as long as ψ 6= 0.

4. Monte Carlo Simulations

This section conducts Monte Carlo simulations to examine the empirical size and power of the
proposed test (CDR) defined in (22) in heterogeneous panel data regression models. We also look at
the performance of LMPUY and CDP defined by (9) and (10), respectively, for comparison purposes.
We consider four scenarios: (1) the errors are independent over time, with no serial correlation;
(2) the errors follow a moving average model of order one (MA(1)) over time; (3) the errors follow an
Auto-Regressive model of order one (AR(1)) over time; (4) the errors follow an Auto-Regressive and
Moving Average of order (1,1) (ARMA(1, 1)) over time. Finally, we provide small sample evidence on
the power performance of the modified CDR test against a factor and spatial auto-regressive model of
order one alternatives, which are popular in economics for modeling cross-sectional correlation.

4.1. Experimental Design

Following Pesaran et al. [11], our experiments use the following data-generating process

yit = αi + βixit + uit, i = 1, . . . , N; t = 1, . . . , T, (26)

xit = ηxit−1 + υit, (27)

where αi ∼IIDN(1,1); βi ∼IIDN(1,0.04). xit is a strictly exogenous regressor, and we set η = 0.6 and
υit ∼IIDN(φ2

i /(1− 0.62)) with φi ∼IIDχ2(6)/6, for i = 1, . . . , N. The error terms of (26) are generated
using the following four data generating processes

(1) IID : uit = ξit; (28)

(2) MA(1) : uit = ξit + θξit−1; (29)

(3) AR(1) : uit = ρuit−1 + ξit; (30)

(4) ARMA(1,1) : uit = ρuit−1 + ξit + θξit−1, (31)

where ξit = σiεit; σ2
i ∼IIDχ2(2)/2 and εit ∼IID(0,1). We further set θ = 0.8 and ρ = 0.6. To check

the robustness of the tests to non-normal distributions, εit are generated from a Normal(0,1) and a
Chi-squared distribution

(
χ2(2)/2− 1

)
.

To examine the empirical power of the tests, we consider two different cross-sectional correlation
alternatives: factor and spatial models. The factor model is generated by

u∗it = λi ft + uit, for i = 1, . . . , N; t = 1, . . . , T, (32)
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where ft ∼IIDN(0,1) and λi ∼IIDU[0.1,0.3]; In this case, u∗it replaces uit in (26) for the power studies.
uit is generated by the four scenarios defined by (28)–(31), respectively. For the spatial model, we
consider a first-order spatial auto-correlation model (SAR(1)),

u∗it = δ
(
0.5u∗i−1,t + 0.5u∗i+1,t

)
+ uit, (33)

where δ = 0.4 and uit are defined by (28)–(31), respectively.
The experiments are conducted for N = 10,20,30,50,100,200 and T = 10,20,30,50,100. For each

pair of (N, T) , we run 2000 replications. To obtain the empirical size, we conduct the proposed test
(CDR) and CDP at the two-sided 5% nominal significance level and LMPUY at the positive one-sided
5% nominal significance level.

4.2. Simulation Results

Table 1 reports the empirical size of CDP, LMPUY and CDR for normal and chi-squared
distributed errors. The error terms are assumed to be independent over time. The results show
that all of the tests have the correct size with different (N, T) combinations under both normal and
chi-squared scenarios. Those are consistent with the theoretical findings. The only exceptions are for
small N or T equal to 10, especially for LMPUY. Table 2 reports the empirical size of the three tests
with MA(1) error terms defined by (29). The results show that CDR has the correct size for all (N, T),
but CDP has size distortions for different (N, T) combinations because the disturbances are MA(1)
over time. For example, under the normality scenario, the size of CDP is 9.35% for N = 10 and T = 20;
it becomes 11.1% when T grows to 100. LMPUY suffers serious size distortions, because of the extra bias
caused by ignoring serial correlation. From Table 2, the empirical size of LMPUY is 100% as N or T
becomes larger than 30. Tables 3 and 4 report the empirical size of the tests with AR(1) and ARMA(1,1)
errors under the two distributions: normal and chi-squared scenarios. Note that CDR is over-sized in
Table 4 for the chi-squared case when T = 10. However, it has the correct size as T gets larger than 20.
In contrast, LMPUY has serious size issues, rejecting 100% of the time, and CDP is over sized by as
much as 25%. Overall, in comparison with CDP and LMPUY, the proposed test CDR controls for size
distortions when serial correlation in the disturbances is present and is not much affected when serial
correlation is not present.

Table 1. Size of tests with IID errors over time.

Tests (N,T)
Normal Chi-Squared

10 20 30 50 100 10 20 30 50 100

CDR

10 5.75 5.90 5.50 4.75 6.45 5.90 4.80 5.55 5.15 6.45
20 3.85 4.55 5.05 4.70 5.15 4.60 4.50 4.50 5.85 5.40
30 4.45 4.10 4.70 5.10 4.60 4.40 4.80 4.45 4.50 6.25
50 4.45 4.75 5.40 5.25 4.50 4.10 3.65 4.75 4.05 4.60

100 4.65 4.85 4.20 5.65 5.30 4.35 4.80 4.70 4.35 4.95
200 4.05 4.65 3.90 4.60 5.00 5.65 5.05 4.85 4.65 5.40

CDP

10 5.60 5.50 5.25 4.10 6.00 5.60 4.70 5.05 4.70 5.65
20 4.05 4.75 5.05 4.90 5.30 4.90 4.70 4.65 5.85 5.30
30 4.90 4.45 4.85 5.20 5.00 5.20 5.20 4.55 5.00 6.05
50 4.95 5.20 5.60 5.55 4.45 5.00 4.15 5.00 4.55 4.70

100 5.65 5.15 4.50 5.95 5.45 5.15 5.65 5.05 4.50 5.05
200 5.00 5.00 4.45 4.85 5.15 6.35 5.75 5.15 4.70 5.55

LMPUY

10 6.75 6.05 6.10 6.00 5.60 6.60 6.85 7.65 7.95 6.60
20 6.20 5.45 6.75 7.00 5.50 7.05 6.40 6.40 7.15 5.60
30 6.20 6.25 5.40 6.35 5.95 7.65 5.95 6.35 5.85 7.00
50 6.55 4.95 5.25 5.60 5.40 7.00 6.85 7.20 5.40 5.85

100 8.10 5.45 5.40 4.60 4.55 7.00 5.85 6.10 5.85 5.90
200 8.60 5.75 6.50 5.90 5.35 8.00 7.20 6.30 6.40 6.70

Notes: This table reports the size of CDP, LMPUY and CDR with uit = ξit, where ξit = σiεit; σ2
i ∼ IIDχ2(2)/2.

εit ∼ IID(0, 1) and are generated from normal and Chi-squared distributions. The tests are conducted at the
5% nominal significance level.
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Table 2. Size of tests with MA(1) errors.

Tests (N,T)
Normal Chi-Squared

10 20 30 50 100 10 20 30 50 100

CDR

10 6.10 6.25 4.45 5.35 6.25 6.30 5.40 5.90 5.85 6.50
20 5.15 4.80 5.05 4.60 5.30 5.20 5.35 4.70 6.15 4.75
30 4.50 4.35 4.20 5.35 4.95 5.55 4.75 4.90 5.30 6.15
50 5.25 4.50 5.30 5.70 4.30 5.00 4.65 4.60 4.35 4.85

100 4.75 5.35 4.50 5.45 5.60 5.80 4.15 5.45 4.35 4.90
200 4.35 4.95 3.50 4.50 4.90 6.20 6.30 4.30 4.30 5.50

CDP

10 7.60 9.35 8.40 10.05 11.10 7.80 7.75 10.30 10.25 10.95
20 6.60 8.30 9.95 9.10 10.90 7.00 8.95 9.30 10.70 10.50
30 6.45 8.35 8.30 10.50 10.60 7.90 9.65 9.50 10.80 10.60
50 7.45 7.95 10.75 11.30 9.65 7.55 7.90 9.20 9.70 9.15

100 6.50 9.35 9.00 10.85 11.55 7.85 8.35 10.60 9.30 10.20
200 6.65 8.45 8.45 9.70 10.95 9.90 9.50 9.35 9.65 11.20

LMPUY

10 37.95 54.40 57.10 59.55 60.70 39.15 53.00 56.50 60.75 61.55
20 81.55 96.00 96.80 98.25 97.90 83.25 95.45 97.05 97.70 98.20
30 98.30 100.00 100.00 100.00 100.00 98.45 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Notes: This table reports the size of CDP, LMPUY and CDR with uit = ξit + θξit−1, where ξit = σiεit;
σ2

i ∼ IIDχ2(2)/2. εit ∼ IID(0, 1) and are generated from normal and Chi-squared distributions. The tests are
conducted at the 5% nominal significance level.

Table 3. Size of tests with AR(1) errors.

Tests (N,T)
Normal Chi-Squared

10 20 30 50 100 10 20 30 50 100

CDR

10 6.10 6.25 4.90 6.15 6.75 6.05 4.80 6.10 6.00 5.65
20 4.75 5.65 4.65 4.70 5.00 4.85 5.60 4.50 5.55 4.80
30 4.15 4.85 4.00 4.55 4.65 5.50 4.25 5.75 5.10 6.65
50 4.15 4.50 5.20 5.45 4.40 5.25 5.35 4.60 4.40 4.35

100 4.35 4.80 4.80 5.45 4.80 5.75 4.15 5.30 4.05 5.10
200 4.85 4.60 4.05 4.55 5.05 7.80 5.35 4.95 4.20 4.55

CDP

10 6.80 9.65 10.20 14.55 16.80 6.55 8.25 12.25 13.90 16.30
20 5.75 9.50 11.35 13.25 16.85 5.90 9.60 11.50 15.05 15.45
30 5.65 9.80 10.00 13.30 14.05 7.35 9.65 12.00 15.20 17.15
50 5.90 8.45 11.95 14.80 14.10 7.10 9.55 9.70 12.40 15.80

100 6.05 10.00 10.40 14.70 16.55 7.25 8.70 12.25 13.85 15.00
200 6.65 9.00 10.25 13.30 16.70 9.40 10.3 10.85 13.70 16.10

LMPUY

10 37.95 54.40 57.10 59.55 60.70 27.60 66.30 82.45 90.80 95.35
20 55.50 97.90 99.85 100.00 100.00 59.95 98.40 99.85 100.00 100.00
30 98.30 99.95 100.00 100.00 100.00 82.75 100.00 100.00 100.00 100.00
50 97.80 100.00 100.00 100.00 100.00 98.60 100.00 100.00 100.00 100.00

100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Notes: This table reports the size of CDP, LMPUY and CDR with uit = ρuit−1 + ξit, where ξit = σiεit;
σ2

i ∼ IIDχ2(2)/2. εit ∼ IID(0, 1) and are generated from normal and Chi-squared distributions. The tests are
conducted at the 5% nominal significance level.
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Table 4. Size of tests with ARMA(1,1) errors.

Tests (N,T)
Normal Chi-Squared

10 20 30 50 100 10 20 30 50 100

CDR

10 6.95 6.45 4.90 6.20 5.85 7.20 5.25 6.40 5.40 5.45
20 5.40 5.55 4.95 4.75 4.95 6.40 5.70 4.95 5.55 4.70
30 4.65 4.75 4.05 4.80 4.65 7.45 4.60 5.95 5.10 6.50
50 4.95 4.95 5.25 5.30 4.50 7.50 5.70 4.80 4.35 4.80
100 5.05 5.15 4.60 5.10 4.90 10.25 5.10 4.65 4.00 4.80
200 5.75 4.65 4.45 4.85 5.20 17.45 6.60 5.75 4.50 4.25

CDP

10 9.10 15.95 16.35 22.50 24.30 10.95 13.80 19.20 21.70 25.15
20 8.30 14.40 17.80 20.15 25.05 10.10 14.80 18.90 22.85 23.15
30 8.30 15.40 17.70 21.55 22.55 10.95 15.25 19.25 23.55 24.25
50 8.70 14.85 18.80 22.70 23.40 11.75 15.40 17.30 19.15 23.95
100 9.35 15.90 17.50 22.15 24.20 17.20 14.45 17.95 22.05 22.70
200 9.50 14.05 18.35 20.00 24.95 25.45 17.00 18.55 21.35 24.65

LMPUY

10 83.65 98.45 99.45 99.75 99.80 83.65 98.40 99.70 99.90 100.00
20 99.85 100.00 100.00 100.00 100.00 99.85 100.00 100.00 100.00 100.00
30 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
50 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
100 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
200 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Notes: This table reports the size of CDP, LMPUY and CDR with uit = ρuit−1 + ξit + θξit−1, where ξit = σiεit;
σ2

i ∼ IIDχ2(2)/2. εit ∼ IID(0, 1) and are generated from normal and Chi-squared distributions. The tests are
conducted at the 5% nominal significance level.

Table 5 summarizes the size-adjusted power of CDR with MA(1), AR(1) and ARMA(1,1) errors
under the factor model alternative. Results show that CDR performs reasonably well under the two
distribution scenarios especially for N and T > 10. Table 6 confirms the power properties of CDR for
MA(1), AR(1) and ARMA(1,1) errors under the SAR(1) alternative, especially for large N and T.

Table 5. Size adjusted power of CDR: factor model.

DGP (N,T)
Normal Chi-Squared

10 20 30 50 100 10 20 30 50 100

MA(1)

10 14.55 23.95 30.30 45.40 63.05 21.95 30.75 33.65 46.00 66.10
20 35.70 56.65 68.95 84.05 95.95 47.30 63.25 75.80 86.00 97.40
30 59.65 81.70 91.75 97.65 99.95 69.75 87.50 92.60 98.00 99.95
50 83.65 96.60 99.30 100.00 100.00 88.75 98.00 99.55 100.00 100.00

100 96.75 99.95 100.00 100.00 100.00 98.90 99.90 100.00 100.00 100.00
200 99.70 100.00 100.00 100.00 100.00 99.70 100.00 100.00 100.00 100.00

AR(1)

10 18.95 23.95 32.40 38.10 56.75 26.95 35.00 28.90 37.15 61.25
20 45.60 62.10 69.95 81.45 94.20 55.10 67.45 74.85 85.65 96.60
30 68.80 83.50 92.30 97.60 99.75 78.15 90.85 92.70 97.40 99.85
50 88.55 97.45 99.40 100.00 100.00 92.90 98.50 99.65 100.00 100.00

100 98.80 100.00 100.00 100.00 100.00 99.60 99.95 100.00 100.00 100.00
200 99.90 100.00 100.00 100.00 100.00 99.85 100.00 100.00 100.00 100.00

ARMA(1, 1)

10 7.70 7.70 10.00 10.80 14.80 9.65 10.35 8.80 9.60 19.60
20 22.05 18.85 24.25 27.80 39.50 24.85 22.35 23.40 30.60 46.20
30 37.75 37.45 46.15 48.90 75.00 41.75 47.35 44.15 53.15 71.25
50 66.50 66.75 71.60 83.10 96.20 66.25 72.35 82.45 88.20 98.00

100 91.15 96.60 98.75 99.90 100.00 90.45 98.55 99.40 99.95 100.00
200 98.95 100.00 100.00 100.00 100.00 98.45 99.95 100.00 100.00 100.00

Notes: This table computes the size adjusted power for CDR with a factor model that allows for cross-sectional
correlation in the errors: u∗it = λi ft + uit. uit are generated by MA(1), AR(1) and ARMA (1,1) defined
by (29)–(31). ξit = σiεit; σ2

i ∼ IIDχ2(2)/2. εit ∼ IID(0, 1) and are generated from normal and
Chi-squared distributions.
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Table 6. Size adjusted power of CDR: SAR(1) model.

DGP (N,T)
Normal Chi-Squared

10 20 30 50 100 10 20 30 50 100

MA(1)

10 38.85 60.55 72.20 88.25 97.30 43.05 67.15 72.55 88.45 97.70
20 37.45 61.70 76.00 92.15 99.05 39.25 61.25 76.80 89.55 99.10
30 39.60 64.55 78.60 92.00 99.60 40.30 65.65 78.80 91.90 99.35
50 40.05 66.45 79.15 92.70 99.75 39.95 66.55 78.65 94.65 99.70

100 33.60 62.70 80.55 92.55 99.65 37.85 64.65 79.20 94.40 99.90
200 40.65 64.50 80.65 94.70 99.8 37.75 62.50 81.25 95.65 99.80

AR(1)

10 37.20 53.95 68.20 79.20 92.10 42.85 63.20 61.15 78.00 94.80
20 38.25 56.50 69.30 82.90 95.85 38.55 55.50 68.65 83.70 97.20
30 37.90 56.90 71.80 84.65 98.10 38.70 62.00 66.25 85.70 96.90
50 38.80 59.80 71.40 86.60 98.60 39.70 59.15 71.25 89.00 99.00

100 38.85 57.85 70.90 86.60 98.75 35.25 59.85 72.55 88.95 98.60
200 40.75 55.95 74.40 87.75 98.80 33.80 56.00 70.85 90.40 99.10

ARMA(1, 1)

10 29.00 43.40 58.05 70.20 85.90 32.75 49.75 51.30 67.40 88.20
20 31.05 43.55 56.65 72.10 89.10 28.35 43.45 54.80 71.35 91.35
30 30.00 45.70 59.35 71.35 94.20 28.10 48.10 54.00 73.05 91.90
50 33.05 45.30 54.40 71.70 93.30 27.30 43.90 58.00 75.75 94.45

100 30.60 45.15 55.50 75.40 94.95 21.80 45.45 57.85 77.35 94.75
200 30.30 42.05 58.15 75.75 95.15 21.05 38.80 55.70 77.50 95.80

Notes: This table computes the size adjusted power for CDR with a SAR(1) model that allows for
cross-sectional correlation in the error: u∗it = δ(0.5u∗i−1,t + 0.5u∗i+1,t) + uit with δ = 0.4. uit are generated by
MA(1), AR(1) and ARMA (1,1) defined by (29)–(31). ξit = σiεit; σ2

i ∼ IIDχ2(2)/2. εit ∼ IID(0, 1) and are
generated from normal and Chi-squared distributions.

5. Conclusions

In this paper, we find that in the large heterogeneous panel data model, LMPUY exhibits serious
size bias when there is serial correlation in the disturbances. While CDP is centered at zero, it still
encounters size distortions caused by ignoring serial correlation. We modify Pesaran’s CDP test to
account for serial correlation of an unknown form in the error term and call it CDR. This paper has
several novel aspects: first, an unbiased and consistent estimate of the variance under the assumptions
and the null of no cross-section correlation is proposed without knowing the form of serial correlation
over time. Second, the limiting distribution of the test is derived as (N, T)→ ∞ in any order. Third, it is
distribution free. Simulations show that the proposed test CDR successfully controls for size distortions
with serial correlation in the error term. It also has reasonable power under the alternatives of a factor
model and a spatial auto-correlation SAR(1) model for different serial correlation specifications.

Author Contributions: All authors contributed equally to the paper.
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Appendix

This Appendix includes proofs of the main results in the text. The Appendix includes two parts:
Part A includes some useful lemmas, which are frequently used in the proofs of the theorems; Part B
gives the proofs of all of the theorems included in the paper.

Let us introduce some notation before proceeding: For two matrices B = (bij) and C = (cij), we
define B ◦ C = (bijcij). ∑ denotes summation over mutually-different indices, e.g., ∑

(i1,i2,j1,j2)
means

summation over {(i1, i2, j1, j2) : i1, i2, j1, j2 are mutually different} .
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Appendix A. Some Useful Lemmas

Lemma A1. Let F and G be non-stochastic N × N symmetric and positive definite matrices. Define r = u′i Fui
u′iGui

.

Under Assumptions 1, we have

(a) E(rk) =
E
[
(ε′i Fεi)

k]
[E(ε′iGεi)]

k ;

(b) E
(
ε′iFεi

)
= tr(F) ;

(c) E
(
ε′iFεi

)2
= tr(F2) + 2tr2(F) + ∆tr(F ◦ F);

(d) tr(F ◦ F) ≤ tr
(

F2) .

The Proof of part (a) is given by Lieberman [24], and the proofs of (b)–(d) are from Proposition 1
of Chen et al. [10]; hence, we omit the proof here.

Lemma A2. Define Bj = MjΣMj, for any j, respectively. Under Assumptions 1–3 and the null in (2), we have

(a) E
(

ρ̂2
ij

)
=

tr(Bi Bj)
tr(Bi)tr(Bj)

;

(b) E
(

ρ̂4
ij

)
≤ (3 + ∆)

(2+∆)tr(Bi Bj)
2
+tr2(Bi Bj)

tr2(Bi)tr2(Bj)
;

(c) For any j1 6= j2, E
(

ρ̂2
ij1

ρ̂2
ij2

)
≤

(
(2+∆)tr(Bi Bj1)

2
+tr2(Bi Bj1)

)1/2(
(2+∆)tr(Bi Bj2)

2
+tr2(Bi Bj2)

)1/2

tr(Bj1)tr(Bj2 )tr
2(Bi)

.

Proof. Recall that the pair-wise correlation coefficients is defined as

ρ̂ij = v′ivj =
T

∑
t=1

vitvjt,

where vi are the scaled residual vectors defined by vi =
ei

(e′iei)1/2 . ei is the OLS residual vector from the

individual-specific least squares regression, and it is given by

ei = Miui = MiσiΓεi, with Mi = IT − PXi = IT − Xi
(
X′i Xi

)−1 X′i ,

where Mi is idempotent. Consider part (a),

E
(

ρ̂2
ij

)
= E

(
v′ivj

)2
= E

 e′iej(
e′iei
)1/2

(
e′jej

)1/2


2

= E

(
e′i Ajei

e′iei

)
,

where Aj =
eje′j
e′jej

. Then

E
(

ρ̂2
ij

)
= E

[
E
(

ρ̂2
ij|ε j

)]
= E

[
E

(
e′i Ajei

e′iei
|ε j

)]
.
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Since ei = MiσiΓεi, and using parts (a) and (b) of Lemma A1, we have E
(

e′iAjei
e′iei
|εj

)
=

tr(Γ′MiAjMiΓ)
tr(Γ′MiΓ)

. Moreover,

E
[
tr
(
Γ′MiAjMiΓ

)]
= E

(
ε′jΓ
′MjMiΓΓ′MiMjΓεj

ε′jΓ
′MjΓεj

)

=
tr
(
Γ′MjMiΓΓ′MiMjΓ

)
tr
(
Γ′MjΓ

)
=

tr
(
MjΣMjMiΣMi

)
tr
(
MjΣ

) .

Together with the above results, we have:

E
(

ρ̂2
ij

)
=

tr
(
MjΣMjMiΣMi

)
tr (MiΣ) tr

(
MjΣ

) =
tr
(
BiBj

)
tr (Bi) tr

(
Bj
).

Consider part (b),

E
(

ρ4
ij

)
= E

[
E
(

ρ4
ij | vj

)]
= E

E

(e′iAjei

e′iei

)2

| vj

= E

[
E(ε′iΓ

′MiAjMiΓεi)
2

tr2 (Γ′MiΓ)
| vj

]

= E

[
2tr
(
Γ′MiAjMiΓ

)2
+ tr2 (Γ′MiAjMiΓ

)
+∆tr

(
Γ′MiAjMiΓ ◦Γ′MiAjMiΓ

)
tr2(Bi)

]
.

Using part (a) of Lemma A1, we have

E
[
tr2 (Γ′MiAjMiΓ

)]
= E

(
ε′jΓ
′MjMiΓΓ′MiMjΓεj

ε′jΓ
′MjΓεj

)2

=
E
(

ε′jΓ
′MjMiΓΓ′MiMjΓεj

)2

[
E
(

ε′jΓ
′MjΓεj

)]2 .

Using part (c) of Lemma A1, we also have

E
(

ε′jΓ
′MjMiΓΓ′MiMjΓεj

)2
=2tr(Γ′MjMiΓΓ′MiMjΓ)2 + tr2(Γ′MjMiΓΓ′MiMjΓ)

+∆tr
(
Γ′MjMiΓΓ′MiMjΓ ◦Γ′MjMiΓΓ′MiMjΓ

)
=2tr

(
BiBj

)2
+ tr2 (BiBj

)
+∆tr

(
Γ′MjMiΓΓ′MiMjΓ ◦Γ′MjMiΓΓ′MiMjΓ

)
≤ (2+∆) tr

(
BiBj

)2
+ tr2 (BiBj

)
.

With the fact that E
(

ε′jΓ
′MjΓεj

)
= tr(Bj), we obtain

E
[
tr2 (Γ′MiAjMiΓ

)]
≤

(2+∆) tr
(
BiBj

)2
+ tr2 (BiBj

)
tr2(Bj)

.

Next, we consider E
[
tr
(
Γ′MiAjMiΓ

)2] .

E
[
tr
(
Γ′MiAjMiΓ

)2]
= E

(ε′jΓ
′MjMiΓΓ′MiMjΓεj

ε′jΓ
′MjΓεj

)2


≤
(2+∆) tr

(
BiBj

)2
+ tr2 (BiBj

)
tr2(Bj)

.
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Hence,

E
(

ρ̂4
ij

)
≤ (3+∆)

(2+∆) tr
(
BiBj

)2
+ tr2 (BiBj

)
tr2(Bi)tr2(Bj)

.

Consider part (c); since

E
(

ρ̂2
ij1ρ̂2

ij2

)
= EE

(
ρ̂2

ij1ρ̂2
ij2|vi

)
= E

(
E
(

ρ̂2
ij1|vi

)
E
(

ρ̂2
ij2|vi

))
=

E
(
v′iBj1viv′iBj2vi

)
tr
(
Bj1
)

tr(Bj2)
.

Note that
∣∣E (v′iBj1viv′iBj2vi

)∣∣ ≤ [
E
(
v′iBj1vi

)2]1/2 [
E
(
v′iBj2vi

)2]1/2
by using the Cauchy–Schwarz

inequality and

E
(
v′iBj1vi

)2
= E

(
ε′iΓ
′MiMj1ΓΓ′Mj1 MiΓεi

ε′iΓ
′MiΓεi

)2

≤
(2+∆) tr

(
BiBj1

)2
+ tr2 (BiBj1

)
tr2(Bi)

.

Hence:

E
(

ρ̂2
ij1ρ̂2

ij2

)
≤

(
(2+∆) tr

(
BiBj1

)2
+ tr2 (BiBj1

))1/2(
(2+∆) tr

(
BiBj2

)2
+ tr2 (BiBj2

))1/2

tr
(
Bj1
)

tr(Bj2)tr
2(Bi)

.

Lemma A3. Under Assumptions 1–3 and the null in (2), for any fixed positive number k, we have
(a) 1

T tr
(

Σk
)
= O(1);

(b) 1
T tr(Bk

i ) = O(1);

(c) 1
T tr(Bi1Bi2 · · ·Bik) = O(1), for i1 6= i2 6= · · · 6= ik.

Proof. Part (a) is directly from Bai and Zhou [20]; hence, we omit it here. Next, we consider
part (b). Since IT−PXi is idempotent, for any i = 1, . . . , N; hence, tr

(
Bk

i

)
= tr

[(
IT−PXi

)
Σ(IT−PXi)

]k
=

tr
([(

IT−PXi

)
Σ
]k) . By using the inequality that for any positive definite matrices A and B (see Bushell

and Trustrum [25])
tr (AB)k ≤ tr

(
AkBk

)
,

we have
tr
(

Bk
i

)
≤ tr

((
IT−PXi

)
Σk
)
≤ tr

(
Σk
)

.

Using part (a), then
1
T

tr
(

Bk
i

)
≤ 1

T
tr
(

Σk
)
= O(1).

For part (c), since for each Bil , l = 1, · · · ,k, it is positive semi-definite. We also have Bil ≤ Σ,
l = 1, . . . ,k. By using the facts that for any matrices A, B, with A ≤ B and C positive definite,
tr(AC)≤ tr(BC), we conclude that

1
T

tr(Bi1Bi2 · · ·Bik)≤
1
T

tr
(

Σk
)
= O(1).

Part (c) holds.
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Appendix B. Proof of the Theorems

Appendix B.1. Proof of Theorem 1

Proof. Since E(ei|Xi) = 0 and εi, i = 1, . . . , N, are independent, it is easy to show that

E(ρ̂ij) = 0,

which further implies E(Tn) = 0. Next, we consider the variance of Tn.

var

(
N

∑
i=1

i−1

∑
j=1

ρ̂ij

)
= E

(
N

∑
i=1

i−1

∑
j=1

ρ̂ij

)2

= E

(
N

∑
i1=1

i1−1

∑
j1=1

N

∑
i2=1

i2−1

∑
j2=1

ρ̂i1j1ρ̂i2j2

)
.

To calculate the above term, we have three cases to discuss:

(1) i1, i2, j1, j2 are mutually different. E
(
ρ̂i1j1ρ̂i2j2

)
= 0.

(2) i1 = i2, j1 = j2. By using Lemma A2, we have E
(

ρ̂2
ij

)
=

tr(BiBj)
tr(Bi)tr(Bj)

.

(3) i1 = i2, i1 6= j1 6= j2. Since vi1, vj1, vi1 and vj2 are independent, we have E
(
ρ̂i1j1ρ̂i1j2

)
= E

(
v′i1vj1v′i1vj2

)
= 0.

Hence, the above results give us the variance of Tn, which is

γ2 = var (Tn) =
2

N(N− 1)

N

∑
i=1

N

∑
j=1,j6=i

tr
(
MjΣMjMiΣMi

)
tr (MiΣ) tr

(
MjΣ

)
=

2
N(N− 1)

N

∑
i=2

i−1

∑
j=1

tr
(
BiBj

)
tr (Bi) tr

(
Bj
) ,

and Theorem 1 is proven.

Appendix B.2. Proof of Theorem 2

Proof. To prove this theorem, we need to employ the Martingale central limit theorem (Billingsley [26]).
For that purpose, we define F0 = {φ, Ω} , FNi as the σ-field generated by {ε1, ε2, . . . , εi} for 1 ≤ i ≤ N.
Let ENr (·) denote the conditional expectation given filtration FNr [E0 (·) = E (·)] . Write Ln = ∑N

i=1 DN,i
with DN,1 = 0. More specifically,

DN,i =

(
1

N(N− 1)

)1/2 i−1

∑
j=1

v′ivj.

For every N, we can further show that

E (DN,i | FN,i−1) = 0.

Hence, DN,i (1≤ i ≤ N) is a martingale difference sequence with respect to FN,i (1≤ i ≤ N) .

Let δ2
Ni =E

[
(DNi)

2 | FN,i−1

]
. By applying the Martingale central limit theorem, it is sufficient to show

that, as (N, T) −→∞,

∑N
i=1 δ2

Ni
var (Tn)

p−→ 1 and
∑N

i=1 E
(

D4
N,i

)
var2 (Tn)

−→ 0.
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Lemmas B1 and B2 prove the above conditions. Hence, we can apply the Martingale central limit
theorem, and as (N, T) −→∞, we have

γ−1Tn
d−→ N(0,1).

Lemma B1. Under Assumptions 1–3 and the null (2), as (N, T)→∞,

∑N
i=1 δ2

Ni
var (Tn)

p−→ 1,

where δ2
Ni =E

[
(DNi)

2 | FN,i−1

]
.

Proof. To prove Lemma B1, we first show that E
(

∑N
i=1 δ2

Ni

)
=var(Tn). Then, we will show that as

(N, T)→∞, var
(

∑N
i=1 δ2

Ni

)
/var2(Tn)→ 0. It is easy to show that

E

(
N

∑
i=1

δ2
Ni

)
=

N

∑
i=1

E
{

E
[
(DNi)

2 | FN,i−1

]}
= var (Tn) .

Next, we only need to show that the second condition is satisfied. We first consider the magnitude of
var(Tn). From Lemma A3, we know that

tr
(
BjBi

)
tr (Bi) tr

(
Bj
) = O(T−1),

which implies var2(Tn) = O(T−2). Now, consider var(∑N
i=1 δ2

Ni). Let Qj = ∑i−1
j=1 vj, then:

δ2
Ni = E

[
(DNi)

2 | FN,i−1

]
=

2
N(N− 1)

E
(

v′iQjQ′jvi | FN,i−1

)
=

2
N(N− 1)

E

(
ε′iΓ
′MiQjQ′jMiΓεi

(ε′iMiΓ′ΓMiεi)
| FN,i−1

)

=
2

N(N− 1)

(
Q′jMiΓΓ′MiQj

)
tr (Bi)

.

Therefore, we need to show the magnitude of var
(

∑N
i=1 Q′jMiΓΓ′MiQj

)
. Rewrite Q′jMiΓΓ′MiQj =

∑i−1
j1=1 ∑i−1

j2=1 v′j1Bivj2 and:

E

(
i−1

∑
j1=1

i−1

∑
j2=1

v′j1 MiΓΓ′Mivj2

)
= E

(
i−1

∑
j=1

v′jBivj

)
=

i−1

∑
j=1

E

[
ε′jΓ
′MjBiMjΓεj

(ε′jΓ
′MjΓεj)

]
=

i−1

∑
j=1

tr
(
BjBi

)
tr
(
Bj
) .

Next, we consider E
(

∑i−1
j1=1 ∑i−1

j2=1 v′j1Bivj2

)2
.

E

(
i−1

∑
j1=1

i−1

∑
j2=1

v′j1Bivj2

)2

= E
i−1

∑
j1=1

i−1

∑
j2=1

i−1

∑
j3=1

i−1

∑
j4=1

(
v′j1Bivj2v′j3Bivj4

)
.

To calculate the magnitude order of the above term, we have three cases to discuss:
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(1) j1 = j2 = j3 = j4 = j.

E
(

v′jBivj

)2
=E

(
ε′jΓ
′MjBiMjΓεj

)2

(ε′jΓ
′MjΓεj)2 =

E
(

ε′jΓ
′MjBiMjΓεj

)2

[
E
(

ε′jΓ
′MjΓεj

)]2

=
tr2 (BjBi

)
+ 2tr

(
BjBi

)2
+∆tr

(
BjBi ◦ BjBi

)
tr2
(
Bj
) ≤

(3+∆) tr2 (BjBi
)

tr2
(
Bj
) .

(2) j1 = j2 6= j3 = j4.

E
(

v′j1Bivj1

)(
v′j3Bivj3

)
= E

(
v′j1Bivj1

)
E
(

v′j3Bivj3

)
=

tr
(
Bj1Bi

)
tr
(
Bj1
) tr

(
Bj3Bi

)
tr
(
Bj3
) .

(3) j1 = j3 6= j2 = j4.

E
(

v′j1Bivj2

)(
v′j1Bivj2

)
=E
[
E
(

v′j1Bivj2v′j2Bivj1 | vj2

)]
=E

 tr
(

Γ′Mj1BiMj2Γεj2ε′j2Γ′Mj2BiMj1Γ
)

tr
(
Mj1Σ

)
ε′j2Γ′Mj2Γεj2


=

tr
(
Bj2BiBj1Bi

)
tr
(
Bj1
)

tr
(
Bj2
) .

Hence,

var(Q′jΓMiΓ′Qj) = E(Q′jΓMiΓ′Qj)
2−
[
E
(

Q′jΓMiΓ′Qj

)]2

≤
i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj1Bi

)
tr
(
Bj2Bi

)
tr
(
Bj1
)

tr
(
Bj2
) +(3+∆)

i−1

∑
j=1

tr2 (BjBi
)

tr2
(
Bj
)

+ 2
i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj2BiBj1Bi

)
tr
(
Bj1
)

tr
(
Bj2
) −(i−1

∑
j=1

tr
(
BjBi

)
tr
(
Bj
) )2

= 2
i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj2BiBj1Bi

)
tr
(
Bj1
)

tr
(
Bj2
) +(2+∆)

i−1

∑
j=1

tr2 (BjBi
)

tr2
(
Bj
) .

It further leads to

var

(
N

∑
i=1

δ2
Ni

)
≤ 4

N2(N− 1)2 N
N

∑
i=1

var
(

δ2
Ni

)
≤ 8

N(N− 1)2

N

∑
i=1

i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj2BiBj1Bi

)
tr2 (Bi) tr

(
Bj1
)

tr
(
Bj2
)

+
4(2+∆)

N(N− 1)2

N

∑
i=1

i−1

∑
j=1

tr2 (BjBi
)

tr2 (Bi) tr2
(
Bj
) .

By using Lemma A3, we have

var

(
N

∑
i=1

δ2
Ni

)
≤ K

[
O
(

1
T3

)
+O(

1
NT2 )

]
.
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As (N, T)→∞, var
(

∑N
i=1 δ2

Ni

)
/var2(Tn)→ 0. Lemma B1 is proven.

Lemma B2. Under Assumptions 1–3 and the null (2), as (N, T)→∞,

∑N
i=1 E

(
D4

N,i

)
var2 (Tn)

−→ 0.

Proof. Rewrite

E
(

D4
N,i

)
= E

[
E
(

D4
N,i|FN,i−1

)]
= E

{
E
[(

v′iQjQ′jvi

)2
| FN,i−1

]}

= E

 tr2
(

Γ′MiQjQ′jMiΓ
)
+ 2tr(Γ′MiQjQ′jMiΓ)2 +∆tr

(
Γ′MiQjQ′jMiΓ ◦ Γ′MiQjQ′jMiΓ

)
tr2 (Bi)

 .

By using the results from Lemma B1, we have

E
[
tr2
(

Γ′MiQjQ′jMiΓ
)]

= E
(

Q′jBiQj

)2

≤
i−1

∑
j1=1

i−1

∑
j3=1,j3 6=j1

tr
(
Bj1Bi

)
tr
(
Bj3Bi

)
tr
(
Bj1
)

tr
(
Bj3
) +(3+∆)

i−1

∑
j=1

tr2 (BjBi
)

tr2
(
Bj
)

+ 2
i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj2BiBj1Bi

)
tr
(
Bj1
)

tr
(
Bj2
) .

Since
tr(Γ′MiQjQ′jMiΓ)2 ≤ tr2

(
Γ′MiQjQ′jMiΓ

)
and

tr
(

Γ′MiQjQ′jMiΓ ◦ Γ′MiQjQ′jMiΓ
)
≤ tr2

(
Γ′MiQjQ′jMiΓ

)
,

thus

N

∑
i=1

E
(

D4
N,i

)
≤ K

N2(N− 1)2

N

∑
i=1

i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj1Bi

)
tr
(
Bj2Bi

)
tr2 (Bi) tr

(
Bj1
)

tr
(
Bj3
)

+
K

N2(N− 1)2

N

∑
i=1

i−1

∑
j=1

tr2 (BjBi
)

tr2 (Bi) tr2
(
Bj
)

+
K

N2(N− 1)2

N

∑
i=1

i−1

∑
j1=1

i−1

∑
j2=1,j2 6=j1

tr
(
Bj2BiBj1Bi

)
tr2 (Bi) tr

(
Bj1
)

tr
(
Bj2
)

≤ K2

NT2 = O
(

1
NT2

)
.

Hence,
∑N

i=1 E(D4
N,i)

var2(Tn)
−→ 0, as (N, T)→∞. Lemma B2 is proven.

Appendix B.3. Proof of Theorem 3

Proof. We want to show
E(γ̂2) = γ2 and γ̂2−γ2 = op(1).

Note that
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γ̂2 =
1

2N(N− 1)

N

∑
(i,j)

v′i
(

vj− v̄(i,j)
)

v′j
(

vi− v̄(i,j)
)

=
1

2N(N− 1)

 N

∑
(i,j)

(
v′ivj
)2− v′ivjv′jv̄(i,j)− v′iv̄(i,j)v

′
jvi + v′iv̄(i,j)v

′
jv̄(i,j)


= a1 + a2 + a3 + a4, say.

It is easy to show that the first term E(a1) = γ2, and E(ai) = 0, i = 2,3,4. Therefore, we prove the first
part. By using Lemma A3 and Theorem 1, we have γ2 = O(T−1). Hence, to prove γ̂2−γ2 = op(1), we
only need to show that var(a1) = op(T−2) and ai = op

(
γ2) , for i = 2,3,4. Let us consider var(a1).

var(a1) = E(a2
1)−γ4

=
4

N2(N− 1)2 E

(
N

∑
i=1

i−1

∑
j=1

ρ̂2
ij

)2

− 4
N2(N− 1)2

(
N

∑
i=2

i−1

∑
j=1

tr
(
BjBi

)
tr (Bi) tr

(
Bj
))2

=
4

N2(N− 1)2 E

(
N

∑
i1=2

i−1

∑
j1=1

N

∑
i2=2

i2−1

∑
j2=1

ρ2
i1j1ρ2

i2j2

)
− 4

N2(N− 1)2

(
N

∑
i=2

i−1

∑
j=1

tr
(
BjBi

)
tr (Bi) tr

(
Bj
))2

.

Now, we only consider the term E
(

∑N
i1=2 ∑i−1

j1=1 ∑N
i2=2 ∑i−1

j2=1 ρ2
i1j1

ρ2
i2j2

)
. There are three cases for this term,

and Lemma A2 is used frequently:

(1) i1, i2, j1 and j2 are mutually different.

E
(

ρ2
i1j1ρ2

i2j2

)
=

tr
(
Bi1Bj1

)
tr
(
Bi2Bj2

)
tr
(
Bi1
)

tr
(
Bi1
)

tr
(
Bi2
)

tr
(
Bi2
) = Op

(
1

T2

)
.

(2) i1 = i2, j1 = j2 and i1 6= j1.

E
(

ρ4
ij

)
≤ (3+∆)

(2+∆) tr
(
BiBj

)2
+ tr2 (BiBj

)
tr2(Bi)tr2(Bj)

= Op

(
1

T2

)
.

(3) i1 = i2, i1 6= j1 6= j2.

E
(

ρ2
ij1ρ2

ij2

)
≤

(
(2+∆) tr

(
BiBj1

)2
+ tr2 (BiBj1

))1/2 (
(2+∆) tr

(
BiBj2

)2
+ tr2 (BiBj2

))1/2

tr
(
Bj1
)

tr(Bj2)tr
2(Bi)

= Op

(
1

T2

)
.

From the above results, we have

var(a1) = Op

(
1

N2T2

)
.
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Hence a1
p→ γ2. Consider the second term a2, which is equal to 1

2N(N−1)(N−2)

N
∑

(i,j,τ)
v′ivjv′jvτ. The first term

of E

(
N
∑

(i,j,τ)
v′ivjv′jvτ

)2

is

N

∑
(i,j1,j2,τ)

E
(

v′ivj1v′j1vτv′ivj2v′j2vτ

)
=

N

∑
(i,j1,j2,τ)

tr(Mj2 MτΣMτMiΣMiMj1ΣMj1 Mj2Σ)

tr (Bτ) tr
(
Bj2
)

tr(Bj1)tr (Bi)

=O
(

N4T−3
)

,

by using Lemmas A2 and A3. By using part (c) of Lemma A3, the second term of E

(
N
∑

(i,j,τ)
v′ivjv′jvτ

)2

is

E

 N

∑
(i,j,τ)

(
v′ivjv′jvτ

)2
 = Op(N3T−2).

Hence, a2 = Op

(
N−1T−3/2

)
+ Op

(
N−3/2T−1

)
, which further implies a2 = op(γ2). Since a2 = a3,

a3 = op(γ2). Consider a4; it can be divided into two terms

1

2N(N− 1) (N− 2)2

N

∑
(i,j,τ)

(
v′ivτv′jvτ

)
and

1

2N(N− 1) (N− 2)2

N

∑
(i,j,τ1,τ2)

(
v′ivτ1v′jvτ2

)
.

It is easy to show that the former term is Op
(
N−1a2

)
, then it is op(γ2). We only need to consider the

latter term E

(
N
∑

(i,j,τ1,τ2)

(
v′ivτ1v′jvτ2

))2

.

E

 N

∑
(i,j,τ1,τ2)

(
v′ivτ1v′jvτ2

)2
 =

N

∑
(i,j,τ1,τ2)

E
[(

v′ivτ1

)2 (v′jvτ2

)2
]
= O

(
N4T−2

)
,

by using Lemma A2–A3. Hence, the latter term is Op(N−2T−1). The above results together lead to
a4 = op(γ2). The first part of Theorem 3 holds; the second part of Theorem 3 is directly derived by
using Theorem 2 and the first part of Theorem 3.

Appendix B.4. Proof of Theorem 4

Proof. The OLS residuals under the local alternative are defined by Miu′i = σi (MiΓεi + MiFλi), thus

Tn =

(
2

N(N− 1)

)1/2 N

∑
i=2

i−1

∑
j=1

(MiΓεi + MiFλi)
′ (MjΓεj + MjFλj

)
||MiΓεi + MiFλi||||MjΓεj + MjFλj||

=

(
2

N(N− 1)

)1/2 N

∑
i=2

i−1

∑
j=1

(MiΓεi + MiFλi)
′ (MjΓεj + MjFλj

)
(
ε′iΓ
′MiΓεi + 2ε′iΓ

′MiFλi +λ′iF
′MiFλi

)1/2
(

ε′jΓ
′MjΓεj + 2ε′jΓ

′MjFλj +λ′jF
′MjFλj

)1/2 .

Consider the denominator. Note that E
(
ε′iΓ
′MiΓεi

)2
= tr(ΣMi)

2 + 2 [tr(ΣMi)]
2 + ∆tr (ΣMi ◦ΣMi) =

Op
(
T2), which lead to ε′iΓ

′MiΓεi = O(T). Consider the term ε′iΓ
′MiFλi. Since

ε′iΓ
′MiFλi = ε′iΓ

′Fλi− ε′iΓ
′Xi
(
X′iXi

)−1 X′iFλi.
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From Assumption 4, we have X′i F = Op

(
T1/2

)
, ε′iΓ

′F = Op

(
T1/2

)
and ε′iΓ

′Xi = Op

(
T1/2

)
,

which lead to ||ε′iΓ′Fλi|| = Op

(
T1/4N−1/2

)
and ||ε′iΓ′Xi

(
X′iXi

)−1 X′i Fλi|| = Op(T−1/4N−1/2).

Hence, ε′iΓ
′MiFλi = op

(
ε′iΓ
′MiΓεi

)
. Similarly, by using Assumption 4, we also have

λ′iF
′MiFλi = op

(
ε′iΓ
′MiΓεi

)
. From the above results, we further have

ε′iΓ
′MiΓεi + 2ε′iΓ

′MiFλi + λ′iF
′MiFλi = (1+ op(1))ε′iΓ

′MiΓεi.

It results in

Tn =

(
2

N(N− 1)

)1/2 N

∑
i=2

i−1

∑
j=1

ε′iΓ
′MiMjΓε j + ε′iΓ

′MiMjFλj + λ′iF
′MiMjΓε j + λ′iF

′MiMjFλj(
(1+ op(1))ε′iΓ

′MiΓεi
)1/2

(
(1+ op(1))ε′jΓ

′MjΓε j

)1/2

=Tn1 + Tn2 + Tn3 + Tn4,

where Tn1 =
(

2
N(N−1)

)1/2
∑N

i=2 ∑i−1
j=1

ε′iΓ
′Mi MjΓε j

Dij
; Tn2 =

(
2

N(N−1)

)1/2
∑N

i=2 ∑i−1
j=1

ε′iΓ
′Mi MjFλj

Dij
;

Tn3 =
(

2
N(N−1)

)1/2
∑N

i=2 ∑i−1
j=1

λ′iF
′Mi MjΓε j

Dij
and Tn4 =

(
2

N(N−1)

)1/2
∑N

i=2 ∑i−1
j=1

λ′iF
′Mi MjFλj

Dij
with

Dij =
(
(1+ o(1))ε′iΓ

′MiΓεi
)1/2

(
(1+ o(1))ε′jΓ

′MjΓε j

)1/2
. From Theorem 2, γ−1Tn1

d−→ N(0, 1).

From Theorem 1, Tn1 = Op

(
T−1/2

)
. Consider Tn2. We observe that E(Tn2) = 0 and

E (Tn2)
2 =

2
N(N− 1)

E

(
N

∑
i=2

i−1

∑
j=1

ε′iΓ
′MiMjFλj

Dij

)2

=
2

N(N− 1)

 N

∑
i=2

i−1

∑
j=1

E

(
ε′iΓ
′MiMjFλj

Dij

)2

+
N

∑
i=2

i−1

∑
j1=1

i−1

∑
j2 6=j1

E
ε′iΓ
′MiMj1 Fλj1λ′j2 F′Mj2 MiΓεi

Dij1 Dij2

 .

Consider the term ε′iΓ
′MiMjFλj.

ε′iΓ
′MiMjFλj

=ε′iΓ
′Fλj − ε′iΓ

′Xi
(
X′iXi

)−1 X′i Fλj − ε′iΓ
′Xj(X′jXj)

−1X′jFλj + ε′iΓ
′Xi(X′iXi)

−1X′iXj(X′jXj)
−1X′jFλj.

Using Assumption 4 and under the local alternative, we first have ||ε′iΓ′Fλj|| = Op

(
T1/4N−1/2

)
; we

then have ||ε′iΓXi(X′iXi)
−1X′i Fλj|| = Op

(
T−1/4N−1/2

)
since

ε′iΓXi(X′iXi)
−1X′i F =

(
ε′iΓXi√

T

)(
X′iXi

T

)−1(X′i F√
T

)
= Op(1);

we last have ||ε′iΓ′Xi(X′iXi)
−1X′iXj(X′jXj)

−1X′jFλj|| = Op

(
T−1/4N−1/2

)
. Hence, ||ε′iΓ′MiMjFλj|| =

Op

(
T1/4N−1/2

)
. Together with the fact that ||Dij|| = Op(T), the first term of E(Tn2)

2 is of order

Op

(
T−3/2N−1

)
. Similar to the proof of above, ||ε′iΓ′MiMj1 Fλj1λ′j2 F′Mj2 MiΓεi|| = Op

(
T1/2N−1

)
; with

the facts that ||Dij1 || = Op(T) and ||Dij2 || = Op(T); the second term of E(Tn2)
2 is of order Op

(
T−3/2

)
.

Thus, Tn2 = Op

(
T−3/4

)
= op (Tn1). Similarly, Tn3 = op (Tn1).

Consider Tn4. Note that

λ′iF
′MiMjFλj

=λ′iF
′Fλj − λ′iF

′Xi(X′iXi)
−1X′i Fλj − λ′iF

′Xj(X′jXj)
−1X′jFλj + λ′iF

′Xi(X′iXi)
−1X′iXj(X′jXj)

−1X′jFλj.
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From Assumption 4, we know that λiF′Fλj = λ′iT(Ir +Op(T−1/2))λj
p−→ Tλ′iλj. Since

F′Xi(X′iXi)
−1X′i F =

(
F′Xi√

T

)(
X′iXi

T

)−1(X′i F√
T

)
= Op(1),

λ′iF
′Xi(X′iXi)

−1X′i Fλj = op(λ′iF
′Fλj). Similarly, we can also show that the third and the fourth terms

are of smaller order of the first term. Hence, λ′iF
′MiMjFλj = (1+ op(1))λ′iF

′Fλj.

Note that E(λ′iF
′Fλj) = Tλ′iλj 6= 0, and

(
2

N(N−1)

)1/2
∑N

i=2 ∑N
j=1

λ′iF
′Fλj

Dij
= Op(T−1/2);

hence, γ−1Tn4 = Op(1). One can also show that Dij
p−→ tr1/2(MiΣ)tr1/2(MjΣ).

Let ψ = plim(N,T)→∞γ−1
(

2
N(N−1)

)1/2
∑N

i=2 ∑i−1
j=1

(
T1/2N−1δ′i δj

tr1/2(MiΣ)tr1/2(MjΣ)

)
; from all of the above results,

as (N, T)→ ∞,

γ−1Tn1−ψ
d−→ N(0, 1).
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