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Abstract: In recent years, fractionally-differenced processes have received a great deal of attention
due to their flexibility in financial applications with long-memory. This paper revisits the class
of generalized fractionally-differenced processes generated by Gegenbauer polynomials and the
ARMA structure (GARMA) with both the long-memory and time-dependent innovation variance.
We establish the existence and uniqueness of second-order solutions. We also extend this
family with innovations to follow GARCH and stochastic volatility (SV). Under certain regularity
conditions, we give asymptotic results for the approximate maximum likelihood estimator for the
GARMA-GARCH model. We discuss a Monte Carlo likelihood method for the GARMA-SV model
and investigate finite sample properties via Monte Carlo experiments. Finally, we illustrate the
usefulness of this approach using monthly inflation rates for France, Japan and the United States.

Keywords: GARMA; GARCH; stochastic volatility; long-memory; fractional differencing

JEL Classification: C18, C40, C58

1. Introduction

Consider the well-known ARFIMA(p, d, q) model given by:

φ(B)Yt = θ(B)εt, (1)

where Yt = (1− B)dXt, d ∈ (−1, 0.5), {εt} is a sequence of uncorrelated (not necessarily independent)
random variables, such that Var(εt) = σ2, and φ(B) (stationary AR(p)) and θ(B) (invertible MA(q))
polynomials respectively.

This standard case of constant variance innovations has been considered in many traditional
time series analysis with applications. However, in recent years, there has been a great number of
developments based on time-dependent instantaneous innovation variance (or volatility) such that
Var(εt) = σ2

t . In particular, the following cases have been considered:

(i) σ2
t is a deterministic function of t or σ2

t = f (t),
(ii) εt follows the family of (G)ARCH process (see, [1,2]),

(iii) log(σ2
t ) is another stochastic process.

These cases (i) to (iii) can be analysed with emphasis on different practical issues. However, in
applications, we need additional assumptions on σ2

t , such as:

(a) 0 < m < σ2
t < M < ∞ to ensure Var(Yt) is finite, in (i)

(b) stationarity or stability of both {ε2
t } and log({ε2

t }) in (ii) and (iii)
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Assumption (a) is imposed as it is natural to set bounds for the deterministic function σ2
t = f (t).

In fact, Assumption (b) is required when σ2
t is a stochastic process. For case (i), the effect of

non-stochastic and time-dependent instantaneous variance when d = 0 was studied by Niemi [3]
under the standard AR and MA regularity conditions on the zeros of φ(B) and θ(B), respectively.
In his work, Peiris [4] argues that the results of Niemi [3] can be extended to the ARFIMA family when
d ∈ (−0.5, 0.5). In (ii), it is known that Xt is strictly stationary if εt is strictly stationary, and in particular,
Xt is 2m-th order stationary if εt is 2m-th order stationary. For the Integrated GARCH (IGARCH)
model, Nelson [5] and Bougerol and Picard [6] have argued that IGARCH is strictly stationary under
additional regularity conditions. For case (iii) with stochastic volatility, it is obvious that if log σ2

t is
m-th order stationary, then εt is 2m-th order stationary. Therefore, it can be argued that when σ2

t is
a stationary stochastic process, the conditional likelihood estimation carried out by taking σ2

t = σ2

cannot be significant since σ2
t is bounded. This would be useful in the estimation of parameters,

especially in both cases (ii) and (iii). See the survey papers of McAleer [7] and Shephard [8] for the
various extensions of (ii) and (iii).

An alternative way of modelling time-dependent volatilities has been extensively studied using
ARMA models with time-dependent coefficients driven by constant variance innovations. See, for
example, [4,9–13] and the references therein for details. However, this approach is not very attractive
in applications, as it involves too many parameters to estimate.

Turning to applications in economic and financial time series, there are many popular directions
of modelling and analysis of long-memory. Among others, the analysis of long-memory in inflation
has been considered by Backus and Zin [14], Hassler and Wolters [15], Baillie, Chung and Tieslau [16],
and Caporale and Gil-Alana [17]. In their paper, Delgado and Robinson [18] considered a number of
methods for the analysis of long-memory time series using ARFIMA. An alternative and a general
approach is to use the ARFIMA family with conditional and stochastic volatility as considered by Baillie
et al. [19], Bollerslev and Mikkelsen [20], Ling and Li [21], Breidt et al. [22], Deo and Hurvich [23], and
Bos et al. [24]. In their recent paper, Bos et al. [24] accommodate the stochastic volatility in ARFIMA
modelling. Empirical evidence confirms that such models are very satisfactory in practice. Therefore,
the aim of this paper is to extend the ARFIMA models with time-varying volatility to a general flexible
class of time series models based on Gegenbauer polynomials together with the ARMA structure. The
Gegenbauer ARMA (GARMA) model is a generalization of the ARFIMA model. Clearly, the former
encompasses the latter as a special case. We will also extend the class of k-factor Gegenbauer process
following Woodward et al. [25], Ferrara and Gueganand [26], and Caporale and Gil-Alana [17], by
accommodating time-dependent volatility.

The organization of the paper is as follows. Section 2 reviews the family of GARMA with
constant variance (volatility). Section 3 shows the existence and uniqueness of second-order
solutions for the GARMA model with time-dependent volatility and develops new classes of
GARMA-GARCH and GARMA-SV. Section 4 presents the asymptotic results for the maximum
likelihood estimator for the GARMA-GARCH model and reports a Monte Carlo likelihood method for
estimating the GARMA-SV model. Section 5 presents an illustrative example via simulation data, while
Section 6 demonstrate an empirical example using inflation data in France, Japan and the United States.
Section 7 gives concluding remarks.

2. Basic Results on GARMA with Constant Volatility

In this section, we review the family of GARMA processes with constant volatility. Based on the
work of Gray et al. [27] and Chung [28], consider the family of time series generated by:

φ(B)(1− 2uB + B2)dXt = θ(B)εt, (2)

where the polynomials φ(B) and θ(B) are as defined before, |u| ≤ 1, |d| < 1 are real parameters and εt

is white noise with zero mean and variance σ2
ε .
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This process in (2) is known as Gegenbauer ARMA of order (p, d, q) or GARMA (p, d, q; u) and has
the following properties:

• The power spectrum is given by:

fX(ω) = C(ω)× [4(cos ω− u)2]−d, −π < ω < π, (3)

where C(ω) = σ2
ε

2π

∣∣∣ θ(e−iω)
φ(e−iω)

∣∣∣2 and i =
√
−1.

• The process in (2) is stationary with long-memory when |u| < 1 and 0 < d < 1/2 or |u| = 1 and
d < 1/4. The long-memory features are characterized by:

– hyperbolic decay of the autocorrelation function (ACF ) superimposed with a sinusoidal,
– unbounded spectrum at the Gegenbauer frequency, ω = ωg = cos−1(u).

In their recent papers, a modified class of generalized fractional processes has been studied by
Shitan and Peiris [29,30].

Now, consider the following special case or the GARMA(0, d, 0; u) process and its properties for
later reference. That is, when φ(B) = θ(B) = 1, we have:

(1− 2uB + B2)dXt = εt. (4)

Suppose that the following regularity conditions are satisfied:

R1: AR regularity: |u| < 1 and d < 1/2 or |u| = 1 and d < 1/4.
R2: MA regularity: |u| < 1 and d > −1/2 or |u| = 1 and d > −1/4.

A Stationary Solution to GARMA(0, d, 0; u) Model

Under the regularity conditions in R1, there exists the Wold representation to (4) given by:

Xt = ψ(B)εt =
∞

∑
j=0

ψjεt−j, (5)

where ψ(B) = (1− 2uB + B2)−d = ∑∞
j=0 ψjBj with ψ0 = 1 and the Gegenbauer coefficients ψj have the

explicit representation:

ψj =
[j/2]

∑
q=0

(−1)q(2u)j−2qΓ(d− q + j)
q!(j− 2q)!Γ(d)

such that ∑∞
j=0 ψ2

j < ∞ (Γ(.) is the Gamma function; see [31] for details). These coefficients ψj, j ≥ 2
are recursively related by:

ψj = 2u
(

d− 1 + j
j

)
ψj−1 −

(
2d− 2 + j

j

)
ψj−2 (6)

with initial values ψ0 = 1 and ψ1 = 2du.

An Invertible Solution to GARMA(0, d, 0; u) Model

Under the MA regularity conditions, there exists an invertible solution to (4) given by:

εt = (1− 2uB + B2)dXt =
∞

∑
j=0

πjXt−j, (7)

where πj, j ≥ 0 are obtained from (6) replacing d by −d with corresponding initial values.
The next section develops the class of GARMA(0, d, 0; u) driven by time-dependent or stochastic

innovations for later reference.
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3. GARMA with Time-Dependent Innovations

Suppose that Var(εt) in (4) is time-dependent. Consider the class of regular (in both AR and MA)
GARMA(0, d, 0; u) driven by time-dependent innovations satisfying:

εt = σtzt, zt ∼ NID(0, 1), (8)

where σt is the time-dependent volatility.
Below, we establish the existence and uniqueness of second-order solutions to (4) with innovations

in (8) under certain additional regularity conditions.

3.1. Unique Stable Solutions

We use the following general approach:

Let (Ω,A,P) be a probability space, and let Lr
0(Ω,A,P) be the space of all real-valued random

variables on (Ω,A,P) with finite r-th order moments. Suppose that {ζt} is sequence of random
variables in Lr

0(Ω,A,P) and Ms(ζ) is the closed linear subspace of Lr
0(Ω,A,P) spanned by the

elements ζt, t ≤ s. Let Lr
0(Ω,A,P) be the closed linear subspace spanned by all of the elements ζt; t ≥ 1

byM(ζ).
In the case of r = 2, let ξ and ζ be any two random elements in L2

0(Ω,A,P) such that the inner
product and the norm satisfy

< ξ, ζ >= Cov(ξ, ζ) and ||ξ||2 = E(ξ2)

respectively. It is easy to verify that L2
0(Ω,A,P) is a Hilbert space.

Intuitively, if the volatility process is stationary, it guarantees the existence of the second moment
of εt, which enables us to establish the following two lemmas.

Lemma 1. Under the AR regularity conditions R1, if the innovation process is stationary, then the solution in
(5) belongs to L2

0(.), i.e., Xt ∈ L2
0(.).

Proof. Since the innovation process εt is stationary, var(εt) = σ2
t is bounded. Hence the solution

Xt = ψ(B)εt = ∑∞
j=0 ψjεt−j ∈ L2

0(.).

Lemma 2. Under the MA regularity conditions R2, if the innovation process is stationary, then an invertible
solution to (7) belongs to L2

0(.) or εt ∈ L2
0(.).

The proof is similar to that of Lemma 1.

Lemma 3. Under the both AR and MA regularity conditions and stationarity of the innovation process, one
hasMt(X) =Mt(ε).

The proof to this follows from Lemmas 1 and 2.
Next, we consider two special cases useful in applications.

3.2. Two Special Cases

Consider two popular cases where the innovations εt follow GARCH or SV processes.
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3.2.1. GARMA(0, d, 0; u)-GARCH(r, s)

Suppose that σ2
t in (8) follows a GARCH(r, s) process, such that

σ2
t = α0 +

r

∑
i=1

αiε
2
t−i +

s

∑
j=1

βjσ
2
t−j, (9)

where r and s are positive integers (both not simultaneously zero), α0 > 0, αi ≥ 0 and βj ≥ 0. It is
well-known that an equivalent representation of the GARCH(r, s) process is:

ε2
t = α0 +

r

∑
i=1

αiε
2
t−i +

s

∑
j=1

βjε
2
t−j + ηt −

s

∑
j=1

βjηt−j,

where ηt = ε2
t − σ2

t = (z2
t − 1)σ2

t and are serially uncorrelated with mean zero. Now, we state the
following lemma:

Lemma 4. Let {Xt} be generated by GARMA(0, d, 0; u) and σ2
t follows (9).

(a) If the AR regularity conditions and ∑r
i=1 αi + ∑s

j=1 βj < 1 are satisfied, then {Xt} is second-order
stationary and Xt ∈ L2

0(.).
(b) If the MA regularity conditions are satisfied, then {Xt} is invertible and εt ∈ L2

0(.).

Proofs follow from Lemmas 1 and 2.
The next section develops the class of GARMA(0, d, 0; u) driven by SV innovations or GARMA-SV.

3.2.2. GARMA(0, d, 0; u)-SV

Suppose that ht = ln(σ2
t ) satisfies the following recursion

ρ(B)ht = κ∗ + ν(B)ξt−j, (10)

where ρ(B) = 1− ρ1B− ρ2B2 − · · · − ρlBl and ν(B) = 1 + ν1B + ν2B2 + · · ·+ νmBm, κ∗ is a constant,
ξt ∼ NID(0, σ2

ξ ), and the disturbances zt and ξt are mutually independent for all t. Further assume
that the roots of ρ(z) = 0 and ν(z) = 0 lie outside the unit circle. Note that σ2

ξ measures the conditional
volatility of the log-volatility.

Let Ψ∗(B)ρ(B) = ν(B). Then, it is known that there exists a sequence {ψ∗i }, such that

Ψ∗(B) =
∞

∑
j=0

ψ∗j Bj

with ∑∞
j=0(ψ

∗
j )

2 < ∞. Now, we have the following lemma:

Lemma 5. Under the AR regularity condition on ρ(θ), the log-volatility process in (10) has uniquely determined
L2

0(.) solution, such that

ht = κ +
∞

∑
j=0

ψ∗j ξt−j, (11)

where κ = E(ht) =
κ∗

ρ(1) is the mean of the log-volatility process.

It is clear from (11) that the log-volatility process {ht} converges in the mean square to κ and:

E[(ht − κ)2]→ σ2
ξ

∞

∑
j=0

(ψ′j)
2 < ∞.
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In their paper, Chesney and Scott [32] have considered the case where ht follows an AR(1) process,
such that

ht = κ∗ + ρht−1 + ξt, (12)

where κ∗ is a positive constant, and |ρ| < 1.

Lemma 6. The process in (12) is equivalent to

ln(ε2
t ) = κ + ρ ln(ε2

t−1) + wt, (13)

where κ = a(1− ρ) + κ∗, a = E[ln(z2
t )] = −1.2704, wt = ut − ρut−1 + ξt and ut = ln(z2

t )− a. Note that
E[wt] = 0; Var[wt] = 4.93(1+ ρ2) + σ2

ξ ; E(wtwt−1) = −ρ; E(wtwt−j) = 0 (j ≥ 2).

Proof. Since ln(ε2
t ) = ln(σ2

t )+ ln(z2
t ), we have ln(ε2

t ) = ht + ln(z2
t ). Substituting for ht = ln(ε2

t )− a−ut

in (12) and noting that Var[ln(z2
t )] = 4.93, the lemma follows.

Remark. Clearly, {wt} in (12) is not a martingale difference series, and hence, it is not useful in applications.
However, this can be written as an ARMA(1,1) in the form:

ln(ε2
t ) = κ + ρ ln(ε2

t−1) + vt − θvt−1, (14)

where vt ∼WN(0, σ2
v); θ and σ2

v are given by 1+θ2

θ =
(1+ρ2)σ2

u+σ2
ξ

ρσ2
u

, σ2
u = Var[log(z2

t )] = 4.93.

This result can be extended to any general ARMA structure for the log-volatility process.

Lemma 7. Suppose that the SV process follows an ARMA(l, m) model as in (10). Then, the corresponding
{ln(ε2

t )} process satisfies and ARMA(k, k) in the form:

ln(ε2
t ) = κ + ρ1 ln(ε2

t−1) + ρ2 ln(ε2
t−2) + · · ·+ ρk ln(ε2

t−k) + vt + θ1vt−1 + · · ·+ θrvt−k,

where κ = κ∗ + a(1− ρ1 − ρ2 − · · · − ρp) and vt = ξt − ut, vt−j = θjξt−j − ρjut−j for j = 1, 2, · · · , k with
k = max(l, m).

Proof. The proof follows from extending the approach in Lemma 6.

Section 4 discusses the estimation of parameters.

4. Estimation of Parameters

This section discusses the estimation for the GARMA (p,d,q; u) model with time-dependent volatility.
We divide the section into to two parts, namely, (i) the GARMA-GARCH and (ii) the GARMA-SV.

4.1. GARMA-GARCH Model

Suppose that X = {X1, · · · , Xn} is generated by the GARMA (p,d,q; u)-GARCH(r,s) model (2),
(8) and (9). Define φ = (φ1, . . . , φp)′, θ = (θ1, . . . , θq)′, α = (α0, α1, . . . , αr),′ β = (β1, . . . , βs)′, γ =

(d, φ′, θ′) and δ = (α′, β′)′. Let λ = (u, δ′, γ′)′, and let λ0 = (u0, δ′0, γ′0)
′ be the true value of λ in the

interior of the compact set Λ. The approximate log-likelihood function (excluding the constant) is
given by

L(λ) =
1
n

n

∑
t=1

lt, lt = −
1
2

log(σ2
t )−

ε2
t

2σ2
t

,
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where

εt = [θ(B)]−1φ(B)(1− 2uB + B2)dXt,

σ2
t = [β(B)]−1[α0 + α(B)ε2

t ]

and α(B) = α1B + α2B2 + · · ·+ αrBr, β(B) = 1− β1B− β2B2 − · · · − βsBs.
Assuming the initial values of X0, X−1, X−2, . . . are zero, an approximate maximum likelihood

estimator λ̂ of λ in Λ is obtained by maximizing the above function, which is asymptotically equivalent
to the maximum likelihood (ML) estimator. For the case of a non-normal distribution, we can still use
the same approach with the corresponding quasi-maximum likelihood (QML) estimator.

For the ARFIMA (p, d, q)-GARCH (r, s) model, Breidt et al. [22] suggested the above approach.
However, Ling and Li [21] established the consistency and asymptotic normality of the corresponding
ML estimator and showed that the information matrix is block-diagonal. Combining the results of Ling
and Li [21] and Chung [28,33], we can obtain the asymptotic results for the corresponding estimator of
the GARMA-GARCH model.

Proposition 1. Let û and (γ̂, δ̂)′ be approximate ML estimators of u and (γ, δ) based on a sample {Xt}n
t=1

from a GARMA-GARCH model under the conditions in Lemma 4. Then, û is asymptotically independent of
(γ̂, δ̂)′ and:

n(û− u0)
L−→

K sin(ωg)

d
Y0 if |u| < 1 and d 6= 0, (15)

where K = E(σ−2
t ) + 2 ∑∞

j=1 ϕσ(j)E(ε2
t−i/σ4

t ),

Y0 ≡
∫ 1

0 W̃1dW2 −
∫ 1

0 W1dW̃2∫ 1
0 W̃2

1 (r)dr +
∫ 1

0 W2
1 (r)dr

and (W̃1(t), W̃2(t)) and (W1(t), W2(t)) are two independent Brownian motions with mean zero and covariance

t

(
E(σ2

t ) 1
1 K

)
.

Furthermore,

n2(û∓ 1) L−→± K
2d

Y1 if u = ±1 and d 6= 0, (16)

where Y1 is a random variable defined as

Y1 ≡
∫ 1

0

{∫ r
0 W1(s)ds

}
dW2(r)∫ 1

0

{∫ r
0 W1(s)ds

}2 dr
.

Proof. See Appendix A.2.

As discussed in Chung [28,33], the convergence rates of û are faster than those of the
remaining parameters. The off-diagonal blocks in the information matrix (with respect to the parameter
u and the remaining parameters) approach zero. Hence, the distribution of û is asymptotically
independent of the remaining parameters.

Below, we report the asymptotic result of the remaining parameters.

Proposition 2. Based on the sample {Xt}n
t=1 from the GARMA-GARCH model and under the conditions in

Lemma 4, we have
√

n

(
γ̂− γ0
δ̂− δ0

)
L−→N

(
0,

[
Ω−1

γ O
O Ω−1

δ

])
,
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where u 6= 1 and

Ωγ = E

(
1
σ2

t

∂εt

∂γ

∂εt

∂γ
+

1
2σ4

t

∂σ2
t

∂γ

∂σ2
t

∂γ

)
, (17)

Ωδ = E

(
1

2σ4
t

∂σ2
t

∂γ

∂σ2
t

∂γ

)
.

Proof. See Appendix A.3.

For the case of u to be one, we can use the asymptotic result of Ling and Li [21].
Following Gray et al. [27] and Chung [28], in practice, we use the grid search procedure for

different value of u over the range [−1, 1] to minimize the likelihood function. For selecting the
order of the GARMA-GARCH model, we can use an information criterion, such as AIC and BIC.
Furthermore, we can use the conventional t test for the parameters except for u. For testing the null
hypothesis regarding u, we can use the approach of Chung [33] to obtain percentiles via simulations.

4.2. Estimation of GARMA-SV Model

Suppose that X = {X1, · · · , Xn} are generated from the GARMA (p,d,q; u)-SV model (2), (8) with
the SV structure

ht = κ + ρ(ht−1 − κ) + ξt, |ρ| < 1, (18)

where ht = ln(σ2
t ), {ξt} ∼ NID(0, σ2

ξ ) and ξt, zt are independent.

From (18), we have E(ht) = κ and Var(ht) =
σ2

ξ

1−ρ2 . Further, Var(εt) = exp
(

σ2
ξ

2(1−ρ2)

)
. Since {ht}

is a latent process, the evaluation of the likelihood function requires integrating it with respect
to (h1, . . . , hn).

As mentioned earlier, the evaluation of the likelihood function involves high-dimensional
integration, which is difficult to calculate. Nevertheless, among others, Danielsson and Richard [34],
Shephard and Pitt [35], Durbin and Koopman [36,37] and Liesenfeld and Richard [38] suggested
evaluating high-dimensional integrals using simulation methods and then maximizing the
corresponding likelihood function. In this case, we use the Monte Carlo likelihood (MCL) estimator of
Durbin and Koopman [37]. In their recent paper, Bos et al. [24] extended the MCL estimator for the
estimation of parameters of ARFIMA-SV parameters. This approach creates a set of realized values
for h = (h1, h2, · · · , hn)′ by ‘importance sampling’. Conditional on h and using the prediction error
decomposition, it is clear that the density is given by:

log(X|h, d, φ, θ, κ.ρ, σξ) = −
n
2

log(2π)− 1
2

n

∑
t=1

log( ft)−
1
2

n

∑
t=1

a2
t

ft
, (19)

where at is the one-step ahead prediction error, ft is its variance and h is from importance sampling.
From (19), we evaluate the simulated likelihood function based on the true density and the

importance density using the results of Durbin and Koopman [37]. We also extend the work of
Bos et al. [24], by replacing the autocovariance functions of the ARFIMA by those of the GARMA and
use the results of McElroy and Holan [39] to obtain the ML estimator. As a practical issue, we use the
grid search procedure for different values of u over the range [−1, 1] for minimizing the likelihood
function.

Noting that ∂ht/∂u = 0, ∂ht/∂γ = 0, we can consider that the information matrix of (u, γ′, δ′2)
′

has a block diagonal structure similar to the GARMA-GARCH case, where δ2 = (κ, σξ , ρ)′. If the MCL
approximates the true likelihood accurately, we can use the conventional t test for the parameters
except for u. For testing the null hypothesis regarding u, we can use the approach of Chung [33] to
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obtain percentiles via simulations, based on Proposition 1. For this purpose, we need to replace K in
Proposition 1 with K∗ = E[exp(−2ht)], by noting ∂ht/∂u = 0 unlike the GARMA-GARCH process.

In the next section, we will investigate the finite sample properties of the MCL estimator.
In selecting the order of the GARMA-SV model, we can use the MCL to calculate the information
criterion, such as AIC and BIC.

It is worth mentioning a semi-parametric estimation procedure for the long-memory parameter
under heteroskedasticity. See, for example, [40]. For the GARMA-SV model, we extend this in two
directions: one is to to replace the conditional heteroskedasticity by SV, and the other is to extend the
ARFIMA to the GARMA. For the latter case regarding the GARMA process, Hidalgo and Soulier [41]
developed a log-periodogram regression estimator extending the work of Robinson and Henry [40].

Now, look at a simulation study in order to illustrate certain properties of this GARMA-SV class.

5. Simulation Results

In this section, we show two kinds of simulation results for the GARMA-SV model. One is
an illustrative example to show the pattern of a GARMA-SV process, and the other is the Monte Carlo
results for the finite sample properties of the ML estimator for the GARMA-SV.

5.1. An Illustrative Example

We generate a one-shot series to show as an illustrative example. Simulate 500 values from
GARMA(0, d, 0; u)-SV from (4) and (8) with SV innovations as in (15). We have selected the parameter
values (u, d) = (0.7, 0.3) for the following two cases:

• Case (i) with constant volatility: (κ, ρ, σξ) = (0, 0, 0),
• Case (ii) with stochastic volatility: (κ, ρ, σξ) = (0, 0.98, 0.2).

Take the time series of 300 observations (discarding the first 200) for further analysis. It is clear
that the Gegenbauer frequency is ωG = 0.2532π = 0.7954.

For the simulated GARMA(0, d, 0; u), Figure 1 shows the time series plot, the sample periodogram
and the autocorrelation functions (ACF) of series. In addition, 95% confidence intervals for the squared
series are presented. The periodogram indicates that the peak is at ω = 0.2733π, which is close to
the actual value. The ACFs of the raw series decay hyperbolically and periodically, confirming the
features of the Gegenbauer process. On the other hand, the ACFs of the squared series are insignificant
for higher lags.
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Figure 1. Simulated GARMA(0, d, 0; u) process.
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Figure 2 presents the plots for a simulated GARMA(0, d, 0; u)-SV process. The time series plot
indicates the pattern of the time-dependent volatility. Figure 2b shows three major peaks at frequencies
of 0.0467π, 0.1600π and 0.2733π. Clearly, the last peak is close to the true Gegenbauer frequency.
Figure 2c shows that the ACF of the raw series decays hyperbolically and periodically (similar to the
result in Figure 1c of the Gegenbauer process). The ACF in Figure 2d shows a geometric decay, which
is different from Figure 1d, which shows constant volatility.
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Figure 2. Simulated GARMA(0, d, 0; u)-stochastic volatility (SV) process.

As shown in Figure 1b, the periodogram of the GARMA process has one major peak at the
Gegenbauer frequency, which is further from the origin. These plots show that there is a possibility of
having multiple peaks under the time-dependent volatility model. The next section gives an empirical
study based on a monthly consumer price index as an example.
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Figure 3. Estimated density of the MCL estimator of u.
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5.2. Monte Carlo Experiments

In order to examine the finite sample properties of the MCL estimator for the GARMA-SV model,
we conduct a simulation study. For the ARFIMA-SV model, Bos et al. [24] conducted Monte Carlo
experiments for the MCL estimator for the ARFIMA (1, d, 0)-SV model, and found (i) downward
bias in d, (ii) upward bias in φ, (iii) downward bias in ρ and (iv) upward bias in σξ , with the sample
size T = 500. We consider the GARMA (1, d, 0; u)-SV model in order to check the effects of the
additional parameter u. As explained in the previous section, we use the grid-search for estimating u
over the interval [−1, 1].

We specify the parameters for the GARMA part as (µ, d, u, φ) = (0.1, 0.4, 0.7, 0.384), implying
that the value of the first-order autocorrelation function is 0.6. For the parameters for the SV part,
we use the values (κ, ρ, σξ) = (−7.36, 0.95, 0.26), which are used in the simulation experiments of
Jacquier et al. [42]. We consider a sample size of T = 500 with 2000 replications.

Table 1 shows the sample means, standard deviations and root mean squared errors (RMSE) of the
MCL estimators. For the parameter u, the bias and RMSE are smaller than those for d and φ1, implying
a faster convergence rate for the MCL estimator of u, as expected from Theorem 1 of Chung [33], for the
simple GARMA process and from Proposition 1 of the current paper for the GARMA-GARCH model.
Figure 3 shows the estimated density of the û, indicating that 94% of the estimates are located between
(0.65,0.75) and that 2.8% of them are greater than 0.95. For the remaining parameters, Table 1 agrees
with the simulation results of Bos et al. [24], except for φ1. The MCL estimator for φ1 gives a downward
bias, which may be explained by the fact that not only (d, φ1), but also u, affect the autocorrelation
structure of the GARMA part.

Table 1. Finite sample performance of the Monte Carlo likelihood (MCL) estimator for T = 500.

Parameters True Mean SD RMSE

u 0.700 0.7137 0.0530 0.0547
d 0.400 0.2317 0.0798 0.1862

φ1 0.384 0.0320 0.0688 0.3587
µ 0.100 0.0997 0.0077 0.0077
κ −7.360 −6.9968 0.4034 0.5425
ρ 0.950 0.9243 0.0412 0.0485
σξ 0.260 0.2984 0.0795 0.0882
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Figure 4. Sample periodograms of inflation rates. The inflation rates are seasonally adjusted via
monthly dummy variables.

6. Applications of GARMA-SV Models

We use the monthly consumer price index (CPI) Pt in three countries: France, Japan and the
United States (U.S.) to illustrate the modelling described in this paper. The sample period starts
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from 1960M11 to 2015M11 in all three countries. The data source is the IMF’s International Financial
Statistics published on the IMF web page. The CPIs are normalized at 100 for the year 2010. >From
the price index series, we calculate the monthly inflation rates, Πt = 100 × log(Pt/Pt−1) giving
T = 660 observations. By removing the seasonal effects, regress the inflation rates on a series of
monthly dummies Dt as Πt = Dtδ + et. Define Xt = Π̄ + êt, where Π̄ is the average of inflation
rates and êt is the residuals through the method of OLS. Table 2 shows the corresponding descriptive
statistics. For seasonally-adjusted inflation rates, Figure 4 shows the estimated periodograms. As in
Figure 4, the highest peak is at ω = 0.0033π for all three countries. Apart from the pole, there are at
least two small peaks. The second highest peak is at ω = 0.6697π for France and Japan, while the
peak in the second mass is at ω = 0.1606π for the U.S. Although it is difficult to distinguish, the third
highest peak for France is at ω = 0.9970π. Based on the ACF and spectral properties, we examine the
reasons for these multiple peaks. The first candidate is time-dependent volatility as discussed in the
previous section. The second one is the general GARMA process with multi-factors, and the third is
a nested model of the multi-factor GARMA and the SV.

Table 2. Descriptive statistics of inflation rates.

Variable Average SD Min Max

France
Πt 0.3507 0.3940 −1.0072 1.9147
Xt 0.3507 0.3853 −0.9171 2.0047

Japan
Πt 0.2580 0.6766 −1.1940 4.2182
Xt 0.2580 0.6147 −1.0172 4.1818
US
Πt 0.3154 0.3542 −1.9339 1.7924
Xt 0.3154 0.3365 −1.7434 1.7659

Note: Πt denotes the original inflation rate, while Xt
denotes the seasonally-adjusted series.

In this case, we estimate the three-factor GARMA-SV model given by:

(1− φL)(1− 2u1B + B2)d1(1− 2u2B + B2)d2(1− 2u3B + B2)d3 Xt = εt,

based on (8) and (18) and using the MCL estimation technique. By the sample periodogram in Figure 4,
we expect that one of the three Gegenbauer frequencies is zero, corresponding to the highest peak at the
point close to the origin. We do not report the higher orders of (p, q), as the estimates were insignificant
(using the mean subtracted series following the recommendation of Chung [28]). The estimates of
di are located in (0.05, 0.2) and are significant at five percent, except for d2 for the U.S. series. For all
three countries, the null hypothesis of u1 = 1 cannot be rejected. A positive value of ui indicates that
the Gegenbauer frequency is close to the origin, while a negative value implies that it is close to π.
Hence, the Gegenbauer frequency for U.S. data is close to the origin, while the estimates of (u2, u3) of
the other two countries are close to π. It is interesting to note that the estimates of ρ are positive and
significant, indicating the appropriateness of accommodating the time-dependent volatility structure
in this multi-factor GARMA model. The empirical results support this three-factor GARMA-SV model
for France and Japan, while the U.S. series favours the two-factor GARMA-SV model.
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Table 3. QML estimates of the multi-factor GARMA-SV model.

Parameter France Japan U.S.

κ −3.4302 (0.1799) −12.2791 (0.7865) −4.0358 (0.2580)
σξ 0.3210 (0.1489) 0.0670 (0.0243) 0.1336 (0.0637)
ρ 0.8837 (0.0924) 0.9969 (0.0033) 0.9723 (0.0233)
σε 0.2524 (0.0068) 0.5200 (0.0139) 0.2485 (0.0067)
φ 0.1585 (0.2106) −0.0882 (0.1318) −0.0703 (0.2031)
d1 0.1971 (0.0683) 0.1769 (0.0245) 0.1696 (0.0244)
d2 0.1701 (0.0332) 0.1516 (0.0320) 0.0639 (0.0337)
d3 0.0719 (0.0230) 0.1109 (0.0287) 0.0870 (0.0338)
u1 1.0000 0.9999 1.0000

[0.9997,1.0000] [0.9995,1.0000] [0.9996,1.0000]
u2 −0.5082 −0.5083 0.8754

[−0.5295,−0.4869] [−0.5322,−0.4844] [0.8435,0.9072]
u3 −0.9996 −0.0095 0.4917

[−1.0013,−0.9979] [−0.0474,−0.0284] [0.4496,0.5339]
Note: Standard errors are in parenthesis. For (u1, u2, u3), 95% confidence intervals are in
brackets.

Since the estimates of ρ are close to one for Japan and the U.S. series, we consider a GARMA
model for the SV process, {ht}. Using the MCL estimates from Table 3, we obtain the residuals to
satisfy

ε̂t = (1− 2û3B + B2)d̂3(1− 2û2B + B2)d̂2(1− 2û1B + B2)d̂1(1− φ̂L)Xt.

Now, we consider the interpretation of the parameter ui. First of all, the behaviour of a periodic
long-memory process is different from a periodic short memory process (for example, a seasonal
ARMA). As shown by Chung [28,33], the j-th autocovariance function for the GARMA process is
approximated by Kj2d−1 cos(ωg j), where K is a constant. Hence, the operator (1− uiB+ B2)di produces
a periodic long-memory with cycles of every 2π/ arccos(ωg,i). For France, the values for i = 2, 3 are
2.986 and 2.018, respectively. These results indicate that there are periodic long-range dependences
with respect to every two and three months. The values of Japan are 2.986 and 3.976, implying the
periodic long-memory with respect to every three and four months. For the U.S., the estimate for u3 is
5.946, producing the periodic long-memory with respect to every six months. As u1 is equal to one in
three countries, there is no periodic long-memory for the first factor.
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Figure 5. Sample periodograms of the log of squared residuals.

Figure 5 shows the periodograms for the log of the squared residuals, log ε̂2
t , which can be

considered as the proxy of log-volatility. Figure 5 shows that there is a distinguished peak at zero
frequency for the case of Japan and the U.S., implying that a short memory model model is adequate
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for France, while long-memory models are appropriate for the remaining two countries. Furthermore,
Japan also has five other periodic peaks, implying a multiple periodic long-memory. For estimating
the GARMA-SV model when ht follows a GARMA model, the MCL technique requires a smoother
simulation to be applied to the second GARMA process, which is an extension of the work of de Jong
and Shephard [43]. Another task is to reduce the computational time under the multiple grid-search
method for finding optimal values of ui’s in mean and volatility. We need to wait for further research
for these problems.

In this section, we found that in addition to non-periodical long-range dependence, the empirical
results indicate the existence of the periodic long memory under the time-dependent volatility.

7. Conclusions

This paper considers the class of GARMA-GARCH and GARMA-SV models in detail. We have
established the existence and uniqueness of second order solutions and investigated the asymptotic
results of the approximated ML estimator for the GARMA-GARCH model. We have explained
the Monte Carlo likelihood (MCL) technique for estimating the GARMA-SV model. Using a set
of simulated data, we have presented an illustrative example with possible multiple peaks in the
GARMA-SV model. We also conducted a Monte Carlo experiment to investigate finite sample
properties of the MCL estimator. In the empirical analysis, we have estimated a three-factor
GARMA-SV model for monthly inflation rates of France, Japan and the United States and found
that the data favour multi-factor GARMA-SV models showing that periodic long-memory exists.

There are many possible extensions of this new approach. In a future paper, we will develop
models allowing both the mean and variance to follow Gegenbauer processes, as discussed in the
previous section. For this purpose, we may extend the MCL estimation method by considering the
simulation smoother for the GARMA process. By extending the work of Robinson and Henry [40], we
plan to develop an estimation method for the Gegenbauer frequency and the long-memory parameter
in the presence of long-memory in volatility.
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Appendix A. Proofs of Propositions

Appendix A.1. Preliminary Results

To obtain the ML estimator λ̂, we need to find the first-order derivatives and the
information matrix. For each t, we obtain
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where
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j if u = 1,
sin(jωg)/ sin(ωg) if |u| < 1,
(−1)j−1 j if u = −1,
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′. Note that only n observations are available. However,
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t to be ∑n

t=1 ε2
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Baillie et al. [16], Ling and Li [21] and Weiss [44]. This will not affect the asymptotic efficiency and
other asymptotic properties.

We obtain the second derivatives, by directly differentiating ∂lt/∂γ, ∂lt/∂u and ∂lt/∂δ. For using
later, we only give:
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Let Ft be the past information of εt available up to time t. Then, we obtain the conditional
expectation of the second derivatives:
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and those of the cross partial derivatives,
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Below, we will deal with u and (γ′, δ′)′ separately, since their speeds of convergence are different,
as shown by Chung [33].

Noting that
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we apply the proof of Theorem 3.1 of Ling and Li (1997) for (γ′, δ′)′ to obtain the asymptotic properties
of the information matrix:
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as n→ ∞, and Ωγ and Ωδ are positive definite matrices, where Ωγ and Ωδ are defined in (17). We can
show that the information matrix is a block diagonal, in the following way. We can express each element
of ∂σ2

t /∂δ as the infinite sum ε2
t−i (i = 1, 2, . . . , ), while each element of ∂σ2

t /∂γ has a representation of
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As in Ling and Li [21], we can also show that−n−1 ∑n
t=1(∂

2lt/∂δ∂u)−→a.s. O. The block diagonal
structure of the information matrix with respect to (u, γ′)′ and δ implies that the distribution of (û, γ̂′)′

is asymptotically independent of that of δ̂. Hence, we focus on the first derivatives and the information
matrix regarding (u, γ′)′ for deriving the asymptotic properties of û, in the next subsection.

For deriving the asymptotic properties of the information matrix regarding û, we present the
results of Chung [33].
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As discussed in [21], we also show that every element of Iγu = E [(∂εt/∂γ) (∂εt/∂u)] is finite. Using a
similar approach as in Theorem 3.1 of [21], we have E[∂2L(λ)/∂γ∂u] = O(1). By the above results for
Iu, we show that E[∂2L(λ)/∂u2] does not exist, indicating that the usual asymptotic theory based on
Op(n−1/2) convergence will not work as discussed in [33].

Appendix A.2. Proof of Proposition 1

Since the information matrix is block diagonal, we focus on the parts related to (u, γ′)′ in order to
prove the proposition.

We consider the following Taylor series expansion of the first conditions for the maximization of
the approximate likelihood function around the true value of λ0 1
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are the rates suggested by Chung [33].
If cn is appropriate, we have c−1
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then we obtain
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∂2lt(λ0)

∂u2

]−1 [
1
cn

n

∑
t=1

∂lt(λ0)

∂u

]
+ op(1), (A7)

since û is asymptotically independent of γ̂. In the remainder of the proof, we derive the limiting
distributions of the two series in (A6) and then that of cn(û− u) in (A7). For this purpose, we use the
theory of nonstationary ARMA process with GARCH errors, derived by Ling and Li [45].

By the conditions of Lemma 4, we can write

[θ(z)]−1 =
∞

∑
k=0

ϕε(k)zk, α(z)[β(z)]−1 =
∞

∑
k=1

ϕσ(k)zk.

Assuming pre-sample values, ε0 = ε1 = ε2 = · · · = 0 and combining with (A1), we have

∂σ2
t

∂u
=

∞

∑
k=1

ϕσ(k)εt−k
∂εt−k

∂u
=

t−1

∑
k=1

ϕσ(k)εt−k
∂εt−k

∂u
.

Let
ζt = (1− 2uB + B2)−1θ(B)εt.

Then, from (A2), we have

∂εt

∂u
= −2d[θ(B)]−1ζt−1 = −2d

∞

∑
k=0

ϕε(k)ζt−k−1 = −2d
t−1

∑
k=0

ϕε(k)ζt−k−1.
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Denote ζt = (ζt, ζt−1)
′ and define

ξt =

(
ξ1t
ξ2t

)
=

εt

σ2
t

t−1

∑
k=0

ϕε(k)ζt−k−1 −
1
σ2

t

(
1
σ2

t
− 1
) t−1

∑
j=1

t−1

∑
k=0

ϕσ(j)ϕε(k)εt−jζt−j−k−1,

Ξt =

(
Ξ11,t Ξ12,t
Ξ21,t Ξ22,t

)

=
1
σ2

t

t−1

∑
j=0

t−1

∑
k=0

ϕε(j)ϕε(k)ζt−j−1ζ′t−k−1

+
2ε2

t
σ6

t

t−1

∑
j1,j2=1

t−1

∑
k1,k2=0

ϕε(j1)ϕε(j2)ϕε(k1)ϕε(k2)εt−j1 εt−j2 ζt−j1−k1−1ζ′t−j2−k2−1.

From (A1)–(A3), it is easy to verify

∂lt(λ0)

∂u
= −2dξ1t,

∂2lt(λ0)

∂u2 = 4d2Ξ11,t + op(1) (A8)

Below, we apply the theorems of [45] to derive their limiting distributions. For this purpose, we
separately consider three cases: |u| < 1, u = 1 and u = −1.

Case 1: |u| < 1

By Theorem 4.3 of [45], we obtain

1
n

n

∑
t=1

ξt
L−→
(

ξ∗1
ξ∗2

)
,

1
n2

n

∑
t=1

Ξt
L−→ K

4 sin2(ωg)

(∫ 1

0
W̃2

1 (r)dr +
∫ 1

0
W2

1 (r)dr
)(

1 cos(ωg)

sin(ωg) 1

)
,

where

ξ∗1 =
1

2 sin(ωg)

[∫ 1

0
W̃1dW2 −

∫ 1

0
W1dW̃2

]
,

ξ∗2 =
1

2 sin(ωg)

{
cos(ωg)

[∫ 1

0
W̃1dW2 −

∫ 1

0
W1dW̃2

]
− sin(ωg)

[∫ 1

0
W̃1dW̃2 +

∫ 1

0
W1dW2

]}
,

and K, (W̃1(t), W̃2(t)) and (W1(t), W2(t)) are defined in Proposition 1. Noting (A8), we
obtain (15).

Case 2: u = 1

By Theorem 4.1 of [45], we obtain

n

∑
t=1

Mnξt
L−→
(

ξ∗1
ξ∗2

)
,

n

∑
t=1

MnΞt M′n
L−→K

(
Ξ∗11 Ξ∗12
Ξ∗21 Ξ∗22

)
,
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where

Mn =

(
1/n2 0
1/n −1/n

)
,

ξ∗1 =
∫ 1

0

{∫ r

0
W1(s)ds

}
dW2(r),

ξ∗2 =
∫ 1

0
W1(r)dW2(r),

Ξ∗11 =
∫ 1

0

{∫ r

0
W1(s)ds

}2
dr,

Ξ∗12 = Ξ∗21 =
∫ 1

0

{∫ r

0
W1(s)ds

}{∫ r

0

∫ s

0
W1(t)dtds

}
dr,

Ξ∗22 =
∫ 1

0

{∫ r

0

∫ s

0
W1(t)dtds

}2
dr.

Noting (A8), we obtain (16) for the distribution of n2(û− 1).
Case 3: u = −1

By Theorem 4.2 of [45], we obtain

n

∑
t=1

Mnξt
L−→
(

ξ∗1
ξ∗2

)
,

n

∑
t=1

MnΞt M′n
L−→K

(
Ξ∗11 Ξ∗12
Ξ∗21 Ξ∗22

)
,

where

Mn =

(
1/n2 0
−1/n 1/n

)
,

ξ∗1 = −
∫ 1

0

{∫ r

0
W1(s)ds

}
dW2(r),

ξ∗2 = −
∫ 1

0
W1(r)dW2(r),

and Ξ∗11, Ξ∗12, Ξ∗21 and Ξ∗22 are the same as in Case 2.
Noting (A8), we obtain (16) for the distribution of n2(û + 1).

Appendix A.3. Proof of Proposition 2

Applying (A5) and the proof of Theorem 3.2 of [21], we can show that the conditions provided by
Basawa et al. [46] are satisfied. The only difference is on the third derivative of εt with respect to d:

∂3εt

∂d3 = [log(1− 2uB + B2)]3εt,

which has the finite second moment as:

E

[(
∂3εt

∂d3

)2]
= 64E

( ∞

∑
k1,k2,k3=1

cos(k1ωg) cos(k2ωg) cos(k3ωg)

k1k2k3
εt−k1−k2−k3

)2


= 64
∞

∑
k1,k2,k3=1

cos2(k1ωg) cos2(k2ωg) cos2(k3ωg)

k2
1k2

2k2
3

E(ε2
t−k1−k2−k3

)

≤ 64
∞

∑
k1,k2,k3=1

1
k2

1k2
2k2

3
E(ε2

t−k1−k2−k3
) =

(
2π

3

)3
E(ε2

t ) < ∞.
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