
econometrics

Article

Continuous and Jump Betas: Implications for
Portfolio Diversification
Vitali Alexeev 1,2,*, Mardi Dungey 1 and Wenying Yao 1,3

1 Tasmanian School of Business and Economics, University of Tasmania, Hobart TAS 7001, Australia;
Mardi.Dungey@utas.edu.au

2 Discipline of Finance, Business School, University of Technology Sydney, Sydney NSW 2007, Australia
3 Department of Economics, Faculty of Business and Law, Deakin University, Burwood VIC 3125, Australia;

Wenying.Yao@utas.edu.au
* Correspondence: Vitali.Alexeev@utas.edu.au, Tel.: +61-3-6226-2335

Academic Editor: Nikolaus Hautsch
Received: 29 February 2016; Accepted: 25 May 2016; Published: 1 June 2016

Abstract: Using high-frequency data, we decompose the time-varying beta for stocks into beta for
continuous systematic risk and beta for discontinuous systematic risk. Estimated discontinuous
betas for S&P500 constituents between 2003 and 2011 generally exceed the corresponding
continuous betas. We demonstrate how continuous and discontinuous betas decrease with portfolio
diversification. Using an equiweighted broad market index, we assess the speed of convergence
of continuous and discontinuous betas in portfolios of stocks as the number of holdings increase.
We show that discontinuous risk dissipates faster with fewer stocks in a portfolio compared to its
continuous counterpart.
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1. Introduction

The quest for the optimal portfolio size that reduces diversifiable risk has been an integral part
of the portfolio choice literature since Markowitz [1,2]. The concept of diversification is simple;
the level of return variability falls as the number of holdings in a portfolio increases. This is true
for any coherent measure of risk (e.g., [3,4]). Furthermore, as risk decreases with an increase in
the number of holdings, the average return of a portfolio is unaffected, improving the risk-return
trade-off. The investor may be better off holding a large number of low-quality stocks than a smaller
number of high-quality stocks.

A wide range of risk measures has been proposed to answer the question of optimal portfolio
size.1 With the optimal number of portfolio holdings ranging from eight to 10 stocks (e.g., [5,18]) to
as many as 40 to 60 stocks (e.g., [7,12,19]) to reduce most of the diversifiable risk, it is hard to discuss
or compare the results in these studies since the underlying assumptions, the data (frequencies and
time periods) and assumed risk measures are different. It is, nevertheless, a powerful concept to use
for between-period comparison. With rare exceptions (e.g., [16,17,20]), most diversification literature
focuses on a full sample period without considering the time-series dynamics of optimal portfolio size.

1 Existing studies use standard deviation [5–7], mean absolute deviation [8,9], semi-variance [10], terminal wealth standard
deviation [11,12], residual variance from the CAPM [13,14], mean realised dispersion [15], and realised volatility [16]. For a
comprehensive list of different risk measures used in portfolio diversification, see ([17] p. 44).
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This paper takes advantage of high-frequency data and new econometrics tools to split risk into
its continuous and discontinuous components and derive optimal portfolio size recommendations
for an average investor. The existing literature only points to the potential of high-frequency
data for portfolio diversification. For example, Silvapulle and Granger [21] investigate asset
correlations at the tails of return distributions and discuss the possibilities for portfolio diversification.
Bollerslev et al. [22] examine the relationship between jumps in individual stocks and jumps in
a market index. The authors find that jumps occur more than three times as often at the individual
stock level compared to jump occurrence in an aggregate equiweighted index constructed from the
same stocks. This points to the fact that jumps are diversifiable. Pukthuanthong and Roll [23] consider
implications of jumps for international diversification using daily data. They find that cross-country
diversification is less effective if jumps are frequent, unpredictable and strongly correlated. Only
recently has the optimal portfolio size question been addressed in the high-frequency domain
with Alexeev and Dungey [16] finding that optimal holdings size is affected by frequency of data.
The implications of jumps for portfolio size recommendations have not been investigated.

Using extensive portfolio simulation techniques, we evaluate the variability reduction of portfolio
betas as the number of holdings in these portfolios increase. Although earlier literature focuses on
reducing the residual risk obtained from the Capital Asset Pricing Model (CAPM) (e.g., [13,14]),
the non-parametric nature of the Todorov and Bollerslev [24] estimator that we implement to separate
continuous and discontinuous beta does not allow estimation of portfolio residual risk and precludes
us from investigating diversification benefits for different factors separately. Instead, we analyse
the spread of estimated betas in equiweighted randomly constructed portfolios of different sizes,
focusing on the difference in convergence between continuous and discontinuous betas as the number
of holdings in a portfolio increases.

The interpretation of the beta coefficient as a measure of risk rests upon the empirical validity
of the market model, where the return on an asset is a linear function of market factors common to
all assets [25]. The focus of this paper is on decomposing the market risk factor into its continuous
and discontinuous components. Evidence of the existence of jumps in many financial asset classes
may be found in Andersen et al. [26], Dungey et al. [27], Jacod and Todorov [28], Lahaye et al. [29] and
Aït-Sahalia and Jacod [30]. Jump risk has been shown to be an important element in improving the
estimation of the yield curve [31], estimates and forecasts of daily volatility [32–34], explaining the
high equity premium [35] and optimal hedging strategies [36]. The market itself presents evidence
of significant rewards for bearing non-diversifiable jump risk; for example, via the expense of
short-maturity options written on the market index with strikes that are far from its current level.
Investors may treat rare events somewhat differently from common, more frequent events, in devising
portfolio strategies.

Large risk premia can be obtained when the representative investor treats jump and diffusive
risks differently as formalised in Bates [35]. Barro [37] shows that rare economic disasters have
the potential to explain the high equity premium. Patton and Verardo [38] provide empirical evidence
of substantial short-term changes in betas around earnings announcements.

The time-series relation between systematic jump risk and expected stock market returns has
been examined in Santa-Clara and Yan [39], while Cremers et al. [40] examine the pricing of jump risk
in the cross-section of stock returns: Stocks with high sensitivities to jump risk have low expected
returns. These results are statistically significant and economically important. Guo et al. [41] show
that jump risk is also an important determinant of conditional equity premium even after controlling
for commonly used stock market return predictors. Recent evidence suggests that discontinuous
systematic risk factors are associated with positive risk premia, while continuous counterparts are
not priced or exhibit negative risk premia (e.g., [42,43]). We depart from the mainstream literature
on the empirical pricing of risk factors associated with continuous and jump risks and focus on its
implications for portfolio diversification.
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This paper is the first to investigate the stability of systematic risk in portfolios of assets and
to propose the optimal number of portfolio holdings that considerably reduces the variability of
portfolio betas for an average investor. We follow Todorov and Bollerslev [24] to decompose systematic
risk into continuous and discontinuous (jump) components. We show that the jump risk is easier to
contain (that is, fewer portfolio holdings are required to reduce portfolio risk) than the continuous
risk. We find that this difference is more pronounced during less turbulent times in contrast to periods
of elevated market volatility when estimates of continuous and discontinuous betas are often of
similar magnitudes.

The remainder of this paper is organised as follows. Section 2 describes the dataset used in the
empirical analysis. Section 3 introduces the modelling framework and parameter choices for estimating
the continuous and discontinuous betas. Our empirical analysis in Section 4 includes the estimation of
individual stock betas, discussion of their properties and some robustness tests. In Section 5, we turn
to the selection of portfolio size and assess the implications of the two risk components for portfolio
diversification. Section 6 concludes the paper.

2. Data

We investigate 501 stocks from the S&P500 index over a 9-year sample period from 2 January 2003
to 30 December 2011. This period covers the turmoil of the third quarter of 2008 associated
with the bankruptcy of Lehman Brothers and rescue/intervention packages around financial
firms in the US at this time. The data consist of 5-min price observations between 9:30 am and
4:00 pm eastern standard time (EST) of stocks after adjusting for mergers and acquisitions, stock
splits, trading halts and bankruptcies.2 We follow current convention in using 5-min observations,
see Andersen et al. [26], Lahaye et al. [29], as the choice of optimal sampling frequency for multiple
asset problems is as yet an unresolved problem. In Alexeev et al. [42], we show that the Epps effect is
not substantial in these data. The final sample consists of 2262 active trading days across 108 months,
with 77 observations per day. Missing 5-min observations are filled with the previous observation, and
during each estimation window, we draw from the population of stocks with at least 75% of non-zero
5-min returns to obtain sufficient data coverage for high-frequency analysis.

Our estimation window is a calendar month, enabling us to conduct dynamic analysis of
the portfolio results with non-overlapping windows of data. The benchmark portfolio is constructed
as an equally weighted portfolio of investible stocks in each estimation window; we choose this in
preference to a value-weighted portfolio to avoid cases where one stock has a disproportionately high
weight in the portfolio. The portfolio analysis is conducted with 12-month rolling windows to avoid
interrupting the dynamics in the discontinuous beta and to consider the implications of portfolios with
annual rebalancing.

3. Modeling Framework

Given a panel of N assets, the continuous-time data generating process (DGP) of an asset’s
log-price pi,t is typically characterised as a semi-martingale process plus jumps, i = 1, . . . , N.
The instantaneous return, ri,t, takes the following form:

ri,t ≡ dpi,t = bi,t dt + σi,t dWi,t + κi,t dµi,t, t ∈ (0, T], (1)

where bi,t and σi,t measure the time-varying drift and spot volatility, respectively, and Wi,t denotes
a standard Brownian motion, i = 1, . . . , N. In the discontinuous component, κi,t = pi,t − pi,t− denotes
the size of the jump in the i-th asset at time t, and µi,t is a Poisson random measure that counts

2 There are 900 stocks in the original dataset of stocks that have been represented on the S&P500 at any time during the
sample period. We additionally delete stocks that have altered currency of trade, are over-the-counter or listed on alternative
exchanges. See Dungey et al. [44] for further database details.
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the number of jump occurrences. We omit the possibly infinite jump activity for simplicity as it does
not affect our model dynamics.

Denote the return on a benchmark market portfolio as r0,t. A standard one-factor asset pricing
model representation relating ri,t to r0,t takes the form

ri,t = αi + βi r0,t + εi,t, i = 1, . . . , N. (2)

The βi coefficient in Equation (2) is the sensitivity of the expected return on the i-th asset to the return
on the market (or systematic) factor.3 Following Todorov and Bollerslev [24], the market return r0,t
can be represented in the same way as in Equation (1) consisting of the continuous and discontinuous
components. Hence, in the presence of jumps, Equation (2) becomes

ri,t = αi + βc
i σ0,t dW0,t + βd

i κ0,t dµ0,t + εi,t, i = 1, . . . , N, (3)

where εi,t in this case contains both the idiosyncratic continuous and discontinuous components in
each asset.

Equation (3) implies that the sensitivity of an asset return to the two components of systematic
risk can be different, represented by βc

i and βd
i , respectively. Overall, systematic risk is due to either

the continuous component of the market movement σ0,t dW0,t, or the discontinuous component
κ0,t dµ0,t. Assuming that the continuous record of the asset returns ri,t and r0,t are available, βc

i and βd
i

can be derived from (3) using covariation measures.
For any i = 0, 1, . . . , N, the quadratic variation of ri,t over the time interval (0, T] is defined as

[ri, ri]
2
T =

∫ t

0
σ2

i,s ds + ∑
0<s≤t

κ2
i,s. (4)

It follows that the quadratic covariation between ri,t and r0,t is

[ri, r0]
2
T = βc

i

∫ t

0
σ2

0,s ds︸ ︷︷ ︸
[rc

i ,rc
0]

2
T

+ βd
i ∑

0<s≤t
κ2

0,s︸ ︷︷ ︸
[rd

i ,rd
0 ]

2
T

. (5)

The first term in Equation (5), [rc
i , rc

0]
2
T , captures the covariation in the continuous components of ri,t

and r0,t, whereas the second term represents the discontinuous covariation. For the continuous beta,

βc
i =

[rc
i , rc

0]
2
T

[rc
0, rc

0]
2
T

, i = 1, . . . , N, (6)

and
[rd

i , rd
0 ]

2τ
T = (βd

i )
τ ∑

0<s≤t
κ2τ

0,s = (βd
i )

τ [rd
0 , rd

0 ]
2τ
T , τ ≥ 1, (7)

for the discontinuous beta.4 Equations (6) and (7) provide the basis for constructing discrete-sample
estimators of βc

i and βd
i .

3 Classic references in the literature are Sharpe [45], Lintner [46] and Lintner [47] among others.
4 The parameter τ in (7) can be more loosely specified such that 2τ is above the Blumenthal-Getoor index, which covers the

set of {τ : τ ≥ 1}. However, in practice, higher values of τ are usually chosen to avoid friction caused by discrete sampling.
For further details, see Todorov and Bollerslev [24].
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3.1. The Estimators in Discrete Time

Empirical applications do not have the luxury of continuously recorded asset prices and returns.
Instead, we assume that they are observed at every ∆ time interval, from 0, ∆, 2∆, . . ., to bT/∆c · ∆.
Hence, there are bT/∆c interval returns within (0, T], which are denoted by

ri,j = pi,j − pi,j−1, i = 0, 1, . . . , N, j = 1, . . . , bT/∆c. (8)

The consistent estimators for βc
i and βd

i given by Todorov and Bollerslev [24] are constructed as follows:
Let rj =

(
r0,j, r1,j, . . . , rN,j

)′ be the (N + 1)× 1 vector of the observed returns, j = 1, . . . , bT/∆c.
The sample counterpart of (6) is constructed using truncated realised covariations,

β̂c
i =

∑
bT/∆c
j=1 ri,j r0,j 1{|rj |≤θ}

∑
bT/∆c
j=1 r2

0,j 1{|rj |≤θ}
, i = 1, . . . , N, (9)

where θ = (a0∆v, a1∆v, . . . , aN∆v)′, v ∈ (0, 1
2 ), ai ≥ 0, and 1 denotes the indicator function.

The truncated realised covariation ∑
bT/∆c
j=1 ri,j r0,j 1{|rj |≤θ} extends the univariate measure first proposed

by Mancini [48] and provides a consistent estimator of [rc
i , rc

0]
2
T as ∆ → 0. The constant ai

in the truncation threshold is usually set as a function of the estimated volatility of the i-th asset
in order to take into account the time-varying volatility. Todorov and Bollerslev [24] show that β̂c

i
given by (9) converges to the true value as ∆→ 0.

The discrete-time estimator of βd
i utilises higher power covariations,

β̂d
i = sign

{bT/∆c

∑
j=1

sign{ri,j r0,j}|ri,j r0,j|τ
}
×

∑
bT/∆c
j=1 sign{ri,j r0,j}|ri,j r0,j|τ

∑
bT/∆c
j=1 r2τ

0,j


1
τ

, (10)

where the power τ is restricted to τ ≥ 2 so that the continuous price movements become
negligible asymptotically and only large returns are retained. An alternative estimator of
the discontinuous beta relies on the truncation technique. Instead of taking the “small” returns as
in (9), it collects the complement set of {|rj| ≤ θ} and inserts this in Equation (10). Both estimators
are consistent and asymptotically equivalent (see [24] for more details).5 However, Theorem 1
in Todorov and Bollerslev [24] suggests that the convergence in probability of β̂d

i only holds if there is
at least one jump in the market portfolio r0,t over the interval (0, T]. Therefore, in order to calculate β̂d

i ,
we first need to test for the existence of jumps in the market portfolio.

3.2. Testing for Jumps

There are several well-developed jump tests in the existing literature (see, for example [49–52]
among others), and for a review see Dumitru and Urga [53]. Following Todorov and Bollerslev [24],
we use the test statistic proposed by Barndorff-Nielsen and Shephard [50] to detect jumps in
the market portfolio.6

5 The small sample properties of the two discrete estimators have been investigated in Alexeev et al. [42]. The authors show
that the estimation bias becomes a concern only when the difference between βc and βd exceeds unity. This is not the case in
the current application.

6 Alternatively, if microstructure noise, nonsynchronicity and intraday volatility patterns are persistent, one could use the
robust two-time scale estimator of Boudt and Zhang [54] to take these into account. The estimator is implemented using the
modified Lee and Mykland [51] jump statistic proposed in Boudt et al. [55].
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Denote the realised volatility of r0,t at sampling frequency ∆ as

RV0,T =
bT/∆c

∑
j=1

r2
0,j

P−→ [r0, r0]
2
T as ∆→ 0, (11)

where [r0, r0]
2
T is the quadratic variation as in Equation (4). Barndorff-Nielsen and Shephard [56]

propose a consistent estimator of the continuous quadratic variation, referred to as the bipower
variation of the form

BV0,T =
bT/∆c−1

∑
j=1

|r0,j| |r0,j+1|
P−→ µ2

1

∫ T

0
σ2

s ds as ∆→ 0, (12)

where µ1 =
√

2/π. It follows immediately that the difference between RVT and µ−2
1 BVT could

consistently estimate the jump variation of the market portfolio. Hence, combining Equations (4), (11)
and (12) leads to the result that

RV0,T − µ−2
1 BV0,T

P−→ ∑
0<s≤T

κ2
s . (13)

The feasible test statistic is given by

Ĵ0,T =
1√
∆
· 1√

φ ·max
(

1/T, DV0,T/BV2
0,T

)
(

µ−2
1 · BV0,T − RV0,T

RV0,T

)
, (14)

where φ = π2/4 + π − 5 and DV0 is the realised quadpower variation

DV0,T =
1
∆

[T/∆]−3

∑
j=1

|r0,j| |r0,j+1| |r0,j+2| |r0,j+3|. (15)

The test statistic Ĵ0,T has an asymptotic standard normal distribution as ∆→ 0. In practice, given a
fixed time interval (0, T], our estimation starts with a jump test in the market index. If Ĵ0,T exceeds
the critical value at the desired level of significance, we proceed to estimate both the continuous and
discontinuous betas as presented in (9) and (10). Otherwise, we calculate only the continuous beta for
the given time period as the discontinuous beta is not identified.

3.3. Choices of Parameter Values

Many existing jump tests suffer from severe size distortion whereby too many jumps are detected
(e.g., [57]). One remedy is to use extremely conservative critical values. Therefore, we use 0.1%
level of significance in testing for jumps in the market portfolio. We first normalise each estimation
window—one calendar month to be one unit in time, thus setting ∆ to be the reciprocal of the number
of observations in each month. We follow Todorov and Bollerslev [24] and set v = 0.49, letting ai vary
amongst individual stocks. Denoting the bipower variation of the i-th stock over the time interval
(0, T] by BVi,T , we set ai = 3

√
BVi,T , i = 0, 1, . . . , N. Intuitively, this means that returns within three

standard deviations are considered as generated by the continuous Brownian component, where the
time-varying spot volatility is estimated by the square root of bipower variation.

Recall that, when calculating β̂c
i in Equation (9), only those observations that satisfy |rj| ≤ θ are

used. As the total number of stocks considered here, N, is quite high, this condition can be rather
restrictive for all N stock returns to be bounded below the threshold. We conduct robustness tests
using different truncation thresholds to examine whether the estimated βc

i is robust to less (or more)
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restrictive truncation levels in Section 4.2. Finally, the value of τ in Equation (10) is set to τ = 2 in
accordance with Todorov and Bollerslev [24].

4. Estimated Betas

We detect jumps in our equally weighted market portfolio, which plays the role of r0 in the
estimation of βc and βd, on 161 out of 2262 trading days, using the statistic Ĵ0,T given in Equation (14);
that is 7.1% of all trading days. This corresponds to 82 jump months (months containing at least
one jump day) out of the total 108 months in the sample. These results provide us with the days on
which to conduct analysis of jump betas for portfolios. The proportion of jump days is consistent with
previous empirical studies on US stock markets. For example, Andersen et al. [26] use the same ratio
test on the S&P500 index from December 1986 to June 1999 and find 7.6% significant jump days.

4.1. Summary Statistics of the Estimated Betas

Our continuous and jump risk betas are directly scale comparable. We find that for individual
stocks drawn from the S&P500 index the continuous beta is lower than the jump beta nearly 90% of
the time, indicating that most of the stocks are more sensitive to the sudden arrival of new information
than to general market volatility. On average, for individual stocks, jump betas are 38% higher
than continuous betas. This is more than twice the increase in betas estimated around earnings
announcements in Patton and Verardo [38]. As jumps are an indicator of new information arrival,
and Patton and Verardo [38] find that earnings announcements are used as a learning mechanism to
update expectations about the economy, the finding that the jump beta exceeds the continuous beta
may imply faster updating for unexpected information arrival than previously estimated.

Neither continuous nor jump beta estimates show any obvious trend over the sample period.
However, during the months of increased market volatility (e.g., September–December 2007,
September–December 2008, November 2009 and May 2010), more than 30% of the stocks exhibit
lower sensitivities to jump risk than to continuous risk. This result may appear counterintuitive, but
in fact the explanation is straightforward. First, beta measures the sensitivity of an individual stock
to one unit of risk exposure. As the magnitude of jumps, in general, is expected to be larger than the
magnitude of continuous price movements, the overall impact of a jump may still be stronger. Second,
crisis periods are characterised by increased market volatility. Given a particular magnitude of price
discontinuity, it may be classified as a jump during a tranquil period but also reasonably fall in the
category of a continuous price movement during a period of high volatility, thus shifting the impact
from a jump beta to continuous beta estimate for that period. The reduction in jumps during periods of
increased market volatility is consistent with the existing literature (see [58]). As a consequence, for both
the cross-sectional mean and median estimates, the gap between the discontinuous and continuous
beta estimates falls during the second half of our sample when the market is in distress. This can be
partly explained by the high market volatility during the crisis periods. During times of high market
stress, the overall market environment becomes relatively more important than unexpected news
shocks to the system. The reaction to frequent unexpected news during stressed market times may
become a feature of the overall market conditions.

In Figure 1, we depict the cross-sectional distributions of monthly estimates β̂c (top panel) and
β̂d (bottom panel) across all stocks. Since our market index is an equally weighted portfolio, by
construction, the mean of β̂c is unity for every month. The jump betas are consistently higher than
the continuous betas. The average impact of individual events (or news) that are sufficient to cause
price discontinuities is largely contained in the range 1.1–1.5. Furthermore, Figure 1 shows that
the distribution of the estimated discontinuous beta is usually more dispersed than the estimated
continuous beta. This is particularly evident in the third quarter of 2008, associated with the
bankruptcy of Lehman Brothers, the rescue of AIG and the Troubled Asset Relief Program (TARP) by
the US government.
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Alexeev et al. [42] consider different firm characteristics to explain the variability in continuous
and discontinuous betas. They find that smaller stocks are more sensitive to discontinuities than
their larger counterparts, and during periods of financial distress, high leverage stocks are more
exposed to continuous risk. Industry effects are also apparent. Instead, in this paper, we demonstrate
how continuous and discontinuous betas of randomly selected portfolios of stocks decrease
with diversification.7
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Figure 1. Distributions of monthly β̂c and β̂d for all investible S&P500 stocks. Red dots indicate
the maxima and minima, solid black lines denote the 2.5%–97.5% inter-percentile range, blue blocks
represent the interquantile ranges and the hollow black circles are the medians. Gaps in certain months
of the distributions of estimated β̂ds are indicative of “no-jump” months.

4.2. Robustness Analysis

Here, we investigate the robustness of the empirical results with respect to different choices of
the parameter values, as well as sampling frequency and choice of jump decomposition methodology.
Most of the nuisance parameters do not affect the consistency property of the estimators but will
impact finite sample applications.

For monthly estimates of the βs, the value of ∆ changes from one month to another because
the number of observations is different. We choose an average number of observations per month and
set ∆ = 1/1613 for all calender months and calculate the monthly β̂c and β̂d for all stocks. There are
still 82 months that contain at least one jump day using the adjusted ratio test by Barndorff-Nielsen
and Shephard [50]. Both β̂c and β̂d are almost the same as in our previous results.

Next we consider different values for ai in the truncation threshold θ. Changing the value
of ai will affect the number of observations involved in the calculation of β̂c

i ; hence, we cannot
set ai too restrictively in order to retain sufficient observations to estimate (9). By setting
ai = 3

√
BVi, we implicitly assume that price movements within three standard deviations of

the Brownian component are associated with the continuous price movements; roughly 30% of
the total observations are retained. Notice that in Equation (9), |ri,j| ≤ ai∆v needs to be satisfied
for each i = 0, 1, . . . , N. For large N, we can lose a considerable number of observations using this
truncation threshold. Thus, we only examine the situations where the value of ai is reduced. Results
show that the monthly estimates β̂c

i are robust to more relaxed truncation thresholds.

7 Given the difference in variability in betas with firm characteristics, future research could explore a stratified sampling
scheme to further the diversification benefits.
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We now consider using different test statistics given by Barndorff-Nielsen and Shephard [50] for
detecting jump days. Apart from the adjusted ratio test Ĵ0,T , there are two other test statistics that
have the same asymptotic distribution:

Ĝ0,T =
1√
∆

µ−2
1 · BV0,T − RV0,T

φ µ−4
1 · DV0,T

L−→ N (0, 1), (16)

Ĥ0,T =
1√
∆

1√
φ · DV0,T/BV2

0,T

(
µ−2

1 · BV0,T − RV0,T

RV0,T

)
L−→ N (0, 1). (17)

The difference statistic, Ĝ0,T , and the ratio statistic, Ĥ0,T , in general, detect more jump days than
the adjusted ratio statistic, Ĵ0,T , in Equation (14). For the equally weighted portfolio, using Ĝ0,T
leads to 314 jump days contained in 98 months and using Ĥ0,T leads to 161 jump days contained in
82 months. Most of the corresponding β̂d

i s do not alter up to one decimal place.
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Figure 2. Signature plots of jump contribution for the pre-averaged versus equi-distant data handling
approaches. However, to demonstrate the effects of the pre-averaging versus equi-distant approaches
on the data in terms of jump contributions, we selected four exemplars (AKL, CLF, GME and NFLX).
In each case, the higher signature plot pertains to the equi-distant data and the lower to the pre-averaged
data. At the 5-min sampling frequency (indicated on each panel by the dashed vertical line),
the difference in the contribution of jumps to total volatility for both methods is trivially different.

In addition to using different test statistics to identify jump days, there are also alternative
decompositions for detecting the contribution of jumps to total realised volatility. For example,
Christensen et al. [57] suggest a pre-averaging method based on higher frequency data than
the equi-distant sampling method used in the current dataset. To demonstrate that this effect is unlikely
to have significant impact, we plot the volatility signature plot for four of our constituent stocks as per
the Christensen et al. [57] method along with that for the equi-distant data (see Figure 2). Although
there may be up to 20% variation between the contributions at ultra-high frequency, such as
1-s intervals, at the 5-min interval employed here the differences are minimal. At this point,
given the variety of stocks we are using, the differences in liquidity and the hand-picked nature of
the dataset as described in Section 2, we have no means of determining whether ultra-high frequency
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1-s data would provide a meaningful improvement in our estimates. We note that the pre-averaging
approach of Jacod et al. [59] has not been widely adopted for small samples. To our knowledge,
there is no comparable study for a broad range of assets used in a portfolio context as undertaken here.

Concerns about the appropriate choice of sampling frequency also suggest that one should be
wary of the Epps effect; the reason that both Patton and Verardo [38] and Todorov and Bollerslev [24]
use lower frequency sampling than we employ here. Robustness checks to our estimated βc and βd to
5, 10, 20 and 30 min sampling frequencies display no significant Epps effect. These results are available
from the authors on request.

5. Portfolio Diversification with Betas

Investors who hold several S&P500 stocks may be rightfully concerned with the overall exposure
of their portfolios to systematic continuous and discontinuous risk. While individual securities exhibit
a wide range of sensitivities to both continuous and jump risks, as shown in Figure 1, a portfolio of
multiple stocks may have sensitivities to these risk factors that are more concentrated and approach
the asymptotic beta coefficient of 1 at differing velocities. To address this question, we construct
different size portfolios of stocks and investigate how the number of stocks selected may help to reduce
the variability of the overall beta of the portfolio.

We construct 1000 random equally weighted portfolios and estimate systematic continuous
and discontinuous risks, βc and βd, for each of these portfolios for each month from 2003 to 2011.
We assess the stability of the systematic portfolio risks as the number of stocks in the portfolio
increases by analyzing the inter-percentile ranges (IPR) of the estimated beta distributions. Defined
as the difference between two percentiles, the inter-percentile range is a stable measure that is
robust to outliers. We use central 50% and 90% IPRs, defined as IQR(n) ≡ IPR(n),75%−25% =

EDF−1
(n)(.75) − EDF−1

(n)(.25) and IPR(n),95%−5% = EDF−1
(n)(.95) − EDF−1

(n)(.05), where EDF(n) is the

empirical distribution function of the estimated betas (either βc or βd) for randomly drawn
n-stock portfolios.
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Figure 3. Stability of portfolio betas.

Panel (a) of Figure 3 depicts the typical distributions of β for the (equally weighted) portfolios
as the size of the portfolio increases from one to 200 stocks (n = 1, . . . , 200) stocks. The specific
example in panel (a) is based on βc estimated using 12-month data from March 2005 to February 2006.
(A similar figure exists for distributions of estimated βd but is omitted for brevity.) Since these central
ranges are dependent on the particular time period analyzed, we normalise to represent a fraction of
the beta range of individual securities. The normalised IQRs, or IQR(n)/IQR(1), for both β̂c and β̂d

are depicted in panel (b) of Figure 3 for n = 1, . . . , 200. Since the market index is an equally weighted
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portfolio consisting of all investible stocks (as used to detect the days on which jumps occur) and is
thus unique, it has IQR(N) = 0. As a result, the normalised IQRs in panel (b) of Figure 3 are bounded
between 0 and 1.
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Figure 4. Portfolio sizes, n, required to reduce beta spreads. Plots above depict required portfolio sizes
to reduce IQR (left panels) and IPR95%−5% (right panels) by a factor of 10 (top panels) and by a factor
of five (bottom panels). For example, in panel (c), we show that investors seeking to reduce exposure
of their portfolios to systematic discontinuous risk by a factor of five should hold smaller portfolios
than when the same reduction is required in the continuous systematic risk component.

Figure 3 shows that the IQR of portfolio betas decreases substantially as the number of stocks,
n, in the portfolio increases. The decrease in variation of portfolio betas is substantial for smaller
portfolios, eventually decaying as more securities are added to the portfolio. Using the normalised
IQRs enables us to contrast the required portfolio sizes at different periods of time to achieve
the same proportional reduction in the IQRs of beta for these portfolios relative to the beta spreads of
individual securities. Figure 4 illustrates the required portfolio sizes to reduce the normalised IQR(n)
or IPR(n),95%−5% by tenfold (panels (a) and (b)) and fivefold (panels (c) and (d)).8 It is evident that
in the first part of the sample, prior to the crisis of 2007, the number of stocks required to reduce the
IQR is considerably higher than in the more volatile periods from 2008 onwards. A reduction in the
spread of a continuous risk component in the majority of portfolios by a factor of five relative to the

8 A portfolio size resulting in a 10-fold reduction in the normalised IQR can be inferred from Figure 3b through the intersection
of the blue and red curves with the horizontal line at 0.1. Figures similar to Figure 3b are constructed for each time period,
and the corresponding portfolio sizes are determined from each of these figures and plotted in Figure 4a.
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beta spread of individual securities requires roughly twice as many stocks in the pre-crisis period than
the same proportionate reduction in the spread of discontinuous systematic risk (panel (a) of Figure 4).
This aspect is not evident in results based on normalised IPR(n),95%−5%.

Figure 4 shows that a portfolio requires fewer stocks to achieve discontinuous systematic risk
stability than continuous systematic risk stability, and this is especially evident in the pre-crisis period.
In contrast, the market seems to be indifferent to the distinction between continuous and discontinuous
systematic risk for diversification purposes during the period of crisis post-2007. The difference in the
number of stocks required in order to achieve the same proportionate reduction in beta spreads for
continuous risk has decreased substantially.

6. Conclusions

Developments in high-frequency financial econometrics have shown considerable gains in
forecasting and estimating volatility for many assets, including, in particular, the benefits of including
the potential for jump behaviours. This paper is the first to consider the impact of jumps on optimal
portfolio size decisions and the first to separately estimate continuous and discontinuous portfolio beta
and to consider the dynamics of these decisions when faced with changing market conditions over
time. We find that fewer stocks are required to achieve stability in the discontinuous risk component of
the portfolio than for the continuous risk component, and this is particularly evident in the pre-crisis
period. During the period of turmoil in the sample, the market does not strongly differentiate between
continuous and discontinuous systematic risk in terms of diversification. The number of stocks required
to produce a reduction in beta during a period of stress is reduced over the number required during
a low-stress period.

Jump betas for individual stocks exceed continuous betas almost 90% of the time; however, during
the period of turmoil in the sample, we find that more than 30% of the stocks have lower exposure
to jump risk than the continuous risk. During these times of stress, the market perceives jump risk
and continuous risk as equally important. As a result, the number of stocks required to reduce the
variability of the two betas is clearly separable in the non-crisis period and less so during turmoil.
During the non-crisis period, the variability of portfolio betas can be reduced fivefold (tenfold) with
50–60 (120–160) stocks for the continuous beta, but the corresponding reduction in the discontinuous
beta requires only half of these amounts. During periods of financial distress, the number of stocks
required to achieve the same reductions in variability of the two betas is 20–30 (60–100) stocks with
less apparent distinction between the two risk components.

Our future work will include the analysis of industry effects to assess the benefits of industry
diversification, that is, using stratified sampling in constructing portfolios, and the impact of
asymmetry. As highlighted by Ang et al. [60], extreme losses may be perceived differently by market
participants than extreme gains, implying potential asymmetry in jump betas with applications
for portfolio diversification based on negative versus positive jump betas. Additional work is also
anticipated in this research agenda in an examination of the small sample properties of extending
the non-parametric methodology of Todorov and Bollerslev [24] to new methods of detecting jump
decompositions, such as those proposed in Christensen et al. [57].
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