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Abstract: We consider a model in which an outcome depends on two discrete treatment
variables, where one treatment is given before the other. We formulate a three-equation triangular
system with weak separability conditions. Without assuming assignment is random, we establish
the identification of an average structural function using two-step matching. We also consider
decomposing the effect of the first treatment into direct and indirect effects, which are shown to
be identified by the proposed methodology. We allow for both of the treatment variables to be
non-binary and do not appeal to an identification-at-infinity argument.
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1. Introduction

This paper deals with nonparametric identification in a three-equation nonparametric model
with discrete endogenous regressors. We provide conditions under which an average structural
function (ASF) (e.g., [1]) is point identified and discuss how different treatment effects can be identified
using our methods. Like [2,3], we use a Dynkin system approach, which is based on the idea of
matching; the idea of matching was also used by [3,4] inter alia, albeit that our notion of matching
is different from the commonly-used matching method in the treatment effect literature (e.g., [5]).
The latter uses the matching idea to control for observed covariates, while our method matches on
identified/estimable sets, i.e., elements of Dynkin systems, as will become apparent below.

To motivate the parameter of interest in this paper, consider the example of assessing the
dynamic evolution of crime (e.g., [6]). The number of crimes, say murders, at time t is affected both by
the number of crimes prior to time t and by the level of police activity (measured by, e.g., the number
of police patrols) at time t. This example has a special triangular structure, because the number of
police patrols at time t is in part a response to the number of crimes at time t− 1. The number of crimes
is discrete, as is the number of police patrols. There are several potential endogeneity problems in this
example, e.g., simultaneity between crimes and police activity at time t and unobserved heterogeneity
due to changes in the neighborhood and its surroundings. We focus on the identification of the ASF,
which in this example, corresponds to the mean number of crimes at time t that would occur if both
the number of crimes at time t− 1 and the number of police patrols were exogenously fixed. There are
other objects of potential interest that can be identified with our identification strategy. For instance,
one could instead fix the number of crimes at time t − 1, but allow the number of police patrols to
respond to it endogenously. We can thus decompose the effect of the changes of the past number
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of crimes into a direct effect and an indirect effect: a high level of crime at time t − 1 can create an
environment in which crime thrives at time t (e.g., because criminals build up local knowledge, set
up networks), but it also leads to an increased police presence, which reduces crimes at time t. We also
discuss such decompositions in this paper.

The model that we study is similar to that in [3,4] and others in that we make and exploit a weak
separability assumption. However, [4] specifically excludes the possibility of non-binary categorical
endogenous regressors, imposes restrictive support conditions on the covariates and only deals with
the two-equation case. The non-binary categorical regressor case is not discussed in (the published
version of) [3], which further does not deal with the present, more complicated, three-equation
model featuring two discrete endogenous regressors. In this paper, we show that the methodology
developed in [3] can be used to study non-binary treatments with a double layer of endogeneity.
There are other papers that have a three-equation model and/or allow for non-binary regressors
(e.g., [7–9]), but the model or the object of interest is generally different.

There are many examples in which (a (semi)parametric version of) our structure has been used.
We mention only a few. The work in [10] studies the effects of smoking on birth weight through the
mechanism of gestation time. The work in [11] analyzes the effects of school type and class size on
earnings and educational attainment. The work in [12] has a simpler dependence structure than the
one used here. The work in [13] investigates labor market returns to community college attendance
and four-year college education. The work in [14] considers the multi-stage nature of the adoption
process of on-line banking services, where interruptions in the initial sign-up stage and in the later
regular use stage are the treatments of interest. We further note that the double hurdle model of [15],
which is used in much empirical work, is a special case of our model, albeit that the identification
methods developed here are of limited use in Cragg’s specification.

The focus here is on point identification. There are several papers (e.g., [16–18]) that develop
bounds on treatment effects in models that are similar to, but simpler than, the one in this paper
using weaker monotonicity assumptions than are imposed here. As shown in [2], the Dynkin system
approach can be used to obtain sharp bounds in an environment in which there is only partial
identification. We do not pursue this possibility in the current paper.

Identification of parameters of interest in our paper proceeds in two steps. In the first step, we
use the variation in the instrument z for the treatment d to infer what variation in the instrument
for the intermediate endogenous variable s would compensate exactly for variation in d. Using this
information, we can undo the effect of changing d on s. Provided that the instruments for d and s
have sufficient variation, we can identify the structural function for s this way. Using this first stage
information along with variation in instruments for d and s, we infer what variation in the exogenous
regressors in the outcome equation would compensate exactly for variation in both treatment d and
intermediate endogenous variable s. Our paper differs from both [2–4] in that we have to use another
level of matching in order to undo the effect of both d and s on the outcome y. A critical component
of our strategy is the existence of instruments for the endogenous regressors d and s and sufficient
variation in the exogenous regressors in the outcome equation to allow us to compensate for variation
in the endogenous regressors directly.

The Dynkin system approach is a natural scheme that allows one to collect and aggregate
information contained in the data in a natural and thorough fashion through a recursion scheme1.
Each combination of observables implies that the unobservable error terms belong to certain sets.
From these sets, one can infer additional information through various operations on these sets. In this
paper, we use a version of the Dynkin system approach, first used in [3], which exploits matching
in addition to the union and difference operators used in [2]. Matching has been used frequently

1 D’Haultfoeuille and Février (2015) [19] also uses a recursion scheme for the purpose of identification, but both their method
and their model is different from ours.
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in the past. For instance, [20] used it to avoid support conditions in estimating weakly-separable
nonparametric regression functions. The way we use matching in this paper is closer to [4], albeit
that our procedure, as already mentioned, can be applied more generally.

Although the fact that the Dynkin system approach requires only weak covariate support
restrictions is an attractive feature, this paper will instead focus on extending the use of the Dynkin
system to more complicated situations, since the support restrictions issue was discussed at length
in [3], albeit for the two-equation binary endogenous regressor case. Further, the Dynkin system
mechanism can be used to study effects other than average partial effects, such as marginal treatment
effects (e.g., [21]), but here, we focus on average partial effects.

The remainder of the paper is organized as follows. In Section 2, we lay out our model
and discuss the objects we want to identify and the rationale for our desire to do so. Section 3
provides a rough description of the basic ideas underlying our identification approach. These ideas
are formalized and illustrated using more complete examples in Sections 4 and 5. Finally, Section 7
provides a brief sketch of how the identification methods proposed here could be implemented.

2. Model

Imposing weak separability in multiple places, we consider the model
y = g(α(x, s, d), ε),
s = ∑

ηs
j=1{v > mj(x, w, d)},

d = ∑
ηd
j=1{u > pj(x, w, z)},

(1)

where ηs, ηd ≥ 1 and g, m1, . . . , mηs , p1, . . . , pηd are unknown functions. We assume that ηs, ηd are
known and that we observe y, s, d, x, w, z. The unobservables u and v are scalar random variables;
the dimension of ε is not restricted.

One feature in (1) is that w and z are excluded from the first and second equations, respectively.
Our identification arguments will require that w and z be able to vary the mj and pj functions,
respectively, but the fact that x appears in the mj functions and x, w do in the pj functions will
be immaterial. Therefore, we will simply consider

y = g(α(x, s, d), ε),
s = ∑

ηs
j=1{v > mj(w, d)},

d = ∑
ηd
j=1{u > pj(z)},

(2)

for the sake of illustrational clarity. We now impose that p0(z) = m0(w, d) = 0, pj(z) < pj+1(z),
mj(w, d) < mj+1(w, d) and pηd+1(z) = mηs+1(w, d) = 1. This is without loss of generality in view
of Assumption B below. The setup in (2) requires that the exogenous covariates x, w, z appear only
once in each equation2. It is straightforward to generalize our identification strategy to Model (1) at
the expense of exposition. However, doing so would introduce additional notational complexity and
requires more variations in w and z.

In the crime example discussed in the Introduction, y would be the number of crimes this
period, s the number of police patrols and d the number of crimes in the previous period.
Then, x, z represent observable exogenous neighborhood characteristics this period and last period,
respectively. Finally, w can contain variables that reflect the resources that the police can employ to

2 We allow for the possibility that x, w, z are random vectors containing common elements, e.g., x = (x>1 , x>2 )> and
w = (x>2 , w>1 , w>2 )> and z = (x>2 , w>2 , z>1 )>, provided that at least one variable in each equation is excluded from
the other equations.
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combat crime, with the implicit assumption that such resources cannot be enhanced in the short term
and can hence be treated as exogenous.

We now make several model assumptions. Let U = (0, 1].

Assumption A. (u, v, ε) is independent of (w, z, x).

Assumption B. The distribution of (u, v) is absolutely continuous with respect to the Lebesgue measure µ

with support Suv = U 2, and u, v have marginal uniform distributions on U .

Assumption C. E[g(α, ε)|u = u, v = v] is for all u, v ∈ U strictly monotonic in α.

Assumption A is strong, but can be relaxed to independence conditional on covariates, i.e., either
covariates in addition to w, z, x or elements of vector-valued w, z, x. Moreover, if g is additively
separable in ε, then Assumption A can be further weakened as explained below.

The second half of Assumption B constitutes a normalization. The first part is restrictive, but
is difficult to avoid. Please note, however, that u and v are allowed to be dependent and that the
support of (u, v) given ε need not be U 2.

Monotonicity is a common assumption in the nonparametric identification literature, but unlike,
e.g., [22–24], Assumption C does not require monotonicity in the error term of the structural function
g itself, but instead, it requires monotonicity of the (conditional) expectation3; a similar assumption
can be found in [4]. For instance, an indicator function, such as g(α, ε) = {ε > α}, is allowed, as long
as ε is continuously distributed, given u and v. However, the single index feature of the structural
function is an essential feature of Assumption C. For the use of the Dynkin system idea to identify a
structural function under a stronger form of monotonicity, see [2].

Both s and d are general ordered response variables, which are allowed to be endogenous.
Instead of having one variable with (1+ ηs)(1+ ηd) support points, we have two treatment variables
here4 that depend on two distinct error terms, u and v. As a result, if we tried to combine s and
d into one variable with (1 + ηs)(1 + ηd) support points, the resulting random variable would not
necessarily have the threshold crossing form that s and d have in our paper. This is because to have
a treatment variable that has a threshold crossing form, u and v would have to be represented by
a single unobservable, whose values could be ordered linearly. However, there does not generally
exist such a one-to-one mapping. Without having a discrete treatment variable that has this threshold
crossing form, the identification method given in [4] would not work. Since [3] also consider a single
treatment variable with a threshold crossing form, the method in [3] would not work either. As a
result, the model studied in this paper is not covered by the models studied in [3,4]. It is also more
general than the double hurdle model of [15], Equations (5) and (6), albeit that our matching strategy
for identification is of limited usefulness there5.

When discussing our assumptions, we mentioned that Assumption A could be weakened further
if g is additively separable in ε. To be more specific, let x = (x1, x>2 )>, w = (w1, x>2 )> and
z = (z1, x>2 )>, where x1, w1, z1 are scalar-valued random variables. Suppose that the outcome
equation is given by

y = h(x2, s, d) + x1β + ε, (3)

which is a form commonly applied by researchers. Then, Assumption A can be further weakened in
the following way:

3 Under additive separability of the error term, both types of monotonicity are satisfied.
4 We thank Elie Tamer for pointing this out.
5 Indeed, let s, d be binary; let x = w; and let u, v, ε be independent uniform (0, 1]. Define g(α, ε) = σ̃Φ−1{1 − (1 −

ε)Φ(α/σ̃)
}
+ α. Then, for parameter vectors β̃, β̄, and scale parameter σ̃, letting p(z) = Φ

(
−z> β̃

)
, m1(w, 0) = m1(w, 1) =

Φ
(
−w> β̄/σ̄

)
, α(w, s, d) = −∞ if sd = 0, and α(w, 1, 1) = w> β̄, otherwise, reproduces the likelihoods in Equations (5) and

(6), of [15]. We note however that our matching strategy will explicitly require that x and w can be varied separately.
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Assumption D. (i) ε = x1γ + ε̃, (ii) E(ε̃|u, v, w1, z1, x1, x2) = E(ε̃|u, v, x2), (iii) (u, v) is
independent of (x1, w1, z1) conditional on x2 and (iv) β + γ 6= 0.

Under Assumption D, the outcome Equation (3) can be written as

y = h(x2, s, d) + x1(β + γ) + ε̃, (4)

and β + γ can be identified by running an OLS regression of y − E(y|x2, d, s, w1, z1) on
x1 −E(x1|x2, d, s, w1, z1), since

E(y|x2, d, s, w1, z1) = h(x2, s, d) + E(x1|x2, d, s, w1, z1)(β + γ) + ρ(x2, d, s, w1, z1) + e,

where ρ(x2, d, s, w1, z1) = E(ε̃|x2, d, s, w1, z1). Then, x1(β + γ) can be used to compensate for the
effects of varying d and s in the outcome equation as long as β + γ 6= 0.

To see why this weakening of Assumption A might be particularly useful, suppose that y equals
adult wages of an individual, treatment d is whether a student is assigned to a small class or not and s
is an indicator for college attendance. This example is also considered in [25]. The instrument for d is
the educational intervention in the Project STAR experiment, in which early graders were randomized
into small classes, and the instrument for s could be the variation in tuition fees or distance to college;
see, for instance, [13,26]. We still need a variable in the wage equation that is exogenous and that does
not enter the other two equations. Under Assumption D, the exogeneity condition such a variable
has to satisfy is considerably weaker than the one embodied in Assumption A. In particular, the
individual’s age when adult wage is measured might be a reasonable candidate as the required x2.

In contrast to the existing literature, including [3,4], which mainly focuses on the effects of
one endogenous variable while fixing other variables, our setting features multiple endogenous
treatments with a triangular structure, which allows us to consider various causal parameters,
such as direct and indirect (average) effects of the treatment variable d. Below, we discuss such
parameters and methods of identifying them, albeit that our main focus is on identifying the average
structural function.

We now formally state the average structural function we analyze. Let ysd = g(α(x, s, d), ε).
Thus, ysd = y if (s, d) = (s, d), but if (s, d) 6= (s, d), then ysd is the value y would have taken if the
same individual had s = s, d = d. Therefore, ysd is a typical counterfactual outcome variable, but
with two indices instead of the usual one. The focus in this paper will be on the identification of

ψ(x∗, s∗, d∗) = E(ys∗d∗ |x = x∗) = Eg(α(x∗, s∗, d∗), ε), (5)

where x∗, s∗, d∗ are chosen by the researcher. We obtain identification of ms(w, d) as a byproduct.
Please note that ψ(x∗, s∗, d∗) is the ASF conditional on x = x∗, when the treatments are exogenously
fixed at s∗ and d∗. For instance, ψ(1, 1, 1) could be the counterfactual mean earnings of a male worker
(x = 1) if he had both a college degree (d = 1) and received on-the-job training (s = 1), or it could
be the counterfactual mean birth weight for an infant if her mother had a normal gestation length
(s = 1) and smoked (d = 1). In the crime example, ψ(1, 1, 1) is the mean number of crimes at time t
if current neighborhood characteristics x are one and with both police patrols at time t and crime at
t− 1 for exogenous reasons.

The function ψ can be used to obtain many, but not all, causal effects of interest. Recall the dual
binary treatment example involving college education and on-the-job training. Consider exogenously
changing d and fixing s at a specified value s∗. Then, one can identify the ceteris paribus effect of a
change in college education status on earnings for a male worker with job training, i.e., ψ(1, s∗, 1)−
ψ(1, s∗, 0). We call this an average partial treatment effect. Alternatively, we can define average joint
treatment effects by looking at the causal effects on earnings for male workers of exogenously changing
both college education and job training status, i.e., ψ(1, 1, 1)− ψ(1, 0, 0). One can aggregate up such
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effects across sexes, or indeed across job training statuses, e.g., E
[
ψ(1, s̃, 1)− ψ(1, s̃, 0)

]
, where s̃ is

drawn from a suitable job training status distribution.
It should also be noted that our results can be further used to conduct a decomposition of direct

and indirect effects for policy analysis. For instance, if the policy maker can only influence college
education decisions, but not job training decisions directly, then an object of interest would be the
effect of exogenously changing d on a male worker’s mean earnings leaving s to adjust according to
the preferences of the worker and his employer, i.e., the parameter

Eg
(
α(x, s1(w), 1), ε

)
−Eg

(
α(x, s0(w), 0), ε

)
=
[
Eg
(
α(x, s1(w), 1), ε

)
−Eg

(
α(x, s1(w), 0), ε

)]
+
[
Eg
(
α(x, s1(w), 0, ε

)
−Eg

(
α(x, s0(w), 0), ε

)]
, (6)

where sd(w) is the counterfactual value of s when d is exogenously fixed at d given w = w6. We call
the left-hand side in (6) an average total treatment effect, which is decomposed into a direct effect and an
indirect effect on the right-hand side7. Although the parameters in (6) are not represented by ψ, the
methods we develop to identify ψ can be used to identify them, as we show in Section 6.

The fact that there are several causal parameters of potential interest arises both because there
are multiple endogenous treatment variables and because of the triangular nature of the model.
However, we do not believe that one parameter is generally more important than others, but the
purpose and context of the policy question of interest should be taken into account. As explained
in Section 6, identification of causal parameters, like (6), can be established by the matching method
developed in this paper. Therefore, we focus on the identification of ψ (and ms) in the main text
to highlight the idea of matching, while we show in Section 6 that the identification of (6) can be
obtained by the same methods.

3. Description

We now provide a broad and rough description of our identification strategy. We combine the
idea of matching to that of set operations. Matching was also used in [3,4], inter alia. Indeed, our
methodology shares some of the intuition with Jun, Pinkse, and Xu (2012) [3]: this will become clear
as we proceed. However, due to the triangular structure, the procedure used in this paper is more
complicated than that in [3]. The methodology in [3] covers the specification in [4] as a special case.

There are several unknown functions in our model: the pj’s, mj’s and α are important to identify
ψ. The pj functions are identified directly from the data since pj(z) is simply the probability that the
number of crimes last period was no more than j− 1 given that z = z. Identification of the mj’s is
more involved, but is simpler than that of ψ. Therefore, we start with the mj functions.

Our method of identifying the mj’s is related to the identification approaches in [3,4]. Indeed, if
d is binary and the joint support Swz of (w, z) is sufficiently rich, then our approach has the
same intuition as that in [4]. For instance, we also ask what changes in police resources will offset
the changes in police activity induced by changes in the number of past crimes. However, the
method of [4] only applies to the case in which d is binary. Below, we explain how matching is
convenient when d is binary and how our Dynkin system can be used to obtain identification if d is
not necessarily binary.

6 Note that Eg
(
α(x, s1(w), 1), ε

)
is generally not equal to ψ(x, s1(w), 1) because ε and s1(w) are dependent.

7 A similar decomposition is studied by Frölich, M. and Huber, M. (2014) [25].
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We start with the simple case, i.e., binary d. Consider the problem of identifying m1(w∗, 0).
Note that for any value of z,

m1(w∗, 0) = P
(
v ≤ m1(w∗, 0)

)
= P

(
v ≤ m1(w∗, 0), 0 < u ≤ p1(z)

)︸ ︷︷ ︸
=P(s=0,d=0|w=w∗ ,z=z)

+P
(
v ≤ m1(w∗, 0), p1(z) < u ≤ 1

)
. (7)

Note here that the inequality v ≤ m1(w∗, 0) describes the event in which the potential status of s
given w = w∗ when d is fixed at zero is equal to zero. There are two possibilities: either d is actually
equal to zero (the first right-hand side term in (7)) or it is not equal to zero (the second right-hand
side term in (7)). The first right-hand side term in (7) can be inferred directly from the distribution
of observables and is hence identified. This is where matching is useful. If we can find w̃ such that
m1(w∗, 0) = m1(w̃, 1), then v ≤ m1(w∗, 0) is the same event as v ≤ m1(w̃, 1). Therefore, the second
term on the right-hand side of (7) equals

P
(
v ≤ m1(w̃, 1), p1(z) < u ≤ 1

)
= P(s = 0, d = 1|w = w̃, z = z).

The question is how to find such w̃. The work in [4] proposes finding w̃ for which the left-hand sides
(and therefore, the right-hand sides) in the following equations are equal.

P(s = 0, d = 0|w = w∗, z = z̃)−P(s = 0, d = 0|w = w∗, z = z)

= P
(
v ≤ m1(w∗, 0), p1(z) < u ≤ p1(z̃)

)
, (8)

P(s = 0, d = 1|w = w̃, z = z)−P(s = 0, d = 1|w = w̃, z = z̃)

= P
(
v ≤ m1(w̃, 1), p1(z) < u ≤ p1(z̃)

)
. (9)

The equalities in (8) and (9) rely on the threshold structure of d (which is binary for now). There are a
few issues here. First, (w∗, z̃), (w∗, z), (w̃, z) and (w̃, z̃) must all be in the joint support Swz. Second,
this procedure only works if d is binary.

Our Dynkin system approach is a systematic way of combining multiple such matches via set
operations. For instance, when the support Swz is limited, the Dynkin system approach provides
chaining arguments: see [3] for details. When d is not binary, it provides an extra layer of matching.
For instance, suppose that d can take three values: 0, 1 or 2. Then, like in (7), for any z,

m1(w∗, 0) = P
(
v ≤ m1(w∗, 0), 0 < u ≤ p1(z)

)︸ ︷︷ ︸
=P(s=0,d=0|w=w∗ ,z=z)

+ P
(
v ≤ m1(w∗, 0), p1(z) < u ≤ p2(z)

)
+ P

(
v ≤ m1(w∗, 0), p2(z) < u ≤ 1

)
. (10)

The intuitive interpretation of the event v ≤ m1(w∗, 0) is the same as before: the potential outcome
of the s variable when d is fixed at zero is equal to zero. Therefore, the first term on the right-hand
side is identified because it is equal to a conditional probability on observables. In the binary case, (7),
we had one unknown right-hand side term; now, there are two. The second and third terms in (10)
correspond to the cases where the realized value of d equals one and two, respectively. Therefore, we
need to find w̃, w̄, such that m1(w∗, 0) = m1(w̃, 1) = m1(w̄, 2). The method of [4] does not provide a
solution: (8) is still valid, but (9) is not.

Our solution is to use an extra layer of matching in the pj’s. To see how this works, suppose that
the probability of having no more than one incidence of crime in the past given z = z̃ is matched to
the probability of having no crime at all in the past given z = z, i.e.,

P(d = 0|z = z̃) = p1(z̃) = P(d ≤ 1|z = z) = p2(z), (11)
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Then, we have

P(s = 0, d = 1|w = w̃, z = z) = P(v ≤ m1(w̃, 1), p1(z) < u ≤ p1(z̃)
)
, (12)

which can be used in place of (9). In other words, m1(w∗, 0) = m1(w̃, 1) if and only if the left-hand
side in (12) equals the left-hand side in (8). The Dynkin system provides a general and systematic
method of doing this.

Note that it is insufficient for the (conditional) probability of no crime in the past to vary with
z. It now matters how much the conditional probabilities of crime vary with z; see (11). The above
examples only a few features of the general Dynkin system approach. For instance, if the joint support
Swz of (w, z) is limited, then identification can be obtained via the Dynkin system approach, but it
will be more complicated than the procedure described above.

Identification of ψ(x∗, 0, 0) is substantially more complicated (even when d and s are both
binary), but the basic idea is the same. We want to match the α function at different argument values,
for which we need to combine matching mj’s and matching of pj’s. We now explain how this can
be done.

To get a whiff of the basic premise, we focus on the simplest possible meaningful case, i.e., binary
treatments d and s: our results in the remainder of the paper are general. Again, we will exploit only
a few features of the general methodology. In particular, in this example, we assume that the joint
support Suv of (u, v) is simply the product of the marginal supports, i.e., Suv = U 2, which is
unnecessary, as will become apparent later in the paper.

Define
Ads(w, z, j) =

(
pd(z), pd+1(z)

]
×
(
ms(w, d), ms+1(w, j)

]
. (13)

Further, define
κ(A, a) = E

[
g(a, ε){(u, v) ∈ A}

]
. (14)

To understand the idea behind (13) and (14), please note that (u, v) ∈ Ads(w, z, j) is the event that d is
equal to d, and the potential status of s when d is fixed at j is equal to s, conditional on z = z, w = w.
Therefore, it involves the counterfactual status of the s variable. There are combinations of (A, a) for
which κ(A, a) can be recovered directly from the joint distribution of observables, namely for given
w = w, z = z,

(u, v) ∈ Ads(w, z, d) ⇐⇒ d = d and s = s.

Therefore, if
δ(x∗, s, d, w, z) = E

(
y(s = s)(d = d)|x = x, w = w, z = z

)
(15)

then
κ
(

A00(w, z, 0), α(x∗, 0, 0)
)
= δ(x∗, 0, 0, w, z). (16)

Equality (16) plays the same role as the first right-hand side term in (7) and (10). Indeed, note that
ψ(x∗, 0, 0) = κ(U 2, α(x∗, 0, 0)

)
can be decomposed as follows: for any w, z,

κ(U 2, α(x∗, 0, 0)
)
= κ

(
A00(w, z, 0), α(x∗, 0, 0)

)︸ ︷︷ ︸
=δ(x∗ ,0,0,w,z)

+κ
(

A01(w, z, 0), α(x∗, 0, 0)
)

+ κ
(

A10(w, z, 0), α(x∗, 0, 0)
)
+ κ
(

A11(w1, z, 0), α(x∗, 0, 0)
)
, (17)

which is more complicated than, but similar to (7) and (10). An important complication is that, for
instance, finding a value x̃, such that α(x∗, 0, 0) = α(x̃, 0, 1), is insufficient to identify the second term
on the right-hand side in (17) because A01(w, z, 0) itself also involves a counterfactual.

Resolving this complication requires that we pair this approach with the matching procedure
for the mj functions, which we have explained above. For example, matching m1(w, 0) to m1(w̃, 1)
ensures that A01(w, z, 0) = A01(w̃, z, 1), which implies that matching α(x∗, 0, 0) = α(x̃, 0, 1) will
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indeed lead to identification of the second right-hand side term in (17). In the following example,
we provide a graphical illustration to explain how to find such x̃.

Example 1. Consider Figure 1 and suppose for now that the ms functions are identified and
that the joint support of the covariates equals the product of their marginal supports. Let
x1, x2, w1, w2, w3, z1, z2 be values in their respective supports (i.e., SX , SW , SZ), such that m1(w1, 0) =
m1(w2, 1) < m1(w3, 1) and 0 < p1(z2) < p1(z1) < 1, as is depicted in Figure 1. Then, the following
quantities are identified directly from the data.

δ(x∗, 0, 0, w1, z2) = κ(green, α(x∗, 0, 0)),
δ(x∗, 0, 0, w1, z1) = κ(green+yellow, α(x∗, 0, 0)),
δ(x1, 0, 1, w2, z1) = κ(blue, α(x1, 0, 1)),
δ(x1, 0, 1, w2, z2) = κ(blue+yellow, α(x1, 0, 1)),
δ(x1, 0, 1, w3, z1) = κ(blue+purple, α(x1, 0, 1)),
δ(x2, 1, 1, w3, z1) = κ(red, α(x2, 1, 1)),
δ(x2, 1, 1, w2, z1) = κ(red+purple, α(x2, 1, 1)),
δ(x3, 1, 0, w1, z1) = κ(blank, α(x3, 1, 0)).

(18)

Subtracting the first and third lines in (18) from the second and fourth lines, respectively, yields
κ(yellow, α(x∗, 0, 0)) and κ(yellow, α(x1, 0, 1)), which are equal if and only if α(x∗, 0, 0) = α(x1, 0, 1).
Likewise, subtracting the third and sixth lines in (18) from the fifth and seventh lines allows one to
verify whether α(x1, 0, 1) = α(x2, 1, 1). We can verify that α(x1, 1, 1) = α(x2, 1, 0) analogously.

green yellow blue

purple

red

m1(w1, 0)

p1(z1)p1(z2)

m1(w2, 1)

m1(w3, 1)

u

v

Figure 1. Simple matching procedures.

Once values x1, x2, x3 are found, such that α(x∗, 0, 0) = α(x1, 0, 1) = α(x2, 1, 1) = α(x3, 1, 0),
κ(Suv, α(x∗, 0, 0)) can be computed as (for instance) the sum of δ(x∗, 0, 0, w1, z1), δ(x1, 0, 1, w2, z1),
δ(x2, 1, 1, w2, z1) and δ(x3, 1, 0, w1, z1).

Finally, we note that there exists an alternative, but not particularly attractive, possibility:
identification-at-infinity. From (15), it should be apparent that if we can find a sequence {(zn, wn)},
such that

lim
n→∞

p1(zn) = 1, lim
n→∞

m1(wn, 0) = 1,

then identification of ψ(x∗, 0, 0) obtains, since

lim
n→∞

E
[
y(s = 0)(d = 0)|x = x∗, w = wn, z = zn

]
= E

[
g
(
α(x∗, 0, 0), ε

}
{(u, v) ∈ U 2)

]
= ψ(x∗, 0, 0).

However, such an identification-at-infinity argument is undesirable since it generally makes
inefficient use of the data [27] and imposes extreme support restrictions. Therefore, we do not
consider this possibility.
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In the remainder of this paper, more general versions of the procedures sketched above
are formally expressed in terms of a Dynkin system, and their power is illustrated using some
concrete examples.

4. Identification of m

We now establish the identification of ms∗(w∗, d∗) formally. Define8

θ(V, m) = P(u ∈ V, v ≤ m), V ⊂ U , m ∈ U .

Further, let Sz(w) be the support of z conditional on w = w and define
V (d, w) =

{
(pd(z), pd+1(z)] : z ∈ Sz(w)

}
, d = 0, . . . , ηd. (19)

Then, θ(V, ms(w, d)) is identified when V ∈ V (d, w) because

θ
(
(pd(z), pd+1(z)], ms(w, d)

)
= P(s < s, d = d|w = w, z = z). (20)

We now show that θ(V, ms(w, d)) is identified for a much broader class of sets than V (d, w).

Definition 1. D∗(d, s, w) is the collection D∗∞(d, s, w) in the following iterative scheme. Let
D∗0 (d, s, w) = V (d, w). Then, for all t ≥ 0, D∗t+1(d, s, w) consists of all sets A∗, such that at least
one of the following conditions is satisfied, where µ denotes the standard Lebesgue measure over U .

(i) A∗ ∈ D∗t (d, s, w);
(ii) ∃A1, A2 ∈ D∗t (d, s, w) : A1 ⊂ A2, µ(A2 − A1) > 0, A∗ = A2 − A1;
(iii) ∃A1, A2 ∈ D∗t (d, s, w) : A1 ∩ A2 = ∅, µ(A1 ∪ A2) > 0, A∗ = A1 ∪ A2;
(iv) ∃(d̄, s̄, w̄) : ms(d, w) = ms̄(d̄, w̄), D∗t (d, s, w) ∩D∗t (d̄, s̄, w̄) 6= ∅, A∗ ∈ D∗t (d̄, s̄, w̄).

The conditions in Definition 1 are similar to those in [3]. Note that D∗(d, s, w) depends on s
because of Condition (iv). The importance of Condition (iv) will become apparent in Lemma 1
below. The main difference between [3] and what we have here for the identification of m is that
the collection in Definition 1 now also has an argument s: identification of ψ is substantially more
involved than that.

Note that {D∗t (d, s, w) : t = 0, 1, · · · } is an increasing sequence of collections, such that
D∗(d, s, w) is the infinite union of D∗t (d, s, w)’s.9 Note further that D∗(d, s, w) is indexed by s, w, as
well as d. If Sz(w) is the same for all w values, then the argument pursued in this section is simpler,
but such support restrictions are undesirable, because they exclude the possibility that w, z have
elements in common, and they also preclude the situation in which certain combinations of (w, z)
values cannot occur.

All elements of D∗ are defined in terms of (combinations of) the unknown pd and ms functions.
Hence, each element can be thought of as an unknown parameter. In Lemma 1, we show that all
elements in D∗ are identified. Subsequently, we obtain a condition that is sufficient for identification
of ms∗(w∗, d∗).

Lemma 1. Suppose that Assumptions A and B are satisfied.

(i) For all (d, s, w) ∈ Sdsw, every V ∈ D∗(d, s, w) is identified;
(ii) θ(V, ms(w, d)) is identified whenever (d, s, w) ∈ Sdsw and V ∈ D∗(d, s, w).

Proof. See Appendix A.

8 We use ⊂ as a generic symbol for the subset, where some other authors might distinguish between proper and
non-proper subsets.

9 Please note that this is the infinite union of collections of sets, not the collection of infinite unions of sets. To see the
difference, consider that U = ∪∞

n=1(1/n, 1], but U 6∈ ∪∞
n∗=1{(1/n, 1]}n∗

n=1. It is the latter concept that is used here.
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Assumption E. U ∈ D∗(d∗, s∗, w∗).

Since {D∗t (d∗, s∗, w∗) : t = 0, 1, 2, · · · } is an increasing sequence of collections of sets and
d, s take finitely many values, Assumption E is satisfied when there exists a finite T, such that
U ∈ D∗T(d

∗, s∗, w∗). Assumption E is testable, because for any finite t, all elements of D∗t (d, s, w)

are identified.

Theorem 1. If Assumptions A, B and E are satisfied then, ms∗(w∗, d∗) is identified.

Proof. See Appendix A.

Assumption E involves conditions on the support of z; the class D∗(d, s, w) is mostly determined
by the amount of variation available in z given d = d, s < s, w = w. For example, consider
the simple case ηd = 1. Suppose that there exist s, s̄, w, w̄, such that ms(w, 0) = ms̄(w̄, 1).
Then, Assumption E is satisfied if the support of z contains values z, z̄ with p1(z) < p1(z̄). Please
note that even though V (0, w) =

{
(0, p1(z)], (0, p1(z̄)]

}
does not contain a partition of U , we

have D∗1 (0, s, w) ∩ D∗1 (1, s̄, w̄) =
{
(p1(z), p1(z̄)]

}
, and therefore, the matching mechanism (iv) in

Definition 1 implies that D∗(0, s, w) contains a partition of U .
Indeed, suppose that D∗(d∗, s∗, w∗) ∩D∗(d̄, s̄, w̄) 6= ∅ for some (d̄, s̄, w̄) ∈ Sdsw. Then, by (iv)

in Definition 1, ms∗(w∗, d∗) = ms̄(w̄, d̄) implies that D∗(d∗, s∗, w∗) = D∗(d̄, s̄, w̄). Therefore, not only
V (d∗, w∗), but also V (d̄, w̄) should be taken into account, which is particularly useful when d∗ 6= d̄.
This reasoning suggests a simple sufficient condition, which we state as a corollary.

Corollary 1 (Sufficient conditions). Suppose that Assumptions A and B are satisfied and that
Swz = Sw ×Sz. Suppose further that there exists a sequence {(sj, wj) ∈ Ssw : j = 0, 1, · · · , ηd},
such that msj(wj, j) = ms∗(w∗, d∗) for all j = 0, 1, · · · , ηd. Further, suppose that:

∀j = 1, . . . , ηd − 1 : inf
z∈Sz

pj+1(z) < sup
z∈Sz

pj(z), (21)

where each pj is a continuous function and z is continuously distributed. Then, ms∗(w∗, d∗) is identified.

Please note that Corollary 1 imposes restrictions on the relationship between pj and pj+1 (for all
values of j), but it does not require there to be a direct relationship between pj and pj+2. Indeed, the
matching procedure can be chained in the sense that we can first establish equality of ms0(w0, 0) to
ms1(w1, 1), then uncover that ms0(w0, 0) = ms1(w1, 1) = ms2(w2, 2), and so on.

To illustrate Corollary 1, consider the following example.

Example 2 (Ordered response). Suppose that for all d, z and some β0 and −∞ = γ0 < γ1 < · · · <
γηd+1 = ∞, pd(z) = Φ(γd + β>z), as would be the case in an ordered probit model. This is one of
the least favorable cases for our procedure, since for all z, z∗ and d = 1, . . . , ηd, pd(z) < pd(z∗) ⇒
pd+1(z) ≤ pd+1(z∗) and pd−1(z) ≤ pd−1(z∗).

Therefore, condition (21) in Corollary 1 is satisfied if

sup
z,z∗∈Sz

β>(z− z∗) ≥ max
d=1,...,ηd−1

(γd+1 − γd).

To illustrate the idea of Theorem 1, we provide the following two fairly concrete examples. Let

πsd(w, z) = P(s < s, d = d|w = w, z = z) = P{pd(z) <u ≤ pd+1(z), v ≤ ms(w, d)}
= θ(pd(z)pd+1(z), ms(w, d)),

(22)

which is identified provided that z ∈ Sz(w).

Example 3 (Uncovering that ms0(w0, 0) = ms1(w1, 1)). We verify whether ms0(w0, 0) = ms1(w1, 1)
for some candidate pair (s1, w1). Our approach is described below and illustrated in Figure 2, which
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assumes the existence of values z11, z12, such that p1(z12) = p2(z11). It should be apparent from
Figure 2 that ms0(w0, 0) = ms1(w1, 1) if and only if the measure of the red area is zero.

p1(z11) p1(z12)
p2(z11)

ms0(w0, 0)

ms1(w1, 1)

red

yellowgreen

πs00(w0, z11)

πs00(w0, z12)

πs11(w1, z11)

πs00(w0, z12)− πs00(w0, z11)
u

v

Here: πs00(w0, z12)− πs00(w0, z11) < πs11(w1, z11), so ms0(w0, 0) < ms1(w1, 1).

Figure 2. Verifying whether ms0 (w0, 0) = ms1 (w1, 1).

The measures of the yellow area, the yellow plus the green area and the yellow plus the red
area are identified directly from the data. The measure of the yellow area can then be learned as
(yellow+green)− green, and finally, the measure of the red area as (yellow+red)− yellow.

The formal identification argument is as follows. First,

D∗0 (0, s0, w0) ⊃ {0, p1(z11), 0, p1(z12)}, D∗0 (1, s1, w1) ⊃ {p1(z11)p2(z11)}.

Using (i) and (ii) of Definition 1, it follows that V = p1(z11)p1(z12) = p1(z11)p2(z11) ∈ D∗1 (0, s0, w0)∩
D∗1 (1, s1, w1). Thus, {

θ
(
V, ms0(w0, 0)

)
= πs00(w0, z12)− πs00(w0, z11),

θ
(
V, ms1(w1, d1)

)
= πs11(w1, z11),

are both identified; they are equal if and only if ms1(w1, 1) = ms0(w0, 0).

In Example 3 it is implicitly assumed that z11, z12 ∈ Sz(w0) and that z11 ∈ Sz(w1).
However, Theorem 1 does not require this. Indeed, if there exist z110, z111, such that p1(z110) =

p1(z111), p1(z12) = p2(z111) and both z110, z12 ∈ Sz(w0) and z111 ∈ Sz(w1), then we can match
πs00(w0, z12)− πs00(w0, z110) with πs11(w1, z111) to obtain ms0(w0, 0) = ms1(w1, 1).

Example 4 (Verifying that ms1(w1, 1) = ms2(w2, 2)). We now turn to the task of verifying that
ms1(w1, 1) = ms2(w2, 2) once ms0(w0, 0) = ms1(w1, 1) has been established. The procedure is
illustrated in Figure 3 and described below, which presumes the existence of z21, z22 for which
p3(z22) = p2(z21).

Again, the question is whether the measure of the red area equals zero. Pink, orange and
yellow are directly identified, which allows us to deduce (pink + orange). Further, (pink + orange +
yellow + red) = πs00(w0, z21) + πs11(w1, z21) is identified, and hence, so is (yellow + red), which in
turn implies the identification of red.
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pink orange

red

yellow

p3(z22)
p2(z21)

p1(z22) p2(z22)

ms2(w2, 2)

ms0(w0, 0) = ms1(w1, 1)

πs0,0(w0, z22) πs1,1(w1, z22) P(u ≤ p2(z22), v ≤ ms0(w0, 0))

P(u ≤ p2(z21), v ≤ ms0(w0, 0))

P
(

p2(z22) < u ≤ p2(z21), v ≤ ms0(w0, 0))

πs2,2(w2, z22) = P
(

p2(z22) < u ≤ p3(z22), v ≤ ms2(w2, 2))

u

v

Figure 3. Verifying whether ms1 (w1, 1) = ms2 (w2, 2) given that ms0 (w0, 0) = ms1 (w1, 1).

Formally, it follows from Example 3 that D∗t (0, s0, w0) = D∗t (1, s1, w1) for all t ≥ 2. Therefore,
for sufficiently large t, V = p2(z22)p2(z21) ∈ D∗t (0, s0, w0). However, since V = p2(z22)p3(z22) ∈
D∗2 (0, s2, w2), the equality of ms0(w0, 0) and ms2(w2, 2) can be verified using the set V.

Once we have ascertained that ms0(w0, 0) = ms1(w1, 1) = ms2(w2, 2), we can identify

θ(0p3(z22), ms0(w0, 0)) =

θ(0p1(z22), ms0(w0, 0)) + θ(p1(z22)p2(z22), ms1(w1, 1)) + θ(p2(z22)p3(z22), ms2(w2, 2)),

since (0, p3(z22)] = (0, p1(z22)] ∪ (p1(z22), p2(z22)] ∪ (p2(z22), p3(z22)].
When the support of z and w is the Cartesian product of the marginals (as in these examples),

Assumption E is reduced to the requirement that pd has sufficient variability and z sufficiently rich
support, as in Corollary 1.

5. Identification of ψ

We now turn to the identification of the main object of interest, i.e., ψ∗ = ψ(x∗, s∗, d∗), for which
we use the fact that the m function is identified.

Recall from (14) that for A ⊂ Suv,

κ(A, a) = E[g(a, ε){(u, v) ∈ A}].

The role of κ is similar to that of the function θ in Section 4. Indeed, if A is a set of positive measure,
then by Assumption C, κ(A, a) = κ(A, ã) if and only if a = ã. We start with the identification of κ.
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Let Swz(x) be the support of (w, z) conditional on x = x. We define M to be the collection of
(d, s, w) triples for which ms(w, d) and ms+1(w, d) are both identified. Formally, we let

M ∗(s) =


{
(d, w) : U ∈ D∗(d, 1, w)

}
, s = 0,{

(d, w) : U ∈ D∗(d, s, w) ∩D∗(d, s + 1, w)
}

, 1 ≤ s ≤ ηs − 1,{
(d, w) : U ∈ D∗(d, ηs, w)

}
, s = ηs,

M =
{
(d, s, w) : (d, w) ∈M ∗(s)

}
,

and

K (x, s, d) =
{(

pd(z), pd+1(z)
]
×
(
ms(w, d), ms+1(w, d)

]
: (w, z) ∈ Swz(x) and (d, s, w) ∈M

}
.10

Therefore, by Theorem 1 K (x, s, d) is a collection of nonempty rectangles whose corner points are
all identified under Assumptions A and B. Moreover, for K = pd(z)pd+1(z) × ms(w, d)ms+1(w, d),
κ(K, α(x, s, d)) is identified, because

κ(K, α(x, s, d)) = E[y(d = d)(s = s)|x = x, w = w, z = z]. (23)

We now extend K (x, s, d) to a larger class of sets K for which the identification of
κ(K, α(x, s, d)) obtains.

Definition 2. D(x, s, d) is the collection D∞(x, s, d) in the following iterative scheme. Let D0(x, s, d) =
K (x, s, d). Then, for all t ≥ 0, Dt+1(x, s, d) consists of all sets A∗, such that at least one of the following
four conditions is satisfied, where µ∗ denotes the standard Lebesgue measure over U 2.

(i) A∗ ∈ Dt(x, s, d);
(ii) ∃A1, A2 ∈ Dt(x, s, d) : A1 ⊂ A2, µ∗(A2 − A1) > 0, A∗ = A2 − A1;
(iii) ∃A1, A2 ∈ Dt(x, s, d) : A1 ∩ A2 = ∅, µ∗(A1 ∪ A2) > 0, A∗ = A1 ∪ A2;
(iv) ∃(x̃, s̃, d̃) : α(x̃, s̃, d̃) = α(x, s, d), Dt(x, s, d) ∩Dt(x̃, s̃, d̃) 6= ∅, A∗ ∈ Dt(x̃, s̃, d̃).

The collection D(x, s, d) (like D∗(d, s, w)) consists of sets defined in terms of the unknown
pd, ms, α functions, such that D(x, s, d) can be interpreted as a set of unknown parameters.

Lemma 2. Suppose that Assumptions A to C and E are satisfied.

(i) For all (x∗, s∗, d∗) ∈ Sxsd, every K ∈ D(x∗, s∗, d∗) is identified;
(ii) κ(K, α(x∗, s∗, d∗)) is identified whenever (x, s, d) ∈ Sxsd and K ∈ D(x∗, s∗, d∗).

Assumption F. U 2 ∈ D(x∗, d∗, s∗).

Like for Assumption E, Assumption F equivalently requires that there be a finite T, such that
U 2 ∈ DT(x∗, d∗, s∗).

Theorem 2. Suppose that Assumptions A to C and F are satisfied. Then, ψ∗ is identified.

Our method for identifying ψ is similar to our method for identifying m described in Section 4:
D(x, s, d) is now generated from a collection of rectangles, not a collection of intervals. Further, if we
can ascertain that α(x∗, s∗, d∗) = α(x̄, s̄, d̄), then D(x∗, s∗, d∗) ∩ D(x̄, s̄, d̄) 6= ∅ implies that the two
collections in fact coincide. This is particularly helpful when s∗ 6= s and d∗ 6= d̄.

We now state a set of sufficient conditions for the identification of ψ∗.

10 M is nonempty under the the conditions of Theorem 1.
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Corollary 2 (Sufficient conditions). Suppose that there exists a sequence
{

xij ∈ Sx : i = 0, 1, · · · , ηs, j =
0, 1, · · · , ηd

}
, such that α(xij, i, j) = α(x∗, s∗, d∗) for all i, j. Further, suppose that Sxwz = Sx×Sw×Sz.

If w, z are continuously distributed and that for some continuous functions m1, . . . , mηs , p1, . . . , pηd ,

(i) for i = 1, . . . , ηs − 1 and j = 0, 1, · · · , ηd

inf
w∈Sw

mi+1(w, j) < sup
w∈Sw

mi(w, j),

(ii) for i = 1, 2, · · · , ηs and j = 1, . . . , ηd − 1,

inf
w∈Sw

mi(w, j + 1) < sup
w∈Sw

mi(w, j), inf
z∈Sz

pj+1(z) < sup
z∈Sz

pj(z).

Then, ψ∗ is identified.

Corollary 2 is a two-dimensional analog to Corollary 1.
We now consider a simple example that illustrates the basics of the machinery developed above.

The example is limited relative to the theoretical results in several respects, which we discuss after
the example.

Example 5. We will focus on the simplest interesting case, i.e., ηs = ηd = 2 with covariate support
Sxwz = Sx ×Sw ×Sz. Because of the absence of support restrictions, we will use K (s, d) instead
of K (x, s, d) in this example. Identification of pd is trivial, and identification of ms was discussed
in Section 4, so the discussion below starts from the point at which identification of pd and ms has
already been established.

The example is illustrated in Figure 4, which depicts a situation in which ψ∗ is identified for all
values of x∗, s∗, d∗ provided that α(x, s∗, d∗) varies sufficiently as a function of x. In the discussion
below, we assume that there exists a {xsd}, such that α(xsd, s, d) is the same for all values of s and d,
such that the existence of the w, z combinations in Figure 4 is sufficient. We show that for such {xsd},
D(xsd, s, d) is the same for all values of s, d, which implies that U 2 is an element of D(xsd, s, d) for
all s, d, which implies identification. From hereon, we use the shorthand notation D(s, d) to mean
D(xsd, s, d).

m∗4 , m2(w5, 0), m1(w3, 0) m2(w1, 1), m1(w2, 1), m2(w9, 2)

m1(w6, 1), m1(w8, 2)m∗2 , m1(w7, 0)

m∗1 , m1(w1, 1)

m∗5 , m2(w3, 0), m1(w4, 0)

m∗3 , m1(w9, 2), m2(w0, 2)

p∗1
p1(z1)
p2(z3)

p∗2
p2(z1)
p1(z2)

p∗0
0

p∗3
1

s = 0
d = 0

s = 1
d = 0

s = 2
d = 0

s = 0
d = 1

s = 1
d = 1

s = 2
d = 2

s = 1
d = 2

s = 0
d = 2

m∗6 , m3 = 1

0 = m0, m∗0

u

v

Figure 4. Identification of ψ if ηs = ηd = 2
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We start by showing that D(1, 1) = D(0, 1) if α(x11, 1, 1) = α(x01, 0, 1). Let

Khrij = p∗h p∗r ×m∗i m∗j , h = 0, 1; r = h + 1, . . . , 2; i = 0, . . . , 5; j = i + 1, . . . , 6.

Since p1(z1) = p∗1 , p2(z1) = p∗2 , m1(w1, 1) = m∗1 and m2(w1, 1) = m∗4 , it follows that K1214 ∈ D(1, 1).
Likewise, using m1(w1, 1) = m∗1 and m1(w2, 1) = m∗4 , it follows that K1201, K1204 ∈ D(0, 1), which
implies that K1214 = K1204 ∩ K1201 ∈ D(0, 1), also. Therefore, K1214 ∈ D(1, 1) ∩D(0, 1), such that by
the assumption on α made earlier in the example and Condition (iv) of Definition 2, D(1, 1) = D(0, 1).

We next show that D(0, 0) = D(1, 0) = D(2, 0). Now, K0145 ∈ D(1, 0), because m1(w3, 0) =

m∗4 < m∗5 = m2(w3, 0). Further, m1(w3, 0) = m∗4 < m∗5 = m1(w4, 0) implies that K0104, K0105 ∈ D(0, 0)
and, hence, that K0145 = K0105 ∩ K0104 ∈ D(0, 0). Likewise, m2(w5, 0) = m∗4 < m∗5 = m2(w3, 0),
such that K0145 = K0146 − K0156 ∈ D(2, 0). Consequently, K0145 ∈ D(0, 0) ∩D(1, 0) ∩D(2, 0), which
(together with the assumption on α used in this example) implies that D(0, 0) = D(1, 0) = D(2, 0).

Given that m1(w6, 1) = m∗2 , it follows that K1202 ∈ D(0, 1). Likewise, using w7, K0102, K0202 ∈
D(0, 0), and hence, K1202 = K0102 ∩ K0202 ∈ D(0, 0), also. Repeating the same argument for w8 results
in D(0, 0) ∩D(0, 1) ∩D(0, 2) 6= ∅, and hence, D(0, 0) = D(0, 1) = D(0, 2) = D(1, 0) = D(1, 1) =

D(2, 0).
Finally, using w9, w0, it follows that K2334 ∈ D(1, 2)∩D(2, 2), and using w8, w9, it can be deduced

that K1224 ∈ D(1, 1) ∩D(1, 2), such that D(s, d) is identical for all s, d.
To see that U 2 ∈ D(1, 1), note that each of the nine rectangles with solid boundaries in Figure 4

belongs trivially to some D(s, d) (e.g., K1224 ∈ D(1, 1)). Since the union of the nine rectangles is
exactly U 2 and D(s, d) is the same for all s, d, identification is hereby established.

In the above example, it was shown that D(s, d) was the same for all values of s, d. This is not
necessary for the identification of ψ∗. Indeed, all that is required is that U 2 ∈ D(x∗, s∗, d∗); it does not
matter which combinations of (s, d) pairs are matched with each other, as long as the Dynkin system
generated by the union of their K -sets includes U 2 as an element.

Example 5 is limited in several respects. First, the support of covariates was assumed to be the
Cartesian product of the marginal supports and to be independent of s, d. With support restrictions,
the procedure to establish identification of ψ∗ would be similar, but more care should be taken in
the selection of w, z pairs to ensure that the support restrictions are satisfied. For instance, Figure 4
of Example 5 indicates that (wj, z1) belongs to Swz for a number of different values of j, but this
condition can be relaxed in numerous ways.

Further, it was assumed that ηs = ηd = 2. With more than two categories, the essence of the
identification procedure does not change, but Figure 4 would be messier. An essential ingredient of
Example 5 is that there are values of z1, z3 for which p1(z1) = p2(z3) and likewise for ms. This is
analogous to Corollary 1. It should be pointed out that with more than three categories (ηd > 2
or ηs > 2), it is not necessary for there to be a z4-value for which p1(z1) = p3(z4). Indeed, what
is needed is for there to be a pair z4, z5, such that p2(z4) = p3(z5). As mentioned earlier, such
a chaining argument can be extended to any number of categories, i.e., one could obtain a set of
sufficient conditions similar to those in Corollary 1.

6. Decomposing the Effect of d

As mentioned in Section 2, it is possible to use the methodology developed in this paper to
identify objects that are not based on ψ. In this section, we show that the average total effect and
its decomposition in (6) is indeed identified by the same method. For this purpose, we will explain
how to use the matches of the m and α functions, because we have already explained in detail how to
achieve those matches and how Dynkin systems can help.

We focus on the special case with binary s, d; the general case is similar. We discuss the
identification of

ψ◦(x, w, d, d̃) = Eg
(
α(x, sd(w), d̃), ε

)
,
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where sd(w) is the counterfactual value of s when d is fixed at d given w = w, i.e., sd = {v >

m1(w, d)}. Therefore, (6) is now

ψ◦(x, w, 1, 1)− ψ◦(x, w, 0, 0)︸ ︷︷ ︸
Average Total Effect of d

= ψ◦(x, w, 1, 1)− ψ◦(x, w, 1, 0)︸ ︷︷ ︸
Direct Effect of d

+ψ◦(x, w, 1, 0)− ψ◦(x, w, 0, 0)︸ ︷︷ ︸
Indirect Effect of d

. (24)

We note that ψ◦ and ψ are different objects unless v and ε are known to be independent11.
However, the identification of ψ◦ can also be achieved using our matching procedure.

We focus on ψ◦(x, w, 0, 0); the other cases are similar. We have

ψ◦(x, w, 0, 0) = E
[
{d = 0}g

(
α(x, s0(w), 0), ε

)]
+ E

[
{d = 1}g

(
α(x, s0(w), 0), ε

)]
.

The first term on the right-hand side can be identified by using E
[
{d = 0}y|x = x, w = w, z

]
.

For the second term on the right-hand side, consider E
[
(d = 1)g

(
α(x, s0(w), 0), ε

)
|x = x, w =

w, z = z
]
, which can be written as

E
[
{u > p1(z)}{v ≤ m1(w, 0)}g

(
α(x, 0, 0), ε

)]
+

E
[
{u > p1(z)}{v > m1(w, 0)}g

(
α(x, 1, 0), ε

)]
. (25)

The method developed in the paper explains how to find (x, w) and (w̃, x̃), such that α(x, 1, 0) =

α(x̃, 1, 1) and m1(w, 0) = m1(w̃, 1). Identification of the second term in (25) then follows from the fact
that it is equal to

E
[
{u > p1(z)}{v > m1(w̃, 1)}g

(
α(x̃, 1, 1), ε

)]
= E

[
y(s = 1)(d = 1)|z = z, w = w, x = x̃

]
.

The first term in (25) can be dealt with similarly.
Given that ψ◦ is identified, the total, direct and indirect effects of d in (24) are all identified.

7. Sketch of an Estimation Procedure

Below follows a sketch of a simple estimation procedure of ψ∗ = ψ(x∗, s∗, d∗). This procedure
is provided to demonstrate how ψ∗ can be estimated, but in order to keep the sketch simple, we will
make several assumptions, which are much stronger than those made in the identification portion of
this paper. For instance, we shall assume that the joint support of (w, z) is the Euclidean product
of the marginal supports, that s, d only take the values 0, 1, 2 and that there is sufficient variation
in z, pd(z) to allow for the matches used. More complicated procedures can be devised that exploit
some salient features of this paper (such as chaining) and lift such restrictions, but such procedures
are beyond the scope of this paper, which primarily deals with identification. In earlier work [3], we
provide rigorous results for an estimation procedure that does not impose a joint support assumption,
albeit in a considerably simpler model than the one considered here.

We will moreover not be assuming the use of any particular nonparametric methodology.
Most objects to be estimated can be expressed as conditional expectations (or probabilities),
sometimes with estimated regressors. Some of these conditional expectations are then integrated
with respect to one of the conditioning variables à la [28]. There are numerous important details in
the theoretical development and empirical implementation of such methods, but these can by now be
considered to be well established, and elaborate discussions thereof are available in various places in

11 If ε and v are independent, then ψ◦(1, d, d) = Eψ(1, sd, d).
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the literature. Hence, we do not discuss them here. Whenever an object is estimable by the standard
nonparametric methodology (ENPM) we will so indicate.

7.1. Estimation of m

We commence our discussion with the estimation of ms(w, 1). Please note that

ms(w, 1) =
2

∑
d=0

Eλsd(w, z), (26)

where λsd(w, z) = P
(
s < s, d = d|Jd(s, w) = J1(s, w), z = z

)
with

Jd(s, w) = P
(

p1(z) < u ≤ p2(z), v ≤ ms(w, d)
)
. (27)

Once estimates of J0,J1,J2 are available, λs0, λs1, λs2 are ENPM, and ms(w, 1) can then be estimated
by integrating out over z in the spirit of [28].

Now, J1(s, w) =
∫

P(d = 1, s < s|w = w, z = z)dFz(z), which is ENPM. For the estimation
of J0,J2, it is helpful to introduce ζsdj(w, p) = P

(
s < s, d = d|w = w, pj(z) = p

)
, which is ENPM

given that pd(z) = P(d < d|z = z). Since

Jd(s, w) =

{
Eζs01(w, p2(z))−Eζs01(w, p1(z)), d = 0,

Eζs22(w, p1(z))−Eζs22(w, p2(z)), d = 2,

they too are ENPM.
Finally, to obtain estimates of ms(w, 0) and ms(w, 2), one can simply estimate

ms(w, d) = E
(
ms(w, 1)|J1(s, w) = Jd(s, w)

)
.

7.2. Estimation of ψ

We focus here on the estimation of ψ∗ = ψ(x∗, s∗, d∗) for s∗ = d∗ = 1; other combinations of
(s∗, d∗) can be handled analogously. Let ρsd = y(s = s)(d = d). Please note that

ψ∗ =
2

∑
s,d=0

Eνsd(x∗, w, z) with νsd(x∗, w, z) = E
(
ρsd|α(x, s, d) = α(x∗, 1, 1), w = w, z = z

)
.

Naturally, ν11(x∗, w, z) is ENPM. For s 6= 1 and/or d 6= 1, other methods must be developed to
estimate νsd(x∗, w, z). We will focus on the case s = d = 0, where the other cases can be handled
analogously and possibly (if s = s∗ or d = d∗) more easily.

Let
κ∗jt(x, w, z) = E

(
ρ00|x = x, p1(z) = pj(z), m1(w, 0) = mt(w, 1)

)
,

which is ENPM. Define

W (x, w, z) =
{

κ∗22(x, w, z)− κ∗21(x, w, z)− κ∗12(x, w, z) + κ∗11(x, w, z)
}
−E

(
ρ11|x = x∗, w = w, z = z

)
,

which is ENPM. Then, W ∗(x) = EW (x, w, z) = 0 is equivalent to α(x, 0, 0) = α(x∗, 1, 1).
Finally, ν00(x∗, w, z) = E

(
ρ00|W ∗(x) = 0, w = w, z = z

)
is ENPM.

Acknowledgments: This paper is based on research supported by National Science Foundation Grant
SES–0922127. We thank the Human Capital Foundation (http://www.hcfoundation.ru/en) and especially
Andrey P. Vavilov for their support of the Center for Auctions, Procurements and Competition Policy
(CAPCP, http://capcp.psu.edu) at Penn State University. We thank Andrew Chesher, Elie Tamer, Xavier
d’Haultfoeuille, (other) participants of the 2010 Cowles foundation workshop and the 2012 conference by Centre
Interuniversitaire de Recherche en Economie Quantitative (CIREQ) and Centre for Microdata Methods and
Practice (CEMMAP), as well as the referees for their helpful comments.



Econometrics 2016, 4, 7 19 of 21

Author Contributions: All of the authors made contributions to all parts of the paper.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix

A. Proofs

Proof of Lemma 1. We show both parts simultaneously and use transfinite induction: i.e., we will
show: (i) that D∗0 (d, s, w) has a property; (ii) that if D∗t (d, s, w) has the property, then Dt+1(d, s, w) has
the property too; and (iii) that if for all t, Dt(d, s, w) has the property, then D∞(d, w, s) must have the
property, as well. Please note that (iii) is trivial, because {Dt(d, s, w)} is an increasing sequence of
sets, and therefore, D∞(d, s, w) = ∪∞

t=0Dt(d, w, s). Therefore, we will establish (i) and (ii) below.
For all (d, s, w), any V0 ∈ D∗0 (d, s, w) can be expressed as V0 = pd(z)pd+1(z) for some z ∈ Sz(w)

and is hence identified and satisfies θ(V0, ms(w, d)) = P(s < s, d = d|w = w, z = z), which is hence
also identified.

Now, suppose that for arbitrary t and all (d, s, w), identification of Vt, θ(Vt, ms(w, d)) has been
established for all Vt ∈ D∗t (d, s, w). We now establish identification of

{
Vt+1, θ(Vt+1, ms(w, d))

}
for

any set Vt+1 ∈ D∗t+1(d, s, w) and any (d, s, w).
Since Vt+1 ∈ D∗t+1(d, s, w), it must be the set A∗ in one of the four conditions in Definition 1.

We verify identification in each of the four cases. First (i): if Vt+1 ∈ D∗t (d, s, w), then identification
of both objects is trivial. Now (ii): since both Vt+1 and θ(Vt+1, ms(w, d)) are differences between two
identified objects, they are identified, also. The argument is analogous for (iii).

Finally, (iv): We know that Vt+1 ∈ D∗t (d̄, s̄, w̄) where d̄, s̄, w̄ are such that there exists a set
V∗ ∈ D∗t (d, s, w) ∩D∗t (d̄, s̄, w̄). Since all sets in D∗t (d, s, w) and D∗t (d̄, s̄, w̄) are identified, the existence
and identification of such a set V∗ can be established. Further, θ(V∗, ms(w, d)) and θ(V∗, ms̄(w̄, d̄)) are
both identified and equal if and only if ms(w, d) = ms̄(w̄, d̄). Given that Vt+1 belongs to D∗t (d̄, s̄, w̄),
it is identified and so is θ(Vt+1, ms(w, d)), because it is known to equal θ(Vt+1, ms̄(w̄, d̄)), which
is identified.

Proof of Theorem 1. This follows from the fact that θ(U , ms∗(d∗, w∗)) = ms∗(d∗, w∗).

Proof of Corollary 1. We use mathematical induction. Suppose that for some 1 ≤ i ≤ ηd, it has
been established that ∀j < i : D∗(0, s0, w0) = D∗(j, sj, wj). By (21), there exists a z1, z2 for which
pi−1(z1) = pi(z2). Now,

pi−1(z2)pi(z2)

{
∈ D∗(i, si, wi),

= 0pi−1(z1)− 0pi−1(z2) ∈ D∗(0, s0, w0),

such that D∗(0, s0, w0) = D∗(i, si, wi).

Proof of Lemma 2. The proof is very similar to, but somewhat more complicated than, that of
Lemma 1. We establish both parts simultaneously and again use transfinite induction, for which
we note that D∞(x, s, d) = ∪∞

t=0Dt(x, s, d).
For all (x, s, d), any K0 ∈ D0(x, s, d) can be expressed as K0 = pd(z)pd+1(z)×ms(w, d)ms+1(w, d)

for some (w, z) ∈ Swz(x, s, d) for which (d, s, w) ∈M . K0 is hence identified and satisfies

κ
(
K0, α(x, s, d)

)
= E

(
y(d = d)(s = s)|x = x, w = w, z = z

)
,

which is hence also identified.
Now, suppose that for arbitrary t and all (x, s, d) identification of Kt, κ(Kt, α(x, s, d)) has been

established for all Kt ∈ Dt(x, s, d). We now establish identification of
{

Kt+1, κ(Kt+1, α(x, s, d)}
)

for
any set Kt+1 ∈ Dt+1(x, s, d) and any (x, s, d).
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Since Kt+1 ∈ Dt+1(x, s, d), it must be the set A∗ in one of the four conditions in Definition 2.
We verify identification in each of the four cases. First (i): if Kt+1 ∈ Dt(x, s, d), then identification of
both objects is trivial. Now (ii): since both Kt+1 and κ(Kt+1, α(x, s, d)) are differences between two
identified objects, they are identified, also. The argument is analogous for (iii).

Finally (iv): We know that Kt+1 ∈ Dt(x̄, s̄, d̄), where x̄, s̄, d̄ are such that there exists a set K∗ ∈
Dt(x, s, d) ∩ Dt(x̄, s̄, d̄). Since all sets in Dt(x, s, d) and Dt(x̄, s̄, d̄) are identified, the existence and
identity of such a set K∗ can be established. Further, κ(K∗, α(x, s, d)) and κ(K∗, α(x̄, s̄, d̄)) are both
identified and equal if and only if α(x, s, d) = α(x̄, s̄, d̄) by Assumption C. Given that Kt+1 belongs to
Dt(x̄, s̄, d̄), it is identified and so is κ(Kt+1, α(x, s, d)), because it is equal to κ(Kt+1, α(x̄, s̄, d̄)), which
is identified.

Proof of Theorem 2. When Suv ⊂ K, we have ψ(x∗, s∗, d∗) = κ(K, α(x∗, s∗, d∗)). Apply the
previous theorem.
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