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Abstract: Decision-makers often consult different experts to build reliable forecasts on variables
of interest. Combining more opinions and calibrating them to maximize the forecast accuracy is
consequently a crucial issue in several economic problems. This paper applies a Bayesian beta mixture
model to derive a combined and calibrated density function using random calibration functionals
and random combination weights. In particular, it compares the application of linear, harmonic and
logarithmic pooling in the Bayesian combination approach. The three combination schemes, i.e.,
linear, harmonic and logarithmic, are studied in simulation examples with multimodal densities and
an empirical application with a large database of stock data. All of the experiments show that in
a beta mixture calibration framework, the three combination schemes are substantially equivalent,
achieving calibration, and no clear preference for one of them appears. The financial application
shows that the linear pooling together with beta mixture calibration achieves the best results in terms
of calibrated forecast.
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1. Introduction

Decision-makers often consult experts for reliable forecast about some uncertain future outcomes.
Expert opinion has been used in a more or less systematic way in many fields: weather forecast,
aerospace programs, military intelligence, nuclear energy and in policy analysis. In the economic field,
experts’ forecasts are often combined on the basis of past performance and observed values of some
exogenous variables. The forecast can be expressed in terms of future realization, and in this case, it is
referred to as a point forecast or in terms of the probabilities of the future values (full distribution) of
the variable, defined as a probabilistic forecast.

Combining different experts’ forecasts or predictive cumulative distribution functions is a critical
issue in order to construct a single consensus forecast representing the experts’ advice. Among the first
papers on forecasting with more predictions, we refer to Barnard [1], who considered air passenger
data, and Roberts [2], who introduced a distribution that is essentially a weighted average of the
posterior distributions of two models and is similar to the result of a Bayesian model averaging (BMA)
procedure. See [3] for a review on BMA, with a historical perspective. Nowadays, the literature on
the combination of point forecasts has reached a relatively mature state dating back to papers, such
as [4]. Timmermann [5] provides an extensive summary of the literature and the success of forecast
combinations in the economic field. However, the literature on density forecasting and on density

Econometrics 2016, 4, 17; doi:10.3390/econometrics4010017 www.mdpi.com/journal/econometrics

http://www.mdpi.com/journal/econometrics
http://www.mdpi.com
http://www.mdpi.com/journal/econometrics


Econometrics 2016, 4, 17 2 of 24

combinations from different experts has emerged only recently; see [6–9] for a survey. There are
two elementary choices in combining predictive densities from many experts. One is the method
of aggregation or the functional form of combining. The other is the construction of the weights
attached to the individual density forecasts. Possible methods of aggregation are described in an early
review of [10]. Linear pooling, proposed by Stone [11], has been used almost exclusively in empirical
applications on the density forecast combination; see [12,13]. In linear pooling, the combination
weights based on previous forecast performance and maximization of likelihood have been found
to provide forecast gains; see [14,15]. Starting from these pooling schemes, the traditional pools are
generalized by [16–18].

Moreover, to evaluate the accuracy of the final experts’ advice, the experts must be calibrated.
The calibration is a measurement process to evaluate how good the expert assessment is: an expert is
well calibrated if the subjective probability mass function (or density function) agrees with the sample
distribution of the realizations of the unknown variable in the long run.

Bassetti et al. [19] introduces a Bayesian approach to predictive density calibration and
combination through the use of random calibration functionals and random combination weights.
Extending [15,20], they propose both finite beta and infinite beta mixtures for the calibration. For the
combination, they apply a local linear pool.

In this work, we apply a beta mixture approach to combine and calibrate prediction functions
and compare linear, harmonic and logarithmic pooling in the application of the Bayesian approach.
Relative to [19], we keep the number of beta components fixed to achieve calibration of the combination,
but extend their methodology to the family of generalized linear combination schemes (i.e., harmonic
and logarithmic) proposed in [12]. The Bayesian beta mixture model in [19] is extended to the new
combination methods. The effects of the three combination schemes are studied in simulation examples
with multimodal densities. The simulation results show that the three combination schemes are
equivalent in a beta mixture calibration framework. Finally, we illustrate the effectiveness of the
calibrated generalized pool with an application to the S&P500 Index, building on the combination
of GARCH models and the large database used in [21]. In the application, the sequential estimation
and combination of the models have been implemented in parallel and computed on a cluster
multiprocessor system. The parallel implementation and the computing power allowed us to deal
with a large set of models and a large sample sequential analysis in a reasonable amount of time.

The remainder of the paper is organized as follows. Section 2 introduces linear, harmonic and
logarithmic combination models and the notion of calibration. Section 3 discusses Bayesian inference
for the calibrated combination models. In Section 4, we provide results for the simulation exercises
and the application to real data. The paper concludes with a discussion in Section 5.

2. Combination and Calibration

2.1. A General Combination Model

The probability distribution is the expression of an expert’s subjective beliefs, which is based
on a prior experience that the individual has had with the problem at hand. In the framework of
probabilistic forecasting treated here, and for a real-valued outcome, a probabilistic forecast can be
represented in the form of a predictive cumulative distribution function (predictive cdf), which might
be discrete, mixed discrete-continuous or continuous, with a predictive probability density function
(predictive pdf).

The opinions of several experts may differ because they do not collect the same information and
they do not interpret them in the same way. In this case, a method to combine the different sources of
information is needed. Suppose we have a finite sequence of K σ-algebras, A1t, . . . ,AKt, representing
different information sets available at time t, and a sequence of predictive cdfs, F1t, . . . , FKt, where Fkt
represents the conditional distribution of the variable of interest Yt+1 given the σ-algebra Akt. An ideal
strategy to combine predictive cdfs may be to combine information sets to issue the conditional
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distribution of the variable Yt+1 given the σ-algebra At generated by a sequence of information sets
A1t, . . . ,AKt. However, information sets are not known in practice; thus, a possible solution to the
combination problem is to combine the predictive conditional distributions of the variable Yt+1 given
the σ-algebra Akt. Following the notation used in [20], we define a parametric family of combination
formulas as a sequence of maps:

H(·|θ) : FK → F , (F1t, · · · , FKt) 7→ H((F1t, · · · , FKt)|θ)

indexed by the parameter θ ∈ Θ, where Θ is a parameter space, Fkt, k = 1, . . . , K, is a sequence of cdfs
and F is a suitable space of distributions.

We adopt the approach of [12], drop in the notation the dependence of H on the combined cdfs
and consider three types of pooling schemes, denoted with Hmt(y|ω), m = 1, 2, 3. These three schemes
are special cases of the generalized linear form:

ϕ(Hmt(y|ω)) =
K

∑
k=1

ωk ϕ(Fkt(y)) (1)

where ϕ is a continuous increasing monotone function and ω = (ω1, · · · , ωK)
′ is a vector of

combination weights, with
K
∑

k=1
ωk = 1 and ωk ≥ 0.

If ϕ is differentiable and the cdf Fkt admits pdf fkt, for all k = 1, . . . , K and t = 1, . . . , T, then the
generalized combination model can be re-written in terms of pdf hmt as:

hmt(y|ω) =
1

ϕ′(Hmt(y|ω))

K

∑
k=1

ωk ϕ′(Fkt(y)) fkt(y) (2)

where ϕ′ denotes the first derivative of ϕ.
The three cases considered in this paper are:

1. Linear opinion pool (m = 1), i.e., ϕ(x) = x:

H1t(y|ω) =
K

∑
k=1

ωkFkt(y) (3)

2. Harmonic opinion pool (m = 2), i.e., ϕ(x) = 1/x:

H2t(y|ω) =

(
K

∑
k=1

ωkFkt(y)−1

)−1

(4)

3. Logarithmic opinion pool (m = 3), i.e., ϕ(x) = log(x):

H3t(y|ω) =
K

∏
k=1

Fkt(y)ωk (5)

The three related densities functions are respectively:

1. Linear opinion pool (m = 1):

h1t(y|ω) =
K

∑
k=1

ωk fkt(y) (6)
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2. Harmonic opinion pool (m = 2):

h2t(y|ω) = H2t(y|ω)2
K

∑
k=1

ωkFkt(y)−2 fkt(y) (7)

3. Logarithmic opinion pool (m = 3):

h3t(y|ω) = H3t(y|ω)
K

∏
k=1

ωkFkt(y)−1 fkt(y) (8)

where fkt(y) is the pdf of Fkt(y).
To conclude, we provide an example in Figure 1 in order to appreciate the difference among the

three types of combination schemes. We assume there are two predictive distributions to combine in
the three schemes:

F1t ∼ N (2, 1), F2t ∼ N (−2, 1)

t = 1, . . . , T, where N (µ, σ) is the normal distribution with location µ and scale σ.
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Figure 1. Density function for linear (red line), harmonic (blue line) and logarithmic (green line)
combination models. The combination weight is ω1 = 0.5.

At first look, the linear combination model is able to generate multimodal pdfs, whereas harmonic
and logarithmic models generate unimodal pdfs with certain degrees of skewness depending on the
value of the combination weights. We show in Figure 2 an example of harmonic and logarithmic
pooling for two values of the combination weights: ω1 = 0.9 (solid lines) and ω1 = 0.1 (dashed lines).

Most of the literature on this issue characterizes different types of combination formulas
that satisfy (or not) some particular conditions, such as the strong and weak set-wise properties
of [22], the zero preservation property by [23] or the independence preservation property by [24].
Such combination schemes have found many ad hoc applications, but they raise serious problems
related to their accountability, neutrality and empirical control. For these reasons, we prefer to use the
perspective of [25] and to focus on calibration and dispersion properties.
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Figure 2. Combination densities for the three schemes (different rows) for ω1 = 0.9 (solid lines) and
ω1 = 0.1 (dashed lines).

2.2. A Calibration Model

The calibration issue implies studying if Ht is a “good” predictive distribution function for the
empirical data Ys, s = 1, . . . , t.

Dawid [26] introduced the criterion of complete calibration for comparing prequential probabilities
Ht = P(Yt = 1|Y1, . . . , Yt−1) with the binary random outcomes Yt. This criterion requires that
the averages of the Ht and of the Yt converge to the same limit. The validity of this criterion is
justified by the fact that the above property holds with probability one, so that its failure discredits
Ht. In the case of continuous random variable Yt, [26] apply the [27] concept of the probability
integral transform (PIT), which is the random variable Zt = Ht(Yt), where Ht is a predictive cdf
for Yt. In the case of continuous Yt (and continuous Ht), with Yt ∼ Ht, the distribution of Zt is
P(Zt ≤ z) = P(Ht(Yt) ≤ z) = P(Yt ≤ H−1

t (z) = Ht(H−1
t (z))) = z, which is a standard uniform
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distribution. In summary, the PIT is the value that the predictive cdf attains at the observation. The PIT
takes values in the unit interval, and so, the possible values of its variance are constrained to the closed
interval [0, 1

4 ]. A variance of 1
12 corresponds to a uniform distribution.

Gneiting and Ranjan [20] generalized the complete calibration criterion used by [28] applying it
on non-binary outcomes Yt. As mentioned at the beginning of this section, a useful tool for combining
a predictive distribution function is the conditional distribution of the observation Yt given the
σ-algebra generated by the predictive cdfs, F1t, . . . , FKt, at time t, or by the combination formula:

G(y|F1t, . . . , FKt) = ψ(H((F1t(y), · · · , FKt(y))|θ)) (9)

almost surely, where ψ(x) is the map from F to F . This is a modified version of the auto-calibration
property given in Tsyplakov (2011) for ψ(x) = x. Here, we assumed that the calibration is obtained
by a distortion, through ψ, of a combination scheme H. Thus, calibration is something related to the
combination formula.

Following the combination schemes and the notation given in the previous section, the relationship
between calibration and combination is given by:

Gmt(y|ω) = (ψm ◦ ϕ−1)(
K

∑
k=1

ωk ϕ(Fkt(y))) (10)

where (ψm ◦ ϕ−1)(x) = ψm(ϕ−1(x)), ϕ−1 denotes the inverse of ϕ and ψm is the distortion function
with the subscript m denoting one of the three combination schemes given in the previous section.
In general, the combination scheme used in the calibration and combination formula must satisfy
some requirements on the PIT’s dispersion:

1. The combination formula is flexibly dispersive if for the class F of fixed, non-random cdfs, for all
F0t ∈ F and F1t, . . . , FKt ∈ F , L(y) = F0, then H((F1t(y), · · · , FKt(y))|θ) is a neutrally-dispersed
forecast (i.e., Var(L(Y|F1t, . . . , FKt)) = 1/2).

2. The combination formula is exchangeably flexible dispersive if for the class F of fixed,
non-random cdfs, for all F0t ∈ F and F1t, . . . , FKt ∈ F , L = F0t, then H is anonymous, i.e.,
H((Fπ(1)t, · · · , Fπ(K)t)|θ) = H((F1t, · · · , FKt)|θ), and a neutrally-dispersed forecast.

See [20]. In a nutshell, aggregation methods have to be sufficiently flexible to accommodate
situations typically encountered in practice. In the next part, a possible solution to the problem of
choosing the combination and calibration scheme will be described.

2.3. A Beta Mixture Calibration and Combination Model

Introduced by [29] and generalized in [20], the beta transformation of the pooling operator H
takes the form:

Gmt(y|θ) = Bα,β(Hmt(y|ω)) (11)

where Bα,β denotes the cdf of the beta distribution with parameters α > 0 and β > 0, and Hmt(y|ω)

is one of the combination formulas defined in (3)–(5). Moreover, consider that the case with α > 1
and β > 1 reduces the beta-transformed pool in the beginning pooling operator. If F1t, . . . , FKt admits
Lebesgue densities, the previous can be written in terms of aggregated pdfs:

gmt(y|θ) = hmt(y|ω)bα,β(Hmt(y|ω)) (12)

where hmt is defined by Equations (6)–(8) and bα,β is the pdf of the beta distribution. Bassetti et al. [19]
interprets the beta transformation as a parametric calibration function, which acts on the combination
of F1t, . . . , FKt with weights ωk, k = 1, . . . , K.



Econometrics 2016, 4, 17 7 of 24

Furthermore, Equations (11) and (12) are generalized proposing the use of a mixture of beta
calibration and the combination model:

Gmt(y|θ) =
J

∑
j=1

ρjBαj ,β j(Hmt(y|ωj)) (13)

and:

gmt(y|θ) =
J

∑
j=1

ρjhmt(y|ωj)bαj ,β j(Hmt(y|ωj)) (14)

where θ = (α, β, ω, ρ) comprises α = (α1, . . . , αJ) and β = (β1, . . . , β J), the beta calibration parameters,
ωj = (ω1j, . . . , ωKj) the vector of combination weights and ρ = (ρ1, . . . , ρJ) the vector of the beta
mixture weights.

In conclusion, a simulation example is reported to illustrate the effect of the beta combination and
calibration model on predicting realizations of the variable of interest Yt. Consider:

Yt ∼ N (0, 1)

for t = 1, . . . , 1000 and two predictive cdfs:

F1t ∼ N (0.5, 1), F2t ∼ N (0, 3)

The first cdf is wrong in predicting the mean of the distribution; the second one is wrong in
predicting the variance. Here, we do not pay attention to the combination formula that generates the
two predictive functions. In Figure 3, which show cdfs of PITs, the difference among the two types
of error is evident: errors in the mean are displayed by a cdf that overestimates (or underestimates,
depending on the error sign) the “true” cumulative density function; while errors in variance appear
as an underestimate in the left side of the distribution and an overestimate in the right side, the
discontinuity point corresponds to the mean, at which the two lines intersect.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Figure 3. Empirical cdfs of the probability integral transforms (PITs) generated by F1 (red line), F2

(green line) and the true model (black line), for the simulated realizations of the variable of interest Y.

We apply the beta transformation to each predictive function separately in order to appreciate
the effect of the procedure. In Figure 4, we report the initial predictive functions (red lines), their beta
transformations (green line) and the PITs of the simulated data (black lines).
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Figure 4. Beta calibration of F1 (first row) and F2 (second row) by using a beta calibration function (i.e.,
J = 1) and the Bayesian estimates of the calibration parameters, that is α1 = 0.773 and β1 = 1.352 for
F1 and α1 = 7.485 and β1 = 7.477 for F2.

3. Bayesian Inference

Before proceeding to the presentation of the Bayesian inference setting, a different parametrization
of the problem has been proven to be more convenient in various papers involving beta distributions
(see, e.g., [30–34]). The beta density function of the standard beta distribution with parameters α > 0
and β > 0 is written as:

b∗µ,ν(x) =
Γ(ν)

Γ(µν)Γ((1− µ)ν)
xµν−1(1− x)(1−µ)ν−1I[0,1](x), (15)

where µ = α/(α + β), ν = α + β, Γ(·) denotes the gamma function and IA(x) the indicator function,
which takes a value of one if x ∈ A and zero otherwise.

The aim of this section is to provide an estimation procedure for a combined and calibrated
model, in which the cumulative predictive distributions Fkt are aggregated in a single cdf, Gmt, for
the subsequent realization yt+1. To handle this issue, consider a unit prediction horizon, where the
training set is composed of predictive cdfs F1t, . . . , FKt based on the information available in t− 1 along
with the respective realizations ys, s ≤ t− 1.

Let us consider the following reparametrized cdf and pdf functions of the beta mixture calibration
and combination model in Equation (13):
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Gmt(yt|θ) =
J

∑
j=1

ρjB∗µj ,νj
(Hmt(yt|ωj)) (16)

gmt(yt|θ) =
J

∑
j=1

ρjhmt(yt|ωj)b∗µj ,νj
(Hmt(yt|ωj)) (17)

for t = 1, . . . , T; m = 1, . . . , 3 indicates the type of combination employed and j = 1, . . . , J the number of
beta mixture components. Moreover, the parameters µ = (µ1, . . . , µJ), with µj ∈ (0, 1), ν = (ν1, . . . , νJ),
with νj ∈ (0, ∞), ω = (ω1, . . . , ωJ), with ωj ∈ ∆K, with ∆K denoting the K-dimensional standard
simplex, and ρ = (ρ1, . . . , ρJ) ∈ ∆J are collected in a single parameter vector θ = (µ, ν, ω, ρ). Following
the Bayesian approach in [19], we assume the prior distributions:

µk ∼ Be(ξµ1, ξµ2),

νk ∼ Ga(ξν1, ξν2),

ωk ∼ Dir(ξω1, . . . , ξωJ ),

ρ ∼ Dir(ξρ1, . . . , ξρJ ),

for k = 1, . . . , K, where Be(α, β) is a beta distribution with density proportional to xα−1(1− x)β−1,
Ga(γ, δ) is a gamma distribution with density proportional to xγ exp{−δx} for x > 0 and

Dir(ε1, . . . , εJ) is a Dirichlet distribution with density proportional to
J

∏
j=1

x
εj−1
j . The likelihood is:

L(y1:T |θ) =
T

∏
t=1

J

∑
j=1

ρjhmt(yt|ωj)b∗µj ,νj
(Hmt(yt|ωj)) (18)

where y1:T = (y1, . . . , yT). The joint posterior distribution of θ given the observations is π(θ|y1:T) ∝
g(µ, ν, ω)L(y1:T |θ), where g(µ, ν, ω) corresponds to the prior density of the parameters.

In the applications of this paper, we consider a two-component beta mixture for the calibration,
i.e., the case of J = 2, and two predictive densities (or two groups of densities) in the combination, i.e.,
only two combination weights. Since the number of parameters to estimate is not large, we do not
apply a data augmentation framework to the inference and a Gibbs sampler as in [19], but consider
instead an Metropolis-Hastings (MH) sampler, with target distribution:

π(µ, ν, ω, ρ|y1:T) ∝
T

∏
t=1

(
ρhmt(yt|ω1)b∗µ1,ν1

(Hmt(yt|ω1))

+ (1− ρ)hmt(yt|ω2)b∗µ2,ν2
(Hmt(yt|ω2))

)
µξµ−1(1− µ)ξµ−1

νξν−1 exp{−ξνν}ωξω−1(1−ω)ξω−1ρξρ−1(1− ρ)ξρ−1.

Let θ(i,T) = (ρ(i,T), µ(i,T), ν(i,T), ω(i,T)), i = 1, . . . , I, be the output of the algorithm, where I is the
number of Gibbs sampler iterations, and let I0 be the number of burn-in samples. The MCMC algorithm
can be applied sequentially in T, and at each T, the MCMC output can be used to approximate, with
ĜmT+1(yT+1), the one-step-ahead marginal posterior predictive cdf at time T, that is GmT+1(yT+1)

=
∫

Θ GmT+1(yT+1|θ)π(θ|y1:T)dθ. The MCMC approximation is:

ĜmT+1(yT+1) =
1

I − I0

I

∑
i=I0+1

J

∑
j=1

ρ
(i,T)
j B∗

µ
(i,T)
j ,ν(i,T)j

(
K

∑
k=1

ω
(i,T)
jk ϕ(FkT+1(yT+1))

)
.



Econometrics 2016, 4, 17 10 of 24

4. Empirical Results

4.1. Simulation Study

In this simulation study, we focus on multimodal true distributions. We simulate random samples
Yt, t = 1, . . . , T from a mixture of three normal distributions. We denote by Ft(y|µ, σ) = F(y|µ, σ), for
all t = 1, . . . , T, the cdf of the distribution N (µ, σ2). The data-generating process (DGP) is specified as:

Yt
i.i.d.∼ p1N (−2, 2) + p2N (0, 2) + p3N (2, 2), (19)

where p = (p1, p2, p3) ∈ ∆3. Moreover, we assume that the set of predictive models includes
two normal distributions: N (−1, 1) and N (0.5, 3). The distributions of the combination schemes
compared in our simulation experiments are:

1. the equally-weighted model (EW):

H1t(y, ω) = ωF(y| − 1, 1) + (1−ω)F(y|0.5, 3),

H2t(y, ω) = ω(F(y| − 1, 1))−1 + (1−ω)(F(y|0.5, 3))−1,

H3t(y, ω) = exp
(

ω log(F(y| − 1, 1)) + (1−ω) log(F(y|0.5, 3))
)

,

where ω is the combination weight equal to 1/2. H1t, H2t, H3t correspond to Equations (3)–(5),
for linear, harmonic and logarithmic pool, respectively, when K = 2;

2. the beta calibration model (BC1):

Gmt(y|θ) = Bα1,β1(Hmt(y|ω1))

where θ = (α1, β1, ω1), and Hmt(y|ω), with ω = ω1, is defined by Equations (3)–(5);
3. the two-component beta mixture calibration model (BC2):

Gmt(y|θ) = ρBα1,β1(Hmt(y|ω1)) + (1− ρ)Bα2,β2(Hmt(y|ω2)),

where θ = (ρ, α1, α2, β1, β2, ω
′
1, ω

′
2) and Hmt(y|ω) is the same as in the BC1 model.

The posterior approximation is based on a set of 50,000 MCMC iterations after a burn-in period
of 50,000 iterations. An example of MCMC output is given in the Appendix. In order to reduce the
dependence in the samples, we thin out every 50th draw after the burn-in period. Therefore, we obtain
1000 samples, which are used to approximate all of the posterior quantities of interest.

The posterior means of the BC1 and BC2 parameters (represented by the vector θ) are reported
in Table 1 for the linear combination models, in Table 2 for the harmonic combination models and in
Table 3 for the logarithmic combination models, according to pi. In the tables, α1 and β1 stand for the
parameters of the beta distribution and ω1 for the combination weight in the BC1 model and in the
first component of the BC2 model, while the parameters of the second component of BC2 are referred
to as α2, β2 and ω2.

Generally, BC2 models build more flexible predictive cdf: in most of the cases presented, the BC1
models do not take into account the first predictive distribution function (F1), while BC2 weights more
the first one than the second predictive cdf, with few exceptions. Comparing pooling schemes, no clear
tendency appears from the tables.
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Table 1. Parameter estimates in the linear combination model for different choices of the mixture
probabilities p of the data-generating process.

p (1/5, 1/5, 3/5) (1/7, 1/7, 5/7) (3/5, 1/5, 1/5) (5/7, 1/7, 1/7)

θ BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2

α1 0.755 3.293 0.921 6.970 0.461 0.452 0.496 0.650
β1 0.642 0.953 0.639 0.937 0.816 3.744 0.812 0.876
ω1 0.015 0.191 0.000 0.500 0.256 0.925 0.342 0.230
α2 0.692 0.665 0.550 0.707
β2 3.093 0.713 0.827 13.033
ω2 0.150 0.233 0.063 0.315
ρ 0.697 0.512 0.215 0.806

Table 2. Parameter estimates in the harmonic combination model for different choices of the mixture
probabilities p of the data-generating process.

p (1/5, 1/5, 3/5) (1/7, 1/7, 5/7) (3/5, 1/5, 1/5) (5/7, 1/7, 1/7)

θ BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2

α1 0.744 7.026 0.906 7.775 0.416 0.383 0.457 0.457
β1 0.634 0.878 0.632 1.013 0.755 0.827 0.747 0.778
ω1 0.042 0.529 0.024 0.456 0.363 0.734 0.507 0.511
α2 0.615 0.665 3.720 0.462
β2 0.929 0.651 1.133 0.734
ω2 0.380 0.302 0.093 0.474
ρ 0.453 0.415 0.824 0.456

Table 3. Parameter estimates in the logarithmic combination model for different choices of the mixture
probabilities p of the data-generating process.

p (1/5, 1/5, 3/5) (1/7, 1/7, 5/7) (3/5, 1/5, 1/5) (5/7, 1/7, 1/7)

θ BC1 BC2 BC1 BC2 BC1 BC2 BC1 BC2

α1 0.751 7.062 0.917 6.514 0.441 2.587 0.469 2.180
β1 0.639 0.950 0.640 0.966 0.764 1.109 0.753 0.869
ω1 0.018 0.517 0.000 0.431 0.370 0.031 0.465 0.411
α2 0.578 0.645 0.367 0.515
β2 0.823 0.680 0.875 2.770
ω2 0.426 0.379 0.843 0.423
ρ 0.484 0.510 0.274 0.389

A graphical inspection of PIT cumulative density functions of the three models is proposed to
compare them to the simulated data to be predicted; see the left column in Figures 5–7. In all of
the experiments the PITs of the equally-weighted model (magenta line) lack the ability to predict
acceptably the standard uniform cdf of the data simulated by a mixture of normal distributions.

The beta-transformed models (red line) predict the uniformity better than the EQ models, but
they overestimate or underestimate the black line mainly in the central part of the support. In all of the
pooling schemes used, the beta mixture models provide the closest calibrated cdfs to the uniform one,
being able to achieve better flexibility among the others.
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Figure 5. (Left column): PITs’ cdf for the linear pool at different values of p; (Right column): contribution
of calibration components for BC1 (green) and BC2 (blue), where BC21 (solid) is the fist component of
the beta mixture in BC2 and BC22 (dashed) the second component.
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Figure 6. (Left column): PITs’ cdf for the harmonic pool at different values of p; (Right
column): contribution of calibration components for BC1 (green) and BC2 (blue), where BC21 (solid) is
the fist component of the beta mixture in BC2 and BC22 (dashed) the second component.
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Figure 7. (Left column): PITs cdf for the harmonic pool at different values of p; (Right
column): contribution of calibration components for BC1 (green) and BC2 (blue), where BC21 (solid) is
the fist component of the beta mixture in BC2 and BC22 (dashed) the second component.

To highlight the behavior of the two-component beta mixture, the right column of Figures 5–7
shows the contribution in the calibration process of each element. As an example, consider the first
panel in Figure 5, the BC1 and BC2 models with linear pooling. The solid blue line represents the pdf
of the first component of the mixture, the dashed blue line the second component. The multimodality
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of the data is explained by two predictive functions: the first mixture component, denoted by BC21,
calibrates mainly the predictive density over the positive part of the support; the second mixture
component, denoted by BC22, calibrates the density over the negative part. Table 1 reports the
following values for the weight ω: ω1 = 0.5390 and ω2 = 0.8700. This means that both components
weight the first model in the pool more, i.e., N (0.5, 3).

In conclusion, our simulation exercises find that the result presented in [19] for the calibration and
linear pooling combination of predictive densities is valid for and can be extended to other pooling
schemes, including the logarithmic pooling and the harmonic pooling. Moreover, no clear preference
for one combination scheme appears from our examples.

4.2. Financial Application: Standard&Poors500 Index

We consider S&P500 daily percent log returns from 1 January 2007–31 December 2009; an updated
version of the database used in [14,18,35]. The price series {yt} were constructed assembling data
from different sources: the WRDS database; Thompson/Data Stream; the total number of returns
in the sample is t = 784. Many investors try to replicate the performance of the S&P500 Index with
a set of stocks, not necessarily identical to those included in the index. Casarin et al. [21] individuates
3712 stocks quoted in the NYSE and NASDAQ eligible for this purpose, whose 1883 satisfy the control
for liquidity (i.e., each stock has been traded a number of days corresponding to at least 40% of the
sample size).

Then, a density forecast for each of the stock prices is produced by the following equations:

yit = ci + κitζit (20)

κ2
it = θi0 + θi1ζ2

i,t−1 + θ12κ2
i,t−1 (21)

where yit is the log return of stock i = 1, · · · , 1883, at day t; ζi,t−1 ∼ N (0, 1) and ζi,t−1 ∼ T (νi) for the
normal and t-Student cases, respectively. Both models produce 784 one day ahead density forecasts
from 1 January 2007–31 December 2009 by substituting the maximum likelihood (ML) estimates for
the unknown parameters (ci, θi0, θi1, θi2, νi) (for further details, please refer to [21]).

The major contribution of this technique is the construction of a sequential cluster analysis for our
forecasts. The work in [21] computes two clusters: one for normal GARCH(1,1) models and another
one for t-GARCH(1,1). Then, we obtain a combined forecast of the S&P500 Index combining and
calibrating the two classes of predictive distribution functions, i.e., GARCH(1,1) and t-GARCH(1,1),
through the equally-weighted, the beta-calibrated and the two-component beta mixture models with
linear, harmonic and logarithmic pooling schemes.

The clustered weights are assumed to be one and defined by:

ωi =

{
ω

3766 , i ≤ 1883
1−ω
3766 , i > 1883

where 3766 is the total number of predictive distribution functions: 1883 belonging to the class
GARCH(1,1) and 1883 to the class t-GARCH(1,1). That is, the combination model gives weight ωi/1883
to the class of GARCH(1,1) (first 1883 models) and 1−ωi/1883 to the class of t-GARCH(1,1) (second
1883 models). The stage is open to further extensions, suggesting a less restricting weighting system.

The period taken into account is particularly interesting because it includes the U.S. financial
crisis. Our analysis considers three subsamples, of 200 observations each, representing three periods
with different features. The time from 1 January 2007–5 October 2007 is defined as a tranquil
period, and the predictability of the index could be hypothesized better than the one from 20 June
2008–26 March 2009 during which the financial crisis developed: here, one can expect that the high
volatility makes it more difficult to predict the returns. Finally, the third subsample includes data
from 27 March 2009–31 December 2009, the post-crisis period. We aim to inquire if some difficulties
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in the forecastability and forecast calibration are still present in the post-crisis period. The two
classes of predictive density functions, GARCH(1,1) and t-GARCH(1,1), are combined and calibrated
through the following models: the equally-weighted (EW) model, the beta-calibrated (BC1) model
and the two mixture beta-calibrated (BC2) model. For each model, the three combination schemes are
considered: linear, harmonic and logarithmic.

The sequential estimation and combination of the models have been conducted on a cluster
multiprocessor system, which consists of four nodes; each comprises four Xeon E5-4610 v2 2.3-GHz
CPUs, with eight cores, 256 GB ECC PC3-12800R RAM, Ethernet 10 Gbit and 20-TB hard disk system
with Linux. The code has been implemented in MATLAB (see [36]), and the parallel computing
makes use of the MATLAB parallel computing toolbox. The parallel implementation of the sequential
estimation exercise allows us to obtain the results in 36 hours with a computational gain of the parallel
over the sequential implementation of 120 hours.

Figure 8 displays a comparison through PITs of linear, harmonic and logarithmic pools when
those are combined with the equally-weighted model and the 45 degree line, which represents the
PITs for the unknown ideal model. Linear, harmonic and logarithmic pools have the same behavior
in the center part of the support; the differences among them are mainly in the tails, in particular in
the left one. With respect to the linear and logarithmic scheme, indeed, the harmonic pool (blue line)
underestimates more often the frequency of the observations in the tails. The scheme closer to the
45 degree line is the harmonic one, thanks to its better performance in predicting tail events.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
C
Linear
Harmonic
Logarithmic

Figure 8. Different behavior of the equally-weighted (EW) model for the three pool schemes applied to
the S&P500 daily percent log return.

For the first 200 days, from 1 January 2007–10 October 2007, where the volatility is roughly the
same, the posterior means of the BC1 and BC2 parameters (represented by the vector θ) are reported
in Tables 4–6. Here, α1 and β1 stand for the parameters of the beta distribution in the estimated BC1
model and in the first component of the BC2 model, while the second component of BC2 is referred to
as α2 and β2.

Table 4. Parameter estimates in the different combination models for the pre-crisis data subsample:
1 January 2007–5 October 2007.

P Linear Harmonic Logarithmic

θ BC1 BC2 BC1 BC2 BC1 BC2

α1 5.840 0.000 0.084 17.573 2.468 34.692
β1 5.807 0.000 0.371 15.114 2.867 34.462
ω1 1.000 0.000 1.000 0.863 1.000 0.706
α2 5.812 0.020 1.781
β2 5.651 0.466 2.166
ω2 1.000 0.199 0.93
ρ 0.000 0.7926 0.269
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Table 5. Parameter estimates in the different combination models for the in-crisis data subsample:
20 June 2008–26 March 2009.

P Linear Harmonic Logarithmic

θ BC1 BC2 BC1 BC2 BC1 BC2

α1 7.025 278.600 0.977 0.944 0.974 1.010
β1 6.646 803.260 0.865 1.014 1.292 1.018
ω1 1.000 1.000 0.740 0.263 0.821 0.031
α2 6.760 0.975 1.131
β2 6.334 1.010 0.972
ω2 1.000 0.247 0.298
ρ 0.000 0.000 0.000

Table 6. Parameter estimates in the different combination models for the pre-crisis data subsample:
27 March 2009–31 December 2009.

P Linear Harmonic Logarithmic

θ BC1 BC2 BC1 BC2 BC1 BC2

α1 6.542 47110.000 1.031 0.972 1.127 1.007
β1 6.071 0.000 0.419 0.942 2.275 1.066
ω1 1.000 1.000 0.823 0.967 0.186 0.406
α2 6.710 1.039 0.891
β2 6.307 0.938 1.015
ω2 1.000 0.920 0.921
ρ 0.000 0.000 0.000

In all of the cases presented, the estimated BC1 models give zero weight to the class of
t-GARCH(1,1) models, as well as the fist component of the beta mixture (BC2); while the second
component of the BC2 in the harmonic and logarithmic cases weights the class of t-GARCH(1,1)
models more than the class of GARCH(1,1) models. To better understand the effect of these parameter
estimates, a graphical inspection of PITs is reported in Figures 9–11, for the pre-crisis, in-crisis and
post-crisis period respectively.

In all examples, the equally-weighted model (magenta line) lacks the ability to predict acceptably
the ideal standard uniform cdf; see Figures 9–11. Just in one case, the linear one, both BC1 and
BC2 perform well, providing the closest calibration to the uniform one, being able to achieve better
flexibility for all of the time periods analyzed. In the harmonic and logarithmic cases, the BC1 model
lacks the ability to calibrate the class of GARCH(1,1) and the class of t-GARCH(1,1) models, fitting
even worsen than the equal weight model. However, a satisfactory calibration is obtained by the
BC2 model, even if not as good as that achieved by the linear pool. This is confirmed for all if the
periods in our sample, even if the PITs’ calibration gets worse in the crisis and post-crisis phases,
highlighting some difficulties in being flexible. However, the linear pooling achieves good calibrated
forecasts in both beta combination models; if the pool employed is chosen among the harmonic and
the logarithmic schemes, satisfactory results are provided by the two-component beta mixture model.

In conclusion, we prove that the result in [19] for the beta mixture calibration and linear
combination of predictive densities is still valid when harmonic and logarithmic combination schemes
are applied.
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Figure 9. PITs’ cdf of the ideal model C (black line), EW (magenta), BC1 (red) and BC2 (green)
for linear (top right), harmonic (bottom left) and logarithmic (bottom right) pools, and the PITs of
the EW models (top left) for linear (red), harmonic (blue) and logarithmic (green), in the first data
subsample: pre-crisis period.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
C
Linear
Harmonic
Logarithmic

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C

EW

BC1

BC2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C

EW

BC1

BC2

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

C

EW

BC1

BC2

Figure 10. PITs cdf of the ideal model C (black line), EW (magenta), BC1 (red) and BC2 (green) for
linear (top right), harmonic (bottom left) and logarithmic (bottom right) pools, and the PITs of the
EW models (top left) for linear (red), harmonic (blue) and logarithmic (green), in the second data
subsample: in-crisis period.
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Figure 11. PITs cdf of the ideal model C (black line), EW (magenta), BC1 (red) and BC2 (green)
for linear (top right), harmonic (bottom left) and logarithmic (bottom right) pools, and the PITs of
the EW models (top left) for linear (red), harmonic (blue) and logarithmic (green), in the third data
subsample: post-crisis period.

5. Conclusions

This paper applies a Bayesian beta mixture model to derive a combined and calibrated density
function using random calibration functionals and random combination weights. It compares
linear, harmonic and logarithmic pooling in the combination approach in simulation examples with
multimodal densities and an application with a large set of stock market data.

The results show that the three combination pools allow for achieving well-calibrated forecasts,
and no clear preference for one of them appears. However, in the application to the daily log returns
of the S&P500 Index, the linear pooling together with beta mixture calibration achieves the best results
in terms of calibrated forecast.
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Appendix. Computational Details

In this work, a Metropolis-Hastings algorithm for posterior inference was designed.
In Section 4, beta and beta mixture calibration models are presented and applied to simulated data.
A Metropolis-Hastings (MH) algorithm has been used to approximate the posterior distribution of
the unknown parameters, which are θ = (α1, β1, ω1) and θ = (α1, β1, ω1, α2, β2, ω2, ρ) for the beta
model and the beta mixture model, respectively. The joint posterior distribution for J = 2 is reported



Econometrics 2016, 4, 17 20 of 24

in Section 3. In order to account for the constraints on the parameters, the target distributions of the
MH algorithm for µ, ν, ω and ρ is obtain by applying the change of variable µ = 1/(1 + exp{−θ̃1}),
ν = exp{θ̃2} and ω = 1/(1 + exp{−0.1θ̃3}) to the joint posterior for BC1 and the target distributions
for µ1, µ2, ν1, ν2, ω1, ω2 and ρ the change of variable µ1 = 1/(1 + exp{−0.1θ̃1}), ν1 = exp{θ̃2},
ω1 = 1/(1 + exp{−0.1θ̃3}), µ2 = 1/(1 + exp{−0.1θ̃4}), ν2 = exp{θ̃5}, ω2 = 1/(1 + exp{−0.1θ̃6}),
ρ = 1/(1 + exp{−0.1θ̃7}). The MH acceptance probability accounts for the Jacobian:

J(θ̃1, θ̃2, θ̃3) =

∣∣∣∣∣∣∣∣

−0.1 exp{−0.1θ̃1}

(1+exp{−0.1θ̃1})2 0

0 exp{θ̃2} 0

0 0 −0.1 exp{−0.1θ̃3}
(1+exp{−0.1θ̃3})2


∣∣∣∣∣∣∣∣

that is:

J(θ̃1, θ̃2, θ̃3) = 0.12 exp(−0.1θ̃1 + θ̃2 − 0.1θ̃3)(1 + exp(−0.1θ̃1))
−2

(1 + exp(−0.1θ̃3))
−2 (A1)

for the BC1, and:

J(θ̃1, θ̃2, θ̃3, θ̃4, θ̃5, θ̃6, θ̃7) =

=

∣∣∣∣∣∣∣∣

−0.1 exp{−0.1θ̃1}

(1+exp{−0.1θ̃1})2 0 0

0 exp{θ̃2} 0

0 0 −0.1 exp{−0.1θ̃3}
(1+exp{−0.1θ̃3})2


∣∣∣∣∣∣∣∣ ·

·

∣∣∣∣∣∣∣∣∣∣∣∣


−0.1 exp{−0.1θ̃4}

(1+exp{−0.1θ̃4})2 0 0 0

exp{θ̃5} 0 0

0 0 −0.1 exp{−0.1θ̃6}
(1+exp{−0.1θ̃6})2 0

0 0 0 −0.1 exp{−0.1θ̃7}
(1+exp{−0.1θ̃7})2



∣∣∣∣∣∣∣∣∣∣∣∣
that is:

J(θ̃1, θ̃2, θ̃3, θ̃4, θ̃5, θ̃6, θ̃7) = 0.15 exp(−0.1(θ̃1 + θ̃3 + θ̃4 + θ̃6 + θ̃7) + θ̃2 + θ̃5)

(1 + exp(−0.1θ̃1))
−2(1 + exp(−0.1θ̃3))

−2(1 + exp(−0.1θ̃4))
−2

(1 + exp(−0.1θ̃6))
−2(1 + exp(−0.1θ̃7))

−2 (A2)

for the BC2 model.
Equations (A1) and (A2) report the Jacobian used in the MH acceptance ratios for the BC1 and

BC2 models, respectively. The variance/covariance matrix of the MH proposal distribution are
Σ = diag{0.052, 0.12, 102} and Σ = diag{0.052, 0.052, 102, 0.052, 0.052, 102, 102} for the BC1 and BC2
models, respectively. We set the initial values of the MH sampler to the maximum likelihood estimate
of the parameter θ.

A example of MCMC output and of ergodic means, for one of the experiments, is given in
Figure A1 for the parameters of the BC1 model and in Figures A2 and A3 for the parameters of the
BC2 model.
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Figure A1. BC1 model (J = 1): 100,000 MCMC samples (left column) and MCMC progressive averages
(right column) for the parameters ω1, α1 and β1 (different rows).
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Figure A2. BC2 model (J = 2): 100,000 MCMC samples (left column) and MCMC progressive averages
(right column) for the parameters ω1, ω2, α1 and α2 (different rows).
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Figure A3. BC2 model (J = 2): 100,000 MCMC samples (left column) and MCMC progressive averages
(right column) for the parameters β1, β2 and ρ (different rows).
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