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Abstract: Forecast combination has been proven to be a very important technique to obtain
accurate predictions for various applications in economics, finance, marketing and many
other areas. In many applications, forecast errors exhibit heavy-tailed behaviors for various
reasons. Unfortunately, to our knowledge, little has been done to obtain reliable forecast
combinations for such situations. The familiar forecast combination methods, such as simple
average, least squares regression or those based on the variance-covariance of the forecasts,
may perform very poorly due to the fact that outliers tend to occur, and they make these
methods have unstable weights, leading to un-robust forecasts. To address this problem, in
this paper, we propose two nonparametric forecast combination methods. One is specially
proposed for the situations in which the forecast errors are strongly believed to have heavy
tails that can be modeled by a scaled Student’s t-distribution; the other is designed for
relatively more general situations when there is a lack of strong or consistent evidence
on the tail behaviors of the forecast errors due to a shortage of data and/or an evolving
data-generating process. Adaptive risk bounds of both methods are developed. They show
that the resulting combined forecasts yield near optimal mean forecast errors relative to the
candidate forecasts. Simulations and a real example demonstrate their superior performance
in that they indeed tend to have significantly smaller prediction errors than the previous
combination methods in the presence of forecast outliers.

Keywords: forecast combination; heavy tails; robustness; time series models; nonparametric
forecast combination
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1. Introduction

When multiple forecasts are available for a target variable, well-designed forecast combination
methods can often outperform the best individual forecaster, as demonstrated in the literature of the
applications of forecast combinations in areas, such as economics, finance, tourism and wind power
generation in the last fifty years.

Many combination methods have been proposed from different perspectives since the seminal
work of forecast combination by Bates & Granger [1]. See the discussions and summaries in
Clemen [2], Newbold & Harvey [3] and Timmermann [4] for key developments and many references.
More recently, Lahiri et al. [5] provide theoretical and numerical comparisons between adaptive and
simple forecast combination methods; Armstrong, Green and Graefe [6] propose important principles
to follow, centered on the golden rule of being conservative, for building accurate forecasts, and verify
them empirically based on an examination of previously-published studies; Green & Armstrong [7]
review studies that compare simple and complicated methods and conclude that complexity actually
substantially increases forecast error. They advocate the use of sophisticatedly simple methods instead
of complicated ones that are hard to understand. This is in line with the fact that complicated
methods often incur unnecessarily larger instability and variability in prediction (see, e.g., Subsection 3.1
of Yang [8]). While it seems clear that researchers agree that forecast combination is very useful, they
differ in their opinions on how to do forecast combination properly. Needless to say, there are many
possibly drastically different scenarios one can envision for the problem of forecast combination in terms
of the accuracy of the candidate forecasts, their relationships, the structure changes, the characteristics
of the forecast errors and more, which naturally favor different methods to be top performers. Therefore,
the availability of many combination methods and disputes on their rankings and merits, in our view, are
not only expected, but also helpful to collectively reach a better understanding of the key issues in the
research area by further rigorous theoretical and empirical investigations.

The present work concerns forecast combination when the forecast errors exhibit heavy-tailed
behaviors, which means that the decay of the probability density function (or an estimate) of the
forecast errors is much slower than that of the normal distribution. To our knowledge, few studies have
proposed/discussed forecast combination methods that target such situations, where the familiar forecast
combination methods, such as simple average, least squares regression with or without constraints or
those based on the variance-covariance of the forecasts, may perform very poorly (some numerical
examples are provided in Sections 4 and 5 in this paper).

Heavy-tailed behaviors of forecast errors may come from different sources. First, many important
variables in finance, economics and other areas are known to have heavy tails. For example, currency
exchange rates have long been believed to have heavy-tailed behaviors, and Marinelli et al. [9], for
instance, discussed the evidences of heavy-tailed distributions to model them. Some key macroeconomic
indices, such as GDP, are also believed to have heavy-tailed tendencies, and Harvey [10], for instance,
modeled the U.S. GDP with Student’s t-distributions with low degrees of freedom. The heavy tails of
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the variables to be forecast naturally tend to cause heavy-tailed behaviors of the forecast errors. Second,
even if the target variables themselves have light tails, the variables in the information set may have long
tails for various reasons, which can induce heavy tails of the forecast errors. Third, for a difficult target
variable, we may also observe heavy-tailed forecast errors from predictive models when data available
for model training are limited, even if the true data-generating processes have relatively normal tails.

Clearly, when some of the forecast errors of the candidate forecasters are unusually large, if a forecast
combination method does not take it into consideration, the final forecast may even fully inherit large
prediction errors, which may then have severe practical consequences on decisions based on the forecast.
Therefore, it is crucial to devise combination methods that can deal with heavy-tailed forecast errors for
robust and reliable final performances. In the rest of the work, for convenience, heavy-tailed distributions
may sometimes loosely refer to distributions with tails heavier than Gaussian distributions, although
specific choices, such as scaled t-distributions, will be studied.

In this paper, we propose two forecast combination methods. One is specially designed for situations
when there is strong evidence that the forecast errors are heavy tailed and can be modeled by a
scaled Student’s t-distribution (see below). The other is designed for more general uses. The design
of these two methods follows the spirit of the adaptive forecasting through exponential re-weighting
(AFTER) combination scheme by Yang [8]. The idea of the AFTER scheme is that the exponentiated
cumulative historical performances of the candidate forecasts are informative and can be used to
assign their combination weights for the future. This way of using the historical performances of the
candidate forecasts for weighting has a natural tie to information theory and provides a near optimal
final performance in mean forecasting errors. For example, if the random errors in the true model
are from a normal distribution, then the weight of a candidate forecast by AFTER is proportional to
exp(−L2), where L2 is the cumulative historical mean squared forecast error of the forecast. For the
fist method mentioned above, we assume that the forecast errors follow a scaled Student’s t-distribution
with a possibly unknown scale parameter and degrees of freedom. Note that if a random variable X
satisfies that X/s ∼ tν for some s > 0, where tν is a standard t-distribution with degrees of freedom
ν, we say X has a tν distribution with scale parameter s. For situations when the identification of the
heaviness of tails of the forecast errors is not feasible, normal, double-exponential and scaled Student’s
t-distributions are considered at the same time as candidates for the distribution form of the forecast
errors for the second method. In either case, no parametric assumptions are needed on the relationships
of the candidate forecasts.

Technically, if the forecast errors are assumed to follow a normal or a double-exponential distribution
with zero mean, then the conditional probability density functions used in the combining process of
the AFTER scheme can be estimated relatively easily for all of the candidate forecasters, because
the estimation of the conditional scale parameters is straightforward (see, e.g., Zou & Yang [11]
and Wei & Yang [12], for more details). However, this is not true if a scaled t-distribution is assumed.
Among the literature discussing the maximum likelihood parameter estimation in Student’s t-regressions
in the last few decades, Fernandez & Steel [13] and Fonseca et al. [14] provided comprehensive
summaries of the convergence properties of the parameter estimations in different situations. Both of
them showed that the estimation of the degrees of freedom and the scale parameter simultaneously in
a scaled Student’s t-regression model suffer from monotonic likelihood because the likelihood goes to
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infinity as the scale parameter goes to zero if the degrees of freedom ν are not large enough. To deal
with this difficulty, methods other than the maximum likelihood estimation have been proposed in the
literature. For example, one may fix the degrees of freedom first, then estimate the scale parameter using
the method of moments or other tools (see, e.g., Kan & Zhou [15]).

We follow a two-step procedure to estimate the density function given a forecast error sequence. First,
estimate the scale parameter for each element in a given candidate pool of degrees of freedom. Note that
each combination of the degrees of freedom and the scale parameter leads to a different estimate of
the density function. Second, the weight of a density estimate is assigned from its relative historical
performance. The final density estimate is a mixture of all of the candidate density estimates using the
weights. More details about this procedure, including how to determine the pool of candidate estimates,
are available in Section 2. There are three major advantages of this procedure: First, because a pool of
degrees of freedom (rather than a single candidate) is considered, it reduces the potential risk of picking
a degree of freedom that is far from the truth. Second, the likelihood that each candidate density estimate
is the best is purely decided by data. Third, the calculation of the combined estimator is easy and fast.

It is worth pointing out that some popular combination methods in the literature make assumptions on
the distributions of forecast errors that do not necessarily exclude heavy-tailed behaviors. For example,
methods that are based on the estimation of the variance-covariance of forecasters require the existence
of variances. Regression-based forecast combination methods (see, e.g., Granger and Ramanathan [16])
assume the existence of certain moments of the forecast errors. However, to our knowledge, these
methods are not really designed to handle heavy-tailed errors and are not expected to work well for
such situations.

Prior to our work, efforts have been made to deal with error distributions that have tails heavier than
normal by adaptive forecast combination methods. For example, Sancetta [17] assumed that the tails of
the target variables are no heavier than exponential decays, which restricts the heaviness of the tails of the
forecast errors. Wei & Yang [12] designed a method for errors heavier than the normal distributions, but
not heavier than the double-exponential distributions. More recently, Cheng & Yang [18] advocate the
incorporation of a smooth surrogate of the L0-loss in the performance measure for weighting to reduce
the occurrence of outlier forecasts. However, none of these methods can deal with forecast errors with
tails as heavy as that of Student’s t-distributions. The new AFTER methods in this paper will be shown
to handle such situations.

The performance of the proposed methods will be examined via simulations and a real data example.
We consider two simulation settings, depending on the data-generating processes being from regression
models or time series models. Several error distributions are used, and they have different degrees
of heavy tails. The new methods are compared to earlier versions of AFTER, as well as some
popular combination methods. Their performances in heavy-tailed situations are indeed better than the
competitors and are still among or close to the best, even if the forecast errors have normal tails. For a
real data application, we use 1428 time series variables from M3-competition data (see Makridakis &
Hibon [19]). The M3-competition data are very popular in empirical studies in econometrics, machine
learning and statistics to validate the performances of forecasting methods. For each of the variables
in this dataset, forecast sequences based on 24 popular forecast methods are provided. The overall
evaluation on the 1428 variables shows that our proposed methods, especially the one for general
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purposes, compare favorably to others. To gain more insight, we pick out a subset of the 1428 variables
that have heavy-tailed forecast errors, and it is seen that the the new methods behave nicely, as intended.

The plan of the paper is as follows: Section 2 introduces the forecast combination method designed
for heavy-tailed error distributions. In Section 3, a more general combination method is proposed.
Simulations are presented in Section 4, and Section 5 provides a real data example. Section 6 includes a
brief concluding discussion. The proofs of the theoretical results are in the Appendix.

2. The t-AFTER Methodology

In this section, we propose a forecast combination method when there is strong evidence that
the random errors in the data-generating process are heavy tailed and can be modeled by a scaled
Student’s t-distribution.

2.1. Problem Setting

Suppose at each time period i ≥ 1 there are J forecasters available for predicting yi and the forecast
combination starts at i0 ≥ 1. Note that some combination methods may require i0 to be large enough,
e.g., 10, to give reasonably accurate combinations. Let ŷi,j be the forecast of yi from the j-th forecaster.
Let Ŷi := (ŷi,1, · · · , ŷi,J) be the vector of candidate forecasts for yi made at time point i− 1.

Suppose yi := mi + εi, where mi is the conditional mean of yi given all available information prior
to observing yi and εi is the random error at time i. Assume εi is from a distribution with probability
density function (pdf ) 1

si
h( x

si
), where si is the scale parameter that depends on the data before observing

yi and h(·) is a pdf with mean zero and scale parameter one.
Let Wi := (Wi,1, · · · ,Wi,J) be a vector of combination weights of Ŷi. It is assumed that∑J
j=1Wi,j = 1 and Wi,j ≥ 0 for any i ≥ i0, 1 ≤ j ≤ J . Let Wi0 = (w1, · · · , wJ) be the initial

weight vector. The combined forecast for yi from a combination method is:

ŷi = 〈Ŷi,Wi〉, (1)

where 〈a, b〉 stands for the inner-product of vectors a and b. Specifically, when needed, we use a
superscript δ on each Wi to denote the combination weights that correspond to the method δ. For
example, in the following sections, WA2

i and WA1
i stand for the combination weights from the L2- and

L1-AFTER methods, respectively.

2.2. The Existing AFTER Methods: The L2- and L1-AFTER Methods

As one recent method of adaptive forecast combination, the general scheme of adaptive forecast
combination via exponential re-weighting (AFTER) was proposed by Yang [8]. It has been applied and
studied in, e.g., Fonseca et al. [14], Inoue & Kilian [20], Sanchez [21], Altavilla & De Grauwe [22] and
Lahiri et al. [5] and Zhang et al. [23] handled the case that the variable to be predicted is categorical.

In the general AFTER formulation, the relative cumulative predictive accuracies of the forecasters
are used to decide their combining weights. Let ||x||1 :=

∑n
i=1 |xi| be the l1-norm of vector

x = (x1, · · · , xn).
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The general form of Wi for the AFTER approach is:

Wi =
li−1

||li−1||1
, (2)

where li−1 = (li−1,1, · · · , li−1,J), and for any 1 ≤ j ≤ J ,

li−1,j = wj

i−1∏
i′≥i0

1

ŝi′,j
h

(
yi′ − ŷi′,j
ŝi′,j

)
, (3)

where ŝi′,j is an estimate of si′ from the j-th forecaster at time point i′ − 1.
Below, the most commonly-used AFTER procedures, the L2-AFTER from Zou & Yang [11] and the

L1-AFTER from Wei & Yang [12], are briefly introduced.
L2-AFTER: When the random errors in the data-generating process follow a normal distribution

or a distribution close to a normal distribution, the L2-AFTER is both theoretically and empirically
competitive in providing combined forecasts that perform at least as well as any individual forecaster
in any performance evaluation period plus a small penalty. Let fN be the pdf of N(0, 1). To get WA2

i ,
first use fN as the h in (3), then plug the new li−1 into (2). The ŝi,j used in the L2-AFTER, denoted as
σ̂i,j , is the sample standard deviation of {yi′− ŷi′,j}i−1

i′=1, assuming the random errors are independent and
identically distributed.
L1-AFTER: Let fDE be the pdf of a double-exponential distribution with scale parameter one and

location parameter zero. To get WA1
i , one can follow the same procedure for WA2

i , but use fDE as the h
in (3). The ŝi,j used in the L1-AFTER, denoted as d̂i,j , is the mean of {|yi′ − ŷi′,j|}i−1

i′=1. The L1-AFTER
method was designed for robust combination when the random errors have occasional outliers. See Wei
and Yang [12] for details.

2.3. The t-AFTER Methods

Since the estimation of the degrees of freedom and the scale parameter simultaneously in a
scaled Student’s t-regression setting suffers from certain theoretical difficulties, as mentioned in the
Introduction, we use a different strategy in this paper. Specifically, we take an estimation procedure that
has two steps:

1. We decide a pool of candidate degrees of freedom with size K. The elements in the pool are
considered to be close to the degrees of freedom of the Students’ t-distribution that describes the
random errors well. For each element in the set, we assume it is the true degrees of freedom to
estimate the related scale parameter. Therefore, we have K sets of estimate for the degrees of
freedom and scale parameter pair.

2. For each of the K sets of the estimate, we find its probability to be the true one based on the
relative historical performances.

This two-step procedure is used in the t-AFTER method for forecast combination when the random
errors have heavy tails that can be described well by a Students’ t-distribution.

Let Ω := (ν1, · · · , νK) be a set of degrees of freedom for Student’s t-distributions. The choice of Ω

will be discussed later in this subsection. Let wj,k (wj,k ≥ 0 and
∑K

k=1

∑J
j=1wj,k = 1) be the initial

combination weight of the forecaster j under the degrees of freedom νk.
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Let the combining weight of Ŷi from a t-AFTER method be WAt
i and the combined forecast be ŷAt

i .
Then, WAt

i and ŷAt
i are obtained via the following steps:

1. Estimate (e.g., by MLE) si for each νk ∈ Ω and for each candidate forecaster. The estimate for si
from the j-th forecaster given νk is denoted as ŝi,j,k.

2. Calculate WAt
i and ŷAt

i :

WAt
i =

lAt
i−1

||lAt
i−1||1

, ŷAt
i = 〈Ŷi,WAt

i 〉, (4)

where lAt
i−1 = (lAt

i−1,1, · · · , l
At
i−1,J) and for 1 ≤ j ≤ J and any i ≥ i0 + 1,

lAt
i−1,j =

K∑
k=1

lAt
i−1,j,k with lAt

i−1,j,k = wj,k

i−1∏
i′≥i0

1

ŝi′,j,k
ft

(
yi′ − ŷi′,j
ŝi′,j,k

∣∣∣∣νk), (5)

where ft(·|ν) is the pdf of a Student’s t-distribution with degrees of freedom ν.

It is assumed that the elements in Ω are natural numbers for the sake of convenience. In general, when
no specific information is available to estimate the size of candidate degrees of freedom efficiently, one
can start with a large, but relatively sparse pool (say, {1, 3, 5, 8, 12, 15, 20, 30}) and then may narrow it
down based on the performances on some training datasets. When there is strong evidence that the tails
of the forecast errors are heavy, the size of Ω can be relatively small, say no more than three or five. In
this situation, from our experiences, Ω = {1, 3} or {1, 3, 5} works well.

Obviously, when the random errors in the true model follow a scaled Student’s t-distribution with a
known degree of freedom ν, then Ω := {ν}. Then, (5) can be simplified into:

lAt
i−1,j = wj

i−1∏
i′≥i0

1

ŝi′,j
ft

(
yi′ − ŷi′,j
ŝi′,j

∣∣∣∣ν) , (6)

where wj is the initial weight of the j-th forecaster and ŝi,j is an estimate of si from the j-th forecaster
using all information at and before time point i− 1 when the true ν is known.

2.4. Risk Bounds of the t-AFTER

To avoid potential redundancy, we first give a risk bound on the t-AFTER assuming ν is known.
A more general theorem that treats ν (and even the form of error distribution) as unknown will be given
in Section 3 (the third remarks of Theorem 2).

2.4.1. Conditions

Condition 1: There exists a constant τ > 0, such that for any i ≥ i0,

Pr( sup
1≤j≤J

|ŷi,j −mi|/si ≤
√
τ) = 1.

Condition 2: These exists a constant ξ1 > 0, such that for any i ≥ i0 and 1 ≤ j ≤ J :

Pr

(
ŝi,j
si
≥ ξ1

)
= 1.
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Condition 2′: These exists a constant 0 < ξ′1 < 1, such that for any i ≥ i0 and 1 ≤ j ≤ J :

Pr

(
ξ′1 ≤

ŝi,j
si
≤ 1

ξ′1

)
= 1.

Condition 1 holds when the forecast errors are bounded, which is true in many real applications,
although it excludes some time series models, such as AR(1). It is required for the development of the
theorems in this paper. As you can see, this condition does not require yi to be bounded, so it allows
large outliers to occur in the random errors. When the conditional mean of yi is known to stay in certain
range and the related forecasts are relatively restricted, the condition holds. See Subsection 3.1 of Wei
& Yang [12] for more discussions on this condition.

Condition 2 generally requires that the estimates of the scale parameters are not too small compared
to the truth. Condition 2′ requires that the estimates of the scale parameters are not too far from the truth
in both directions.

2.4.2. Risk Bounds for the t-AFTER with a Known ν

Assume the true forecast errors follow a scaled Student’s t-distribution with a known degree of
freedom ν. Let σi and si be the conditional standard deviation and scale parameter, respectively, of
εi at time point i, and let ŝi,j be an estimator of si from the j-th forecaster.

Let qi = 1
si
ft

(
yi−mi

si

∣∣ν) be the actual conditional error density function at time point i and q̂At
i =∑J

j=1W
At
i,j

1
ŝi,j
ft

(
ŷi,j−yi
ŝi,j

∣∣ν), where WAt
i is defined in (4). Therefore, q̂At

i is the mixture estimator of qi

from the t-AFTER procedure. Let D(f ||g) :=

∫
f log

f

g
be the Kullback–Leibler divergence between

two density functions f and g. Therefore, E
(
D(qi||q̂At

i )
)

is a measure of the performances of q̂At
i as an

estimate of qi under the Kullback–Leibler divergence at time point i.

Theorem 1. If the random errors are from a scaled Student’s t-distribution with degrees of freedom ν

and Condition 2 holds, then:

1

n

i0+n∑
i=i0+1

ED(qi||q̂At
i ) ≤ inf

1≤j≤J

(
log 1

wj

n
+

1

n

i0+n∑
i=i0+1

E
(mi − ŷi,j)2

2s2
i

+
B1

n

i0+n∑
i=i0+1

E
(ŝi,j − si)2

s2
i

)
.

Further, if ν is strictly larger than two and Conditions 1 and 2′ hold, then

1

n

i0+n∑
i=i0+1

E
(mi − ŷAt

i )2

σ2
i

≤ C inf
1≤j≤J

(
log 1

wj

n
+
B2

n

i0+n∑
i=i0+1

E
(mi − ŷi,j)2

σ2
i

+
B3

n

i0+n∑
i=i0+1

E
(ŝi,j − si)2

s2
i

)
.

In the above, C, B1, B2 and B3 are constants. B1 and B3 depend on ξ1 and ξ′1, respectively. B2 is a
function of ν, and C depends on τ and ξ′1.

Remarks:

1. When only Condition 2 is satisfied, Theorem 1 shows that the cumulative distance between
the true densities and their estimators from the t-AFTER is upper bounded by the cumulative
(standardized) forecast errors of the best candidate forecaster plus a penalty that has two parts: the
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squared relative estimation errors of the scale parameters and the logarithm of the initial weights.
This risk bound is obtained without assuming the existence of the variances of the random errors,
and ŝi,j/si is only required to be lower bounded.

2. When ν is assumed to be strictly larger than two and both Conditions 1 and 2′ are satisfied,
Theorem 1 shows that the cumulative forecast errors have the same convergence rate of the
cumulative forecast errors of the best candidate forecaster plus a penalty that depends on the
initial weights and efficiency of scale parameter estimation. The risk bounds hold even if the
the distribution of random errors has tails as heavy as t3.

3. If there is no prior information to decide the wj’s in (6), then equal initial weights could be applied.
That is, wj = 1/J for all j. In this case, it is easy to see that the number of candidate forecasters
plays a role in the penalty. When the candidate pool is large, some preliminary analysis should be
done to eliminate the significantly less competitive ones before applying the t-AFTER.

3. The g-AFTER Methodology

In Section 2, the theoretical risk bounds of the combined forecasts from the t-AFTER are provided
when the random errors are known to have Student’s t-distributions. However, the error distribution is
typically unknown.

In this section, we propose a forecast combination method, g-AFTER, for situations when there is a
lack of strong or consistent evidence on the tail behaviors of the forecast errors due to the shortage of
data and/or evolving data-generating process. A theorem that allows the random errors to be from one of
the three popular distribution families (normal, double-exponential and scaled Student’s t) is provided to
characterize the performance of the g-AFTER.

3.1. The g-AFTER Method

Let the combining weight of Ŷi from the g-AFTER be WAg

i . For any i > i0, WAg

i and the associated
combined forecast ŷAg

i are:

W
Ag

i =
l
Ag

i−1

||lAg

i−1||1
, ŷ

Ag

i = 〈Ŷi,WAg

i 〉, (7)

where l
Ag

i−1 = (l
Ag

i−1,1, · · · , l
Ag

i−1,J) and for 1 ≤ j ≤ J ,

l
Ag

i−1,j = lA2
i−1,j + c1l

A1
i−1,j + c2l

At
i−1,j, (8)

where lA2
i−1,j , l

A1
i−1,j and lAt

i−1,j are from the L2-, L1- and t-AFTERs, respectively, and c1 and c2 are
non-negative constants that control the relative importance of the L2-, L1- and t-AFTERs in the
g-AFTER. For instance, c1 and c2 can be small when one has evidence that suggests the random errors
are likely to be normally distributed.
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3.2. Conditions

Condition 3: Suppose the random errors have zero mean and are from one of the three families (normal,
double exponential and scaled Student’s t), and there exists a constant 0 < ξ2 ≤ 1, such that for any
i ≥ i0, with probability one, we have:

ξ2 ≤
ŝi
si
≤ 1

ξ2

,

where si is the actual conditional scale parameter at time point i and ŝi refers to any estimate of si used
in the g-AFTER.

This condition requires all of the estimates of the scale parameters to stay in a reasonable range around
the true values. For the j-th candidate forecaster, ŝi is σ̂i,j when associated with normal errors, is d̂i,j
when associated with the double exponential and is ŝi,j,k when associated with the scaled Student’s t
with degrees of freedom νk, where σ̂i,j , d̂i,j , ŝi,j,k and νk are defined in Subsections 2.2 and 2.3.

Condition 4: When the random errors in the true model follow a scaled Student’s t-distribution with
degrees of freedom ν, assume there exist positive constants ν, λ and ν̄, such that,

ν ≤ min
νk∈Ω

(νk, ν)− 2 ≤ ν̄, max
νk∈Ω
|νk − ν| ≤ λ.

3.3. Risk Bounds for the g-AFTER

Let wA2
j and wA1

j be the initial combination weights of the forecaster j in the L2- and L1-AFTERs,
respectively, and wAt

j,k be the initial combination weight of the j-th forecaster under the degrees of
freedom νk in the t-AFTER.

Let ŴA2
i,j =

l
A2
i−1,j

||lAg
i−1||1

, ŴA1
i,j =

c1l
A1
i−1,j

||lAg
i−1||1

and ŴAt
i,j,k =

c2l
At
i−1,j,k

||lAg
i−1||1

, where lAt
i−1,j,k is defined in (5) and l

Ag

i−1 is

defined in (8). Therefore, ŴA2
i,j , ŴA1

i,j and ŴAt
i,j,k are the weights of the density estimates under normal,

double-exponential and scaled Student’s t with degrees of freedom νk in the g-AFTER procedure at time
point i − 1 from the j-th forecast, respectively. Let G =

∑J
j=1(wA2

j + c1w
A1
j + c2

∑
k w

At
j,k), where c1

and c2 are defined in (8).
Let qi be the pdf of εi at time point i and its estimator from a g-AFTER procedure be:

q̂
Ag

i =
J∑
j=1

(
ŴA2
i,j

1

σ̂i,j
fN

(
ŷi,j − yi
σ̂i,j

)
+ ŴA1

i,j

1

d̂i,j
fDE

(
ŷi,j − yi
d̂i,j

)
+

K∑
k=1

ŴAt
i,j,k

1

ŝi,j,k
ft

(
ŷi,j − yi
ŝi,j,k

∣∣νk)) .
Theorem 2. If Conditions 3 and 4 hold, then for ŷAg

i from a g-AFTER procedure, we have:

1

n

i0+n∑
i=i0+1

ED(qi||q̂Ag

i ) ≤ inf
1≤j≤J

(
B1

n

i0+n∑
i=i0+1

E

(
(mi − ŷi,j)2

σ2
i

)
+R

)
,
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where:

R =



log

(
G

w
A2
j

)
n

+ B2

n

∑i0+n
i=i0+1E

(σ̂i,j−σi)2
σ2
i

, under normal errors;

log

(
G

c1w
A1
j

)
n

+ B2

n

∑i0+n
i=i0+1E

(d̂i,j−di)2
d2i

, under double-exponential errors;

inf1≤k≤K

 log

(
G

c2w
At
j,k

)
n

+ B2

n

∑i0+n
i=i0+1E

(ŝi,j,k−si)2
s2i

+B3

∣∣ν−νk
ν

∣∣
 , under scaled t errors.

If Condition 1 also holds, then:

1

n

i0+n∑
i=i0+1

E
(mi − ŷAg

i )2

σ2
i

≤ C inf
1≤j≤J

(
B1

n

i0+n∑
i=i0+1

E

(
(mi − ŷi,j)2

σ2
i

)
+R

)
.

In the above, C, B1, B2 and B3 are constants depending on τ , ξ2 and the parameters in Condition 4.

Remarks:

1. Theorem 2 provides a risk bound for more general situations compared to Theorem 1. That is,
as long as the the true random errors are from one of the three popular families, similar risk
bounds hold.

2. When strong evidence is shown that the errors are highly heavy tailed, Ω can be very small with
only small degrees of freedom, and the c2w

At
j,k in G can be relatively large (relative to wA2

j and
c1w

A1
j ). The more information on the tails of the error distributions is available, the more efficient

the allocation of the initial weights can be.
3. Specially, when the true random errors have tails significantly heavier than normal and

double-exponential, they could be assumed to be from a scaled Student’s t-distribution with
unknown ν, and a (general) t-AFTER procedure is more reasonable. In this case, lAg

i−1,j = lAt
i−1,j .

Let qi = 1
si
ft

(
ŷi,j−yi
si

)
and q̂At

i =
∑

j,k ŵ
At
i,j,k

1
ŝi,j,k

ft

(
ŷi,j−yi
ŝi,j,k

∣∣νk) and ŵAt
i,j,k ≥ 0 for all j and k.

Without assuming Condition 1 is satisfied, it follows for any n ≥ 1:

1

n

i0+n∑
i=i0+1

ED(qi||q̂At
i ) ≤ inf

1≤j≤J

(
log(1/wAt

i,j )

n
+
B1

n

i0+n∑
i=i0+1

E
(mi − ŷi,j)2

σ2
i

+R∗

)
,

where wAt
j,k is defined the same as that in Subsection 2.3 and:

R∗ = inf
1≤k≤K

(
B2

n

i0+n∑
i=i0+1

E
(ŝi,j,k − si)2

s2
i

+B3

∣∣ν − νk
ν

∣∣) .
If Condition 1 is also satisfied, then it follows:

1

n

i0+n∑
i=i0+1

E
(mi − ŷAt

i )2

σ2
i

≤ C inf
1≤j≤J

(
log(1/wAt

i,j )

n
+
B1

n

i0+n∑
i=i0+1

E
(mi − ŷi,j)2

σ2
i

+R∗
)
,

where C, B1, B2 and B3 are the same as in Theorem 2.
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4. Simulations

We consider two simulation scenarios, with candidate forecasters from linear regression models and
autoregressive (AR) models. Results from the linear regression models show improvements of the
t- and g-AFTERs over the L1- and L2-AFTERs when the random errors have heavy tails. In the AR
settings, the t- and g-AFTERs are compared to many other popular combination methods in various
situations, including cases that the forecast errors have extremely symmetric/asymmetric heavy tails.
We also compared the performances of the t- and g-AFTERs to other combination methods on the linear
regression models, and similar results are found. Only representative results are given here.

In this and the following sections, we have the following settings:

• Use Ω = {1, 3} as the set of candidate degrees of freedom for the scaled Student’s t-distributions
considered in the t-AFTER method. The t-AFTER is proposed mostly to be applied when the error
terms exhibit very strong heavy-tailed behaviors. When the degrees of freedom of the Student’s
t-distribution gets larger, the t-AFTER becomes similar to the L1- or L2-AFTER. Thus, a choice
of Ω with relatively small degrees of freedom in the g-AFTER should provide a good enough
adaption capability. In fact, other options for Ω, such as Ω = {1, 3, 5, 8, 15}, were considered, and
similar results were found.
• Since it is usually the case that g-AFTER is preferred when the users have no consistent and

strong evidence to identify the distribution of the error terms from the three candidate distribution
families, we give equal initial weights to the candidate distributions. Therefore, c1 = 1, c2 = 2,
wA1
j = wA2

j = 1/J andwAt
j,k = 1

2J
are used in the g-AFTER. Note that, for example, if there is clear

and consistent evidence that the error distribution is more likely to be from the normal distribution
family, then putting relatively large initial weights on the L2-AFTER procedure in a g-AFTER can
be more appropriate than using equal weights.
• The ŝi,j,k’s are the sample median of the absolute forecast errors before time point i from the

forecaster j divided by the theoretical median of the absolute value of a random variable with
distribution tνk .

4.1. Linear Regression Models

4.1.1. Simulation Settings

There are p predictors (X1, · · · , Xp) available, and the true model uses the first p0 predictors with
coefficients β = (β1, · · · , βp0). That is, Y =

∑p0
i=1 Xiβi + ε. The p candidate forecasters are generated

from the following pmodels: Y = β0+X1β1+e, Y = β0+
∑2

i=1 Xiβi+e, · · · , Y = β0+
∑p

i=1Xiβi+e.
We take p = 2p0 − 1 for this scenario. Other settings for p and p0 were also considered, and they gave
similar results.

The p predictors are generated from a multivariate normal distribution with zero mean and covariance
matrix Σ with sample size n = 125. For the entries in Σ, the diagonal elements are one, and
the off-diagonal elements are 0.8. The forecasters are generated after the 90th observation, and the
combination is generated after the fifth forecast. Various distributions for the random errors (ε) are
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considered. Note that, we also tried other structures of Σ, including the ones with Σi,j = 0.5|i−j| and
Σi,j = I(i = j) ∀1 ≤ i, j ≤ p. The results are similar.

For each set of β, we generate 200 sets of (X1, · · · , Xp, Y ), and on each of the 200 sets, we record the
1
20

∑125
i=106(mi− ŷi)2 (average squared estimation error (ASEE)) of each combination method, where ŷi is

the forecast of yi from this method. Although we focus on the ASEE in our presentation of the numerical
results, another measure, the averaged absolute estimation error (AAEE), 1

20

∑125
i=106 |mi − ŷi|, is also

considered. The main results are similar under the two performance measures. In Sub-subsection 4.2.3,
some results are given under both ASEE and AAEE to demonstrate that the comparison results are
robust to the selection of the performance measure. Note that, since this is a simulation study, the
combined forecasts are compared to the conditional means (mi’s) instead of the observations (yi’s) to
better compare the competing methods. For each competing method, the mean ASEE (or AAEE) over
the 200 datasets is recorded.

We sample β 200 times independently from a Unif [1, 3] for each component with size p0, so 200 sets
of mean ASEEs are recorded. In order to compare the performances of the four AFTER-based methods,
the L2-, L1-, t- and g-AFTERs, for each β, the ratios of the mean ASEEs of the L2-, t- and g-AFTERs
over the mean ASEE of the L1-AFTER are recorded. The summaries (means and their standard errors)
of the 200 sets of ratios are presented.

4.1.2. Results

Three sets of results that correspond to three choices of the number of variables in the true models,
i.e., p0 = 3, 5, 10, respectively, are presented in Table 1 in this subsection. In this table, A2, At and
Ag stand for the ratios of the mean ASEEs of the L2-, t- and g-AFTERs over those of the L1-AFTER.
It is expected that the t-AFTER and g-AFTER will outperform the L1-AFTER and L2-AFTER when
forecasting data generating processes (DGPs) with heavy-tailed distributions in the errors. Thus, we
run simulations with errors following scaled t3, t10, double-exponential (DE) and normal distributions.
As one can see in Table 1, the t- and g-AFTER are the best forecasters for DGPs with errors coming
from t3, t10 and DE distributions. In those cases, the L1-AFTER also outperformed the L2-AFTER.
In addition, the g-AFTER and the L2-AFTER are the best forecasters for the normal case. In summary,
the t-AFTER and g-AFTER are better choices for heavy-tailed distributions, and the general forecaster
g-AFTER performs also very well for DE and normal errors.

Table 1. Simulation results on the linear regression models.

t3 DE t10 Normal

σ2 = 1 σ2 = 9 σ2 = 1 σ2 = 9 σ2 = 1 σ2 = 9 σ2 = 1 σ2 = 9

p0 = 3

A2
1.302 1.043 1.116 1.028 0.983 0.958 0.926 0.931

(0.009) (0.003) (0.004) (0.001) (0.003) (0.001) (0.002) (0.001)

At
0.943 0.980 0.983 0.995 0.941 0.955 0.932 0.942

(0.002) (0.001) (0.001) (0.001) (0.003) (0.001) (0.001) (0.001)

Ag
0.944 0.967 0.974 0.977 0.940 0.950 0.926 0.938

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)
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Table 1. Cont.

t3 DE t10 Normal

σ2 = 1 σ2 = 9 σ2 = 1 σ2 = 9 σ2 = 1 σ2 = 9 σ2 = 1 σ2 = 9

p0 = 5

A2
1.257 1.066 1.088 1.026 0.980 0.955 0.937 0.927

(0.008) (0.004) (0.003) (0.001) (0.002) (0.001) (0.002) (0.001)

At
0.950 0.967 0.976 0.982 0.951 0.950 0.943 0.938

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Ag
0.951 0.958 0.971 0.970 0.949 0.944 0.939 0.933

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

p0 = 10

A2
1.166 1.056 1.035 0.998 0.968 0.949 0.946 0.929

(0.006) (0.003) (0.002) (0.001) (0.002) (0.001) (0.001) (0.001)

At
0.950 0.957 0.964 0.965 0.949 0.946 0.948 0.939

(0.002) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Ag
0.945 0.949 0.961 0.955 0.944 0.939 0.942 0.933

(0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001) (0.001)

Note: The first row shows the distributions of the random errors in the true data-generating regression
model, and DE stands for double-exponential distribution. The second row describes the noise variance
in data generation. The A2, At and Ag stand for the L2-, t- and g-adaptive forecasting through exponential
re-weighting (AFTER) methods, respectively. The parameter p0 is the number of explanatory variables in the
data-generating model. The true parameter (β) values are randomly generated from a uniform distribution,
and the candidate forecasts are obtained from linear regressions with 1, 2 and up to the maximum number of
explanatory variables. For each set of true parameters, 200 replicated datasets are generated to simulate the
mean average squared estimation error (ASEE) for each combination method. The ratio of the mean ASEE
of each method over that of the L1-AFTER is used to measure the relative performance of the competitors.
The process is replicated 200 times, each time with independently-generated true β values. The means and
their standard errors of the 200 sets of ratios are summarized in this table (the numbers in the parentheses are
the standard errors).

4.2. AR Models

4.2.1. Simulation Settings

Let the true model be a AR(p0) process with random errors from certain distributions and the
candidate forecasters be based on AR(1), AR(2), · · · , AR(p) (1 ≤ p0 ≤ p), respectively. For results on
asymptotically-optimal model selection for AR models, see, e.g., Ing [24] and Ing et al. [25]. We here
compare forecast combination methods.

In this scenario, given p, p0 is randomly sampled from a uniform distribution on {1, 2, · · · , p}. Given
p0, β in the true model is generated from [−1, 1]. The β leading to a non-stationary AR model is not
considered. Given a valid β, 200 samples with size n = 125 from the true model are generated. On
each data sample, the candidate forecasters are generated after the 90th observation, and the ASEE of
the last 20 forecasts is recorded. Furthermore, the combined forecasts are compared to the conditional
means instead of the observations. For each β, the mean ASEE of each combining method over the 200
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samples is recorded, and the ratios of the mean ASEEs of the other methods over that of the L1-AFTER
are recorded.

We replicate the generation of p0’s (and β’s) 200 times and report the mean and its standard error of
the 200 ratios for each combination method.

Only the results of p = 5 are presented (other choices, such as p = 8 and 10, provide similar results).

4.2.2. Other Combination Methods

Some other popular combination methods are included in this part and compared to the
newly-proposed methods. The simple average combination strategy (SA) uses the average of the
candidate forecasts as the combined forecasts. The MD and TM strategies use the median and the
trimmed mean (remove the largest and smallest before averaging) of candidate forecasts, respectively.
The variance-covariance estimation-based combination method (denoted as BG, because it was first
proposed by Bates & Granger [1]) we use in this paper is the version in Hansen [26]. Furthermore, a
modified BG method with a discount factor 0 < ρ < 1 is considered, and the results of multiple ρ’s
are presented. In the modified BG, the estimate of the (conditional) variance of the forecast errors
of a forecaster at any time point is the associated discounted mean squared forecast error with factor
ρ. See, e.g., Stock & Watson [27], for more details. Hereafter, for example, BG0.9 denotes a BG
method with ρ = 0.9. Two linear-regression-based combination methods are also considered: one is
the combination via ordinary linear regression (LR), and the other one is a constrained linear regression
(CLR) combination. The constraints of the CLR are: all coefficients are non-negative, and the sum of
the coefficients is one (without the intercept in the regressions).

4.2.3. Results

In order to demonstrate the advantageous performances of the t- and g-AFTER for heavy-tailed
DGPs in various scenarios, we simulated two major cases for comparison. Tables 2 and 3 provide
the summaries of the simulation results. In these two tables, A2, At, Ag, SA, MD, TM , BG,
LR and CLR stand for the relative performances of these methods over that of the L1-AFTER. See
Sub-subsection 4.1.2 for the descriptions of these methods. The other entries are defined as in Table 1.
Table 2 presents the results for the cases that the random errors are not (or only mildly) heavy tailed,
while Table 3 contains the results when the random errors have significant heavy tails.

One can see that the t- and g-AFTERs consistently outperform all other non-AFTER-based
combination methods in all of the simulated situations (heavy tailed or not) and outperform the L1- and
L2-AFTERs when the random errors have tails heavier than normal. The CLR is competitive because
the constraints in its processes make the combination weights of the candidate forecasts relatively more
stable and resistant to dramatic changes. The CLR gets more competitive when the random errors
have heavier tails. The SA and TM are vulnerable to outliers, which hurts their overall performances.
Their ASEEs are over 35% to 150% more than those of the proposed methods. We can see this from
both tables.
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Table 2. Simulation results on the AR models with p = 5 (not or only mildly heavy tailed).

Normal t10 DE

σ2 = 1 σ2 = 4 σ2 = 9 σ2 = 1 σ2 = 4 σ2 = 9 σ2 = 1 σ2 = 4 σ2 = 9

A2
0.941 0.940 0.940 0.972 0.972 0.971 1.030 1.032 1.033

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.004) (0.003) (0.004)

At
0.954 0.953 0.954 0.961 0.962 0.962 0.997 1.001 0.995

(0.003) (0.003) (0.003) (0.002) (0.003) (0.003) (0.001) (0.001) (0.001)

Ag
0.948 0.947 0.948 0.957 0.959 0.958 0.978 0.983 0.976

(0.003) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002) (0.001) (0.002)

SA
2.892 2.484 2.408 2.372 2.297 2.070 2.278 2.176 2.483

(0.268) (0.166) (0.189) (0.167) (0.174) (0.127) (0.148) (0.151) (0.148)

MD
1.681 2.025 1.824 1.884 1.874 1.421 1.740 1.602 1.943

(0.137) (0.191) (0.187) (0.243) (0.197) (0.076) (0.137) (0.144) (0.168)

TM
1.805 1.946 1.754 1.838 1.705 1.469 1.723 1.571 1.885

(0.121) (0.144) (0.134) (0.156) (0.138) (0.066) (0.109) (0.093) (0.120)

BG
1.441 1.462 1.389 1.425 1.364 1.321 1.431 1.357 1.500

(0.047) (0.051) (0.047) (0.042) (0.040) (0.032) (0.046) (0.035) (0.045)

BG0.95
1.432 1.453 1.381 1.417 1.358 1.315 1.427 1.353 1.495

(0.047) (0.050) (0.047) (0.042) (0.040) (0.032) (0.045) (0.035) (0.045)

BG0.9
1.429 1.449 1.378 1.414 1.355 1.313 1.425 1.352 1.492

(0.047) (0.049) (0.047) (0.042) (0.039) (0.032) (0.045) (0.035) (0.045)

BG0.8
1.433 1.452 1.382 1.417 1.357 1.315 1.427 1.353 1.491

(0.047) (0.050) (0.047) (0.042) (0.040) (0.032) (0.045) (0.035) (0.044)

BG0.7
1.447 1.464 1.394 1.428 1.366 1.322 1.432 1.357 1.495

(0.048) (0.051) (0.049) (0.043) (0.040) (0.033) (0.046) (0.036) (0.045)

LR
7.956 8.355 8.491 8.856 10.210 9.138 11.110 11.240 10.040

(0.346) (0.339) (0.342) (0.387) (1.032) (0.363) (0.504) (0.509) (0.513)

CLR
1.036 1.024 1.036 1.032 1.036 1.042 1.072 1.070 1.045

(0.011) (0.013) (0.012) (0.011) (0.010) (0.011) (0.011) (0.011) (0.013)

Note: The first column lists the competing forecast combination methods. The true models for this study are
autoregressive (AR) models with the true order randomly generated up to p = 5. The true parameters in the
ARmodel are uniformly generated (with the parameters leading to non-stationaryARmodels removed). The
5 candidate forecasts are obtained from AR(1), AR(2), up to AR(5) models. All other aspects are similar to
Table 1. Some other popular combination methods are included in the comparison. The SA, MD and TM
methods use the average, median and trimmed mean (removing the largest and smallest before averaging)
as the combined forecasts, respectively. The BG method uses the inverse of the historical mean squared
forecast errors of the candidate forecasts to assign combination weights. A modified BG method is used
with a discount factor 0 < ρ < 1 to discount the contribution of forecast errors at an earlier time when
estimating the variances of the candidates (e.g., Stock & Watson [27]). Here, for instance, BG0.9 denotes this
BG method with ρ = 0.9. The LR method uses linear regression with the actual value as the response and
the candidate forecasts as the regressors in linear regression to assign the combination weights. The CLR
method is LR with the constraint that the coefficients are non-negative and sum to 1.
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Table 3. Simulation results on the AR models with p = 5 (heavy tailed) under squared
estimation error.

t3 Log-Normal

σ2 = 1 σ2 = 4 σ2 = 9 σ = 0.25 σ = 0.5 σ = 1

A2
1.058 1.056 1.053 0.964 1.024 1.051

(0.009) (0.008) (0.008) (0.003) (0.004) (0.010)

At
0.955 0.947 0.961 0.951 0.940 0.921

(0.006) (0.006) (0.006) (0.003) (0.004) (0.008)

Ag
0.950 0.943 0.957 0.950 0.946 0.926

(0.006) (0.006) (0.006) (0.003) (0.004) (0.008)

SA
2.047 1.889 1.931 2.253 2.143 1.730

(0.107) (0.098) (0.139) (0.173) (0.115) (0.087)

MD
1.692 1.396 1.657 1.517 1.441 1.370

(0.135) (0.066) (0.182) (0.097) (0.085) (0.078)

TM
1.625 1.438 1.508 1.559 1.555 1.404

(0.091) (0.060) (0.112) (0.086) (0.080) (0.057)

BG
1.369 1.307 1.286 1.329 1.374 1.278

(0.034) (0.025) (0.033) (0.039) (0.038) (0.025)

BG0.95
1.365 1.303 1.282 1.322 1.370 1.275

(0.033) (0.025) (0.033) (0.038) (0.038) (0.025)

BG0.9
1.360 1.299 1.277 1.319 1.367 1.271

(0.033) (0.025) (0.032) (0.037) (0.037) (0.024)

BG0.8
1.352 1.290 1.269 1.320 1.366 1.259

(0.032) (0.024) (0.030) (0.038) (0.037) (0.023)

BG0.7
1.345 1.284 1.263 1.327 1.368 1.248

(0.032) (0.023) (0.030) (0.039) (0.037) (0.023)

LR
95.280 38.290 46.220 9.316 13.180 174.000

(60.670) (7.566) (9.192) (0.375) (0.891) (56.286)

CLR
1.014 1.007 1.016 1.046 1.032 0.974

(0.010) (0.010) (0.010) (0.011) (0.011) (0.010)

Note: In the columns of “log-normal”, the σ’s are the scale parameters instead of the standard deviations of
the log-normal distributions. The setting is basically the same as that in Table 2, only the innovation errors in
the true models have heavier tails.

In between the t- and g-AFTER, the latter is more robust, since its performances under all scenarios
are the best or close to the best. For the t-AFTER, its advantages over the L1- and L2-AFTERs are clear
and consistent when the tails of the distributions of the random errors get heavier. In both Tables 2 and 3,
the CLR is the most competitive method outside the AFTER family, but it still has 3% to 7% larger
ASEEs than the new methods on average.

In our settings, similar to many real application situations, using the conditional variances only to
assign relative combining weights may not be enough, since some of the candidate forecasters are highly
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correlated. This explains why the BG and the discounted BG’s are not quite competitive, as seen
in Tables 2 and 3. The BG related methods have at least 20% larger ASEEs than the AFTER-based
methods on average.

To demonstrate that our results are not sensitive to the performance measure, we redo Table 3 under
the AAEE (instead of ASEE), and the comparisons are given in Table 4. The results are similar.

Table 4. Simulation results on the AR models with p = 5 (heavy tailed) under absolute
estimation error.

t3 Log-Normal

σ2 = 1 σ2 = 4 σ2 = 9 σ = 0.25 σ = 0.5 σ = 1

A2
1.018 1.019 1.019 0.981 0.997 1.017

(0.003) (0.002) (0.008) (0.002) (0.002) (0.003)

At
0.990 0.988 0.993 0.982 0.976 0.975

(0.002) (0.002) (0.002) (0.002) (0.002) (0.003)

Ag
0.988 0.986 0.991 0.979 0.978 0.977

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

SA
1.469 1.666 1.724 1.435 1.543 1.483

(0.064) (0.076) (0.080) (0.069) (0.064) (0.064)

MD
1.209 1.314 1.412 1.129 1.279 1.196

(0.043) (0.068) (0.094) (0.035) (0.060) (0.037)

TM
1.226 1.367 1.312 1.183 1.331 1.272

(0.040) (0.056) (0.085) (0.033) (0.050) (0.040)

BG
1.187 1.272 1.489 1.159 1.245 1.210

(0.023) (0.029) (0.035) (0.021) (0.027) (0.023)

BG0.95
1.184 1.269 1.401 1.157 1.242 1.206

(0.022) (0.029) (0.034) (0.021) (0.027) (0.023)

BG0.9
1.181 1.266 1.378 1.156 1.240 1.201

(0.022) (0.029) (0.033) (0.021) (0.027) (0.022)

BG0.8
1.176 1.260 1.450 1.156 1.237 1.192

(0.021) (0.028) (0.033) (0.021) (0.027) (0.021)

BG0.7
1.173 1.256 1.352 1.159 1.236 1.185

(0.021) (0.028) (0.032) (0.021) (0.026) (0.020)

LR
2.891 2.862 3.647 2.690 2.610 3.296

(0.084) (0.097) (1.393) (0.074) (0.077) (0.121)

CLR
1.029 1.025 1.022 1.019 1.004 1.015

(0.006) (0.006) (0.006) (0.008) (0.008) (0.006)

Note: The settings are the same as those for Table 3, but this table uses averaged absolute estimation errors
(AAEE) instead of averaged squared estimation errors (ASEE) to measure the performance of forecasters. See
Sub-subsection 4.1.1 for the detailed definitions of the AAEE and ASEE. The results are similar to Table 3.
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5. Real Data Example

The M3-competition data are popular and often used to compare and validate the performances of
prediction methods. It contains 3003 micro, industry, macro, financial, demographic and other variables
(see [28] for more details). There are 24 different forecast sequences from 24 different candidate forecast
models/methods/procedures for each of the 3003 variables (N1 to N3003). For each variable, the last
few (6, 8 or 18) observations are not used to train the predictive models, and they are used to evaluate the
model performance. Notice that the forecasts are generated all at once (1-, 2-, · · · and up to 6, 8 or 18
steps ahead) by each forecast model. We use the 1428 variables (N1402 to N2829) with 18 observations
as performance evaluating sets to conduct our study because some combination methods need a few
forecasts to train the parameters before achieving a reasonable level of reliability.

5.1. Data and Settings

Let ŷi′ be the forecast of yi′ for n0 ≤ i′ ≤ n1, then the mean squared forecast error (MSFE)
is 1

n1−n0+1

∑n1

i=n0
(yi − ŷi)

2. We use the mean squared forecast errors to measure the prediction
performances of the combination methods on each of the 1428 variables. For each variable, the MSFE of
each of the other combination methods over the MSFE of the SA is reported. In addition, mean absolute
percentage error (MAPE) is also considered.

Specifically, using the same notations as those in Subsection 4.2, the averaged relative performances
(MSFE) of theMD, TM ,BG, discountedBG’s,A2,A1,At andAg over the SA over the 1428 variables
are presented. See Sub-subsection 4.1.2 for the descriptions of these methods. The main reason that we
use the SA as the benchmark on this real dataset is that the SA is one of the most popular combination
methods with a great reputation in a broad range of applications. Since there are too many candidate
forecasters compared to the forecast periods available, the two linear regression-related combination
methods discussed in Subsection 4.2 are not considered here.

For each of the variables with 18 forecast periods, the combination starts after the sixth forecasts, and
the MSFE of the last nine forecasts of each method is recorded for performance comparisons. For each
variable, the MSFE ratio of each method over that of the SA is reported. The summaries, mean (and its
standard error), median, minimum, the first and third quartiles (denoted as Q1 and Q3, respectively) and
the maximum of the 1428 ratios of each method are reported in Table 5. Note that the table also contains
the comparisons under the MAPE (all of the other aspects are the same).

Furthermore, the comparison on a subset of M3-competition data is provided. On this subset, the
variables are considered to have high potentials to be heavy tailed. All 1428 variables have monthly time
intervals. For each of the 1428 variables, there are some training data (about 70 to 128 months). We
modeled the training data to find the ones with high potential to have heavy-tailed errors. Specifically,
let yt be the observed value of a variable at time t, and we fit each variable with a model as: yt =

β0 +
∑11

j=1 βjI(mt = j) + β12yt−1 + · · · + β16yt−5, where mt is the month at time point t. We used
AIC in backward selection, and the variables with a kurtosis of the forecast errors larger than three were
considered to have heavy tails. There are 199 out of 1428 variables that were selected.
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Table 5. Results on the 1428 variables of the M3-competition data.

Mean Se Median Min Q1 Q3 Max

A1
0.708 0.016 0.649 0.001 0.307 0.994 11.50
0.758 0.009 0.773 0.038 0.507 0.990 2.901

A2
0.697 0.017 0.639 0.001 0.309 0.979 13.32
0.766 0.010 0.766 0.030 0.517 0.992 4.138

At
0.708 0.015 0.646 0.001 0.312 1.003 8.632
0.760 0.009 0.769 0.034 0.509 0.993 3.717

Ag
0.696 0.014 0.645 0.001 0.308 0.987 7.710
0.757 0.009 0.770 0.033 0.508 0.990 3.298

MD
1.050 0.010 1.022 0.002 0.910 1.143 5.341
1.015 0.005 1.015 0.065 0.944 1.078 2.821

TM
0.990 0.004 1.000 0.002 0.974 1.023 2.437
0.992 0.002 0.999 0.062 0.984 1.013 1.747

BG
0.784 0.010 0.838 0.001 0.596 0.973 5.227
0.849 0.006 0.902 0.039 0.758 0.983 3.051

BG0.95
0.775 0.010 0.832 0.001 0.582 0.969 7.715
0.842 0.006 0.896 0.037 0.749 0.981 2.841

BG0.9
0.768 0.012 0.825 0.001 0.564 0.966 11.45
0.835 0.006 0.893 0.036 0.739 0.978 2.643

BG0.8
0.758 0.019 0.806 0.001 0.529 0.960 24.08
0.822 0.006 0.883 0.040 0.709 0.974 2.712

BG0.7
0.757 0.031 0.793 0.001 0.503 0.956 43.19
0.810 0.007 0.870 0.036 0.684 0.971 3.517

Note: For each of the 1428 variables, the methods in the first column are used to combine the 24 forecasts
of the last 9 periods of the 18 data points. The mean squared forecast error (MSFE) and mean absolute
percentage error (MAPE) of each method are recorded. The ratios of the MSFEs and MAPEs of these
methods over that of the SA, respectively, are used as the relative performances of the competing methods.
For each forecast combination method other than SA, the mean, minimum, maximum, first quartile, third
quartile and the associated standard error of the mean of these ratios based on the 1428 series are summarized
in this table. In the table, the summaries of the results based on MSFE are on top of those based on MAPE
for each method.

For the heavy-tailed subset, we want to focus on the comparison between the g-AFTER and the
non-AFTER methods, because the comparison inside the AFTER family is well addressed in the
simulation settings. The reason we choose the g-AFTER instead of the t-AFTER for further comparison
is because g-AFTER is practically more efficient, since it performs well even if the signal of heavy tails
is not extremely strong. Therefore, for this subset, the benchmark method is the g-AFTER, and the
results are reported in Table 6. The comparisons under both the MAPE and the MSFE are provided in
the table.
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Table 6. Results on the heavy-tailed subset.

Mean Se Median Min Q1 Q3 Max

SA 7.738 1.695 2.259 0.131 1.311 5.244 82.734
2.044 0.166 1.422 0.327 1.056 2.147 25.784

MD 8.088 2.005 1.912 0.222 1.162 4.974 120.428
1.998 0.153 1.406 0.477 1.030 2.055 21.229

TM 7.607 1.664 2.299 0.129 1.267 5.175 78.481
2.014 0.165 1.416 0.316 1.035 2.150 26.039

BG 2.073 0.245 1.266 0.245 0.961 2.160 40.137
1.349 0.053 1.157 0.468 0.971 1.565 7.845

BG0.95 2.017 0.217 1.431 0.241 0.965 2.472 12.551
1.322 0.048 1.154 0.465 0.965 1.525 6.703

BG0.9 1.846 0.182 1.337 0.208 0.958 2.444 10.383
1.295 0.043 1.114 0.461 0.954 1.497 5.655

BG0.8 1.656 0.150 1.340 0.179 0.851 2.074 8.577
1.246 0.036 1.100 0.454 0.940 1.448 3.985

BG0.7 1.536 0.141 1.256 0.158 0.813 1.673 7.746
1.202 0.032 1.089 0.431 0.928 1.371 3.461

Note: Out of the 1428 variables, 199 of them are identified to have heavy tails in the forecast errors. For these
199 variables, the g-AFTER method is used as the benchmark method for comparison, and all other aspects in
the setting are the same as Table 5. Note that for this heavy-tailed subset, we want to focus on the comparison
between the g-AFTER and the non-AFTER methods, because the comparison inside the AFTER family is
well addressed in the simulation settings. The reason we choose the g-AFTER instead of the t-AFTER for
further comparison is because g-AFTER is practically more efficient, since it performs well even if the signal
of heavy tails is not extremely strong.

5.2. Results

As one can see from Table 5, the overall performances of the AFTER-based methods are better than
the other popular combination methods considered by providing at least 6% to 7% smaller MSFEs on
average. It also suggests that the t- and g-AFTERs have competitive performances in general while being
more robust than others, since their overall performances are outstanding and are still acceptable for the
worst cases, as seen from the last column.

In the scenario that the the DGPs are believed to have heavy-tailed distributions, the g-AFTER is
significantly better than the non-AFTER methods by providing significantly smaller MSFE (about 33%
smaller than the best of the competitors on average), as seen in Table 6. Therefore, the robustness of
g-AFTER is supported by the M3-competition data.

Table 5 also shows that the AFTERs can occasionally be significantly worse than the SA and other
methods. From Table 5, it is worth noticing that the performances of the AFTERs can be a thousand times
better while only about 10 times worse than that of SA. An examination reveals that for certain variables,
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such as N1837 and N2217, some candidate forecasters are consistently and significantly worse than
others. In this situation, since the SA cannot remove the extreme “disturbing” ones before averaging, its
performance is extremely poor. However, the AFTERs essentially ignore the “unreasonable” candidate
forecasts, so they can be significantly better than the SA.

From Tables 5 and 6, it is clear that the advantages of the t- and g-AFTER hold under both MSFE
and MAPE.

6. Conclusions

Forecast combination is an important tool to achieve better forecasting accuracy when multiple
candidate forecasters are available. Although many popular forecast combination methods do not
necessarily exclude heavy-tailed situations, little is found in the literature that examines the performances
of forecast combination methods in such situations with theoretical characterizations.

In this paper, we propose combination methods designed for cases when forecast errors exhibit
heavy-tailed behaviors that can be modeled by a scaled Student’s t-distribution and for the cases when the
heaviness of the forecast errors is not easy to identify. The t-AFTER models the heavy-tailed random
errors with scaled Student’s t-distributions with unknown (or known) degrees of freedom and scale
parameters. A candidate pool of degrees of freedom is proposed to solve the estimation problem, and
the resulting t-AFTER works well, as seen in the simulation and real example analysis.

However, in many cases, the heaviness of the tails of the random errors is difficult to identify.
Therefore, we design a combination process for general use and call it g-AFTER. For these situations,
instead of assuming a certain distribution form for the random errors, a set of possible heaviness of the
tails is considered, and the combination process automatically decides which ones are more reasonable
by giving them high weights. The numerical results suggest that the performance of the g-AFTER is
more robust than other popular combination methods because of its adaptive capability. The design of
the g-AFTER provides a general idea: when there are multiple reasonable candidate distributions for
the random errors, combining them in an AFTER scheme like the g-AFTER for forecast combination
should work well.

In the present numerical work, the numbers of candidate forecasts considered are relatively small.
In some situations, there are large numbers of candidate forecasts to begin with. It has been shown in
the literature that a proper screening before combining can be beneficial, and information criteria can
be used to choose top performers to be combined (see, e.g., Yuan & Yang [29] and Zhang et al. [23]).
Alternatively, one may also use model confidence sets (see Hansen et al. [30] and Ferrari & Yang [31]) to
narrow the pool of candidates before applying a combining method. Samuwels & Sekkel [32] provide an
interesting comparative study on the effect of screening via a model confidence set of Hansen et al. [30],
which shows that removing poor candidates indeed improves the final performance of the combined
forecast. In the future, it will be useful to investigate how the t- and g-AFTER methods behave when a
screening step is applied before combining.
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Appendix

A.1

In this subsection, some simple facts are given. They are used in Subsection A.2 of the Appendix.

• Fact 1: 1− (1− t)a ≤ at

1− t
for a ≥ 0, 0 ≤ t < 1. Let f(t, a) = 1− (1− t)a − at/(1− t), then

f(t, a) ≤ 0, since ∂f/∂t = a(1− t)−2((1− t)a+1 − 1) ≤ 0 and f(0, a) = 0.
• Fact 2: log(x) ≤ x− 1 for x ≥ 0.
• Fact 3: For any c > 0, B(a, b)/B(a, b + c) decreases as b increases. The proof is pure arithmetic,

and the key point is using the fact that B(x, y) = x+y
xy

∏∞
n=1

(
1 +

xy

n(x+ y + n)

)−1

.

• Fact 4: E(1 + Y 2

ν
)−1 = ν/(ν + 1), where Y ∼ tν conditional on ν. Let Z = Y

√
(ν + 2)/ν, then

it is easy to show that E(1 + Y 2

ν
)−1 = B(1/2, (ν + 2)/2)/B(1/2, ν/2) = ν/(ν + 1).

• Fact 5: (s2 − 1)/2 − log(s) ≤ s0+2
2s0

(1 − s)2 if s ≥ s0 > 0. Use Fact 2 to show that − log(s) =

log(1 + (1− s)/s) ≤ (1− s)/s.

A.2

Lemma 1. Let hν(x) be the density function of tν , ν > 0 and λ > 0 be constants. Then, for any
0 < s0 ≤ s, ν ≤ min(ν, ν ′)− 2 ≤ ν̄ and |ν − ν ′| ≤ λ, we have:∫

hν(x) log
hν(x)

1
s
hν′
(
x−t
s

) ≤ C1(1− s)2 + C2t
2 + C3

∣∣∣∣ν ′ − νν

∣∣∣∣ ,
where C1, C2 and C3 are constants depending on s0, ν, ν̄ and λ.

Proof. After a proper reorganization, we have:

E log
hν(X)

1
s
hν′
(
X−t
s

) = log(s) +
1

2
log

ν ′

ν
+ log

B(1
2
, ν
′

2
)

B(1
2
, ν

2
)

+ E

(
1 + ν ′

2
log
(
1 +

(X − t)2

s2ν ′
)
−1 + ν

2
log

X2 + ν

ν

)
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• Let ν∗ = min(ν, ν ′) and using Facts 1, 2 and 3, then:

log
B(1

2
, ν
′

2
)

B(1
2
, ν

2
)
≤
|B(1

2
, ν

2
)−B(1

2
, ν
′

2
)|

B(1
2
, ν

2
)

=

∫
t−1/2(1− t)ν∗/2−1(1− (1− t)|ν−ν′|/2)dt

B(1
2
, ν

2
)

≤
|ν−ν′|

2

∫
t1/2(1− t)ν∗/2−2dt

B(1
2
, ν

2
)

=
|ν − ν ′|

2

B(3
2
, ν
∗−2
2

)

B(1
2
, ν

2
)

=
|ν − ν ′|

2

B(3
2
, ν
∗−2
2

)

B(1
2
, ν
∗−2
2

)

B(1
2
, ν
∗−2
2

)

B(1
2
, ν

2
)

=
|ν − ν ′|

2

1

ν∗ − 1

B(1
2
, ν

2
)

B(1
2
, ν+2

2
)

=
|ν − ν ′|

ν

ν

ν∗ − 1

B(1
2
, ν

2
)

B(1
2
, ν+2

2
)
≤ |ν − ν

′|
ν

ν + λ

ν + 1

B(1
2
, ν

2
)

B(1
2
, ν+2

2
)

≤ |ν − ν
′|

ν

ν + λ

ν + 1

• Using Fact 2 in Subsection A.1, it follows: 1
2

log ν′

ν
≤ 1

2
ν′−ν
ν
≤ 1

2
|ν′−ν|
ν
.

• It is easy to show that:

E

{
log(s) +

1 + ν ′

2
log
(
1 +

(X − t)2

s2ν ′
)
−1 + ν

2
log
(
1 +

X2

ν

)}
= E

{
log(s)− (1 + ν ′) log(s) +

1 + ν ′

2
log

(
s2 + (X−t)2

ν′

1 + X2

ν

)
+
ν ′ − ν

2
log
(
1 +X2/ν

)}

≤ −ν ′ log(s) + E

{
1 + ν ′

2

s2 − 1 + (X − t)2/ν ′ −X2/ν

1 +X2/ν
+X2|ν ′ − ν|/ν

}
≤ (2 + ν̄)

2 + s0

2s0

(1− s)2 +
ν + 3

ν + 2
t2 + C∗3

|ν ′ − ν|
ν

,

where C∗3 is a constant depending on s0, ν, ν̄ and λ.

Note that if ν is known, then ν = ν ′. Then,

E log
hν(X)

1
s
hν′
(
X−t
s

) ≤ ν
2 + s0

2s0

(1− s)2 +
1

2
t2.

The proof can be completed by combining these steps.

Lemma 2. Let h(x) be the density function of a double-exponential distribution with µ = 0 and d = 1,
then for s0 > 0 and s ≥ s0, it follows:∫

h(x) log
h(x)

1
s
h
(
x−t
s

) ≤ C4(1− s)2 + C5t
2,

where C4 and C5 are constants depending only on s0.

Proof. Since h(y) = 1
2

exp(−|y|) and exp(−x) ≤ 1− x+ x2

2
for x ≥ 0, then:

E log
h(Y )

1
s
h
(
Y−t
s

)dy = log(s) + E

(
|Y − t|
s

)
−E|Y | = log(s) +

exp(−t) + t

s
− 1

≤ (s− 1) +
1 + t2/2

s
− 1 =

t2

2s
+ (1− s)2 1

s
≤ t2

2s0

+
1

s0

(1− s)2.
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Lemma 3. Let h(y) be the density function of a standard normal distribution, then for s0 > 0 and
s ≥ s0, it follows: ∫

h(x) log
h(x)

1
s
h
(
x−t
s

) ≤ C6(1− s)2 + C7t
2,

where C6 and C7 are constants depending only on s0.

Proof. Using Fact 2,

E log
h(Y )

1
s
h
(
Y−t
s

)dy = log(s) +
1 + t2 − s2

2s2
=

1

2s2
t2 + log(s) +

1− s2

2s2
≤ 1

2s2
t2 + (s− 1) +

1− s2

2s2

=
1

2s2
t2 +

2s+ 1

2s2
(s− 1)2 ≤ 1

2s2
0

t2 +
2s0 + 1

2s2
0

(s− 1)2.

A.3

In this subsection, we prove Theorem 1.
Conditional on the information available until time point i, it is assumed that Yi−mi

si
∼ tν , where si is

the conditional scale parameter at time i. Let ŝi,j be the estimator of si from the j-th forecaster.
Let fn =

∏i0+n
i=i0+1

1
si
h
(
yi−mi

si

)
and qn =

∑K
j=1 πj

∏i0+n
i=i0+1

1
ŝi,j
h
(
yi−ŷi,j
ŝi,j

)
, where h(·) is the density

function of tν and πj is the initial combining weight of the j-th forecaster. Therefore, qn is the estimator
of fn.

Then, for any 1 ≤ j′ ≤ J ,

log(fn/qn) ≤ log

∏i0+n
i=i0+1

1
si
h
(
yi−mi

si

)
πj′
∏i0+n

i=i0+1
1

ŝi,j′
h
(yi−ŷi,j′

ŝi,j′

) = log
1

πj′
+

i0+n∑
i=i0+1

log
1
si
h
(
yi−mi

si

)
1

ŝi,j′
h
(yi−ŷi,j′

ŝi,j′

)
Conditional on all of the information before time point i,

Ei log
1
si
h
(
Yi−mi

si

)
1

ŝi,j′
h
(Yi−ŷi,j′

ŝi,j′

) =

∫
1

si
h
(yi −mi

si

)
log

1
si
h
(
yi−mi

si

)
1

ŝi,j′
h
(yi−ŷi,j′

ŝi,j′

)dyi
=

∫
h(x) log

h(x)

1
ŝi,j′/si

h
(x−(ŷi,j′−mi)/si

ŝi,j′/si

)dx
By Lemma 1 in Subsection A.2,

Ei log
1
si
h
(
Yi−mi

si

)
1

ŝi,j′
h
(Yi−ŷi,j′

ŝi,j′

) ≤ (ŷi,j′ −mi)
2

2s2
i

+B1
(ŝi,j′ − si)2

s2
i

where B1 = ν 2+s0
2s0

. Therefore,

1

n

i0+n∑
i=i0+1

ED(qi||q̂At
i ) ≤ inf

1≤j≤J

 log 1

w
At
j

n
+

1

n

i0+n∑
i=i0+1

E
(ŷi,j −mi)

2

2s2
i

+
B1

n

i0+n∑
i=i0+1

E
(ŝi,j − si)2

s2
i
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From Theorem 1 of Yang [8], there exists a constant C depending on the parameters in Conditions 1
and 2′, such that,

ED(qi||q̂At
i ) ≥ 1

C
E

(mi − ŷAt
i )2

σ2
i

.

Therefore,

1

n

i0+n∑
i=i0+1

E
(mi − ŷAt

i )2

σ2
i

≤ C inf
1≤j≤J

 log 1

w
At
j

n
+
B2

n

i0+n∑
i=i0+1

E
(ŷi,j −mi)

2

σ2
i

+
B3

n

i0+n∑
i=i0+1

E
(ŝi,j − si)2

s2
i

 ,

where B2 is a function of ν; and B3 is deducted the same as B1, but under Condition 2′ instead of
Condition 2.

A.4

The essential part of the proof of Theorem 2 is provided in this subsection. We only provide the
steps of the proof when the random errors are scaled Student’s t-distributed, since the proofs of other
situations are similar.

Let ŝi,j,k be the estimator of si from the j-th forecaster assuming νk is the true degree of freedom. If
Condition 4 holds, then obviously:

qn ≥
K∑
k=1

J∑
j=1

c2w
At
j,k/G

i0+n∏
i=i0+1

1

ŝi,j,k
hνl

(
yi − ŷi,j
ŝi,j,k

)
.

Therefore, for any j∗ and k∗,

log
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qn
≤ log

∏i0+n
i=i0+1

1
si
h
(
yi−mi
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) .
Similarly, by Lemma 1 in A.2,

Ei log
1
si
h
(
Yi−mi

si

)
1

ŝi,j∗,k∗
h
(Yi−ŷi,j∗
ŝi,j∗,k∗

) ≤ B1
(ŷi,j∗ −mi)

2

σ2
i

+B2
(ŝi,j∗,k∗ − si)2

s2
i

+B3

∣∣νk − ν
ν

∣∣.
The rest of the proof is similar to that of Theorem 1.
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