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within this model. We first construct the joint LM test for both the individual random effects
and the two spatial effects (spatial error correlation and spatial lag dependence). We then
provide LM tests for the individual random effects and for the two spatial effects separately.
In addition, in order to guard against local model misspecification, we derive locally adjusted
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small Monte Carlo simulation to show the good finite sample performances of these LM test
statistics and revisit the cigarette demand example in Baltagi and Levin (1992) to illustrate
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1. Introduction

Spatial econometric models have been extensively used to study regional effects and interdependence
between different spatial units. Most of the widely used spatial models are variants of the benchmark
models developed in Cliff and Ord (1973, 1981) [1,2] and Anselin (1988a) [3]. Based on the form of
spatially correlated error components and/or spatially lagged dependent variables, these models better fit
the real world data generating process by explicitly considering the spatial interdependence. Hypothesis
testing for spatial dependence has been developed rapidly in the recent literature. For standard LM tests
of spatial dependence in cross section models, see Anselin (1988a, b) [3,4], Anselin and Bera (1998) [5],
and Anselin (2001) [6]. For standard LM tests of spatial dependence in panel data models, Baltagi et al.,
(2003) [7] provide tests for random effects and/or spatial error correlation. Baltagi and Liu (2008) [8]
provide tests for random effects and/or spatial lag dependence. Debarsy and Ertur (2010) [9] derive
tests in the spatial panel data model with individual fixed effects based on Lee and Yu (2010) [10].
Qu and Lee (2012) [11] consider tests in spatial models with limited dependent variables. Baltagi et al.,
(2013) [12] extend the model in Kapoor et al., (2007) [13] by allowing for different spatial correlation
parameters in the individual random effects and in the disturbances, and they derive the corresponding
LM tests. Further, standardized versions of the LM tests are discussed in Yang (2010) [14], Baltagi and
Yang (2013a) [15] to remedy distributional misspecifications in finite sample and sensitivity to spatial
layout. Born and Breitung (2011) [16], Baltagi and Yang (2013b) [17] discuss versions of LM tests
that are robust against unknown heteroskedasticity. Recently, Yang (2015) [18] provides residual-based
bootstrap procedure to obtain improved approximations to the finite sample critical values of the LM test
statistics in spatial econometric models.

However, to the best of our knowledge, there are no test statistics treating the individual random
effects, the spatial error correlation, and the spatial lag dependence simultaneously. We contribute to the
literature by constructing various LM test statistics in such a general framework, or the so-called spatial
autoregressive model with autoregressive disturbances (SARAR). Our results are useful for applied
researchers to implement and perform model diagnostic testing in the SARAR framework. In particular,
we first derive the joint LM test for the individual random effects and the two spatial effects. We next
derive LM tests for the individual random effects. Finally, we derive LM tests for the two spatial
effects. In addition, we provide robust LM tests in some cases as needed in order to guard against
local misspecification. We emphasize some key features of the robust LM test in the following.

Bera and Yoon (1993) [19] argue that the LM test with specific values of the nuisance parameters
(marginal LM test) might suffer from local misspecification in the nuisance parameters. They propose
robust LM test to guard against such local misspecification, see also Anselin et al., (1996) [20],
Beraetral., (2001, 2009, 2010) [21-23], and He and Lin (2013) [24]. Here, we emphasize two advantages
of the robust LM test. First, the asymptotic size of marginal LM test will be distorted under local
misspecification in the nuisance parameters since it follows a non-central x? distribution. On the other
hand, robust LM test follows a x? distribution under such misspecification, thus it can provide valid
asymptotic size as long as the misspecification is local. Second, while LM test without specifying values
of the nuisance parameters (conditional LM test) does not suffer from such size distortion, it generally

needs the maximum likelihood estimator (MLE), which could be costly in computation. In contrast, the
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robust LM test only requires restricted estimator under the relevant joint null hypothesis, which is simply
the ordinary least square (OLS) estimator in most cases. Therefore, the robust LM test can provide result
as good as the conditional LM test at a lower computational cost, provided that the deviation of nuisance
parameters is local. However, there is one potential loss in using the robust LM test. If the values
of nuisance parameters are correctly specified, the robust LM test is in general less powerful than the
marginal LM test. Also, when the nuisance parameters deviate far away from the pre-specified values,
the robust LM test is generally invalid. In sum, the standard LM tests (marginal and conditional LM tests)
and the robust LM tests complement each other, and they should be used together for inference purposes.

In this paper, we maintain the assumption of random effects model, while an alternative specification
is the fixed effects model with spatial dependence as in Lee and Yu (2010) [10], Debarsy and Ertur
(2010) [9], and He and Lin (2013) [24]. On the one hand, the random effects specification is a
parsimonious way to allow for individual effects in different spatial units and it will be particularly
useful for testing and selection in microeconometric applications when the number of units is very large.
On the other hand, the fixed effects specification, which allows for correlation between the individual
effects and the covariates, is more suited for many macro studies when the number of units is not very
large (see Elhorst (2014) [25] for more discussion on comparison of the random effects model and the
fixed effects model).

The rest of the paper is organized as follows. Model specification is discussed in Section 2. The LM
test statistics are presented In Section 3. In Section 4, we report the Monte Carlo simulation results to
show their satisfactory finite sample size and power performances. In Section 5, we provide an empirical
example to illustrate our testing procedures. Section 6 concludes with suggestions for future research.
All mathematical derivations are relegated to the Appendices.

2. The Model

Suppose that the data is generated according to the following spatial panel data model, for
t=1,2,---T,

y = MWy, + Xi8 + &,
(2.1)
€ = pMe, + p+ vy
In the above specification, y; = (Y1, Yi2, -+, Yev)’ is an N x 1 vector of dependent variable for period ¢. It

is spatially interdependent, as reflected by the spatial lag dependence coefficient A. X isan N x (K +1)
matrix of non-stochastic regressors for period ¢, with the first column to be ones, and 8 = (5o, 51, -, Bk )’
is the corresponding (K + 1) x 1 slope parameter vector. €, = (€1, €2, -+, €,5)" is an N X 1 vector of the
regression error term for period ¢. The error vector is also spatially correlated, as reflected by the spatial
error correlation coefficient p. p = (pq, 2, - -, n) is an N x 1 vector representing the individual
random effects. The random effects terms {y;},7 = 1,- -, N are i.i.d. across i, with zero mean, variance
UZ and E|u;|*t® < oo for some ¢; > 0. vy = (v41, V0, - -, vy) is an N x 1 vector of innovation
terms. The innovation terms {v;;},t = 1,---,T,i = 1, -, N are i.i.d. across i and ¢, with zero mean,
variance o2 and E|v;; |72 < oo for some ¢y > 0 (see Lee and Yu (2012) [26] for other regularity and
identification conditions as needed for asymptotic theory). 17 and M are nonstochastic spatial weights
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matrices of size N x N. Typically, they are specified by the first-order rook contiguity criterion and are
row-standardized so that each row sums up to one.
By stacking across ¢, the model can be written as

{ y=AIr@W)y+ X8+, (2.2)

e=p(Ir @ M)e+ 17 @ pu+ v,

where y = (51, sy - oy )s X = (X0, Xhyo o, X5), € = (€hyého e onéh)s and v = (o], 0 - -]
tp is a T' x 1 vector of ones, I denotes the identity matrix with its dimension in the subscript, and
® denotes the kronecker product. Let A = [Ir ® (Iy — pM)], and B = [I; ® (Ix — A\W)]. The
error component € is expressed as € = A~ (1r ® p + v), with E[e] = 0, Vare] = Q. = A71Q(A7YY,
where Q = [Jp ® (0.1y) + Ir ® (071y)]. Using the results in Magnus (1982) [27], we get Q™! =
(To? 4+ 02) ' Jr @ Iy + (02)'Er @ Iy, and |Q| = (To2 4 02)N(o2)NTY, where Jp = Jr/T,
Jr = uptly, By = Iy — Jp. Notice that y = B~ X8 + B¢, with E[y] = B~ X3 and Var[y] = Q, =
BTATIQ(ATY(BTY) . We have Q' = B'A'Q T AB, and || = | B|72|A[ (T2 4 02)N (o2)N (T,

Letd = (B, p, A\, 05, 00) and € = By — X 3, the log-likelihood function of the random vector y as if
it is normally distributed is

NT N N(T -1 1
L(§) = —Tln(27r) — 5 (Tol + o)) — %m (¢7) +In|]A| + In|B| — §e’A’Q_1Ae (2.3)

3. LM and Robust LM Test Statistics

In this section, we provide explicit formulae for the LM test statistics. We first present the joint LM
test for both the individual random effects and the spatial effects. We then provide LM test statistics for
the individual random effects. Lastly, we present LM test statistics for the spatial effects, namely, the
spatial error correlation and/or the spatial lag dependence.! In addition, we provide formulae for robust
LM tests when necessary.

Before presenting the LM test statistics, we introduce the following notations for easy reference. Let
Ri=M(Iny—pM)™ Y, Ry=W({Iny—pM)™, R3 =W (Iny—XAW)"Y,and Ry = (Ixn — pM')(In—pM).
Let 2, = e@'ﬁ—l(@ ® M)E 2 = PAO Al @ W)y, and 2, = [ A'(Jr ® Iy)Ad /52 — N,
where € = By — X3, A, B, , 3, and 52 are restricted MLEs of A, B, €, 3, and 02 under the null
hypotheses, respectively. Next, define 7 = 7/(Ir @ W)AQ'A(Ir @ W)G, 7 = T2(bibs — b2) +
Thio, where & = §/(Ir @ WA Q™ — Q1 AX (X' AQTAX) ' X' AQ ATy @ WG, § = B~1X5,
by = te(M'M + MDM), by = tr(M'W + MW), by = tr(W'W + WW), and tr(-) is the trace operator.
Finally, let

NGB, — 262
(N — 262)(T8, + @) — NTH?

NT9, + N& — 272

= = —, (=
Tby(NTDs + NG — 2T92) — N(T9;)?

£ =

I Notice that there are four cases for which we do not present the LM tests formulae, since these four cases are not

particularly interesting. The null hypotheses for the four cases are: 0, = p = 0 (A = 0), 07 = p = 0 (A # 0),
0. =A=0(p=0)and o =X =0 (p# 0). The LM tests formulae for these four cases are not presented in the paper,
but they are available upon request from the authors.
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where 0 = t[(M + M')Rs], 9o = t(RsRy + RyR)), 05 = t(Ry), 6 = tr (1§11§1+1§11§g),

/0\2 =1r [Wﬁl + ﬁgﬁll(]]v — b\M):| . 53 = tr(}A%l), 54 = tI'(WW) —+tr <§2§/2R\4> . and ﬁl, EQ, ﬁg, §4 are
restricted MLEs of Ry, Ry, R3, R4, respectively.

3.1. Jointly Testing for Random Effects and Spatial Effects

Now we are ready to present the test statistics. We first construct the joint LM test statistic for the
individual random effects and the spatial effects, namely, the spatial error correlation and the spatial lag
dependence. The joint hypothesis is H: 02 = p= A= 0vs. H{: atleast one of 03, p and A is not zero.
Thus we are testing the classical pooled panel data model against the full specification in (2.1), the LM
test in this case is given by

Ty +Bay  Thi,  2Thy . T,
LM, = T2 e TR AT T Fpaiie + mzag,aa G.1)

where &, = [¢,(Ir @ W) (Iny — X (X'X) ' X")(Ir @ W)a) /02 ., 02, = (€€a)/(NT), €4 =y — Yus

G = XBaw 7o = T2(biby — 13) + ThiBas Sy = [&4(Ir © MG /32,0 B = [&(Ir © W)yl/B2,.
Zpa = [6,(Jr ® In)é,] /72, — N, and B, is the OLS estimator of 3. Under HZ, LM, is asymptotically
distributed as x3, where x% denotes the x? distribution with degree of freedom d.

The test statistic LM, is useful in practice, and it is simple to compute since only the OLS estimator
is required. Researchers should first use this joint LM test to determine if there is individual random
effects and/or spatial effects in the general specification (2.1). If the joint null hypothesis cannot be
rejected, then it is reasonable to just adopt the classical pooled panel data model. Otherwise either
the individual random effects, or the spatial error correlation, or the spatial lag dependence need to be
considered. As in Baltagi et al., (2003) [7], we do not provide formal proofs for the asymptotic null
distributions of the LM test statistics in this paper, but these distributions are likely to hold by using the
Central Limit Theorems (CLTs) in Kelejian and Prucha (2001, 2010) [28,29] under similar sets of low

level assumptions in their papers.

3.2. Testing for Random Effects

In this section, we focus on testing for the individual random effects in various spatial panel data
models. We provide formulae for the standard LM tests as well as formulae for the robust LM tests when
necessary. The first hypothesis we consider is H{: 07 = 0 (p = A = 0) vs. H}: 0, > 0 (p = A = 0).
The null model is the classical pooled panel data model, and the alternative model is the random effects
panel data model without spatial effects. The LM test denoted as LM, is available in Baltagi et al.,
(2003) [7]. Moreover, it can be shown that the robust LM test is the same as LM, in this case. We thus
omit these formulae for the sake of compactness.

The second hypothesis is Hg: o = 0 (p # 0,A = 0) vs. Hf: 07, > 0 (p # 0,\ = 0).> Under the

null hypothesis, it is the pooled panel data model with spatial error correlation. Under the alternative

2 By p # 0, we mean that p is allowed to be nonzero, and the notation “#” has similar meaning in the rest of this paper.
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hypothesis, it is the random effects panel data model with spatial error correlation. The LM test statistic
in this case is given by
r )

LM, = %52
ON(T — 1) 7he

(3.2)
where ?03,5 is 203 evaluated at the restricted MLE under HS.> Under HS, LM, is asymptotically
distributed as y?. Further, it can be easily shown that the robust LM test in this case is the same as
LM,. Thus LM, itself is robust against local deviation of A from 0, and this will be confirmed by the
simulation results.

The third hypothesis is H¢: o2 = 0 (p = 0,X # 0) vs. H{: 07, > 0 (p = 0, # 0). Under the
null hypothesis, it is the pooled panel data model with spatial lag dependence. Under the alternative
hypothesis, it is the random effects panel data model with spatial lag dependence. The LM test statistic,
denoted as LMy, is available in Baltagi and Liu (2008) [8]. Moreover, it can be shown that the robust
LM test in this case is the same as L M,;. We thus omit these formulae here.

The last hypothesis concerning testing for the individual random effects is /: JZ =0(p # 0,
A #0) vs. Hf: 07 > 0 (p # 0, A # 0). Under the null hypothesis, it is the pooled panel data model with
both spatial error correlation and spatial lag dependence. Under the alternative hypothesis, it is the full

model in (2.1). The LM test statistic is given by

T 22

LM, = 3%, |
ON(T — 1) 7he

(3.3)
Under H§, LM, is asymptotically distributed as x3. LM, tests for the individual random effects in
the most general spatial model, and it is particularly useful when the researcher does not have any
prior knowledge about whether the spatial error correlation and/or spatial lag dependence exist or not.
In practice, the above four LM tests for the individual random effects correspond to different prior
information on the nuisance parameters, and they need to be analyzed together to lead to the most
appropriate model.

Notice that the LM tests in Section 3.2 are all designed for two-sided alternative hypothesis, while the
parameter involved in the hypotheses, ai, is by definition nonnegative. While our LM tests have good
power against the one-sided alternative (see the simulation results), we point out that power of these tests
can be further improved by following the ideas in Honda (1985, 1991) [30,31].

3.3. Testing for Spatial Effects

In this section, we focus on testing for the spatial effects. We provide formulae for the standard LM
tests as well as formulae for the robust LM tests when necessary.

3 In order to save space and avoid notational complication, we do not present the formulae of quantities involved in the LM

test statistics case by case. The subscripts of these quantities indicate these quantities evaluated at the restricted MLE for
each case. If the restricted MLE is just the OLS estimator, we use subscript “a” to indicate this, which is in line with the
fact that only OLS estimation is needed in LM, .
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3.3.1. Joint Tests for Spatial Effects

In practice, researcher may be interested in jointly testing for the spatial error correlation and the
spatial lag dependence. The first joint hypothesis is Hg cp=A=0 (ai = 0) vs. H{ : at least one of
p and A is not zero (JZ = 0). Under the null hypothesis, it is the classical pooled panel data model.
Under the alternative hypothesis, it is the pooled panel data model with at least one type of the spatial
effects. The LM test statistic in this case is given by

Ths + @ Tb; 2Tby . .
LMy = 3?—2; + ?_1Z§a — ?—22,,@2,\7@, (3.4)

where all quantities involved are defined Section 3.1 since only the OLS estimator is needed in this
case. The test LMy is a useful extension of the result in Anselin et al., (1996) [20] to the panel data
case. Interestingly, LM is the sum of the first three terms of LM,. Under Hg , LMy is asymptotically
distributed as x3. It can be easily shown that the robust LM test in this case is the same as L)M.

The second joint hypothesis is Hj: p = A = 0 (O’Z > 0) vs. H{: at least one of p and A is not
Zero (ai > 0). Under the null hypothesis, it is the random effects panel data model without any spatial
effects. Under the alternative hypothesis, it is the random effects panel data model with at least one type
of spatial effects. The LM test statistic in this case is given by

LA Tbs + 3, o T?_blgig _ %b?gp,ggm (3.5)
g g

Under H§, LM, is asymptotically distributed as y3. Notice that both LM and LM, are useful for jointly

testing the spatial error correlation and spatial lag dependence. However, LM assumes that it is pooled

panel data model, while LM, allows for the individual random effects. Since LM is the same as its

robust version, then it can guard against local deviation of ai from zero. However, LM, will work well

even when aﬁ deviates far away from zero.
3.3.2. Testing for Spatial Error Correlation

In this section, we focus on testing for spatial error correlation. The first hypothesis we consider is
Hi: p=0(0s =X =0)vs. H": p# 0 (0}, = A = 0). Under the null hypothesis, it is the classical
pooled panel data model. Under the alternative hypothesis, it is the pooled panel data model with spatial
error correlation. The LM and robust LM (denoted as LM*) test statistics are given by

1 . Ths + 3, [ - Tb,  \?
LM, = —32 [Mf=-23T%a(o 272 2 3.6
T py e P 7 (Zp* Ths + &g ) (3.6

where all quantities involved are defined in Section 3.1 since only the OLS estimator is needed in this
case. Notice that although the formula of LM}, is available in Baltagi et al., (2003) [7], we provide it
here for comparison purposes as it is different from the robust test L/}, which has not been considered
previously in the literature. Under H7, if the nuisance parameters A\ and 03 do not deviate from 0,
both LM, and LM, are asymptotically distributed as x3. However, when p = 0, but either \ or az
deviates locally from O, the distribution of LM}, becomes non-centralized, tending to over reject the null
hypothesis. On the other hand, LM; is still asymptotically distributed as x?, thus it does not suffer from

size distortion as LMj,.
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The second hypothesis is Hi: p = 0 (o), = 0,A # 0)vs. Hi: p # 0 (0. = 0, # 0).
Under the null hypothesis, it is the pooled panel data model with spatial lag dependence. Under the
alternative hypothesis, it is the pooled panel data model with both spatial error correlation and spatial lag

dependence. The LM test statistic is given by
LM; = §22,. (3.7)

LM,; is a useful extension of the results in Anselin et al., (1996) [20] to the panel data case. Under H,
L M; is asymptotically distributed as x?. Moreover, it can be easily shown that the robust LM test in this
case is the same as LM;. Thus LM, itself is robust against local deviation of cri from 0, and this will be
confirmed by the simulation results.

The third hypothesis is Hj: p = 0 (02 > 0, = 0)vs. Hl: p#0 (07 > 0,\ = 0). Under the
null hypothesis, it is the random effects panel data model without spatial effects. Under the alternative
hypothesis, it is the random effects panel data model with spatial error correlation. The LM and robust

LM test statistics in this case are given by

~ 2
LM, = Tiblzf,,j, LM; = Tb‘“’?—jw] (zp,j - %a,j) . (3.8)
When p = 0, and if the nuisance parameter A does not deviate from 0, both LM; and LM are
asymptotically distributed as y3. However, when p = 0, but \ deviates locally from 0, the distribution
of LM; becomes non-centralized, tending to over reject the null hypothesis. On the other hand, LM is
still asymptotically distributed as x? in this case, thus it does not suffer from size distortion as LM;.
The last hypothesis for spatial error correlation is H}: p = 0 (UZ > 0,A # 0)vs.
HE:p #£0 (UZ > 0, A # 0). Under the null hypothesis, it is the random effects panel data model with
spatial lag dependence. Under the alternative hypothesis, it is the random effects panel data model with

both spatial error correlation and spatial lag dependence. The LM test statistic in this case is given by
LM, = g,ﬁ;k. (3.9)

Under H}, LM, is asymptotically distributed as x?. In practice, to test for the spatial error correlation,
the above test statistics correspond to different prior information on the nuisance parameters, and they
need to be analyzed together to lead to the most appropriate model.

3.3.3. Testing for Spatial Lag Dependence

In this section, we focus on testing for the spatial lag dependence. The first hypothesis we consider
is Hi: A\ =0 (0, = p=0)vs. Hi: A # 0 (0, = p = 0). Under the null hypothesis, it is the classical
pooled panel data model. Under the alternative hypothesis, it is the pooled panel data model with spatial
lag dependence. The LM and robust LM test statistic in this case are given by

1 s Tb (. by .\
IM,=—— 32 [M=—"> a— T%2pa ) 3.10
l Tb3 _i_&)az)\,a? l ?a (ZA7 bl Zp, ) ( )

where all the related quantities are defined in Section 3.1 since only the OLS estimator is needed in this
case. The formulae for LM; and LM;" are useful extensions of the results in Anselin ef al., (1996) [20]
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to the panel data case. When A = 0, and if the nuisance parameters O'Z and p do not deviate from 0,
both LM, and LM are asymptotically distributed as x%. However, when A = 0, but either ai or p
deviates locally from 0, the distribution of L M; becomes non-centralized, tending to over reject the null
hypothesis. On the other hand, LM;" is still asymptotically distributed as x7 in this case, thus it does not
suffer from size distortion as L M.

The second hypothesis is Hy*: A = 0 (0, = 0,p # 0)vs. H{"> X # 0 (02 = 0,p # 0).
Under the null hypothesis, it is the pooled panel data model with spatial error correlation. Under the
alternative hypothesis, it is the pooled panel data model with both spatial error correlation and spatial lag

dependence. The LM test statistic in this case is given by
LMy = 23 - (3.11)

LM, is a useful extension of the result in Anselin et al., (1996) [20] to the panel data case, and it is
asymptotically distributed as x? under H". It can be easily shown that the robust LM test in this case
is the same as LM,,. Thus LM, itself is robust against local deviation of O'Z from 0, and this will be
confirmed by the simulation results.

The third hypothesis is Hy: A = 0 (67 > 0,p = 0) vs. H: X # 0 (0, > 0,p = 0). Under the
null hypothesis, it is the random effects panel data model without spatial effects. Under the alternative
hypothesis, it is the random effects panel data model with spatial lag dependence. The LM and robust
LM test statistics are given by

1. Thy (. by \?
LM, =———%} LM'="=Z\n— —2pn] . 3.12
Tbg o, “an n 7, (Z)w bl Zp, ) ( )

Notice that although the formula of LM, is available in Baltagi and Liu (2008) [8], we provide it here
for comparison purposes since it is different from the robust test LA/;;, which has not been considered
previously in the literature. When A = 0, and if the nuisance parameters p does not deviate from 0, both
LM, and LM are asymptotically distributed as y2. However, when \ = 0, but p deviates locally from
0, the distribution of LM, becomes non-centralized, tending to over reject the null hypothesis. On the
other hand, LM} is still asymptotically distributed as x? in this case, thus it does not suffer from size
distortion as LM,,.

The last hypothesis is H§: A = 0 (07 > 0,p # 0) vs. HY: A # 0 (07, > 0,p # 0). Under the null
hypothesis, it is the random effects panel data model with spatial error correlation. Under the alternative
hypothesis, it is the random effects panel data model with both spatial error correlation and spatial lag

dependence. The LM test statistic in this case is given by
LM, =22, (3.13)

Under Hg, LM, is asymptotically distributed as x?. In practice, to test for the spatial lag dependence,
the above test statistics correspond to different prior information on the nuisance parameters, and they

need to be analyzed together to lead to the most appropriate model.
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4. Monte Carlo Experiment

In this section, we conduct and present a small Monte Carlo experiment to show satisfactory
performances of the above LM test statistics. In our Monte Carlo experiment, the data generating process
is, fort =1,2,---, T,

(In = W)y = aun + Xif+ (In — pM) ™ (1 + vy),

where @ = 5,8 = 0.5. x;; is a single variable and is generated as x;; = 0.1t + 0.5z;,_1 + z;, wWhere
2z is generated according to a uniform distribution on [—0.5,0.5]. The initial value x; is set to be
5 + 10z;0. The random effects term p; is generated according to y; ~ i.i.n.(0, ai), and the innovation
term vy, is generated according to vy ~ 1i.i.n.(0,07). o7, takes values 0, 0.2, 0.5, and 0.8, while o7 is
fixed to be 1. The spatial weights matrices M and W are set to be first-order rook and queen contiguity
matrices with row-standardization, respectively. The spatial error correlation parameter p and spatial
lag parameter \ vary in [—0.8,0.8], with increment 0.2. Two combinations of sample size (N, 7') are
considered, namely (49, 7) and (100, 10). Each experiment is replicated 1000 times, and the nominal
size is set to be 0.05.

Frequency of rejection (FoR) of the joint test L M, is summarized in Table 1, where the upper part and
lower part correspond to different sample sizes. We only report the case when az = 0. For other cases,
that is, ai = 0.2,0.5,0.8, FoRs are uniformly higher than that when ai = (. This is because we are
jointly testing ai = p = A = 0. The empirical sizes of LM, are 0.049 and 0.050 for the (49, 7) and the
(100, 10) sample, respectively. They are almost the same as the nominal size, reflecting that the limiting
x5 distribution approximates the finite sample null distribution very well. As p or A deviates from 0,
FoR increases very fast. For example, when the sample size is (49, 7), FoR is 0.995 when p = A\ = 0.2,
and it reaches 1 when p = A = 0.4. The power performance when sample size is (100, 10) is better than
that when the sample size is (49, 7). The good size and power performance demonstrates that the joint
test LM, should be very useful for applied researcher to determine whether there are individual random
effects and spatial effects in a preliminary diagnostic testing process.

Experiment results for LM, and LM, are summarized in Table 2. For LM, we only report results
when p = —0.4 and 0.4 here to save space. The results when p takes other values are very similar, and
they are available upon request. First, for the (49,7) sample, the empirical sizes of LM, are 0.043 and
0.036 when p = —0.4 and 0.4, respectively. As ai increases from 0, the FoR of LM, increases very
fast. Actually, when p = —0.4, FoR of LM, is 0.976 even when ai is only 0.2. Second, we discussed in
Section 3.2 that the robust LM test corresponding to LM, is the same as LM, which implies that LM,
itself is robust against local deviation of A from 0. This is confirmed by the column for az = 0 1n Table 2.
Given UZ = 0, for the (49,7) sample, when \ varies in [—0.4, 0.4], the FoRs of LM, are in the range
of [0.036,0.057]. Thus LM, itself does not suffer from size distortion under local misspecification of
the nuisance parameter A. As expected, the performance of LM, for the (100, 10) sample is even better
than that for the (49, 7) sample. Next, for LM,, we choose to report the simulation results for a few
combinations of p and A as shown in the table. Results for other cases are very similar. For the (49,7)
sample, the empirical sizes of LM, vary in [0.035, 0.044], and the FoR increases rapidly as ‘72 increases
from 0. As expected, the performance of LM, for the (100, 10) sample is even better than that for the
(49, 7) sample. Both LM, and LM, are useful in testing for the random effects. LM, is useful in testing
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for the random effects when the researcher does not have any knowledge about the spatial effects, while

LM. is particularly useful when the researcher has information that there is only spatial error correlation.

Table 1. Frequency of rejection (FoR) of LM, 02 = 0, Sample Sizes: Upper Part: (49, 7);
Lower Part: (100, 10).

P —-08 —-0.6 —-04 —-0.2 0.0 0.2 0.4 0.6 0.8
A
—0.8 1.000 1.000 1.000 1.000 1.000 1.000 0.999 0.996 1.000
—0.6 1.000 1.000 1.000 1.000 1.000 0.980 0.942 0.998 1.000
—-0.4 1.000 1.000 1.000 1.000 0.946 0.692 0.861 1.000 1.000
—0.2 1.000 1.000 1.000 0.984 0.389 0.290 0.954 1.000 1.000
0.0 1.000 1.000 1.000 0.681 0.049 0.623 1.000 1.000 1.000
0.2 1.000 1.000 0994 0.515 0.552 0995 1.000 1.000 1.000
0.4 1.000 1.000 0998 0.957 0.997 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P —-08 —-0.6 —-04 -—-0.2 0.0 0.2 0.4 0.6 0.8
A
—-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
—-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
—-0.4 1.000 1.000 1.000 1.000 1.000 0.988 1.000 1.000 1.000
—0.2 1.000 1.000 1.000 1.000 0.864 0.758 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.989 0.050 0.986 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0911 0926 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

The simulation results for LMy and LM, are presented in Tables 3 and 4, respectively. From Table 3,
the empirical sizes of LM are 0.053 and 0.050 for the (49, 7) and (100, 10) sample, respectively. As
either p or A deviates from 0O, the FoR of increases very fast, indicating good power performance of
LM;. For example, when p = A = 0.2, FoR of LM is 0.994 for the (49, 7) sample, while it is 1 for
the (100, 10) sample. In Table 4, we only report the results for the case when 03 = 0.5 to save space,

results for the other two cases are similar and available upon request. The empirical sizes of LM, are
0.050 and 0.043 for the (49, 7) and the (100, 10) sample, respectively. Similar to LM, as either p or A
deviates from 0, the FoR of increases rapidly. Both LM, and LM, are useful in jointly detecting spatial

error correlation and spatial lag dependence. LM  is useful when we assume pooled panel data model,

while LM, is useful when we assume random effects panel data model.
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Table 2. FoR of LM Tests for Random Effects, Sample Sizes: Upper Part: (49, 7); Lower

Part: (100, 10).

ag =0 02 0.5 0.8
LM, p=-04 X=-04 0057 0974 1.000 1.000
—0.2 0.043 0978 1.000 1.000
0.0 0.043 0976 1.000 1.000
0.2 0.048 0973 1.000 1.000
0.4 0.051 0970 1.000 1.000
p=04 A=-04 0.047 0968 1.000 1.000
—0.2 0.046 0969 1.000 1.000
0.0 0.036 0976 1.000 1.000
0.2 0.052  0.982 1.000 1.000
0.4 0.053  0.969 1.000 1.000
LM, p=-04 A=-04 0.035 0976 1.000 1.000
—0.4 0.4 0.043 0982 1.000 1.000
0.0 0.0 0.035 0970 1.000 1.000
0.4 —0.4 0.039 0976 1.000 1.000
0.4 0.4 0.044 0983 1.000 1.000
o2=0 02 05 0.8
LM, p=-04 XA=-04 0.052 1.000 1.000 1.000
—0.2 0.047  1.000 1.000 1.000
0.0 0.049  1.000 1.000 1.000
0.2 0.045  1.000 1.000 1.000
0.4 0.057  1.000 1.000 1.000
p=04 A=-04 0.053 1.000 1.000 1.000
—0.2 0.054  1.000 1.000 1.000
0.0 0.038  1.000 1.000 1.000
0.2 0.047  1.000 1.000 1.000
0.4 0.049  1.000 1.000 1.000
LM, p=-04 A=-04 0.041 1.000 1.000 1.000
—0.4 0.4 0.045 1.000 1.000 1.000
0.0 0.0 0.041  1.000 1.000 1.000
0.4 —0.4 0.047  1.000 1.000 1.000
0.4 0.4 0.042  1.000 1.000 1.000
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Table 3. FoR of LMy, o, = 0, Sample Sizes: Upper Part: (49, 7); Lower Part: (100, 10).

P -08 —-06 —-04 —-0.2 00 0.2 0.4 0.6 0.8
A
—-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
—0.6 1.000 1.000 1.000 1.000 0.999 0.986 0.965 1.000 1.000
-0.4 1.000 1.000 1.000 1.000 0.982 0.752 0919 1.000 1.000
—0.2 1.000 1.000 1.000 0.993 0487 0374 0969 1.000 1.000
0.0 1.000 1.000 1.000 0.746 0.053 0.684 1.000 1.000 1.000
0.2 1.000 1.000 0.995 0.573 0.576 0994 1.000 1.000 1.000
0.4 1.000 1.000 0995 0972 099 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
P -08 —-06 —-04 —-0.2 0.0 0.2 04 0.6 0.8
A
—-0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
—-0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
-0.4 1.000 1.000 1.000 1.000 1.000 0.993 1.000 1.000 1.000
—-0.2 1.000 1.000 1.000 1.000 0916 0.829 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0.992 0.050 0990 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0.933 0.953 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Table 4. FoR of LM,, o7, = 0.5, Sample Sizes: Upper Part: (49, 7), Lower Part: (100, 10).

P -0.8 —-0.6 —-0.4 —0.2 0.0 0.2 0.4 0.6 0.8
A
—-0.8  1.000 1.000 1.000 1.000  1.000 1.000 0.997 0.999 1.000
—0.6  1.000 1.000 1.000 1.000 1.000 0984 0.956 1.000 1.000
—-0.4  1.000 1.000 1.000 0999 0963 0.738 0.907 1.000 1.000
—-0.2  1.000 1.000 1.000 0989 0458 0331 0971 1.000 1.000
0.0 1.000 1.000 1.000 0.743  0.050 0.687 1.000 1.000 1.000
0.2 1.000 1.000 0998  0.536 0542 0993 1.000 1.000 1.000
0.4 1.000 1.000 099 0962 0998 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000
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Table 4. Cont.

—-0.8  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000
—-0.6  1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000 1.000
—-0.4  1.000 1.000 1.000 1.000  1.000 0993 1.000 1.000 1.000
—-0.2  1.000 1.000 1.000 1.000 0.898 0.815 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0993 0.043 0991 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0928 0944 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000  1.000 1.000 1.000 1.000  1.000
0.6 1.000 1.000 1.000 1.000  1.000  1.000 1.000 1.000  1.000
0.8 1.000 1.000 1.000 1.000  1.000  1.000 1.000 1.000  1.000

Now we discuss simulation results of the test statistics for spatial error correlation, their FoRs are
summarized in Tables 5 and 6 for different sample sizes. We focus on the (49, 7) sample for discussion.
For LM, the empirical size is 0.048. Moreover, LM}, is very powerful in detecting spatial error
correlation given that ai = A = 0. For example, FoR of LM, is 0.856 when p = —0.2. However,
as discussed in Section 3.3.2, LM}, is not robust against local misspecification, and this is confirmed by
the simulation results. Given p = 0, when O'i and A deviate locally from 0, the large FoRs of LM}, are
undesirable. For example, when p = 0 but oi = A = 0.2, FoR of LM} is 0.416. However, this size
distortion is avoided by using LM;. When p = 0, 03 takes values 0,0.2 and A € [—0.4,0.4], FoRs
of LM} are in the range of [0.039,0.081]. Although it is a little oversized in some cases, it is much
better than that of LMj;. On the other hand, the robust LM test is supposed to be less powerful than the
corresponding LM test when the nuisance parameters are correctly specified. This is also confirmed by
the simulation results, that is, when O'i = A = 0, LMj is less powerful than LM},. For example, when
p = —0.2, FoR of LMj, is 0.856, while that of LM} is 0.626. Next, L M; tests for spatial error correlation
in a pooled panel data model with spatial lag dependence. When ai = 0, the empirical sizes of LM,
vary in [0.040, 0.060]. As p deviates from 0, FoR increases as expected. Furthermore, as discussed in
Section 3.3.2, the robust LM test in this case is the same as LM/;, implying that L, is robust against
local deviation of aﬁ from 0. This is confirmed by the simulation results. When 03 =02,p =0,
the empirical sizes of LM; vary in [0.058,0.080]. Next, we discuss LM; and LM;. LMj tests for
spatial error correlation in a random effects panel data model without spatial lag dependence. We only
present the representative result when 02 = 0.5 to save space, results in other cases are very similar.
The empirical size of LM; is 0.045, and the FoR increases as p deviates away from 0. For example,
FoR is 0.835 when p = —0.2. However, LM; suffers from size distortion when the nuisance parameter
A deviates away from 0. For example, when A = —0.4,p = 0, the FoR of LM, is 0.747, which is
undesirably high. For the same case, FoR of LM is 0.064. On the other hand, the robust LM test is less
powerful when the nuisance parameter is correctly specified. This is also confirmed by the simulation
results. For example, when A = 0, p = —0.2, FoR of L]\/[]’-k is 0.602, while that of LM is 0.835. Lastly,
we discuss the performance of LM;. LM tests for spatial error correlation in a random effects panel
data model with spatial lag dependence. The empirical sizes of LM, vary in [0.038,0.058]. As expected,
when p moves away from 0, FoR increases rapidly, suggesting its good power performance. For all of
the above tests, their performances are even better for the (100, 10) sample than for the (49, 7) sample
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and follow a similar discussion. In sum, the test statistics LM}, LM, LM;, LM, LM;‘, and LM, are
all useful for detecting the spatial error correlation, but they are suited for different assumptions about

the nuisance parameters. In practice, researchers are suggested to analyze them together to draw correct

inference on p.

Table 5. FoR of LM Tests for the Spatial Error Correlation, Sample Size: (49, 7).

p=—-08 —-06 —-04 —0.2 0 0.2 0.4 0.6 0.8
LMy, aﬁ =0 X=-04 1.000 1.000 1.000 1.000 0.738 0.023 0.671 1.000 1.000
—-0.2 1.000 1.000 1.000 098 0305 0.193 0975 1.000 1.000
0.0 1.000 1.000 1.000  0.856 0.048 0.754 1.000 1.000 1.000
0.2 1.000 1.000 099 0340 0452 0993 1.000 1.000 1.000
0.4 1.000 1.000  0.753 0210 0965 1.000 1.000 1.000 1.000
LMy, 02 =02 X=-04 1.000 1.000 1.000 0998 0.747 0.037 0.620 1.000 1.000
-0.2 1.000 1.000 1.000 0984 0324 0.189 0971 1.000 1.000
0.0 1.000 1.000 0999 0822 0.065 0.743 1.000 1.000 1.000
0.2 1.000 1.000 0992 0372 0416 0989 1.000 1.000 1.000
0.4 1.000 1.000  0.756 0206 0954 1.000 1.000 1.000 1.000
LMy, aﬁ =0 A=-04 1.000 1.000 0976 0485 0.071 0539 0961 1.000 0.999
-0.2 1.000 1.000 0990 0562 0.056 0482 0941 1.000 0.999
0.0 1.000 1.000 0995 0626 0.039 0431 0952 0999 0.989
0.2 1.000 1.000 0997 0.639 0.052 0460 0.969 1.000 0.961
0.4 1.000 1.000 099 0524 0.046 0597 0980 1.000 0.880
ai =02 X=-04 1.000 1.000 0975 0495 0.081 0535 0937 1.000 0.999
-0.2 1.000 1.000 0987 0553 0.080 0465 0923 1.000 0.999
0.0 1.000 1.000 0988  0.607 0.075 0432 0926 0998 0.991
0.2 1.000 1.000 0990 0.648 0.056 0461 0943 0999 0.957
0.4 1.000 1.000 0994 0533 0.054 0510 0967 0.999 0.869
LM; ai =0 X=-04 1.000 1.000 0999  0.665 0.050 0479 0957 0.998 1.000
-0.2 1.000 1.000 0999  0.641 0.046 0.469 0940 0.999 1.000
0.0 1.000 1.000 0997 0.646 0.040 0448 0951 1.000 1.000
0.2 1.000 1.000 0997 0.646 0.060 0457 0961 0.999 1.000
0.4 1.000 1.000 0996  0.639 0.046 0497 0.966 1.000 1.000
aﬁ =02 A=-04 1.000 1.000 0995 0.651 0.058 0458 0.939 0999 1.000
—-0.2 1.000 1.000 0995 0619 0.080 0455 0927 0998 1.000
0.0 1.000 1.000  0.991 0.619 0.072 0454 0920 0.997 1.000
0.2 1.000 1.000 0992 0662 0.069 0463 0.939 1.000 1.000
0.4 1.000 1.000 0995 0610 0.063 0487 0951 1.000 1.000
LM; O'i =05 X=-04 1.000 1.000 1.000 1.000  0.747 0.036 0.657 1.000 1.000
-0.2 1.000 1.000 1.000 0987 0301 0.192 0975 1.000 1.000
0.0 1.000 1.000 1.000  0.835 0.045 0.771 1.000 1.000  1.000
0.2 1.000 1.000  0.991 0.353  0.427 0993 1.000 1.000 1.000
0.4 1.000 1.000  0.758  0.194 0957 1.000 1.000 1.000  1.000
LM; crﬁ =05 A=-04 1.000 1.000 0979 0480 0.064 0522 0945 1.000 0.998
-0.2 1.000 1.000 0990 0551 0.060 0460 0.934 1.000 0.998
0.0 1.000 1.000 0993  0.602 0.040 0412 0943 0999 0.985
0.2 1.000 1.000 0993  0.617 0.035 0429 0954 1.000 0.944
0.4 1.000 1.000  0.991 0.508 0.042 0.550 0972 0999 0.852
LMj, O’Z =05 X=-04 1.000 1.000 0997  0.660 0.049 0417 0933 0999 1.000
-0.2 1.000 1.000 0998  0.607 0.049 0422 0936 099 1.000
0.0 1.000 1.000 0992  0.627 0.058 0433 0952 0.999 1.000
0.2 1.000 1.000 0996  0.602 0.054 0427 0952 1.000 1.000
0.4 1.000 1.000 0995 0.630 0.038 0480 0.948 1.000 1.000
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Table 6. FoR of LM Tests for the Spatial Error Correlation, Sample Size: (100, 10).

p=-08 —-0.6 -—-04 —-0.2 0 0.2 0.4 0.6 0.8
LMy, ai =0 A=-04 1.000 1.000 1.000 1.000 0989 0.016 0996 1.000 1.000
-0.2 1.000 1.000 1.000 1.000  0.654 0573 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0999 0.048 0994 1.000 1.000 1.000
0.2 1.000 1.000 1.000  0.628 0.819 1.000 1.000 1.000 1.000
0.4 1.000 1.000 0984 0369 1.000 1.000 1.000 1.000 1.000
LMy, aﬁ =02 X=-04 1.000 1.000 1.000 1.000 0983 0.030 0.993 1.000 1.000
—-0.2 1.000 1.000 1.000 1.000  0.654 0.548 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0999 0.086 0993 1.000 1.000 1.000
0.2 1.000 1.000 1.000  0.633 0.781 1.000 1.000 1.000 1.000
0.4 1.000 1.000 0976  0.344 1.000 1.000 1.000 1.000 1.000
LMy, ai =0 X=-04 1.000 1.000 1.000  0.852 0.076 0938 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 0934 0.061 0.899 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0952 0.051 0.899 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0950 0.036 0930 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0901 0.067 0977 1.000 1.000 1.000
02 X=-04 1.000 1.000 1.000 0.826 0.103 0914 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 0917 0.086 0.870 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0948 0.079 0.864 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0921 0.052 0.890 1.000 1.000 1.000
0.4 1.000 1.000 1.000  0.896 0.070 0961 1.000 1.000 1.000
LM; O'EL =0 X=-04 1.000 1.000 1.000 0961 0.046 0910 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 0958 0.047 0.896 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0954 0.048 0.892 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0948 0.047 0902 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0950 0.048 0913 1.000 1.000 1.000
0.2 -0.4 1.000 1.000 1.000 0955 0.064 0876 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 0948 0.064 0.865 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0933 0.066 0.864 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0934 0.061 0.870 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0942 0.056 0.885 1.000 1.000 1.000
LM, aﬁ =05 A=-04 1.000 1.000 1.000 1.000  0.990 0.018 0.998 1.000 1.000
-0.2 1.000 1.000 1.000 1.000  0.658 0.577 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0999 0.049 099 1.000 1.000 1.000
0.2 1.000 1.000 1.000  0.642 0.810 1.000 1.000 1.000 1.000
0.4 1.000 1.000 0983  0.351 1.000  1.000 1.000 1.000 1.000
LM 02 =05 X=-04 1.000 1.000 1.000  0.853 0.086 0932 1.000 1.000 1.000
—-0.2 1.000 1.000 1.000 0933 0.060 0.893 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0949 0.049 0.884 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0940 0.035 0921 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0903 0.058 0974 1.000 1.000 1.000
LM, 02 =05 X=-04 1.000 1.000 1.000 0958 0.055 0.899 1.000 1.000 1.000
-0.2 1.000 1.000 1.000 0949 0.048 0.888 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0947 0.050 0.884 1.000 1.000 1.000
0.2 1.000 1.000 1.000 0949 0.046 0.897 1.000 1.000 1.000
0.4 1.000 1.000 1.000 0953 0.046 0911 1.000 1.000 1.000
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Finally, the performances of the test statistics for spatial lag dependence are summarized in

Tables 7 and 8. We focus on the (49, 7) sample for discussion. For LM;, the empirical size is 0.044, and

it is very powerful in detecting the spatial lag dependence given that OZ = p = 0. For example, FoR of

LM, is 0.987 when A = —0.4. However, as discussed in Section 3.3.3, LM, is not robust against local

misspecification, and this is confirmed by the simulation results. Given A = 0, when ai and p deviate

locally from O, the large FoRs of LM, are undesirable. For example, when A = 0 but ai =p =02,
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FoR of LM; is 0.526. This size distortion is to some extent avoided by LM;*. When A = 0 and ai takes
values 0,0.2 and p € [—0.2,0.2], FoRs of LM/ are in the range of [0.035, 0.088]. However, L);* should
be used with caution in this case, since the range of p in which LM;" provides valid size is narrow, and
this becomes even worse for the (100, 10) sample. On the other hand, the robust LM test is supposed to
be less powerful than the corresponding LM test when the nuisance parameters are correctly specified.
When ai = p = 0, LM is less powerful than L M. For example, when A = —0.4, FoR of LM is 0.987,
while that of LM is 0.809. Next, LM, tests for the spatial lag dependence in a pooled panel data model
with spatial error correlation. The empirical sizes of LM, vary in [0.037,0.055]. As A deviates from 0,
FoR increases. Moreover, as discussed in Section 3.3.3, the robust LM test in this case is the same as
LM,,, implying that LM, itself is robust against local deviation of ai from 0. This is confirmed in the
simulation results. When ai = 0.2, \ = 0, the FoRs of LM, vary in [0.060, 0.74]. Next, we discuss
LM, and LM . LM, tests for the spatial lag dependence in a random effects panel data model without
spatial error correlation. We only present the representative result when 0’2 = 0.5, results in other cases
are very similar. The empirical size of LM, is 0.035, and the FoR increases as A\ deviates away from
0. For example, FoR is 0.981 when A\ = —0.4. However, LM, suffers from size distortion when the
nuisance parameter p deviates away from 0. For example, when A = 0, p = —0.2, the FoR of LM, is
0.476, which is undesirably high. For the same case, FoR of LM 1s 0.063. However, as LM}, LM
should also be used with caution, since the range of p in which LM provides valid size is narrow, and
it becomes even worse for the (100, 10) sample. On the other hand, LM is less powerful than LM,
when p = 0. For example, when p = 0, A\ = —0.4, FoR of LM is 0.778, while that of LM,, is 0.981.
Lastly, we discuss the performance of LM,. LM, tests for the spatial lag dependence in a random effects
panel data model with spatial error correlation. The empirical sizes of LM, vary in [0.063,0.079]. As
expected, when A moves away from 0, FoR increases, suggesting its good power performance. For all of
the above tests, their performances for the (100, 10) sample follows a similar discussion. In sum, the test
statistics LM, LM, LM,,, LM,, LM, , and LM, are all useful for detecting the spatial lag dependence,
but they are suited for different assumptions about the nuisance parameters. In practice, researchers are

suggested to analyze them together to draw correct inference on .

Table 7. FoR of LM Tests for the Spatial Lag Dependence, Sample Size: (49, 7).

A=-08 —-06 —-04 -—0.2 0 0.2 0.4 0.6 0.8
LM, crﬁ =0 p=-04 1.000 1.000 1.000 1.000 0965 0221 0405 1.000 1.000
-0.2 1.000 1.000 1.000 0982 0446 0.063 0.938 1.000 1.000
0.0 1.000 1.000 0987 0591 0.044 0.693 0.998 1.000 1.000
0.2 1.000 0984  0.631 0.067 0576 0988 1.000 1.000 1.000
0.4 0.979 0.510  0.061 0.593 0992 1.000 1.000 1.000 1.000
ai =02 p=-04 1.000 1.000 1.000 1.000 0964 0285 0305 0.999 1.000
—-0.2 1.000 1.000 1.000 0968 0.505 0.071 0.892 1.000 1.000
0.0 1.000 1.000 0985  0.620 0.051 0.637 0.998 1.000 1.000
0.2 1.000 0987 0.637 0094 0526 0981 1.000 1.000 1.000

0.4 0.963 0.502  0.081 0.599 0981 1.000 1.000 1.000 1.000
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Table 7. Cont.

A=-08 —06 —-04 —0.2 0 02 04 06 08
LMy  02=0 p=-04 0.626 0318 0128 0.121 0337 0801 0995 1.000 1.000
—0.2 0.968 0855 0547 0.163 0054 0497 0983 1.000 1.000
0.0 0.999 0974 0809 0338 0035 045 0978 1.000 1.000
0.2 0.999 0991 0858 0305 0066 0649 0993 1.000 1.000
0.4 1.000 0976 0651 021 0323 0922 1000 1.000 1.000
02 =02 p=-04 0.582 0318  0.57 0153 0353 0753 0992 1.000 1.000
—0.2 0.961 0812 0510 0.81 0088 0450 0964 1.000 1.000
0.0 0.998 0963 0773 0366 0063 0421 0963 1.000 1.000
0.2 0.999 0985 0824 0324 0082 0614 0991 1000 1.000
0.4 1.000 0952 0641 0.145 0309 0904 1.000 1.000 1.000
LMy 02=0 p=-04 1.000 1000 0958 0490 0050 0484 0981 1.000 1.000
—0.2 1.000 0998 0941 0444 0037 0422 0966 1.000 0973
0.0 1.000 0998 0900 0406 0055 0371 0909 0997 0.757
0.2 1.000 0988 0862 0360 0049 0285 0769 0923 0.556
0.4 0.998 0971 0756 0263 0046 0233 0575 0766 0.366
02=02 p=-04 1.000 1.000 0978 0543 0067 0493 0990 1.000 1.000
—0.2 1.000 0999 0929 0478 0074 0446 0964 1.000 0962
0.0 1.000 0998 0924 0478 0060 0367 0934 0998 0.701
0.2 1.000 0996 0869 0338 0067 0299 0818 0946 0462
0.4 0.999 0977 0750 0294 0068 0225 0591 0772 0531
LM, o2=05 p=-04 1.000 1000 1.000 1.000 0970 0269 0291 0999 1.000
—0.2 1.000 1000 1.000 0979 0476 0063 0917 1.000 1.000
0.0 1.000 1000 0981 0591 0035 0676 1000 1.000 1.000
0.2 1.000 0984 0612 0067 0557 0989 1000 1.000 1.000
0.4 0.965 0461 0080 0629 098 1.000 1.000 1.000 1.000
LM} O’i =05 p=-04 0.577 0.285 0.130 0.137 0.353  0.779  0.991 1.000  1.000
—0.2 0.966 0823 0515 0.153 0063 0453 0972 1000 1.000
0.0 0.999 0971 0778 0328 0051 0421 0973 1.000 1.000
0.2 0.999 0983 0830 0287 0072 0642 0996 1.000 1.000
0.4 1.000 0952 0623 0103 0326 0928 1.000 1.000 1.000
LM, 0%=05 p=-04 1.000 1000 0961 0504 0064 0532 0992 1000 0998
—0.2 1.000 0999 0933 0477 0070 0484 0982 1000 0964
0.0 1.000 0997 0899 0442 0078 0438 0935 0996 0.644
0.2 1.000 0999 0918 0475 0079 0347 0818 0892 0371
0.4 1.000 0995 0855 0381 0063 0205 0460 0522 0275
Table 8. FoR of LM Tests for the Spatial Lag Dependence, Sample Size: (100, 10).
A=-08 —06 —04 —02 0 02 04 06 08
LM, o2=0 p=-04 1.000 1000 1.000 1.000 1.000 0.608 0.699 1.000 1.000
—0.2 1.000 1000 1.000 1.000 0853 0108 1.000 1000 1.000
0.0 1.000 1000 1.000 0953 0056 0975 1.000 1000 1.000
0.2 1.000 1000 0939 0068 0922 1.000 1.000 1000 1.000
0.4 1.000 0825 0102 0978 1.000 1000 1.000 1.000 1.000
ai =02 p=-04 1.000 1.000 1.000 1.000 1.000  0.660 0.581 1.000  1.000
—0.2 1.000 1000 1.000 1.000 0861 0.105 1.000 1.000 1.000
0.0 1.000 1000 1.000 0929 0082 0959 1.000 1.000 1.000
0.2 1.000 1.000 0930 0087 0889 1000 1.000 1.000 1.000
0.4 1.000 0787 0.148 0961 1.000 1.000 1.000 1.000 1.000

778
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Table 8. Cont.

A=-08 —-06 —-04 —0.2 0 0.2 0.4 0.6 0.8
LMy ai =0 p=-04 0.955 0.579  0.152  0.198 0.731 0995 1.000 1.000 1.000
—0.2 1.000 0997 0908 0316 0.101 0.893 1.000 1.000 1.000
0.0 1.000 1.000 0993 0.723 0.058 0.844 1.000 1.000 1.000
0.2 1.000 1.000 0997 0.642 0.111 0959 1.000 1.000 1.000
0.4 1.000 1.000 0946  0.128 0.704 1.000 1.000 1.000  1.000
aﬁ =02 p=-04 0.927 0542  0.175 0238 0.715 0988 1.000 1.000 1.000
—0.2 1.000 0989 0.860 0327 0.137 0.849 1.000 1.000 1.000
0.0 1.000 1.000 0994  0.684 0.093 0.798 1.000 1.000 1.000
0.2 1.000 1.000 0992 0612 0.131 0948 1.000 1.000 1.000
0.4 1.000 1.000  0.921 0.153  0.679 1.000 1.000 1.000 1.000
LM, aﬁ =0 p=-04 1.000 1.000 1.000  0.897 0.052 0904 1.000 1.000 1.000
-0.2 1.000 1.000 1.000  0.864 0.054 0.860 1.000 1.000  1.000
0.0 1.000 1.000 1.000  0.794  0.053 0.794 1.000 1.000  0.995
0.2 1.000 1.000 0997 0.712 0.055 0.679 0.994 1.000 0.883
0.4 1.000 1.000 0987 0.588 0.045 0522 0957 0993 0.624
UZ =02 p=-04 1.000 1.000 1.000  0.870 0.068 0.858 1.000 1.000 1.000
—-0.2 1.000 1.000 1.000  0.810 0.075 0.800 1.000 1.000 1.000
0.0 1.000 1.000 1.000  0.795 0.075 0.732  0.999 1.000 0.989
0.2 1.000 1.000 0993 0.679 0.070 0.630 0.993 1.000 0.888
0.4 1.000 1.000 0989 0592 0.073 0491 0951 0.993 1.000
LMy 0’3 =05 p=-04 1.000 1.000 1.000 1.000  1.000 0.648 0.634 1.000 1.000
—-0.2 1.000 1.000 1.000 1.000 0.868 0.086 1.000 1.000 1.000
0.0 1.000 1.000 1.000 0941 0.053 0975 1.000 1.000 1.000
0.2 1.000 1.000 0930 0.056 0930 1.000 1.000 1.000 1.000
0.4 1.000 0.795 0.124 0980 1.000 1.000 1.000 1.000 1.000
LM} O’i =05 p=-04 0.941 0.531 0.132 0227 0.726 0995 1.000 1.000 1.000
—0.2 1.000 0995 0.884 0305 0.105 0.874 1.000 1.000 1.000
0.0 1.000 1.000 0995 0.702 0.055 0.813 1.000 1.000 1.000
0.2 1.000 1.000 0999 0.624 0.100 0961 1.000 1.000 1.000
0.4 1.000 1.000 0940 0.137 0.731 1.000 1.000 1.000 1.000
LM, aﬁ =05 p=-04 1.000 1.000 1.000  0.884 0.062 0992 1.000 1.000 1.000
—-0.2 1.000 1.000 1.000  0.858 0.076 0.880 1.000 1.000  1.000
0.0 1.000 1.000 1.000  0.830 0.084 0.812 1.000 1.000 0.979
0.2 1.000 1.000 1.000  0.759 0.076 0.696 0.994 1.000 0.761
0.4 1.000 1.000 0994  0.647 0.070 0.497 0925 0966 0.746

5. Empirical Illustration

In this section, we revisit the empirical example in Baltagi and Levin (1992) [32]. For the purpose
of illustrating usefulness of the test statistics in our framework, we estimate a static demand model for
cigarettes as in Elhorst (2014) [25]. The data is obtained from the Wiley website, it is a panel data of 45
U.S. states and Washington D.C. over the period of 1963-1992.* We estimate the regression equation

InCy =AWInCy+ By + 1 In P, + BoInY; + ¢,
€ = pMe, + p+ vy,

fort =1,---,T. In the above specification, C} is the vector of average cigarettes consumption (in packs)

per capita (14 years and older) for all the states in a given year . P; is the corresponding price (per pack)

4 The data for Colorado, Oregon and Pennsylvania are not available.
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vector in year ¢, with 3, capturing the price effect on the demand for cigarettes. Y; is the vector of per
capita disposable income in year ¢, with 5 capturing the income effect on the demand for cigarettes. In
the regression analysis, in addition to the standard price and income effects, we are particularly interested
in whether and how the consumption of cigarettes in one state is related to those of its neighboring states.
This is reflected by the spatial lag dependence structure (or the corresponding parameter \). Further, we
use the error component structure to allow for individual random effects and spatial correlation in the
error term. For the spatial weights matrices, we choose two specifications and try different combinations
of them. One is the standard row-normalized first-order rook contiguity matrix. The other one is the
row-standardized border length weights matrix as suggested in Debarsy et al., (2012) [33].°

Since we are particularly interested in whether the consumptions of cigarettes are spatial correlated
and how they are correlated, we plot the average consumption of cigarettes (in packs) per capita over
the 30 years for all the states in Figure 1. On the one hand, we see that the cigarette consumptions in
some states are negatively correlated with those of its neighboring states. For example, Utah, which has
a high percentage of Mormon population,® has the lowest consumption of cigarettes, with the average
consumption to be 67.9 packs per capita per year. In sharp contrast, the consumption of cigarettes in
Nevada is nearly 2.6 times of that of Utah, and this could be attributed to the fact that Nevada is a highly
tourist state with many casinos. The cigarette consumption in Utah is negatively correlated with those
of its neighboring states. This similar pattern also hold for Nevada, New Mexico, Kentucky, and New
Hampshire. On the other hand, we see that the consumptions of cigarettes among many other states tend
to be similar and thus positively correlated, examples include Iowa, Wisconsin, Pennsylvania, Alabama,
Georgia, and so on. The overall spatial dependence is not clear and we will use the formal regression

analysis to assess it below.

-

Figure 1. Average Consumption of Cigarettes (in packs) per Capita per Year by States,
1963-1992.

5 The data for border length is obtained from Holmes [34].
6 According to the 2010 United States Census, the Mormons represent 62.1% of Utah’s total population.
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Before the regression analysis, we first perform the diagnostic procedures and the results are
summarized in Table 9. The first row in Table 9 shows that the joint null hypothesis H{ is strongly
rejected, thus the classical pooled panel data model not appropriate for this data set, and the OLS
estimator is biased. The next four rows show that the random effects model is strongly favored against
the pooled panel data model, regardless of the assumptions imposed on the spatial parameters. Next,
when we test for the spatial error effect and the spatial lag effect jointly, the values of LM, and LM,
show that the null hypothesis p = A = 0 is rejected no matter we assume ai = 0 or allow for the case
ai > (). This points us to a random effects model with at least one type of spatial effects. In the next
six rows, we focus on testing for the spatial error correlation. Although these test statistics unanimously
reject the null hypothesis p = 0 in favor of a model with spatial error correlation, we point out that
the appropriate statistics should be LM, LM, and LM, given the presence of random effects but not
spatial lag dependence yet at this stage. Finally, we test for the spatial lag dependence, the results in
the last six rows suggest rejecting the null hypothesis of no spatial lag dependence, although there is a
small value of LM;*. Given that the random effects and the spatial error correlation are present by results
above, we point out that the appropriate statistics should be LM;*, LM, and LM,. From the estimation
results in Table 10, the estimated p is between 0.353 and 0.622 and thus it is not proper to consider such
value of p as local deviation from 0. As a result, the robust LM tests do not apply. We are left with LM,
and it points to the presence of spatial lag dependence. In the following, we first estimate the random
effects model with spatial error correlation using two types of spatial weights matrices, then we add in
the spatially lagged dependent variable as suggested by our test statistics.

The estimation results are summarized in Table 10. The first column provides the OLS benchmark
estimation result for comparison purpose. Although it is biased, all the parameter estimates have
expected signs. Price has a negative effect on the consumption of cigarettes per capita, and the disposable
income per capita has a positive effect on the consumption of cigarettes per capita, which are consistent
with the standard consumption theory. In Columns 2 and 4, we include the spatial error correlation for the
two different spatial weights matrices. Compared to the OLS estimates, the price and income elasticity
all become smaller in magnitude but have the same signs. The estimated spatial error correlation are
positive as 0.353 and 0.364, which do not differ much for the two different spatial weights matrices.
In Columns 3, 5, 6, and 7, we estimate the full model with different combinations of the weights
matrices. The estimates for the spatial lag dependence is negative and statistically significant, which
is consistent with our diagnostic testing results. We thus conclude that the full model is the more
appropriate specification, and overall we find that the negative correlation dominates in the spatial

dependence among cigarette consumptions.
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Table 9. LM Testing Statistics.
W = Rook W = Border W = Rook W = Border
M = Rook M =Border M = Border M=Rook
Joint Test LM, 12559 *** 12542 *** 12532 *** 12555 ***
Testing for Random Effects
LM, 12471 *** 12471 *** 12471 *** 12471 ***
LM, 12207 *** 12260 *** 12260 *** 12207 ***
LMy 12471 *** 12530 *** 12471 *** 12530 ***
LM, 1354.7 *** 1662.7 *** 1573.1 *** 1457.8 ***
Testing for Spatial Effects
Spatial Error and Lag
LMy 88.13 *** 70.78 *** 60.82 *** 83.76 ***
LM, 172.81 *** 188.36 *** 174.62 *** 143.68 ***
Spatial Error
LMy 76.35 *** 60.72 *** 60.72 *** 76.35 ***
LMy, 51.78 *** 42.07 *** 24.47 *** 55.05 ***
LM; 32.39 *** 23.68 *** 10.33 *** 38.02 ***
LM, 138.96 *** 156.08 *** 156.08 ***  138.96 ***
LM; 126.82 *** 126.41 *** 128.63 *** 81.72 ***
LMy, 94.01 *** 112.90 *** 99.03 *** 58.83 ***
Spatial Lag
LM, 36.35 *** 28.71 *** 36.35 *** 28.71 ***
LM} 11.77 *** 10.06 *** 0.10 7.41
LMy, 1147.00 ***  1385.40 ***  1028.20 ***  580.53 ***
LM, 45.99 *** 61.95 *** 45.99 *** 61.95 ***
LM} 33.85 *** 32.28 *** 18.53 *** 4.72 ***
LM, 133.96 *** 283.36 *** 108.62 *** 80.05 ***
*p<0.1;% p <0.05; " p < 0.01.
Table 10. Estimation of the Cigarette Demand Function.
Model OLS MLE MLE MLE MLE MLE MLE
W = Rook W = Border
(W =M = Rook) (W =M = Border) ( )« )
(M =Border) (M = Rook)
Bo 2.825*** 2918 *** 4267 ***  2.949*** 3737 *** 4.634 *** 3.227 ***
(0.098) (0.086) (0.241) (0.087) (0.196) (0.261) (0.169)
51 —0.773*** —0.739 *** —0.867 *** —0.729*** —0.821***  —0.851 *** —0.788 ***
(0.026) (0.021) (0.026) (0.021) (0.027) (0.025) (0.030)
Bg 0.586 ***  0.559 ***  0.645***  0.551***  0.616 *** 0.628 *** 0.595 ***
(0.022) (0.018) (0.022) (0.018) (0.022) (0.022) (0.024)
A —0.329 *** —0.204 ***  —0.388 *** —0.088 **
(0.044) (0.039) (0.044) (0.038)
0 0.353 ***  0.586 ***  0.364 ***  0.510 *** 0.622 *** 0.419 ***
(0.030) (0.034) (0.028) (0.034) (0.032) (0.039)
32 0.152***  0.140 ***  0.154***  0.145*** 0.140 *** 0.149 ***
(0.015) (0.014) (0.016) (0.015) (0.014) (0.015)
o2 0.075***  0.069 ***  0.073***  0.071*** 0.067 *** 0.074 ***
(0.001) (0.002) (0.001) (0.002) (0.002) (0.001)
log-likelihood 450.94 1489.2 1514.7 1502.4 1514.6 1537.9 1491.7

*p<0.1;" p <0.05;, " p < 0.01.
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6. Conclusions

In this paper, we propose a panel data random effects models with both spatially correlated error
components and spatially lagged dependent variables. We consider diagnostic testing within such a
framework. We first derive the joint LM test for the individual random effects, the spatial error correlation
and the spatial lag dependence. In practice, applied researchers should first consider this joint test. If
the joint null hypothesis cannot be rejected, it is reasonable to adopt the classical pooled panel data
model. Otherwise, either the individual random effects, or the spatial error correlation, or the spatial
lag dependence must be taken into consideration. Next, we derive a wide range of LM tests for the
individual random effects and for the two spatial effects separately. In addition, in order to guard against
possible local model misspecification, we apply the Bera and Yoon (1993) [19] principle and construct
robust LM tests in some cases. These test statistics complement each other and should be used together
in performing diagnostic test to search for the most appropriate model. A small Monte Carlo experiment
is carried out and the size and power performances of these test statistics are satisfactory. We further use
the cigarette demand data set in Baltagi and Levin (1992) [32] to illustrate our testing procedures.

Some future research directions can be considered. First, for the model specification of spatially
correlated error components used in this paper, although it allows for both spatial spillovers of permanent
and temporary shocks, it does not permit different intensities of these two shocks. It would be of interest
to relax this assumption and further generalize our model (see Baltagi et al., 2013 [12]). Second, one
can borrow the ideas in Baltagi and Yang (2013a, 2013b) [15,17] to modify our test statistics in order
to remedy distributional misspecifications in finite sample, sensitivity to spatial layout, or to be robust
against unknown heteroskedasticity.
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Appendix

In the appendices, we provide detailed derivations of the score vector, information matrix and the LM

test statistics in each case.
Appendix A

In this appendix, we provide formulae of the score vector and the information matrix for our general
model specification. Let By = M(Iy — pM)™Y, Ry = W(Iy — pM)™Y, Ry = W(Ixy — AW)~! and
Ry = (In — pM')(Iny — pM). The score vector is

5 XA Ae
- ) “Ttr(Ry) + A (I @ M)e
OLO) _ | 2| —Tu(Ry) + e’A’Q‘lA(IT o W)y
86 NT 1 Al ’
Saﬁ _2(TUZ+03) + 2(T<72—i-z72 z€ A (JT ® [N)A
So2 _2(TUJ,2:[+03) o N(Qjc;% 2 /A/892 A

where € = By — X 3. Let Z be the information matrix, that is, Z = —E [0?L(8)/0§0¢']. Then after some
routine calculation, the elements of Z are given by

Top = X'AQTAX, Ty, = 0, Igy = X'AQA(Ir @ W)BT'X B, Loz = 0 Lsez = 0,
Ipp = Ttr(R1R1 + RlRll), Ip)\ = Ttr(RgRl) + Ttr[R3(]N — pM)_lRll(IN — pM)],

T 1 T-1
tr(Rl), Ipag = ( ) U'(Rl),

7 = ——— +
POL 2 2 2 2 2
To, + 0 To,+ o, o

Ty = Ttr(RsR3) + Ttr(RyRs Ry ' RY) + (B XB) (Ir @ WYAQ ' A(Iy @ W)B1 X 3,

T 1 T-—-1
Taat = T 4 g2 (P Dot = (Tag ) o)
NT? NT N N(T -1
Tooor = ——————=, L2 = ——————=, L2,2 ( )

Bh T A(ToZ + 022 T T 3T 1022 ot T ATo2 1022 | 2(02)

Due to the large number of test statistics in this paper, it turns out to be convenient to introduce some

general notations for reference and easy exposition. Let

SN A @A (Jr®Iy)Ac
2, = AN (Ir @ M)e, 2, = A ALy @ Wy, 2y = ° (Tg nAE

v

where € = By X B and 121\, B , (AZ, B , 02 are restricted MLEs of A, B, (), 3, 02, respectively. Next, define

D=7 (I @ W)AQ ATy @ WG, 7 = T2(bybs — b2) + Thyd,
B=7Ir@W)A [ﬁ— —QTAX(XTAQTTAX)TIXTAQT ATy @ W,

where § = B1XJ3, b, = tr(M'M + MDM), by = tr(M'W + MW), by = tr(W'W + WW). Finally, let

B NTV, + N& — 2703 7 NG, — 262
Tby(NTOs + N& — 2T02) — N(TV;)?’ (NO, — 262)(TO, + ) — NT62'
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where 0 = t[(M + M')Rs], 9o = t(RsRy + RyR)), 05 = t(Ry), 6 = tr (Elzle +1§11§3),
/9\2 = 1r <W§1 + ﬁgﬁll(]]\f — ﬁM)), 53 = tr(ﬁl), 54 = tI'(WW) + tr <§2§12§4>, and }/%1, ﬁg, ﬁg, §4
are restricted MLEs of R, Ry, R3, R4, respectively.

For notational convenience in deriving many LM test statistics in Appendix B, we write the general

information matrix as
Tsg Isp Ipn ZLpoz Lpoz
L,y ZLpx ngﬁ T)»2

v

I= : : Ty I)\Uﬁ I)\a?, )
To2g2 Ly2,2
wu uCu
Loza
and partition it into
I T
=" TP, where Iy = Zpy.
121 122

Now

-1
Lop Ipn Ipoﬁ Tyo2 IPB’I,BB’
T T 2 Ty 2 s /Ifl,
= W T e (Iﬁp Zsx Zso2 Iﬁaz)
. . T o2 T 2o T 25T # v
Tu%u %% ouB'=Ba
o202 Loz Loy

= K v = j
=dJ,

\70302 jaﬁa%

' \70202

vov

where Js, s, = Lo,y — Lo, L5 Lps, for 51,55 = p, A, 07, or oz Further partition 7 into

j _ \711 \.712 ’ where jll _ jpp jp)\ .
T T2 - JIa
Let K = Ji1 — JioJay Jo1 and L = Ty — Jo1J;; " Ji2. thus the upper left 2 by 2 submatrix and lower

right 2 by 2 submatrix of 7~ are K, L7}, respectively.” Moreover, we use Z-,  to denote the term in
7! with the same location as Z;, ,, in Z.

Appendix B

In this appendix, we provide detailed derivations for all of the LM test statistics.

. . . . . A A
7 For computing the inverse of a partitioned symmetric matrix, if A = < 1 12 , then

A21 A22

A-L = (A1p — AjaAgy) Agy) ™t —AT A2 (Mg — Agi AT AR) T
—(Aga — Aoy A A L) T A AL (Agz — Aoy AT A0) ™t
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B.1. Derivation of LM,

The restricted MLE under H{ is essentially the OLS estimator, i.e., B = (X' X))~ 1 X"y,
’a\fw = (€.)/(NT), where €, = ¥y — Yu, Yo = X Ba. The score vector under H{ and evaluated at
the restricted MLE is

OL(9)

WL} = < 0 /Z\p,a 2\/\,a ﬁgoﬁ,a 0 )7
where 2, = [€,(Ir @ M)&,]/52 0, B0 = [L(Ir @ W)y]/52 40 B0 = [Cu(Jr @ In)&] /52, — N. After

straightforward calculation, the information matrix under /§ and evaluated at the restricted MLE is

o0 Mmoo o
Tby Tbs 0 0
7, = - Thy+ 7, 0 0 :
NT? NT
262,72 2(62.)?
NT
2(c2 )2

where U, = [J,(Ir ® (W'W))7.]/5%,,. In this case,

Th Tb, 0 0
~ 2
- Tbs+ W, 0 0 Tby Tby 2(%72T )2 2(éVT)2
ja = . X NT? NT 7lCa - ~ 7£a = o ]\1[)7763 )
26207 203, - T+, e
NT
2(63,4)?

where &, = [7,(Ir ® W')(Iny — X(X'X)7'X') (I @ W)g,] /07 ,. The first term of (£,)" is easily
calculated to be 2(c7 ,)*/[NT(T — 1)]. Also, we have

() 1 Tbs +w, —Tby
—Tby Thy

Ta

) , where 7, = T?(bbg — b3) + Tby&,.

Finally, the joint LM test statistic is given by

Ths+ @y  Th_o  2Thy T
LMa = ?—aZp’a + ?—GZ)\,(L — ?—azp@Z)\,a + mzagﬂ.

B.2. Derivation of LM,

The score vector under f; and evaluated at the restricted MLE is
OL(0)

o)
52 = (@AAZ)/(NT), 6=y — o Jo = XB,, and 3., A, are the restricted MLEs of 3, A under Hg,

v,e

o= ( 00 5222, 0 ) , where 2, , = [€LA'(J; ® Iy)Ae]/5%, — N,

v,c

respectively. After a little calculation, the information matrix under /1§ and evaluated at the restricted

MLE is o
X'ALA.X 0

= 0 0

. v v

N T03, TO3

Telc 52 - 52 -

I = v,c v,c

¢ NT?2 NT ’

2(03.)% 2003 .)?

NT

2(63.c)°
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where 5110, 53,0 are 51, 53 evaluated under /§, respectively. Making use of the block diagonal structure of

Z. and straightforward but tedious calculation gives that 7% ., . = 2(52.)?/(NT(T — 1)). Finally, the

2 52
0h0fC

LM test statistic in this case is given by
r 22

LM, = —— 32, |
ON(T — 1) ke

B.3. Derivation of LM,

The score vector under ; and evaluated at the restricted MLE is
OL(6)

00
A (EQE;A;@)/(NT), ¢ = B,y — XB., and ., A., B, are restricted MLEs of 3, A, B under H¢,

v,e

=000 FZZze 0), whereZ,, = {LA(Jr® IN)AE]/5, - N,

v,e

respectively. After a little calculation, the information matrix under /§ and evaluated at the restricted
MLE is

X'AL A, X X' AL A (Ir@W)F.
XaeAX XA ®W )G 0 0
Uv,e Uv,e . N
s - Tw(Ry.) Tu(Ri.)
Ippﬁe Ip/\,e 52, 52,
_ 52 3 B P-1D ~  Tu(Rs.) Tu(Rs.)
Ie — . . Ttr(R37e) + Ttr<R47€R37€R476 3,6) + I/6 812) ; [ 812} - € 9
NT? NT
202 )% 2(02.)2
NT
2(c2 .)?

where 7, = E;lXBe, Ve = y(lp ® W’)A\’EA\E(IT ® W)ﬁe/ﬁie, and fppﬁ,fp%e,ﬁl,e,ﬁg,e,§4’e
are restricted MLEs of Z,,, 7,5, Ry ¢, 3, R4, under Hg, respectively. In this case, straightforward

calculation gives

= = Ttr(ﬁl 5) Ttr(]§1 e)
I I D L
pp,e pA€e 2. 52
52 5 D Dp-1Ds ~  Tu(Rze) Tu(Rs.e)
j o . TtI‘(R&e) + Ttr(R47eR37eR47e 3,6) + we 6-\% - € &12) - e
e NT? NT ’
2(62.)%  2(c2.)?
NT
2(c2 .)?

where o, = 7.(Ir ® W')A. [JNT - /AleX(X/ﬁ’eﬁeX)—lX’/Al’e} AIy @ W)3,./32,. After some
straightforward but tedious calculation, we get that the term Z2 , _ is 2(5;.)*/[NT(T — 1)]. Finally,
the LM test statistic in this case is given by

T

LM, = — 32, |
ON(T — 1) 7he

B.4. Derivation of LM/

The restricted MLE under Hg is essentially the OLS estimator. The score vector under Hg and
evaluated at the restricted MLE is
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After a little calculation, the information matrix under H, gf and evaluated at the restricted MLE is

% 0 X’Ug;@w)ﬂa 0
. Thy  Th, 0
I Thy + 7, 0
NT

362 )7

In this case, it is very easy to calculate that

5 . 15 1 ( Tbs+w, —Tb
pr.J ’)A’\’f = — 3 W > ], where 7, = T%(bybs — b2) + Ty @,
* "Z:A)\,f Ta _TbQ Tbl

Thus the LM test statistic in this case is given by

Thbs + &, Th 2Tb

o ~2 1~ 2~ ~

LM = ———— Zoo T =200 — = %paira-
Ta Ta Ta

B.S. Derivation of LM,

The score vector under H§ and evaluated at the restricted MLE is

OL(0) R

Wb:(o ijg Z,\7g 0 0),
where Z,,, = ’e’gQ;l(IT ®@ M)ey, Zhg = %ﬁ;l(]T Q@ W)y, 6, = y — XB,, and f3,, Q;l are restricted
MLEs of 3,2~ under H{, respectively. After a little calculation, the information matrix under H and
evaluated at the restricted MLE is

XX 0 XQ, (I © W), 0 0
Tb1 Tb2 0 0
7, - : : Ths + 1, 0 0 :
NT? ____NT
2(T52 ,+52,,)° 2(T2 4+02 ,)°

4 N
2To] g +05,4)" 2008 4)

where 7, = 7, (Ir @ W")Q, ' (Ir ® W)y, Jy = Xf,, and 0%, 0., are restricted MLEs of 0., o2 under

N RN w Zv
H{, respectively. In this case,

Tb1 TbQ 0 0
Ths + O, 0 0
T, = ‘ ) ___NT? S,/ — ’
2(152 , 452 ,) 2(To% ;402 4)?

N + N(T-1)
2(T52 402 )2 2(02 ;)2

where &, = 7, (Ir © W) [ﬁg_l — Q;lX(X’ﬁng)_lX’ﬁg_l] (Ir ® W)y,. It is easy to calculate that

1 ( Ths+3, —Tb ~ ~
(Kg)il = 7/:_ ( 31—_;&@ h 2 > s where Tg = Tz(blbg — bg) + Tblwg.
g - 2 1
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Finally, the LM test statistic in this case is given by

LM, — Mg2 T_bl32 _ @g >
g — =~ p.g ~ “A\g ~  *p.grAg:
Tg Tg

B.6. Derivation of LM,

The restricted MLE under H[* is essentially the OLS estimator. The score vector under H{* and
evaluated at the restricted MLE is

LD, (05, 0)

The information matrix under H! and evaluated at the restricted MLE is simply

Ih == . Tb]_ O 9
NT
2(63,0)°
In this case, we simply have Ipﬁ;, h= Tibl, and thus the LM test statistic is given by
1
LMy = —72° .
h Tby “pa

To derive LM, we make use of the Bera and Yoon (1993) Principle that LM,y = LMy + LM;Z, where
LMy denotes the joint LM test for ¢, ¢, LM, denotes the marginal LM test for ¢, while LM denotes
the robust LM test for ). Thus it can be easily deduced that

Tb3 + @CL ~ Tb2 ~ 2
LM =LM; — LM; = ———(2,, — ————2\a)"-
h f l ?a (ZP7 Tbg _'_waz)\y )

B.7. Derivation of LM,

The score vector under H; and evaluated at the restricted MLE is

OL(d - 1 ~
%h - ( 0 %, 00 > , where z,; = ?a(h ® M)e;,
62, =¢&/(NT), ¢ = By — X B;, and B;, B; are restricted MLEs of 3, B under Hi, respectively. The

,2

information matrix under H and evaluated at the restricted MLE is

X'X 0 X' (Ir@W)gs 0
av,i av,i
Tb1 Tlglyi 0
:Z‘-Z et ~ Iy
-~ T’ngyi )
TOy, +v; ==
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where 7; = E{lX@, v = gi(Ilr @ (W'W))5i /57 4,

V14, V9,4, Us,; are U1, Vg, U3 evaluated at the restricted

MLE under H, respectively. Straightforward but tedious calculation gives that

NTVs; + N©; — 2102,

’ Tbl(NTﬂzﬂ + Nwi — 2T19§7z) - N(Tﬁ17i>2

where ©; = 7 (Ir @ W) [Iny — X (X'X) ' X'|(Iy @ W)y; /7, ;. Finally, the LM test statistic in this case
is given by
LM; = 22,

B.8. Derivation of LM,

The score vector under H and evaluated at the restricted MLE is

OL(5)

L (0 5 0 0). s =20 e

g =y—X Ej and Bj, @;1 are restricted MLEs of 3, Q™! under Hg , respectively. The information matrix
under HY and evaluated at the restricted MLE is

XO7'X 0 0 0

T, 0 0

1; = ' ' NT? NT
2(Ts;, 402 ;)? 2(T3? 407 ;)?

N(T-1)
2T} 407 ;)? + 2(G2 )2

v,J

Thus the LM test statistic in this case is trivially given by
L
LM] = 71—b12p7j.
To derive LM ;, we again make use of the Bera and Yoon (1993) [19] Principle and it can be easily
deduced that

Ths + &, Tb ?
LM;:LMQ—Lanﬁ(A 2 A)

2pi = T2\
PsJ -~ sJ
Tj Tbg + Wy

B.9. Derivation of LM,

The score vector under HY and evaluated at the restricted MLE is

OL(6)
26

k=0 Zx 00 0), whereZ,, = &0 (Ir & M)a,
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& = Eky - X Bk Bk, Ek, ﬁ,;l are restricted MLEs of 3, B, Q! under H(’f , respectively. The information

matrix under H} and evaluated at the restricted MLE is

XX 0 XN Ir @ W) 0 0
Tb, T, 0 0
-~ ~ T{9\3,k T(T —=1)3, ;4 G0 i3
T,L927k' + Vi Ta_\Q + (/7\2 (TO' + O_ ) ~9
I, = wk v,k k k)00 k
NT? NT
2(To7, +07,)° 2(To7 ), +07,)°
N N(T — 1)

215, + e, )2+

2007

)2

where g, = B Xﬁk, vy = yk(IT ® W’)Q "It @ W)k, 0,00y are restricted MLEs of o7, 07
under HO, and 191 s 192 s 193 L are 191, 192, 193 evaluated at the restricted MLE under HY, respectively.
Straightforward calculation gives

Tb, Ty 0 0
- 9 T((T —1)52 , +52,]0.
T1927k + O - 3.k [( ) k k] 3.k
T%k“‘%k (TU k"‘%k) Ok
= NT? NT )
Q(Tgu,k + Uv,k)z Q(Ta\i,k + 3g,k)2
N LN
215, +00,)%  2(02,)?

where &y, = 7,(Ir @ W) [ﬁ,; — Q’IX(X’Q’lX)_lX’Q’l] (It @ W) Next, we need to calculate
the (1, 1)th element of (KC;,)~!. Straightforward calculation yields

Tbh, TV
(™0,
. %k’
where
- T(T — 1203 75 4(62 1)
/%\k = Tﬁzyk + C/L\)k — — -
(TG, +72,)% (@2 )*
| 2T(T - )03 4 (T + T34)52 On TP05, Mk + 202k + se)
(TG, + 02 ,)%07, (TG, + 72 ,)° ’
and
NT? NT -1
ﬁl,k ﬁzk _ Z(TU# T J )2 Q(T(/T\i’k + (/7\12)7,6)2
Mok M3k NT N N(T —1)
2Tos , +05,)% 2(T50, +375,)%  2(00,)?
2(07,)° 2157, + o, k;) _ 2(07,)°
| N NT? NT(T — 1)
B 2(07 1) 2(57,)°
CNT(T —1) N(T —1)
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Then the (1, 1)th element of (K;,)~! can be easily calculated as

: > NTOy . + Noy — 2193,
k= = = = o~ -~ :
This, — (T0,4)?  Tby(NTOay + NGy — 2792,) — N(T9, ;)2

Finally, the LM test statistic in this case is given by

‘22
LM, = &;ZM-

B.10. Derivation of LM,

The restricted MLE under H} is essentially the OLS estimator. The score vector under H| and
evaluated at the restricted MLE is

oL, (o 5. )

The information matrix under H| and evaluated at the restricted MLE is

X'X X' (Ir@W)ya 0
av,a 81%,a
1 = . Ths + 1, 0
NT
2(53,4)%’

Straightforward calculation gives that I/\AM = 1/(Tbs + &,), thus the LM test statistic corresponding to
H} is given by

1
LMy = —— 22
! Tbg + @a “ha

To derive LM}, we again make use of the Bera and Yoon (1993) [19] Principle and it can be easily
deduced that

Tb b ?
MQZMQ—MQZA?GM—f%Q.
1

Ta

B.11. Derivation of LM,,,

The score vector under " and evaluated at the restricted MLE is

OL(6 - Loaa 7
T = (00 B 0). where S = o BT Al 0 W)

52 = ?mA\;lA\m€m/(NT), €m =Y — Yms Ym = XBm, and Bm, A,, are restricted MLEs of 5, A under

v,m

H{", respectively. The information matrix under /)" and evaluated at the restricted MLE is

X'A AnX 0 X' A Ay (Ir@W)Gim 0
=2 =2

Uv,m O—U,m —~

~ ~ T0s,

: Tel,m Tg?,m 52 =
Im = R v,m s
T04,m + VU 0
NT

e

v,m
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where U, =y, (It ® W’)@ E (Ir @ W), /52 .m» and 517m, @)m, (%,m, 54,m are 51, 52, 53, 54 evaluated
at the restricted MLE under H ", respectively. Let

~

Tim Tiom XA A, X
- < 1L 12, ) , where 7y, ,,, = —————

=2
O-v,m

After some calculation, we get

~ ~ T6s,
T61 1, 105, #
-1 ~ ~ .
Toom — Lovm(Ziim)” Thom = . T04m + W, 0 )
NT
2(c2 ,,,)?

where Gy, = 7, (Ir @W') AL vy — A X (X' Al A X)X AL A (I @W ) §in /52, Straightforward
calculation gives that
- N6, ,,, — 262
I =Cn = —— _m T _
’ (NOym — 205 ,)(TOsm + &) — NTO3

Finally, the LM test statistic in this case is given by

<m’2/\ m*

B.12. Derivation of LM,

The score vector under H; and evaluated at the restricted MLE is

oL - ~
afs )\n _ ( 2 00 ) , where 3y, = &0 (Ir © W)y,

e, =y — XB,,and 3, Q! are the restricted MLEs of 3, ! under H?, respectively. The information
matrix under /1§ and evaluated at the restricted MLE is

XQ 19'¢ X’Q YIr @ W)y, 0 0
Ths + v, 0 0
I, = . ) NT?2 NT )
2(153, 402 )2 2158 4032 n)?
N N(T 1)

2(T0'2 +52 )2 + 2(c2 )

v,n

where 7, = X En, v, =y (Ir @ W’ )Q; Y(I7 @ W)y,. The LM test statistic in this case can be easily
calculated as

1
] bg —i—wnz’\’”’

where

B =TI @ WH[Q " = QX (X0 X) T X0 (Ir @ W)
To derive LM, we again make use of the Bera and Yoon (1993) [19] Principle and it can be easily
deduced that

Th (. by \°
LM = LM, — LM; = 1(z)\n—b—22p7n).

Tn 1
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B.13. Derivation of LM,

The score vector under H§ and evaluated at the restricted MLE is

~ -~

oL N
9L©) RO, (I @ W)y,

00

— —<0 Zxo 00 0>,where%\,\70

€ =y—X P, and B3, A,, - are restricted MLEs of 3, A, ! under HY, respectively. The information

matrix under f/§ and evaluated at the restricted MLE is

XAOTAX 0 XAQ1A(Ir @ W), 0 0
~ ~ B3 o T[(T-1)52 +52 ]03.0
T0:, 1050 TaaT T [((Ta,%)oi’a% o>é%]o3
T, = T4+ 7, 0 0
NT? NT
2(T83’0+8§’0)2 2(T?7\2 +z72 )
N N

2757, 0 +07,0) 2(63,0)?

~

where 7, = Xﬂo, Vo = yo([T ® W)AQ A,
a§4

527 é\3

(It @ W)Yo, © are restricted MLEs of 7., 07

evaluated at the restrlcted MLE under H, respectively.

07 UO

under H§, and «91 0 6’2 o) 93 0 04 o are 01,

A little calculation gives

0, ) T93,0 T(T—1)52 4452 ,]03,0
Tho T e (57, 457,50 ,
T+ @o 0 0
7, = NT? NT
2152, + 2 ,) 2(Ta2, + 32 ,)°
N N(T — 1)
2(152 ,+ 32, 2(c2,)

where &, = 7,(Ir ® W) A, [le - ﬁ;lﬁox(X'Egﬁglfxoxrlxﬁgﬁgl] A,(Ir ® W) Next, we
need to calculate the (2, 2)th element of (KC,)~!. Straightforward calculation yields

(1030710 _ 2T UT—1)5] o458 08 20 T(T—1)57 04570103, ,713.0 a
K, = [ T = wziidds - —mmamyms -~ —ameaesr s T\
T04,+ W,

where

o 265, | AT+ TS 25

Mo o \ | NT2(T—1) NT? NT(T — 1)

o o ) 2(03.0)" 2(97.0)°

NT(T — 1) N(T —1)
Then straightforward calculation gives the (2, 2)th element of (K,) ! as
c NT8,, — 2763,
© (NTO., — 2783 ) (T, +5,) — N(Ths,)?
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Finally, the LM test statistic in this case is given by

)
LM, = COZM.
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