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Abstract: This paper discusses nonparametric kernel regression with the regressor being
a d-dimensional β-null recurrent process in presence of conditional heteroscedasticity.
We show that the mean function estimator is consistent with convergence rate

√
n(T )hd,

where n(T ) is the number of regenerations for a β-null recurrent process and the limiting
distribution (with proper normalization) is normal. Furthermore, we show that the two-step
estimator for the volatility function is consistent. The finite sample performance of the
estimate is quite reasonable when the leave-one-out cross validation method is used for
bandwidth selection. We apply the proposed method to study the relationship of Federal
funds rate with 3-month and 5-year T-bill rates and discover the existence of nonlinearity
of the relationship. Furthermore, the in-sample and out-of-sample performance of the
nonparametric model is far better than the linear model.
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1. Introduction

The interplay of nonlinearity and nonstationarity has been an important topic in recent developments
of econometrics. Karlsen and Tjøstheim [1] and Karlsen et al. [2], respectively, discuss the asymptotics
for nonparametric estimation of autoregression and cointegrating regression when the regressor is a
β-null recurrent Markov process. Using different data generating assumptions (i.e., the regressor is a unit
root process with innovations being a linear process), Wang and Phillips [3,4] discuss asymptotics for
nonparametric estimation for nonlinear cointegrating regression models. The two frameworks have their
own advantages and drawbacks. The β-null recurrence framework generalizes the unit root framework
by incorporating more kinds of processes than the unit root process although it encounters some other
restrictions. For example, the processes need to be Markov. For more discussion of linkage and
difference of these two frameworks, we refer to [5].

The papers [1–4] focus on nonparametric estimation when the regressor is a univariate process. The
issue of estimation when the regressor is a multivariate process has received less attention. As argued by
Park and Phillips [6], the difficulty of extending the theory from a univariate regressor to a multivariate
regressor is due to the fact that the recurrence property of a higher dimensional random walk process is
different from the one dimensional random walk. Dong et al. [7] provide an intuitive example showing
that the nonparametric estimate, when the regressor is a bivariate independent random walk, is not
consistent. One way to avoid this problem is to use semi-parametric models rather than nonparametric
models. For example, Schienle [8] considers an additive model rather than a pure nonparametric model to
avoid this problem while in [9] a partial linear model is considered. However, nonparametric estimation
is still possible in the multivariate case when the regressors are not independent random walks. Gao
and Phillips [10] provide the theory of nonparametric estimation for multivariate regressors when one
regressor is a unit root process and the other regressors are stationary processes. The reason why the
model setup of [10] works in nonparametric estimation while the two-dimensional random walk does
not is due to the fact that a one-dimensional random walk together with a multi-dimensional positive
recurrent process form a 1/2-null recurrent system while the two dimensional random walk process is
null recurrent but not β-null recurrent for any β ∈ (0, 1). As discussed in [1], the β-null recurrence
property plays a vital role to guarantee validity of nonparametric estimates.

In this paper, we introduce the theory of nonparametric estimation for a multivariate β-null recurrent
system. The multivariate β-null recurrent processes include but are not restricted to the case of [10].
For example, our theory can cover the case where two regressors are both random walks but at the same
time are cointegrated which is not covered by [10]. This will be discussed in more detail in Section 2.
The cointegrated case is of importance in economics because it is well known that many macroeconomic
time series are nonstationary but cointegrated such that they are driven by a common stochastic trend.
Furthermore, in this paper, we use different mathematical techniques compared to [10]. In their paper,
the technique of local time approximation for partial sums of functionals of unit root process is used,
while in our paper, we use the Markov chain null recurrence framework.

It is well known that for the nonparametric kernel estimation for a d-dimensional stationary process,
the convergence rate is

√
Thd with h being the bandwidth. In our model, the convergence rate

is
√
n(T )hd, where n(T ) is the number of regenerations of the β-null recurrent process which
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is discussed in more detail in [1] (see also Appendix A). The difference of these two rates is
due to the fact that for β-null recurrent processes, the number of observations in a small set (we
refer to p. 376 in [1] for the definition and discussion of the small set) is OP (T βLs(T )) rather
than OP (T ) (in the stationary case), where Ls(.) denotes a function slowly varying at infinity
(cf. p. 6, [11]).

Furthermore, unlike [2], which assumes the regression error has constant variance, we allow existence
of conditional heteroscedasticity. This is important for economic or financial time series modeling
because many of these series are regarded to contain conditional heteroscedasticity (cf. [12–14]).
In [15,16], estimation of conditional variance functions in autoregressive and regression models are
discussed when the data are stationary. Wang and Wang [17] discuss nonparametric estimation of
conditional mean and variance function when the regressor is a unit root process. Our paper is different
from [17] in two ways: first, in our model, the regressor is multivariate rather than univariate; second,
we employ the Markov β-null recurrence technique which is different from the local time approximation
technique used in [17].

The rest of this paper is organized as follows. In Section 2, we introduce the model and the
nonparametric estimate; in Section 3, the asymptotic properties for the estimator will be provided; in
Section 4, Monte Carlo simulations will be conducted to examine the finite sample performance of the
estimator; in Section 5, we apply the method to estimate the relationship of Federal funds rate with
short term and long term T-bill rates; in Section 6, concluding remarks are made. To make this paper
self-contained, we provide some basic notations and theory of Markov processes, especially the β-null
recurrent processes in Appendix A. The mathematical proofs are contained in Appendix B.

Throughout this paper, all limits are taken “as T → ∞” where T is the sample size, →d denotes
weak convergence,→p denotes convergence in probability. OP (.) means stochastic order same as, oP (.)

means stochastic order less than.

2. Model and Estimation

We are going to discuss estimation for the following model

yt = g(xt) + εt, (1)

where t = 1, . . . , T , {xt} = {x1,t, . . . , xd,t}τ is a d-dimensional β-null recurrent process (see Appendix
A for a precise definition), εt = σ(xt)et with {et} being a positive recurrent process and σ(.) being a
positive function. When the data are stationary, the model (1) has been widely studied, see, e.g., [15,16]
(with univariate regressor) and [18] (with multivariate regressor). Recently, Wang and Wang [17] study
the estimation of model (1) with {xt} being a univariate unit root process. As we have mentioned in the
introduction, our paper has important differences from their paper.

The examples of univariate β-null recurrent processes with β = 1/2 include the random walk process
with the innovation having second moment (cf. [19]); the threshold unit root model (cf. [20]) with
arbitrary behavior in a compact set and unit root behavior outside the compact set. Moreover, under
some regularity conditions, it has been shown that several multivariate Markov processes are β-null
recurrent. For example, when d = 2, the following models of {x1,t, x2,t} are 1/2-null recurrent:



Econometrics 2015, 3 268

• Example 1: {x1,t} is a 1/2-null recurrent process and {x2,t} is a positive recurrent process
independent of {x1,t}. This is proved by Lemma 3.1 of [2]. In fact, the independence assumption
of {x1,t} and {x2,t} can be relaxed to asymptotic independence. We refer to Example 4.1 of [2]
for more discussion of this.
• Example 2: {x1,t} and {x2,t} are both unit root processes and cointegrated. More specifically

xt = Axt−1 + et,

where {et} is a bivariate i.i.d. process satisfying some regularity conditions, A is a 2 × 2

matrix having one eigenvalue equal to 1 and the other eigenvalue with absolute value less than
1. Myklebust et al. [5] show that in this model, {xt} is 1/2-null recurrent.
• Example 3: {xt} can be threshold cointegrated process. Consider the model

xt = Axt−1I(xt−1 ∈ Cc) +Bxt−1I(xt−1 ∈ C) + et,

where C is a compact set in R2, A is a 2× 2 matrix having one eigenvalue equal to 1 and the other
eigenvalue with absolute value less than 1, B is an arbitrary matrix and {et} is a bivariate i.i.d.
process satisfying some regularity conditions. Cai et al. [21] prove that {xt} is 1/2-null recurrent
under this model setup.
• Example 4: {xt} is generated from x2,t = f(x1,t) + ut, with {x1,t} being a 1/2-recurrent process

and {ut} being an i.i.d. sequence and independent of {x1,t}. This is the nonlinear cointegration
type model of [2].

Remark 1: The cases discussed can be extended to dimension higher than 2. For example,
Myklebust et al. [5] show that a d-dimensional VAR(1) model is 1/2-null recurrent if the autoregressive
matrix has one eigenvalue equal to 1 and the other eigenvalues with absolute values less than 1. By
Theorem 2 of [5], it is shown that one-to-one transformation of a β-null recurrent process is also a β-null
recurrent process.

Remark 2: We can see that the model of [10] is related to Example 1. Our methodology can be applied
to other models listed above.

We propose to estimate the functional form g(x) at (x1, · · · , xd) by the conventional local constant
method through minimizing

1

T

T∑
t=1

(yt − α)2K(
xt − x
h

) over α = g(x1, · · · , xd), (2)

whereK(xt−x
h

) = Πd
i=1ki(

xi,t−xi
h

) with ki(.) being univariate kernel functions and h being the bandwidth
parameter1.

1 In this paper, we use same bandwidth for different regressors. This is a little bit restrictive in practice. We leave the case
of different choices of bandwidths for different regressors to future research.
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Equation (2) implies the resulting estimate is given by

ĝ(x) =

∑T
t=1K(xt−x

h
)yt∑T

t=1K(xt−x
h

)
. (3)

So that we have

ĝ(x)− g(x) =

∑T
t=1K(xt−x

h
)(g(xt)− g(x))∑T

t=1K(xt−x
h

)
+

∑T
t=1K(xt−x

h
)εt∑T

t=1K(xt−x
h

)
(4)

≡ I1 + I2,

where I1 and I2 are respectively the bias and variance terms for the nonparametric estimate.

3. Asymptotic Theory

To study the asymptotics for the estimate (3), we need to introduce some technical assumptions.

A.1. {xt} = {x1,t, · · · , xd,t} is a d-dimensional Harris β-null recurrent Markov chain. Let πs(.) be
an invariant measure of the recurrent process admitting a locally Lipschitz continuous density ps(.)

which is locally bounded. σ(.) is a locally bounded, positive and Lipschitz continuous function such
that for a vector x, there exists a constant C such that when y is in a neighbourhood of x, we have
| σ(y)− σ(x) |< C ‖ x− y ‖, where ‖ . ‖ is the Euclidean norm. {et} is an i.i.d. sequence independent
of {xt} with E(e1) = 0, E(e21) = 1 and E(|e1|4+δ) <∞ for some δ > 0.

A.2. For any given x, g(x) is twice continuously differentiable and the second order partial derivatives
are locally bounded and Lipschitz continuous, i.e., | ∂2g(x)

∂xixj
− ∂2g(y)

∂xixj
|< C ‖ x − y ‖ when y is in a

neighbourhood of x, i = 1, · · · , d and j = 1, · · · , d.

A.3. For i = 1, · · · , d, each ki is a symmetric, nonnegative and bounded probability density function
with compact support. Furthermore, the support of the kernel functions are small sets.

A.4. h → 0 as T → ∞, u(T )hd → ∞ as T → ∞, and h2(
√
u(T )hd) → 0 as T → ∞, where

u(T ) = T βLs(T ), see Appendix A (cf. [1]), which is associated with n(T ), where n(T ) is the number
of regenerations for the null recurrent Markov chain.

Remark: Assumption A.1 restricts the regressors to be a β-null recurrent system with some of the
examples having been given in Section 2. The assumption on the error term is quite common in the
literature, see, e.g., [18]. As shown in Lemma 3.1 of [2], the compound process {xt, et} is also a β-null
recurrent process. It is possible to relax the assumption on {et} such that endogeneity and autocorrelation
are involved by applying some results in [2]. For the current paper, we use this assumption for illustrative
purpose. Assumptions A.2 and A.3 are often used in nonparametric kernel estimation problems. We
assume the support of the kernel function to be compact and a small set as in [1]. The bandwidth
restriction in Assumption A.4 ensures that the nonparametric estimator is consistent and the estimation
bias converges to 0 in probability.

To derive the asymptotic theory for the nonparametric estimator, we need the following three lemmas.
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Lemma 1. Under assumptions A.1–A.4,

1

n(T )hd

T∑
t=1

K(
xt − x
h

)→p ps(x).

Remark. Lemma 1 shows that the denominator of the nonparametric estimator converges to an
invariant density of the null recurrent process which is different from the positive recurrent case where
the denominator converges to the probability density of the process. In Example 1 of Section 2,
ps(x) = ps1(x1) × ps2(x2), where ps1(x1) is an invariant density of {x1,t} and ps2(x2) is the (unique)
invariant stationary density of {x2,t} .

Lemma 2. Under assumptions A.1–A.4,

1√
n(T )hd

T∑
t=1

K(
xt − x
h

)εt →d N(0, ps(x)σ2(x)

∫
K2(u)du),

where N(., .) denotes a normal variable and
∫
K2(u)du = Πi

∫
k2i (v)dv.

Lemma 3. Under assumptions A.1–A.4,

1

n(T )hd

T∑
t=1

K(
xt − x
h

)(g(xt)− g(x)) = OP (h2).

After proving Lemmas 1–3, we can derive the asymptotic distribution for ĝ(x) − g(x). We have the
following theorem

Theorem 1. Under assumptions A.1–A.4,√
n(T )hd(ĝ(x)− g(x))→d N(0, p−1s (x)σ2(x)

∫
K2(u)du).

Remark 1. In this theorem, stochastic normalization is used. As suggested by Equation (A.3) in
Appendix A, we also have√

u(T )hd(ĝ(x)− g(x))→d MN(0,M−1
β (1)p−1s (x)σ2(x)

∫
K2(u)du),

where MN(.) denotes a mixed-normal variable. See also the discussion in [1].

Remark 2. Combining this theorem and Lemma 1, we have√√√√ T∑
t=1

K(
xt − x
h

)(ĝ(x)− g(x))→d N(0, σ2(x)

∫
K2(u)du).
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This self-normalization quantity is the same as that used in [2].
∫
K2(u)du is known when a specific

kernel function is used2. So that for statistical inference purpose or construction of confidence band, we
need to estimate σ2(x).

In [15,16], different methods for the variance estimation are proposed. Similar to [4] and [17], we
estimate this quantity by a localized version of the usual residual-based method, i.e.,

σ̂2(x) =

T∑
t=1

(yt − ĝ(x))2K(xt−x
hσ

)

T∑
t=1

K(xt−x
hσ

)

, (5)

where hσ is another bandwidth. This is a two-step estimator which corresponds to local constant
regression of the square of the residuals on the regressors. To investigate Equation (5), we impose
the following assumption on hσ.

A.5. hσ satisfies same restrictions as h in Assumption A.4.

Then we have following theorem.

Theorem 2. Under assumptions A.1–A.5,

σ̂2(x)→p σ
2(x).

Remark 1. Theorem 2 shows that the estimator is consistent. In this paper, we focus on the mean
function estimation. The investigation of more efficient estimation of σ2(x) (cf. [16]) is left for future
research.

Remark 2. Combining Theorem 1 and Theorem 2, and using the Slutsky theorem, we have√ ∑T
t=1K(xt−x

h
)

σ̂2(x)
∫
K2(u)du

(ĝ(x)− g(x))→d N(0, 1). (6)

Thus we can construct the 95% confidence interval for the mean function estimator as

ĝ(x)± 1.96×

√
σ̂2(x)

∫
K2(u)du∑T

t=1K(xt−x
h

)
. (7)

4. Monte Carlo Simulation

In this section, we conduct Monte Carlo simulations to evaluate the finite sample performance of
the nonparametric estimator. We focus on the case where d = 2. The performance of nonparametric
estimation is evaluated by the root mean squared error (RMSE), which is defined by:

RMSE =

√√√√ 1

N

1

T

T∑
t=1

N∑
n=1

(ĝ(x1,tn , x2,tn)− g(x1,tn , x2,tn))2, (8)

2 For the Quartic kernel used in the Monte Carlo simulation, it is equal to ( 57 )
d.
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where xi,tn with i = 1 or 2 denotes the observation at time-t in the n-th replication with total replication
number N = 1000. For both variables, the Quartic kernel (i.e., k(u) = 15

16
(1 − u2)21(|u| ≤ 1)) is used.

It is well known that the kernel selection plays little role in performance of nonparametric estimation.
Bandwidth selection plays an important role in the performance of nonparametric estimates such that a
large bandwidth may lead to large bias but small variance and vice versa. From the theoretical analysis,
we know that the variance of the estimator is of order (T βLs(T )hd)−1 and the square of bias is of order
h4. So that the optimal bandwidth minimizing the mean square error (MSE) for the estimator should be
of order (T−βL−1s (T ))

1
4+d .

In the simulation, we concentrate on the case β = 1/2 and d = 2, so that we report the simulation
results with bandwidth being cT−1/12 with some pre-specified values of c. We also report the results
when h = h∗, with h∗ chosen by the leave-one-out cross validation method, which is widely used when
the data is positive recurrent (cf. p. 50, [22]). From the simulation results below, we can find that the
method performs quite well even when the regressors are null recurrent.

Specifically, we consider following models:

Model 1:
{x1,t} ∼ i.i.d.N(0, 1),

x2,t = x2,t−1 + ut,

with {ut} ∼ i.i.d.N(0, 1)

yt = g(x1,t, x2,t) + εt,

where {εt} ∼ i.i.d.N(0, 1) and is independent of {x1,t} and {x2,t}. In this model, {x1,t} is i.i.d.,
{x2,t} is a random walk and {xt} is a 1/2-null recurrent process because it is a special case of
Example 1 in Section 2 (it is also a special case of [10]). We let g(x1, x2) = x1 + 1

1+x22
or

g(x1, x2) = x1 × 1
1+x22

. The results for Model 1 are summarized in Table 1.

Table 1. RMSEs for Model 1.

Functional Form c T = 200 T = 400 T = 800

1 0.3707 0.2996 0.2427
2 0.3046 0.2678 0.2357

g(x1, x2) = x1 +
1

1+x22
3 0.4104 0.3777 0.3454

4 0.5490 0.5131 0.4770
h∗ 0.3183 0.2629 0.2192

1 0.3636 0.2915 0.2360
2 0.2456 0.2071 0.1765

g(x1, x2) = x1 × 1
1+x22

3 0.2295 0.2010 0.1750

4 0.2425 0.2111 0.1818
h∗ 0.2471 0.2054 0.1744

From Table 1, we can see that because of the trade-off between bias and variance, either a too large or a
too small bandwidth will make the estimator less precise by the RMSE criterion. The bandwidth selected
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by the cross validation method balances the bias and variance and performs reasonable especially when
the sample size is large.

To further assess the finite sample approximation, we compare the normalized quantity in
Equation (6) with the standard normal density. We compute the quantity at [x1 x2] = [0 0], the
sample sizes are respectively 200, 400 and 800, the bandwidth used is 2T−1/12, the functional form
is g(x1, x2) = x1 × 1

1+x22
, the variance is 1 (we use the true function of the variance rather than the

estimated quantity), and the replication number is 1000.
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Figure 1. In (a) we compute

√∑T
t=1K(

xt−x
h

)∫
K(u)2du

(ĝ(x)− g(x)) at point [0 0] in each replication;

in (b) we compute the normalized quantity in

√∑T
t=1K(

xt−x
h

)∫
K(u)2du

(ĝ(x)− g(x)) at the median of

each replication. The number of replications is 1000.

From Figure 1a above, we can see that the approximation to normality is quite good. However, this
is not always the case. For other choices of points or functional forms for evaluation, the performance
may be much worse. For example, we find that when the true functional form is g(x1, x2) = x1 + 1

1+x22
,

there is a systematic bias in the estimation when the evaluation point is [0 0]. This phenomenon looks
strange at first glance, however, it is typical in the situation when the regressors are not positive recurrent.
When the regressors are null recurrent, the simulated realizations may cover very different regions of the
x-axis. Hence, for a fixed evaluation point, for some replications, there may be many observations in the
neighbourhood while for other replications, there may be few observations (see more discussion in [1]).
Figure 1b provides the finite sample approximation of the quantity using different evaluation points for
different replications, i.e., for each replication, the evaluation point is the median of the observations.

In the second model, we assume {xt} is a cointegrated process. Specifically, the model is:

Model 2:
xt = Axt−1 + ut,

with {ut} ∼ i.i.d.N(0,Σ) with Σ =

(
1 0

0 1

)
, A =

(
3/4 1/4

1/4 3/4

)
.

yt = g(x1,t, x2,t) + εt,
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where {εt} ∼ i.i.d.N(0, 1) and is independent of {x1,t} and {x2,t}. In this model, {xt} is 1/2-null
recurrent process. We let g(x1, x2) = x1 + 1

1+x22
or g(x1, x2) = x1 × 1

1+x22
. This model falls into the

category of Example 2 in Section 2. The results for Model 2 are summarized in Table 2.

Table 2. RMSEs for Model 2.

Functional Form c T = 200 T = 400 T = 800

0.1 0.5098 0.3891 0.2922
0.2 0.3853 0.2914 0.2234

g(x1, x2) = x1 +
1

1+x22
0.4 0.3038 0.2518 0.2437

0.8 0.3481 0.3892 0.4826
h∗ 0.2941 0.2445 0.2009

0.5 0.2513 0.1869 0.1412
1 0.1971 0.1560 0.1323
2 0.1890 0.1683 0.1467

g(x1, x2) = x1 × 1
1+x22

3 0.2044 0.1773 0.1583

4 0.2111 0.1864 0.1654
h∗ 0.1991 0.1637 0.1334

From Table 2, we can see that for different data generating mechanism of {xt} or function form
of g, the choice of h should be quite different. In addition, the cross validation method serves as a
good choice.

Next, we consider the model where the regressors are threshold cointegrated.

Model 3:
xt = Axt−11(xt−1 ∈ D) +Bxt−11(xt−1 ∈ Dc) + ut,

with {ut} ∼ i.i.d.N(0,Σ) with Σ =

(
1 0

0 1

)
, B =

(
3/4 1/8

1 1/2

)
, A =

(
3/4 1/4

1/4 3/4

)
,

D = [τ1 τ2]× [τ3 τ4] = [−3 3]× [−2 2] and

yt = g(x1,t, x2,t) + εt,

where {εt} ∼ i.i.d.N(0, 1) and is independent of {x1,t} and {x2,t}. We know in this model, {x1,t}
and {x2,t} are threshold cointegrated processes with different cointegrated coefficients in differ-
ent regimes. According to [21], they form a bivariate 1/2-null recurrent system. We let
g(x1, x2) = x1 + 1

1+x22
or g(x1, x2) = x1 × 1

1+x22
. The results for Model 3 are summarized

in Table 3.
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Table 3. RMSEs for Model 3.

Functional Form c T = 200 T = 400 T = 800

0.1 0.8941 0.7909 0.6446
0.5 0.4422 0.3715 0.3806

g(x1, x2) = x1 +
1

1+x22
1 0.4502 0.5221 0.6176

2 0.7344 0.8827 1.1070
h∗ 0.4104 0.3410 0.3031
0.5 0.4230 0.3037 0.2298
1 0.3042 0.2625 0.2417

g(x1, x2) = x1 × 1
1+x22

2 0.3411 0.3173 0.2874

3 0.3732 0.3412 0.3042
h∗ 0.3175 0.2564 0.2155

Our conclusion for Table 3 is same as that for Table 2.
The above three models assume the error term to be homoscedastic. In the final example,

heteroscedasticity will be taken into account. The model is:

Model 4:
{x1,t} ∼ i.i.d.N(0, 1),

x2,t = x2,t−1 + ut,

with {ut} ∼ i.i.d.N(0, 1)

yt = g(x1,t, x2,t) + σ(x1,t, x2,t)et,

where {et} ∼ i.i.d.N(0, 1) and is independent of {x1,t} and {x2,t}. We let g(x1, x2) = x1 + 1
1+x22

with

σ2(x1, x2) =
x21

1+x22
. We estimate the conditional variance function using Equation (5) and then calculate

the RMSE. In our simulation, the same bandwidth for the mean and variance functions is used.
The results for Model 4 are summarized in Table 4.

Table 4. RMSEs for Model 4.

Functions c T = 200 T = 400 T = 800

1 0.2224 0.1796 0.1542
2 0.2615 0.2352 0.2140

g(.) 3 0.3955 0.3674 0.3395
4 0.5415 0.5082 0.4741
h∗ 0.2837 0.2565 0.2167

1 0.3890 0.3196 0.2689
2 0.3507 0.2996 0.2651

σ2(.) 3 0.3788 0.3369 0.2971
4 0.4321 0.3897 0.3410
h∗ 0.7900 0.3686 0.3093
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From Table 4, we can see that in general the cross validation method is not as good as in the
homoscedasticity case. For some choice of fixed bandwidth, the RMSEs for mean and variance functions
can be smaller. However, the cross validation is still a reasonable choice because in practice we do not
know the true DGP which makes it difficult to use some pre-specified bandwidth.

In summary, we can see that the choice of bandwidth has large impact on the performance of the
nonparametric estimates. The leave-one-out cross validation method is still a reasonable option for the
multivariate nonparametric estimates with β-null recurrent regressor. In the empirical analysis in the
next section, this method will be used.

5. Empirical Application to the Relationship of Interest Rates

In this section, we apply the proposed method to study the relationship of three interest rates: the
effective Federal funds rate (FF), 3-month Treasure bill rate (TB3m) and 5-year Treasure bill rate (TB5y).
The Federal Reserve (Fed) implements monetary policy by targeting the effective FF (see, e.g., [23]);
the TB3m is a preeminent risk-free rate in the U.S. money market and is often used by researchers as a
proxy for the risk-free asset (see, e.g., [24]), and TB5y is often used to represent the long term interest
rate (see, e.g., [25]).

In the literature (cf. [23,26]), it is often argued that the interest rates move together according to the
expectation hypothesis (EH) such that the Treasure bill rates are equal to market’s expectation for the
FF over the term of TB rates plus a risk premium. So that according to conventional EH/montary policy
views, FF “anchors" the U.S. money market. However, according to [27], the short run T-bill rate adjusts
before the FF, rather than vice versa. This is possibly due to the fact that if the market anticipates changes
in the FF, the T-bill rates will move in advance of the Federal funds rate. Thus, the market should have
anticipated the information of the FF before its announcement. Under the same reasoning, if the short
term T-bill rate contains short term information of the market, we expect that the long term T-bill rate
contains long term information of the market. So that both short term and long term T-bill rates will
influence the FF.

We use monthly data of FF, TB3m and TB5y from the website of the Federal Reserve Bank of St
Louis. The sample period is from January 1962 to May 2014 and the sample size is 629. The ADF
test suggests that all the three series contain unit roots with p-values for TB3m, TB5y and FF being
respectively 0.2807, 0.3513 and 0.2648. We also perform ADF test for the interest rate differential
series {TB3mt − TB5yt} and the result suggests that the series is stationary with p-value being less
than 0.01. This means that the short term and long term T-bill rates are cointegrated with cointegrated
vector [1 −1] 3. Thus TB3m and TB5y form a 1/2-recurrent system so that we can apply the proposed
method to estimate the relationship of FF with TB3m and TB5y 4.

The time series plot of the three series is shown in Figure 2.

3 Recently, there are many papers considering the nonlinear dynamics of the term structure of interest rate where the
nonlinear error correction models are used, see, e.g., [28,29]. This kind of process is also covered by our theory.

4 The bandwidth is selected by the leave-one-out cross validation method and is 0.1130.
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Figure 2. Time series plot of FF, TB3m and TB5y: 1962–2014.

From Figure 2, we can see that the three series move together. In particular, FF and TB3m seem to
have a close relationship.

To study the relationship of the variables, in an exploratory phase we first examine the relationship of
FF with TB5y when TB3m is fixed. Specifically, we plot the graph of fitted values against TB5y when
TB3m is 4 or 8. Notice that because TB5y and TB3m are cointegrated, when TB3m is fixed, we can
only study the relationship of FF with TB5y when TB5y is within some small regions. Otherwise, there
will be insufficient observations for the nonparametric estimate5. So that when TB3m is 4, we study
the relationship with TB5y within [3.8 4.4] and when TB3m is 8, we study the relationship with TB5y
within [7.8 8.4]. In addition, we can plot the 95% point-wise confidence intervals according to Equation
(7). The results are shown in Figure 3.

5 That’s also the reason why we do not try to display the joint estimation results, but instead, we display the relationship of
FF and TB5y with TB3m fixed.
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Figure 3. In (a) we estimate the relationship of FF and TB5y when TB3m is 4; in (b) we
estimate the relationship of FF and TB5y when TB3m is 8.

Figure 3 indicates that the relationship of FF with TB5y is nonlinear and the relationship is largely
affected by TB3m.

Similarly, we can examine the relationship of FF with TB3m when TB5y is fixed. When TB5y
is 4, we study the relationship with TB3m within [3.7 4.3] and when TB5y is 8, we study the relationship
with TB3m within [7.7 8.3]. The results are shown in Figure 4.
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Figure 4. In (a) we estimate the relationship of FF and TB3m when TB5y is 4; in (b) we
estimate the relationship of FF and TB3m when TB5y is 8.

From Figure 4, we can see that the relationship of FF with TB3m is nonlinear and different TB5y
does not make large difference in the relationship.
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In summary, the pairwise exploratory phase suggests that the relationship of FF and TB3m and TB5y
may not be linear. The nonlinearity may be due to transaction cost as suggested by [28] or the policy
interventions as suggested by [30].

Next, we estimate our model (1) by estimating g nonparametrically. We compare the in-sample mean
square error of the nonparametric model with the linear model. Define the following MSE

MSE =
1

T

T∑
t=1

(FFt − F̂F t)
2,

where F̂F is the fitted value from the nonparametric model or the linear model (regress FF on TB3m,
TB5y and a constant). The MSE for the nonparametric model is 0.0995 while the MSE for the linear
model is 0.2802. It can be seen that the nonparametric model outperforms the linear model.

However, it is well known that comparison based on the in-sample performance as done above is
sensitive to outliers and data mining, see, e.g., [31]. Empirical evidence of out-of-sample forecast
performance is generally regarded as more trustworthy. In addition, out-of-sample forecasts can better
reflect the information available to forecasters in “real time” (cf. [32]). As emphasized by [33],
out-of-sample forecast is the “ultimate test of forecasting model”.

We study the out-of-sample forecasts of the nonparametric model and linear model by
comparing their one-step-ahead forecasting performance. Specifically, we define the out-of-sample MSE
(OMSE) as

OMSE =
1

m

T∑
t=T−m+1

(FFt − F̃F t)
2,

where F̃F t is the fitted value at (TB3mt, TB5yt) with the model estimated using the observations up to
time t−1 6. Furthermore, out-of-sample size m is taken to be [1/10T ], [1/15T ], [1/20T ], where T is the
full sample size. The reason for choosing relatively small proportion of out-of-sample evaluation period
is mainly due to the fact that for the nonparametric forecast, because of the nature of local estimate, a too
small proportion of in-sample size may make the forecast impossible if the observation of the period we
are going to forecast is an “outlier” such that we do not have enough observations in the neighborhood.

The results for the out-of-sample forecasts are reported Table 5.

Table 5. OMSE Comparison.

Model m = [1/10 T] m = [1/15 T] m = [1/20 T]

Linear model 0.1018 0.0671 0.0519
Nonparametric model 0.0021 0.0022 0.0015

From Table 5, we can see that the nonparametric model consistently outperforms the linear model
by the out-of-sample evaluation. It is also interesting that the OMSE is smaller than the in-sample

6 I.e., we use recursive (expanding) windows in estimation. Compared with the rolling-window forecasting which uses
fixed in-sample size, the recursive window utilizes all the data when one forecasts for the next period, thus may increase
the precision of the in-sample estimation, which in turn, leads to better out-of-sample forecasting.
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MSE. It is possible because the volatility increases with regressors (see Figure 5 below) and our
out-of-sample forecasting periods are the periods where the interest rates are very low as is seen from
Figure 2. The comparison of OMSE provides additional strong evidence that there exists nonlinearity in
the relationship.
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Figure 5. In (a) we estimate the shape of the variance with TB3m when TB5y = 4; in (b) we
estimate the shape of the variance with TB3m when TB5y = 8.

Similarly, we can estimate the conditional variance function using Equation (5) (with the same
bandwidth as that used for the mean function estimation). Figure 5 studies the variance conditional
on TB3m when TB5y is fixed. When TB5y is 4, we study shape of the variance with TB3m within
[3.7 4.3] and when TB5y is 8, we study the relationship with TB3m within [7.7 8.3].

Figure 5 indicates that there exists conditional heteroscedasticity7. The conditional heteroscedasticity
of FF is also found in [34], where a univariate model with ARCH-type (cf. [12]) volatility function
is used. Chan et al. [35] study different models for the short term interest rate encompassed in the
following stochastic differential equation (SDE):

drt = (α + βrt)dt+ σrγt dWt, (9)

where rt is the (spot) interest rate,Wt is the standard Brownian motion, α, β, σ and γ are some constants.
When γ = 0, Equation (9) is the Vasicek [36] model and when γ = 1/2, Equation (9) is the famous
Cox-Ingersoll-Ross (CIR, [37]) model. We can see that in [36], the process is conditional homoscedastic
and when γ 6= 0, there exists conditional heteroscedasticity. The empirical findings of [35] suggest that
γ is significantly larger than 0, so that the volatility increases with the interest rate. Our model setup is
regression rather than autoregression. However, the interest rates are cointegrated and move in the same
direction, so that the finding of [35] implies the volatility in our model also increases with the regressors.
This is consistent with the empirical results in our paper.

7 We can also find that the volatility with TB3m fixed is not constant. To save space, we don’t report the results here.
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6. Conclusions

In this paper, we establish the asymptotic theory of nonparametric estimation for multivariate β-null
recurrent processes in presence of heteroscedasticity. The Monte Carlo simulation results suggest that
the nonparametric estimator performs well using bandwidth selected by the cross validation method. The
application to the relationship of Federal funds rate with short term and long term T-bill rates indicates
the existence of nonlinearity.

In the current paper, the variance function estimation is not discussed in details as for the mean
function estimation. This is left for future research. In empirical applications, because of different
ranges of different regressors especially in this multivariate nonstationary case, different bandwidths
may be used for different regressors to make the estimate more efficient (cf. [18]).
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Appendix

A. Some Markov Theory

To make this paper self-contained, in this Appendix, we introduce necessary notions of Markov chain
properties. They are fundamental for deriving the asymptotic theory in this paper. We refer to [1,2]
and [38] for more comprehensive treatments.

Let {Xt, t ≥ 0} be a φ-irreducible Markov chain on the state space (E, E) with transition probability

P . This means that for any set A ∈ E with φ(A) > 0, we have
∞∑
t=1

P t(x,A) > 0 for all x ∈ E. In this

paper, we take E ⊆ Rd. We further assume that the φ-irreducible Markov chain {Xt} is Harris recurrent.

Definition 1. A Markov chain {Xt} is Harris recurrent if, given a neighborhoodNx of xwith φ(Nx) > 0,
{Xt} returns to Nx with probability one, for any x ∈ E.

The Harries recurrent chain is positive recurrent if there exists an invariant probability measure such
that {Xt} is strictly stationary and is null recurrent otherwise. The Harris recurrence allows one to
construct a split chain, which decomposes the partial sum of functions of {Xt} into blocks of i.i.d. parts
and two asymptotically negligible remaining parts. Let τk be the regeneration times, T the number of
observations and n(T ) the number of regenerations as in [1]8.

8 They use the notation T (n) instead of n(T ).
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For the process {G(Xt) : t ≥ 0}, defining

Uk =



τ0∑
t=0

G(Xt), k = 0

τk∑
t=τk−1+1

G(Xt), 1 ≤ k ≤ n(T ),

T∑
t=τn(T )+1

G(Xt), k = n(T ) + 1

where G(·) is a real function defined on Rd, then we have

Sn(G) =
T∑
t=0

G(Xt) = U0 +

n(T )∑
k=1

Uk + Un(T )+1. (A.1)

From [38], we know that {Uk, k ≥ 1} is a sequence of i.i.d. random variables, and U0 and Un(T )+1

converge to zero almost surely (a.s.) when they are divided by the number of regenerations n(T ) (using
Lemma 3.2 in [1]).

The general Harris recurrence only yields stochastic rates of convergence in asymptotic theory of the
nonparametric estimators, where distribution and size of the number of regenerations n(T ) have no a
priori known structure but fully depend on the underlying process {Xt}. To obtain a specific rate of
n(T ) in our asymptotic theory for the null recurrent process, we next impose some restrictions on the
tail behavior of the distribution of the recurrence times of the Markov chain.

Definition 2. A Markov chain {Xt} is β-null recurrent if there exist a small nonnegative function f , an
initial measure λ, a constant β ∈ (0, 1), and a slowly varying function Lf (·) such that

Eλ(
T∑
t=1

f(Xt)) ∼
1

Γ(1 + β)
T βLf (T ), (A.2)

as T → ∞, where Eλ stands for the expectation with initial distribution λ and Γ(1 + β) is the Gamma
function with parameter 1 + β.

The definition of a small function f in the above definition can be found in some existing literature (cf.
p. 15, [38]). Assuming β-null recurrence restricts the tail behavior of the recurrence time of the process
to be a regularly varying function. In fact, for all small functions f , by Lemma 3.1 in [1], we can find
an Ls(·) such that Equation (A.2) holds for the β-null recurrent Markov chain with Lf (·) = πs(f)Ls(·),
where πs is an invariant measure of the Markov chain {Xt}, πs(f) =

∫
f(x)πs(dx) and s is the small

function in the minorization inequality (3.4) of [1]. Letting Ls(T ) = Lf (T )/(πs(f)) and following the
argument in [1], we may show that the regeneration number n(T ) of the β-null recurrent Markov chain
{Xt} has the following asymptotic distribution

n(T )

T βLs(T )
→d Mβ(1), (A.3)

where Mβ(1) is the Mittag-Leffler distribution with parameter β (cf. [39]). Since n(T ) < T a.s. for the
null recurrent case by Equation (A.3), the rates of convergence for the nonparametric kernel estimators
are slower than those for the stationary time series case (cf. [2]). We also denote u(T ) = T βLs(T ),
which is used in the main text of this paper.

In Section 2 of this paper, some typical examples of multivariate β-null recurrent processes are
provided.
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B. Mathematical Proofs

Proof of Lemma 1. According to the split chain technique (cf. (A.1)), we have

1

n(T )hd

T∑
t=1

K(
xt − x
h

) =
1

n(T )hd
{U0(Kh) +

n(T )∑
k=1

Uk((Kh)) + Un(T )+1(Kh)},

where Kh = Πd
i=1ki(

xi,t−xi
h

). We have for k = 1, · · · , n(T )

E(Uk(Kh)) = πs(Kh) =

∫
k1(

y1 − x1
h

) · · · kd(
yd − xd
h

)ps(y1, · · · , yd)dy.

Denoted y1−x1
h

= z1, · · · , yd−xd
h

= zd, then∫
k1(

y1 − x1
h

) · · · kd(
yd − xd
h

)ps(y1, · · · , yd)dy = hd
∫
k1(z1) · · · kd(zd)ps(x1 + z1h, · · · , xd + zdh)dz

= hdps(x) + o(hd).

And similar to the proof of Lemma 3.2 of [1], we have

Pλ(| U0(Kh) |<∞) = 1

and
Pλ(| Un(T )+1(Kh) |<∞) = 1,

where λ is an arbitrary initial measure.
Then Lemma 1 follows from the weak law of large numbers because n(T )hd →∞ as T →∞.

Proof of Lemma 2. We have

1√
n(T )hd

T∑
t=1

K(
xt − x
h

)εt =
1√

n(T )hd

T∑
t=1

K(
xt − x
h

)σ(xt)et

=
1√

n(T )hd

T∑
t=1

K(
xt − x
h

)σ(x)et +
1√

n(T )hd

T∑
t=1

K(
xt − x
h

)[σ(xt)− σ(x)]et

≡ I1 + I2. (B.1)

It follows from Theorem 3.5 of [2] (it is easy to show that the conditions of the theorem hold under our
assumptions A.1–A.4) that

I1 →d N(0, ps(x)σ2(x)

∫
K2(u)du). (B.2)

For the term I2, by the i.i.d. assumption on {et}

E[
T∑
t=1

K(
xt − x
h

)[σ(xt)− σ(x)]et]
2 = E

T∑
t=1

K2(
xt − x
h

)[σ(xt)− σ(x)]2

≤ C2h2E

T∑
t=1

K2(
xt − x
h

) = o(u(T )hd)
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by Assumption A.1 on σ(.). So that by the Markov inequality

I2 = oP (1). (B.3)

Combining the results (B.1) (B.2) and (B.3), we have proved this lemma.

Proof of Lemma 3. Using the same split chain technique as in the proof of Lemma 1,

T∑
t=1

K(
xt − x
h

)(g(xt)− g(x)) = U0(Lh) +

n(T )∑
k=1

Uk(Lh) + Un(T )+1(Lh),

with Lh = K(xt−x
h

)(g(xt)− g(x)). We have

E(Uk(Lh)) = πs(Lh) =

∫
K(

y − x
h

)(g(y)− g(x))ps(y)dy.

Using the change of variables

= hd
∫
k1(z1) · · · kd(zd)(g(x1 + z1h, · · · , xd + zdh)− g(x1, · · · , xd))ps(x1 + z1h, · · · , xd + zdh)dz

and by Taylor expansion

= hd
{∫

k1(z1) · · · kd(zd)(g
′

1(x1, · · · , xd)z1h+ · · ·+ g
′

d(x1, · · · , xd)zdh

+1/2
d∑
i=1

d∑
j=1

g
′′

ij(x̃1, · · · , x̃d)zizjh2)ps(x1 + z1h, · · · , xd + zdh)dz

}
,

where x̃i is a real number between xi and xi,t. So that

E(Uk(Lh)) = O(h2+d)

and

E(
1

n(T )hd

n(T )∑
k=1

Uk(Lh)) = O(h2). (B.4)

Moreover, we have

E(U2
k (Lh)) =

∫
K2(

y − x
h

)(g(y)− g(x))2ps(y)dy = O(h2d+2)

and

E(
1

n(T )hd

n(T )∑
k=1

Uk(Lh))
2 = O(

1

u(T )h2d
× h2d+2). (B.5)

By Equations (B.4) and (B.5) and the Markov inequality

1

n(T )hd

n(T )∑
k=1

Uk(Lh) = OP (h2) +OP (
h√
n(T )

) = OP (h2) (B.6)

by Assumption A.4.
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Using the fact that

|U0(Lh)| = |
τ0∑
t=1

K(
xt − x
h

)(g(xt)− g(x))| ≤
τ0∑
t=1

|K(
xt − x
h

)(g(xt)− g(x))|

and by the definition of τ0,

E(

τ0∑
t=1

|K(
xt − x
h

)(g(xt)− g(x))|) ≤ E(

τ1∑
t=τ0

|K(
xt − x
h

)(g(xt)− g(x))|)

=

∫
K(

y − x
h

)|g(y)− g(x)|ps(y)dy = O(hd+1).

So that by the Markov inequality

1

n(T )hd
U0(Lh) = OP (

h

n(T )
) = oP (h2) (B.7)

by Assumption A.4. Similarly, we have

1

n(T )hd
Un(T )+1(Lh) = oP (h2). (B.8)

Lemma 3 holds because of Equations (B.6)–(B.8).

Proof of Theorem 1. We have

ĝ(x)− g(x) =

∑T
t=1K(xt−x

h
)(g(xt)− g(x))∑T

t=1K(xt−x
h

)
+

∑T
t=1K(xt−x

h
)εt∑T

t=1K(xt−x
h

)

≡ I1 + I2.

So that Theorem 1 follows from Lemmas 1–3 and the Slutsky theorem.

Proof of Theorem 2. We have

σ̂2(x) =

T∑
t=1

(yt − ĝ(x))2K(xt−x
hσ

)

T∑
t=1

K(xt−x
hσ

)

≡ B1 +B2 +B3

B0

,

where B0 =
T∑
t=1

K(xt−x
hσ

), B1 =
T∑
t=1

K(xt−x
hσ

)ε2t , B2 =
T∑
t=1

K(xt−x
hσ

)(g(xt) − ĝ(x))2 and B3 =

2
T∑
t=1

K(xt−x
hσ

)(g(xt)− ĝ(x))εt. We have

B1

B0

=

T∑
t=1

K(xt−x
hσ

)σ2(x) +
T∑
t=1

K(xt−x
hσ

)(ε2t − σ2(xt)) +
T∑
t=1

K(xt−x
hσ

)(σ(xt)
2 − σ2(x))

T∑
t=1

K(xt−x
hσ

)
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= σ2(x) +OP ((u(T )hdσ)−1/2) +OP (hσ) = σ2(x) + oP (1)

by Lemma 2 and Assumption A.1 on σ(.).
Thus Theorem 2 holds if we can prove B2

B0
= oP (1) and B3

B0
= oP (1).

Using Taylor expansion, we have

B2 =
T∑
t=1

K(
xt − x
hσ

)(g(xt)− g(x) + g(x)− ĝ(x))2

≡ B21 +B22 +B23,

where B21 =
T∑
t=1

K(xt−x
hσ

)(g(xt) − g(x))2, B22 =
T∑
t=1

K(xt−x
hσ

)(g(x) − ĝ(x))2, and

B23 = 2
T∑
t=1

K(xt−x
hσ

)(g(xt)− g(x))(g(x)− ĝ(x)).

By Lemma 3, we have
B21

B0

= oP (1).

And by Theorem 1,
B22

B0

= (g(x)− ĝ(x))2 = oP (1).

By the Cauchy-Schwarz inequality,
B2

23 ≤ B2
21B

2
22,

which implies
B23

B0

= oP (1).

Again by the Cauchy-Schwarz inequality,

B2
3 ≤ B2

1B
2
2 .

Thus
B3

B0

= oP (1).

So that
σ̂2(x)→p σ

2(x).
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