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Abstract: The classical Chow test for structural instability requires strictly exogenous
regressors and a break-point specified in advance. In this paper, we consider two
generalisations, the one-step recursive Chow test (based on the sequence of studentised
recursive residuals) and its supremum counterpart, which relaxes these requirements. We use
results on the strong consistency of regression estimators to show that the one-step test is
appropriate for stationary, unit root or explosive processes modelled in the autoregressive
distributed lags (ADL) framework. We then use the results in extreme value theory to develop
a new supremum version of the test, suitable for formal testing of structural instability with
an unknown break-point. The test assumes the normality of errors and is intended to be used
in situations where this can be either assumed nor established empirically. Simulations show
that the supremum test has desirable power properties, in particular against level shifts late
in the sample and against outliers. An application to U.K. GDP data is given.
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1. Introduction

Identifying structural instability in models is of major concern to econometric practitioners.
The Chow [1] tests are perhaps the most widely used for this purpose, but require strictly exogenous
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regressors and a break-point specified in advance. As such, a plethora of variants have been developed to
meet different requirements. In this paper, we consider two generalisations: the one-step recursive Chow
test, based on the sequence of studentised recursive forecast residuals; and its supremum counterpart.
The pointwise test is frequently used and reported in the applied work, while the supremum test is new.
Whereas Chow assumes a classical regression framework, practitioners typically use the one-step test to
evaluate dynamic models, e.g., [2]. Further, since a series of such tests is usually presented graphically
to the modeller, multiple testing issues arise, making it difficult to determine how many point failures
may be tolerated. These two issues motivate the analysis that follows. First, in Theorem 6, we show
that the pointwise statistic has the correct asymptotic distribution under fairly general assumptions about
the generating process, including lagged dependent variables and deterministic terms. Second, we take
advantage of the almost sure convergence proven earlier to construct a supremum version of the one-step
test, applicable to detecting parameter change or the outlier at an unknown point in the sample. The
supremum test offers several advantages useful to modellers: it is simple to compute and has a standard
distribution under the null, which does not depend on the autoregressive parameter (even in the unit-root
or explosive cases); it focuses attention on end-sample instability; and it is agnostic about the number of
breaks, giving power against more complex forms of misspecification. These advantages incur certain
costs: the test is not invariant to the distribution of errors (even asymptotically); and other tests are more
powerful against particular alternatives.

The pointwise one-step Chow test is essentially the “prediction interval” test described by Chow, but
computed recursively and over the sample (rather than at an a priori hypothesised change point). It
first appears in PcGive Version 4.0 [3] as part of a suite of model misspecification diagnostics; a similar
diagnostic graphic, the “one-step forecast test”, is provided in EViews ([4] p. 180). The idea of using
residuals calculated recursively to test model misspecification dates to the landmark cumulated sum
(CUSUM) and cumulated sum of squares (CUSUMSQ) tests [5,6], which are based on partial sums of
(squared) recursive residuals and have since been generalised to models, including lagged dependent
variables [7–9]. Unlike these tests, the one-step Chow test does not consider partial sums, but the
sequence of recursive residuals itself; in effect, testing one-step-ahead forecast failure at each time step.
As the following analysis shows, this approach leads to a different type of asymptotics, with a residual
sequence behaving like i.i.d. random variables, rather than a partial sum of residuals behaving like a
Brownian motion.

Examining the residual sequence to check the model specification is, of course, well established. The
residuals can be either OLS residuals or recursive residuals, see [6,10]. The recursive residuals have two
advantages over the OLS residuals: first, under the normal linear model with fixed regressors, they are
identically and independently normal; second, they have a natural interpretation (in a time series setting)
as forecast errors. Ironically, in typical time series settings, where the forecast error interpretation is
most useful, the independence of the residuals does not hold due to the presence of lagged dependent
variables, see [11]. This may lead to difficulties drawing firm conclusions from plotted pointwise test
sequences and, thus, motivates the second part of this paper, which considers a supremum test.

The supremum test considers the maximum of the pointwise one-step tests, appropriately normalised.
It is intended to reflect structural instability anywhere in the sample (with the early part excluded to
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allow consistent estimation). It relates to work on tests for either structural breaks or outliers, both at a
possibly unknown time.

Perron [12] divides structural breaks tests into those that do not explicitly model a break, those that
model one break and those that model multiple breaks. Our test joins the first category, which includes
the already mentioned CUSUM and CUSUMSQ tests. (As an aside, Perron notes that these tests can
suffer from the non-monotonicity of power against some alternatives. The risk of this is much reduced
by using the one-step Chow statistics, since all parameters are estimated on a growing sub-sample.)
The modelled break category includes, most prominently, the Quandt-Andrews (respectively, [13,14]
supremum tests. These tests are complicated by a non-standard distribution (tabulated in [15]), but
are nevertheless popular in practice, being implemented in several software packages. Our test is
distinguished from these by not imposing any restrictions on the end-of-sample, so that end-of-sample
instability may be detected. This feature is similar to [15], but a key distinction is that our test is agnostic
about the number of breaks in the sample, a useful property in practice. It is also substantially simpler in
implementation. Additionally, because the one-step tests behave like an i.i.d. process, the asymptotics
differ from full-sample tests, like Quandt-Andrews, requiring the application of the extreme value theory
of independent and weakly dependent sequences, rather than the suprema of random-walks.

Seen specifically as an outlier test, the supremum Chow test falls squarely within the tradition
of [16], which, however, considers an unknown outlier in a classical setting. Outliers in the Box-Jenkins
paradigm have attracted substantial interest, see [17–19]. These authors take a full-sample approach with
stepwise elimination of outliers. Although effective in many cases, there is a risk of smearing/masking
effects when multiple outliers are present, which is reduced with the recursive the test we present.

Surprisingly, the use of recursive residuals to detect outliers in time series data is relatively
unexplored, although there is little doubt that they are used for this purpose in practice. Barnett and
Lewis ([20] p. 330) comment that “[recursive residuals] would seem to have the potential for the
study of outliers, although no major progress on this front is evident. There is a major difficulty in
that the labelling of the observations is usually done at random, or in relation to some concomitant
variable. . . ”. This difficulty does not exist with time series, where there is a natural chronological
labelling of observations. The section in the same book (at p. 396) on detecting outliers in time series is,
nevertheless, notably brief, and recursive methods are not considered.

2. The Test Statistics

The one-step test applies to a linear regression:

yt = β′xt + εt t = 1, . . . , T, (1)

with yt scalar, xt a k-dimensional vector of regressors and the errors independently and identically
distributed. For such a regression, we can define the sequence of least squares estimators calculated
over progressively larger subsamples,

β̂t =

(
t∑

s=1

xsx
′
s

)−1( t∑
s=1

xsy
′
s

)
t = k, . . . , T, (2)
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along with the corresponding residual sums of squares

RSSt =
t∑

s=1

(β̂′txs − ys)2 t = k, . . . , T, (3)

and recursive residual (or standardised one-step forecast error)

ε̃t =

1 + x′t

(
t−1∑
s=1

xsx
′
s

)−1

xt

−1/2

(yt − β̂′t−1xt) t = (k + 1), . . . , T. (4)

The one-step Chow test statistic, C2
1,t, is then defined as:

C2
1,t =

(RSSt − RSSt−1)(t− k − 1)

RSSt−1

t = (k + 1), . . . , T, (5)

and can be expressed as:

C2
1,t =

ε̃2
t (t− k − 1)

RSSt−1

. (6)

Chow showed that in a classical Gaussian regression model, this statistic would have an exact
F (1, t − k − 1) distribution. We first extend this result to show that, for a general class of Gaussian
autoregressive distributed lag (ADL) processes, C2

1,t converges in distribution to a χ2
1 random variable,

so that, asymptotically, the additional dependence does not matter. This result means that comparing
the pointwise statistic against an F (1, ·) or χ2

1 distribution (as is typically done) is appropriate in large
samples. However, it still leaves unresolved the difficulty that this test is generally reported graphically
to detect parameter change with an unknown change point. To formally treat the problem of multiple
testing that occurs in evaluating many pointwise statistics over the entire sample, we introduce a new
supremum test based on the test statistic:

max
g(T )≤t≤T

C2
1,t, (7)

where g is an arbitrary function of T , such that g(T )→∞.
To put the test statistics and the asymptotic analysis into perspective, it is useful to review some

related, but also somewhat different statistics. The literature on adaptive control, also called tracking,
comes to mind, although it does not appear to be applied much in econometrics. It is concerned with
tracking the sum of squares innovations. The aim is then to show that:

1

T

T∑
t=1

(yt − β̂′xt−1)2 − 1

T

T∑
t=1

ε2
t (8)

vanishes. A discussion for a non-explosive autoregressive setup without deterministic terms is given in
[21,22]. Asymptotic distribution theory does not seem to be discussed. The reason that the tracking
result does not extend to the explosive case is that the residuals are not normalised by the “hat” matrix,
in contrast to the residuals in Equation (4). Normalisation by the “hat” matrix also gives excellent
finite-sample properties; see Section 5.
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The Chow statistic C2
1,t in Equation (5) also involves scaling by a residual variance estimator, so that

the asymptotic distribution is free of nuisance parameter; see Theorem 6 below. More fundamentally,
the present analysis is concerned with the Chow statistic for individual observations rather than sums,
and it will therefore involve extreme value theory.

Another related test that is used in econometrics is the CUSUMSQ test based on the statistic:

CUSQt,T =
√
T

(∑t
s=k ε̃

2
s∑T

s=k ε̃
2
s

− t− k
T − k

)
, (9)

or a similar statistic based on least squares residual variance estimates instead of sums of squared
recursive residuals. This test statistic is aimed at detecting non-constancy in the innovation variance
rather than detecting individual outliers. Again, it includes normalisation by the “hat” matrix.
Distribution theory is discussed in [7,8] for the stationary case and in [9] for general autoregressions,
which are possibly explosive and with deterministic terms.

A third related test is Andrews’ sup-F test, see [13]. This is a test for structural breaks in the
mean parameters for which the asymptotic theory only applies in the stationary case. The finite sample
performances of the Chow test and the sup-F test are compared in Section 6.

3. Model and Assumptions

We consider the behaviour of the test statistic for ADL models with arbitrary deterministic terms,
a class that includes by restriction many commonly-posited economic relationships, see ([23] Chapter 7).
For the purpose of analysis, we assume that the true data generating model can be represented as a vector
autoregression (VAR).

We observe a p-dimensional time series X1−k, . . . , X0, X1, . . . XT . We model the series by
partitioning Xt as (Yt, Zt)

′, where Yt is univariate and Zt is of dimension p − 1, and then consider
the regression of Yt on the contemporaneous Zt, lags of both Yt and Zt and a deterministic term Dt.
That is,

Yt = ρZt +
k∑
j=1

αjYt−j +
k∑
j=1

β′jZt−j + νDt−1 + εt t = 1, . . . , T. (10)

In order to specify the joint distribution of Xt = (Yt, Zt)
′, we assume that Xt follows the

vector autoregression:

Xt =
k∑
j=1

AjXt−j + µDt−1 + ξt t = 1, . . . , T, (11)

with the deterministic term Dt given by:

Dt = DDt−1. (12)

The deterministic term Dt follows the approach of [24,25] and may include, for example, a constant,
a linear trend or periodic functions, such as seasonal dummies. The matrix D has characteristic roots on
the unit circle. For example,

D =

(
1 0

1 −1

)
and D0 =

(
1

0

)
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will generate a constant and a biannually dummy. The term Dt is assumed to have linearly-independent
coordinates, formalised as follows.

Assumption 1. |eigen(D)| = 1 and rank(D1, . . . , DdimD) = dimD.

We assume the VAR innovations form a martingale difference sequence satisfying the assumption
below. The requirement that the innovations have finite moments just beyond 16 stems from a problem
with controlling unit root processes, see ([25] Remark 9.3). In the present analysis, this constraint
emerges in Lemma 12 (i) and is transmitted via Lemma 13 (iv) to Lemma 16. If dimD = 0 and the
geometric multiplicity of roots in unity equals their algebraic multiplicity (including I(1), but excluding
I(2) processes), this could be improved to finite moments greater than four using the result of [26].

Assumption 2. ξt is a martingale difference sequence with respect to the natural filtration Ft,
so E(ξt|Ft−1) = 0. The initial values X0, . . . X1−k are F0-measurable and:

sup
t

E(‖ξt‖α|Ft−1)
a.s.
< ∞ for some α > 16, (13)

E(ξ′tξt|Ft−1)
a.s.
= Ω where Ω is positive definite. (14)

This assumption also excludes the possibility that the innovations could be heteroscedastic, a common
assumption in financial modelling (e.g., autoregressive conditional heteroscedastic, ARCH), but also an
increasingly relevant property in macroeconomic work, particularly in light of the “Great Moderation”
period [27] and subsequent period of the “Global Financial Crisis”. The assumption indicates that such
heteroscedasticity should be modelled.

We permit nearly all possible values of the autoregressive parameters Aj in Equation (11), excluding
only the case of singular explosive roots, which can only arise for a VAR with p ≥ 2 and multiple
explosive roots, see [28] for a discussion. We can express the restriction in terms of the companion
matrix:

B =

(
(A1, . . . , Ak−1) Ak

Ip(k−1) 0

)
.

Assumption 3. The explosive roots of B have geometric multiplicity of unity. That is, for all complex λ
with |λ| > 1, rank(B− λIpk) ≥ pk − 1.

Additionally, we require that the innovations in the ADL regression are martingale differences.

Assumption 4. Let Gt be the sigma field over Ft and Zt. Then, (εt,Gt) is a martingale difference
sequence, i.e., E(εt|Gt−1) = 0.

Finally, the one-step statistic is such that a distributional assumption must be made in order to derive
the limiting distribution of the statistic (since the statistic is an estimate of a single error term, we cannot
take advantage of a central limit theorem). Similarly, since the analysis of the supremum statistic will
rely on extreme value theory, we must impose distributional and independence assumptions on the ADL
innovations εt, in order to uniquely determine the norming sequences applied in Lemma 9. We assume
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normality, which may result from joint normality in the underlying VAR process and is tested, in practice,
under the above assumptions, see [29].

Assumption 5. εt
iid∼ N(0, σ2).

4. Main Results

We must briefly examine the decomposition of the process used in the proofs in order to elucidate the
first main result in the explosive case (in the non-explosive case, this decomposition becomes trivial).
A two-way decomposition allows us to express separately certain terms that arise in connection with the
explosive component of the process. Group the regressors by defining:

S ′t−1 = (Yt−1, Z
′
t−1 . . . , Yt−k, Z

′
t−k, D

′
t−1),

and then write Equation (11) in companion form, so that:

St = SSt−1 + (ξ′t, 0
′)′. (15)

Then, there exists a regular real matrix M to block diagonalize S (see the elaboration in Section 3
of [25]), so that the process can be decomposed into non-explosive and explosive components, Rt and
St, respectively. We have:

MSt = (MSM−1)MSt−1 + M(ξ′t, 0
′)′,(

Rt

Wt

)
=

(
R 0

0 W

)(
Rt−1

Wt−1

)
+

(
eR,t

eW,t

)
, (16)

with R and W having eigenvalues inside or on, and outside, the unit circle, respectively.
The first theorem states that the test statistic is almost surely close to a related process in the

innovations, q2
t , under multiple assumptions. This result does not require the normality of Assumption 5.

Theorem 6. Under Assumptions 1, 2, 3 and 4,

C2
1,t − (qt/σ)2 as→ 0 as t→∞, (17)

where:

qt =
εt −

∑∞
s=1 εt−sW

′(W−s)′F−1
W W

(1 +W ′F−1
W W )1/2

, (18)

and W is as in Equation (16), and as in [25] (Corollaries 5.3 and 7.2), W = W0 +
∑∞

t=1 W
−teW,t and

FW =
∑∞

t=1 W
−tWW ′(W−t)′, with FW almost surely positive definite.

Having established pointwise convergence almost surely, we use an argument based on Egorov’s
theorem to establish the convergence of the supremum of a subsequence. Both the subsequence itself
and the lead-in period must grow without bound, to allow the regression estimates to converge.
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Lemma 7. Suppose C2
1,t − (qt/σ)2 as→ 0 as t→∞. Then:

sup
g(T )<t≤T

∣∣C2
1,t − (qt/σ)2

∣∣ p→ 0 as T, g(T )→∞. (19)

where g(T ) is an arbitrary function of T , such that g(T )→∞.

Now, if an appropriately normalised expression in the maximum over qt can be shown to converge in
distribution, then so will the supremum statistic, with the same normalisation, by asymptotic equivalence.
We show that, under the assumption of independent and identical Gaussian innovations, max1≤s≤t qs,
appropriately normalised, does indeed converge to the Gumbel extremal distribution (as t→∞), which
has distribution function:

Pr(Λ < x) = exp[− exp(−x)] where: x ∈ R. (20)

A useful property of the Gumbel distribution is the following simple monotonically decreasing
transformation to a χ2 variable, allowing standard distributions to be used:

Λ ∼ Gumbel iff 2e−Λ ∼ χ2
2. (21)

In showing the above convergence, we rely on Theorem 1 of Deo [30], and its corollary, showing
that the extremal distribution of the absolute values of a Gaussian sequence is the same in the stationary
dependent and independent cases. However, Deo’s Lemma 1 gives an incorrect statement of the norming
sequences. Here, we state the correct sequences, adopting the notation of Deo (proof in Section A.6).

Lemma 8. Let {Xn} be independent Gaussian random variables with mean zero and variance one.
Let Zn = max1≤j≤n |Xj|. Then, an(Zn− bn) converges in distribution to Λ, where an = (2 log n)1/2 and
bn = (2 log n)1/2 − (8 log n)−1/2(log log n+ log π).

The original gives bn = (2 log n)1/2 − (8 log n)−1/2(log log n+ 4π − 4).

Deo’s result can then be applied to qt defined in Equation (18).

Lemma 9. Under Assumption 5,

qt/σ ∼ N(0, 1), and (22)

at(max
1≤s≤t

q2
s − bt)

d→ Λ, (23)

where:

at = 1/2 and bt = log t2 − log log t− log π, (24)

and Λ is a random variable distributed according to the Gumbel (Type 1) law.

Combining these lemmas gives our main result, that with independent and identically Gaussian
innovations, an appropriate normalisation of the supremum one-step Chow test converges in distribution
to the Gumbel extremal distribution.
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Theorem 10. Under Assumptions 1, 2, 3, 4 and 5, with some g(T )→∞,

SC2
T =

1

2

(
max

g(T )<t≤T
C2

1,t − dT−g(T )

)
d→ Λ as T →∞, (25)

where C2
1,t is the one-step Chow statistic defined in Equation (5) and:

dT−g(T ) = 2

{
log[T − g(T )]− 1

2
log log[T − g(T )]− log π

}
, (26)

and Λ is a random variable distributed according to the Gumbel distribution Equation (20).

As a simple corollary, we can transform the test using Equation (21), so that it may be compared
against a more readily-available distribution.

Corollary 11. Under the same assumptions, 2 · exp(−SC2
T ) ∼ χ2

2. A test based on this result should
reject for small values of the statistic.

5. Finite-Sample Corrections

In practice, we find by simulation that the test as specified above is over-sized in small samples.
To minimise this, we suggest two corrections. For the first correction, we observe that the one-step
statistics appear to be distributed close to F (1, t − k − 1) (as indeed, they are exactly in the classical
case) and so use the following transformation to bring the statistics closer to the asymptotic chi-squared
distribution:

C2∗
1,t = G−1[F (C2

1,t)] (27)

where F (·) and G(·) are the F (1, t − k − 1) and χ2
1 distribution functions, respectively. This first

correction results in a test that tends to under-correct, largely a result of relatively slow convergence
to the limiting Gumbel distribution. We find that the test performs better if simply compared with the
finite maximal distribution, assuming the independence and identical distribution of the test statistics
(the first assumption holding only in the limit and in the absence of an explosive component and
the second holding only in the limit). That is, we approximate the distribution of the maximum,
maxg(T )<t≤T C

2∗
1,t, by:

Pr

{
max

g(T )<t≤T
C2∗

1,t ≤ x

}
≈ Pr

{
max

g(T )<t≤T
ε2

1,t ≤ xσ2

}
= [G(x)]T−g(T ). (28)

This forms the basis of the finite adjusted sup-Chow test (SC2∗), with rejection in the right tail. Note
that in this case, no centring or scaling is required, because the null distribution itself depends on T .

6. Simulation Study

We present the results of four simulation experiments done in Ox [31]: size; distributional sensitivity;
power against mean shifts; and power against outliers. All of the simulations are done first for a first
order autoregression and then for an autoregressive distributed lag model.
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6.1. Autoregressive Data-Generating Process

Consider the following data-generating process:

xt = αxt−1 + εt, t = 1, . . . , T, (29)

x0 = 0.

Where not otherwise stated, we set α = 0 and εt
iid∼ N(0, 1). The number of Monte Carlo repetitions and

the implied Monte Carlo standard error, MCSE, are indicated in table captions.
The regression model is that of an first order autoregression. It includes an intercept unless otherwise

stated. The five tests computed and presented in the tables are: the asymptotic sup-Chow test (SC2);
the corrected sup-Chow test (SC∗2); the [13] sup-F test (sup F); an outlier test based on the OLS residuals
(sup t2); and the [32] Ep test for normality (Φ). The nominal size is 5% unless otherwise stated.

The two sup-Chow tests are described in Theorem 10 and Equation (28), respectively; for the function
g(T ), we use T 1/2. The sup-F test is a linear regression form of Andrews’ sup-W (Wald) test with 15%
trimming, as used for the simulations in [33] and implemented in EViews 7 by the command ubreak.
It is the maximum of the Chow F-tests calculated over break points 0.15T ≤ λ ≤ 0.85T , such that for
each break point λ, under the alternative, the model is estimated separately for each subsample (1 . . . λ
and λ + 1. . . T), whereas under the hypothesis, the model is estimated for the full sample. The null
distribution is given by asymptotic approximation to a non-standard distribution with simulated critical
values given in [15]. The sup-t2 test examines the maximum of the squared full-sample OLS residuals,
externally studentised as in ([34] s. 2.2.9); that is, residual t is normalised using an estimate of the error
variance that excludes residual t itself. These squared statistics are F1,t−k−1 distributed under normality
of the errors, but not independent; hence, the use of the Bonferroni inequality to find significance levels
is recommended by [34]. We find in simulation that, despite dependence, the exact maximal distribution
of T independent F1,t−k−1 random variables is a reasonable choice for the sample sizes and processes
we consider, except those that are near-unit-root. Finally, in experiments where we wish to evaluate
the performance of the sup-Chow test conditional on residuals having satisfied a normality test, we use
the [32] Ep test of the OLS residuals.

In the first experiment (Table 1), we vary the autoregressive parameter through the stationary, unit-root
and explosive regions and consider the effect of either including or excluding an intercept from the
model. As noted above, the SC2 test is uniformly oversized. The SC∗2 test is correctly sized and
approximately similar, with simulated size varying very little across the parameter space. There is
some tendency towards inflated sizes under near-unit-root processes when an intercept is included in
the model, but the extent of this is quite limited (7% simulated size). The key consequence of this result
is that it is not necessary to know a priori where the autoregressive parameter lies to effectively apply
the SC∗2 test, avoiding a potential circularity in model construction.

In simulations that are not reported here, we also investigated the sup F test. This test is not valid in
the non-stationary case. Thus, the same patterns were seen, albeit with a larger effect. The simulated
size is as high as 44% in the unit root case.
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Table 1. Simulated rejection frequency for SC2 and SC∗2 under the Gaussian autoregression
in Equation (29). 200,000 repetitions, MCSE ≤ 0.1.

Autoregressive Coefficient (α)
T

−1.03 −1.00 −0.50 0.00 0.50 0.90 1.00 1.03

5% Nominal Size

Intercept included in model (M1)

25
SC2 14.52 14.44 13.92 14.40 15.82 19.28 19.86 20.21
SC2∗ 5.30 5.26 5.01 5.24 5.78 7.28 7.59 7.75

50
SC2 12.80 12.72 12.32 12.60 13.50 16.13 16.97 17.43
SC2∗ 5.17 5.15 4.92 5.05 5.38 6.52 7.00 7.27

100
SC2 10.43 10.41 10.15 10.36 10.73 12.34 13.27 13.85
SC2∗ 5.09 5.05 4.95 5.00 5.08 5.82 6.38 6.74

No intercept included in model (M2)

25
SC2 15.28 15.23 14.51 14.49 14.62 15.11 15.33 15.39
SC2∗ 5.49 5.46 5.20 5.19 5.23 5.44 5.49 5.53

50
SC2 13.17 13.12 12.72 12.72 12.71 13.01 13.20 13.21
SC2∗ 5.33 5.29 5.06 5.03 5.09 5.20 5.26 5.27

100
SC2 10.64 10.60 10.27 10.31 10.34 10.42 10.62 10.63
SC2∗ 5.17 5.12 5.02 4.99 5.01 5.03 5.13 5.16

1% Nominal Size

No intercept included in model (M1)

25
SC2 6.30 6.29 5.98 6.24 7.06 8.87 9.16 9.33
SC2∗ 1.09 1.10 1.04 1.07 1.24 1.64 1.75 1.79

50
SC2 4.77 4.77 4.56 4.70 5.16 6.44 6.83 7.04
SC2∗ 1.08 1.08 1.02 1.06 1.15 1.45 1.57 1.60

100
SC2 3.36 3.36 3.24 3.31 3.47 4.22 4.59 4.74
SC2∗ 1.05 1.05 1.02 1.02 1.04 1.21 1.36 1.43

No intercept included in model (M2)

25
SC2 6.71 6.69 6.25 6.22 6.34 6.59 6.71 6.73
SC2∗ 1.16 1.15 1.06 1.04 1.06 1.12 1.18 1.19

50
SC2 4.98 4.97 4.70 4.69 4.78 4.90 4.95 4.95
SC2∗ 1.12 1.11 1.04 1.05 1.05 1.07 1.10 1.09

100
SC2 3.41 3.37 3.24 3.24 3.25 3.33 3.39 3.40
SC2∗ 1.06 1.05 1.02 1.01 1.00 1.00 1.03 1.04

The second experiment evaluates the sensitivity of the SC∗2 test to failures of Assumption 5, in
particular the non-normality of the errors. Table 2 presents simulated sizes for both the SC∗2 and sup F

tests under a range of error distributions. The former is very sensitive to departures from normality,
while the latter is not. In the second part of the table we consider a further scenario, in which a model
builder runs the structural instability tests only if a test for normal residuals is not rejected. This yields
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three additional tests, the normality test Φ and the SC∗2|Φ and sup F|Φ tests, each conditional on the
normality hypothesis having not been rejected. We also consider joint tests SC∗2 + Φ and sup F+ Φ that
first tests normality and then tests for break if normality cannot be rejected. As the table illustrates, some
size distortion remains, but the inflation of the unconditional test is largely controlled in the conditional
case. As noted in Section 8 below, we recommend using the test in this way if the normality of the errors
cannot be safely assumed.

Table 2. Simulated rejection frequency for SC∗2 and sup F, possibly combined with
normality test Φ, under autoregression in Equation (29) with various error distributions.
50,000 repetitions, MCSE ≤ 0.25.

Error Distribution
T

Φ t50 t10 t5 χ2
3,cent.

Unconditional tests

50
SC∗2 5.0 6.6 15.0 28.8 40.9
sup F 6.0 6.0 6.0 5.9 6.3

100
SC∗2 5.0 7.4 22.2 45.0 59.9
sup F 4.9 5.0 4.9 4.7 4.9

Joint tests

50

Φ 4.9 6.7 19.0 41.0 95.1
SC∗2|Φ 3.4 3.9 6.2 8.0 * 7.4
sup F|Φ 6.0 6.0 6.1 6.0 * 6.7
SC∗2 + Φ 8.1 10.4 24.0 45.8 * 95.5
sup F + Φ 10.6 12.3 23.9 44.6 * 95.4

100

Φ 4.8 7.6 28.7 63.0 100.0
SC∗2|Φ 3.3 4.2 7.2 8.6
sup F|Φ 5.0 5.0 5.0 4.9
SC∗2 + Φ 8.0 11.5 33.9 66.2 * 100.0
sup F + Φ 9.5 12.2 32.3 64.8 * 100.0

The third experiment considers the power of the tests against a single shift in the mean level of the
process. The data generating process is:

xt = γIt>τ + εt, t = 1, . . . , T, (30)

x0 = 0.

and we allow γ and τ to vary as presented. The regression model remains a first order autoregression
with an intercept. The level shift is therefore not modelled. Table 3 shows simulated sizes for the
unconditional tests as in the previous experiment. We note that the sup F test performs well for a break
at mid-sample, but is outperformed by the SC∗2 test for breaks occurring near the end of the sample. We
also consider conditional tests as in the previous experiment. There are two main observations: firstly,
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the normality test is increasingly likely to reject as the break magnitude becomes large; but secondly, the
SC∗2 test still has power (attenuated by around one-half) to detect the break in this case.

Table 3. Simulated rejection frequency for SC∗2 and sup F, possibly combined with
normality test Φ, under the process in Equation (30) with a break of magnitude γ at time
τ . 50,000 repetitions, MCSE ≤ 0.5.

Break Timing (τ )
0.5T T-2 T-1

Post-Break Constant (γ)
T

0.0 2.0 4.0 2.0 4.0 2.0 4.0

Unconditional tests

25
SC∗2 5.5 13.7 51.2 21.0 78.7 16.0 70.3
sup F 10.3 90.4 99.9 19.9 44.8 14.1 28.1

50
SC∗2 5.2 17.1 67.6 18.6 83.2 13.3 69.9
sup F 6.0 99.8 100.0 10.2 34.5 7.1 11.5

100
SC∗2 5.1 20.0 77.9 16.1 84.2 11.5 67.6
sup F 4.9 100.0 100.0 7.2 31.2 5.4 7.4

Joint tests

25

Φ 5.1 4.3 15.6 9.6 37.9 9.9 53.9
SC∗2|Φ 3.8 12.5 45.3 14.8 66.7 9.4 38.3
sup F|Φ 10.2 90.4 99.9 19.6 52.1 13.1 22.6
SC∗2 + Φ 8.7 16.2 53.8 22.9 79.4 18.4 71.5
sup F + Φ 14.8 90.8 99.9 27.3 70.3 21.7 64.3

50

Φ 4.8 4.4 17.0 11.1 61.9 9.5 58.6
SC∗2|Φ 3.5 15.7 62.6 11.3 58.6 7.2 31.1
sup F|Φ 6.0 99.8 100.0 9.8 33.9 6.9 9.0
SC∗2 + Φ 8.2 19.4 69.0 21.1 84.2 16.1 71.5
sup F + Φ 10.6 99.9 100.0 19.8 74.8 15.8 62.3

100

Φ 4.7 4.2 15.6 11.2 74.7 8.5 57.4
SC∗2|Φ 3.4 18.7 74.7 8.9 43.5 6.4 28.4
sup F|Φ 4.9 100.0 100.0 6.8 19.3 5.4 6.3
SC∗2 + Φ 8.0 22.1 78.7 19.1 85.7 14.4 69.5
sup F + Φ 9.4 100.0 100.0 17.2 79.6 13.5 60.0

The fourth experiment (Table 4) considers the power of the tests against a single innovation outlier at
the process mid-point. The data generating process is:

xt = αxt−1 + δIt=T/2+1 + εt, t = 1, . . . , T, (31)

x0 = 0.

and we allow α and δ to vary. Both tests presented have similar power in most circumstances, with
an outlier larger than three-times the error standard deviation being detected with useful frequency.
The OLS-based sup t2 test has slightly better power than the Chow test. The conditional evaluations
show that both tests retain power in situations where the normality test is not rejected.
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Table 4. Simulated rejection frequency for SC∗2 and sup F, possibly combined with
normality test Φ, under the process in Equation (31) with a break of magnitude δ. 50,000
repetitions, MCSE ≤ 0.5.

Outlier Magnitude (δ)
α T

0.0 1.0 2.0 3.0 4.0 5.0

Unconditional tests

0.5
50

SC∗2 5.5 5.8 10.6 28.7 58.7 84.9
sup t2 4.7 5.0 10.5 31.8 66.2 90.7

100
SC∗2 5.2 5.5 9.8 28.1 61.1 87.9
sup t2 4.8 5.1 9.8 29.9 65.1 90.8

0.9

50 SC∗2 6.6 7.0 12.0 30.2 59.7 85.3
sup t2 4.7 4.9 10.3 31.3 65.5 90.3

100 SC∗2 5.9 6.3 10.8 28.9 61.4 87.9
sup t2 4.9 5.1 9.8 29.7 64.9 90.6

Joint tests

0.5 50

Φ 4.9 5.0 9.6 27.7 59.3 86.6
SC∗2|Φ 3.8 4.0 5.8 10.8 18.0 25.6
sup t2|Φ 2.2 2.4 4.0 10.3 22.7 36.8
SC∗2 + Φ 8.5 8.8 14.8 35.5 66.6 90.0
sup t2 + Φ 7.0 7.3 13.2 35.2 68.5 91.5

100

Φ 4.8 5.0 8.7 25.0 57.1 86.0
SC∗2|Φ 3.5 3.7 5.2 11.0 20.9 32.0
sup t2|Φ 2.7 2.8 4.4 10.9 24.3 40.0
SC∗2 + Φ 8.1 8.5 13.4 33.2 66.1 90.5
sup t2 + Φ 7.3 7.7 12.7 33.2 67.5 91.6

0.9 50

Φ 4.9 5.1 9.4 27.1 58.6 85.9
SC∗2|Φ 4.9 5.2 7.3 13.1 21.6 30.6
sup t2|Φ 2.2 2.3 4.0 10.3 22.6 37.5
SC∗2 + Φ 9.5 10.0 16.0 36.6 67.5 90.2
sup t2 + Φ 6.9 7.2 13.0 34.6 68.0 91.2

100

Φ 4.7 5.0 8.6 24.7 56.8 85.8
SC∗2|Φ 4.2 4.4 6.2 12.2 22.2 33.6
sup t2|Φ 2.7 2.8 4.4 10.9 24.2 39.5
SC∗2 + Φ 8.7 9.2 14.3 33.8 66.4 90.6
sup t2 + Φ 7.3 7.6 12.6 32.9 67.2 91.4
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6.2. Autoregressive Distributed Lag Data-Generating Process

We consider a bivariate data-generating process, written in triangular equilibrium correction form as

∆yt =
1

4
∆zt −

1

4
(yt−1 − zt−1) + ν + εt, (32)

∆zt = (ψ − 1)zt−1 + ηt (33)

y0 = z0 = 0,

where εt, ηt
iid∼ N2(0, I2). The characteristic roots of the system are ψ and 3/4. When ψ = 1, the model

is cointegrated. When ψ = 1/4, the model is stationary. In both cases, yt − zt is stationary.
We then fit the univariate autoregressive distributed lag model

yt = ρzt + αyt−1 + βzt−1 + ν + εt, (34)

and investigate the residuals ε̂t using the Chow statistics.
The first experiment (Table 5) evaluates the size of the Chow tests. Here, ψ varies, while ν = 0 in

the data generating process. The results are in line with those seen for the autoregressive situation in
Table 1. The second experiment is not done in this situation.

Table 5. Simulated rejection frequency for SC2, SC∗2 under an autoregressive distributed lag
process in Equations (32), (33). 50,000 repetitions, MCSE ≤ 0.2.

Autoregressive Coefficient (ψ)
T

0.25 1.00

50
SC2 15.0 16.3
SC∗2 6.1 6.7

100
SC2 11.6 12.2
SC∗2 5.4 5.8

The third experiment (Table 6) evaluates the power of the Chow tests against a single shift in the mean
level. This is done by replacing ν by νIt>τ in the data generating process Equation (32). The results are
in line with those seen for the autoregressive situation in Table 3: There is good size control. The power
is nearly uniform in ψ and comparable to the power reported in Table 3.

The fourth experiment (Table 7) evaluates the power of the Chow tests against a single innovation
outlier at the process mid-point. This is done by replacing ν by νIt=T/2+1 in the data generating process
Equation (32). The results are in line with those seen for the autoregressive situation in Table 4.
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Table 6. Simulated rejection frequency for SC∗2 under process in Equations (32), (33) with
a break of magnitude ν at time τ . T = 50. 50,000 repetitions, MCSE ≤ 0.5.

Break Timing(τ )
0.5T T-2 T-1

Post-Break Constant (ν)
ψ

0.0 2.0 4.0 2.0 4.0 2.0 4.0

0.25

SC∗2 6.1 16.3 64.6 19.7 83.2 13.8 68.2
Φ 4.9 6.8 34.1 10.9 61.8 9.1 54.9

SC∗2|Φ 4.5 13.4 51.2 12.7 58.8 8.4 33.1
SC∗2 + Φ 9.2 19.3 67.8 22.2 84.3 16.7 69.8

1.00

SC∗2 6.7 16.0 62.0 19.4 81.2 14.2 67.2
Φ 5.0 6.0 25.1 9.7 54.5 8.7 51.8

SC∗2|Φ 5.3 13.7 52.6 13.5 60.8 9.1 35.2
SC∗2 + Φ 10.0 18.9 64.5 21.9 82.2 17.0 68.8

Table 7. Simulated rejection frequency for SC∗2 under process in Equations (32), (33) with
an outlier of magnitude ν at mid-sample. T = 50. 50,000 repetitions, MCSE ≤ 0.5.

Outlier Magnitude (ν)
ψ

0.0 1.0 2.0 3.0 4.0 5.0

0.25 SC∗2 6.1 6.3 10.4 25.5 53.0 79.1
Φ 4.9 5.2 9.1 25.4 55.4 83.1

SC∗2|Φ 4.5 4.6 6.3 10.8 17.5 24.8
SC∗2 + Φ 9.2 9.6 14.8 33.5 63.2 87.3

1.00 SC∗2 6.7 7.1 11.0 25.4 51.5 77.4
Φ 5.0 5.3 9.3 25.9 55.9 83.5

SC∗2|Φ 5.3 5.5 7.1 11.7 18.5 26.0
SC∗2 + Φ 10.0 10.5 15.7 34.6 64.1 87.8

7. Empirical Illustration

As an empirical illustration, consider log quarterly U.K. gross domestic product1, y, say, for the period
1991:1 to 2013:3. This gives a total sample length of 91, of which two observations are held back as
initial values. The data is provided as supplementary material. Figure 1a shows the series.

An autoregression with two lags, an intercept and a linear trend is fitted to the data:

ŷt
(se)

= 1.65
(0.08)

yt−1 − 0.66
(0.08)

yt−2 + 0.17
(0.14)

+ 0.000045
(0.000075)

t (35)

σ̂ = 0.0050, log-likelihood = 347.439,

χ2
norm[2] = 4.3 (p = 0.12), Far(1−5)[5, 80] = 1.2 (p = 0.32), (36)

maxC2∗ = 12.9 (p = 0.026) {arg max = 2008 : 2} (37)

1 ABMI series from Office of National Statistics, seasonally adjusted, 2010 prices, release 20 December 2013.
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Figure 1. U.K. GDP series. (a) Series in logs; (b) scaled residuals; (c) pointwise one-step
Chow tests; the horizontal line is the 1% critical value; (d) simultaneous Chow test; the
horizontal lines are the 1% (top) and 5% (bottom) critical values.

The specification tests in Equation (36) are a cumulant-based test for normality and a test for
autocorrelated residuals. They are valid for non-stationary autoregressive distributed lag models;
see [29,35,36]. These specification tests do not indicate particular problems with the model. The
specification test in Equation (37) is the supremum Chow test C2∗

1,t from Equation (27) evaluated
according to the finite sample approximation Equation (28). This indicates a specification problem that
is worst for 2008:2. A graphical version of this test is discussed below.

Figure 1b shows the scaled residuals. There appears to be clustering of first positive and then negative
residuals around the start of the financial crisis in 2006–2009. This tendency is, however, not sufficient
to tricker the specification tests for autocorrelation and non-normality in Equation (36).

Figure 1c shows pointwise one-step Chow tests. This is the standard output from PcGive. The scale
is a probability scale, where the horizontal line indicates the critical value for pointwise tests at a 1%
level. The exact nature of the probability scale is not documented in [37]. This plot represents pointwise
tests based on 79 statistics with an unclear correlation structure. Thus, researchers have traditionally
interpreted this plot with a grain of salt; see ([38] p.197). In this plot, there is a cluster of pointwise
rejections, so it would seem prudent to question the stability of the model.

Figure 1d shows the Chow statistics C2∗
1,t (see Equation (27)), along with horizontal lines indicating

the critical values of simultaneous 5% and 1% tests. These are computed according to the finite sample
approximation Equation (28). The maximum of the test statistics is 12.9; see Equation (37). This is
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between the 5% and the 1% critical levels of 11.6 and 14.7, respectively. Thus, with a 5% level, it would
seem prudent to question the stability of the model.

What could be done to remedy the situation? The usual answer is to inspect the data, think about
the economic context and the economic question of interest and update the empirical model accordingly.
While the economic question is vague in this illustration, the context of the specification problem is the
financial crisis. In 2008, there is downward shift both in productivity and in growth rates. How big these
effects were remains unclear, and so, the Office of National Statistics keeps revising the data for this
period; see [39,40]. Now, one way to capture the downward shift in productive and growth rates is to use
an impulse indicator and a step indicator. This gives the model:

ŷt
(se)

= 1.33
(0.09)

yt−1 − 0.42
(0.08)

yt−2 + 1.17
(0.24)

+ 0.00077
(0.00016)

t− 0.015
(0.0045)

1t=2008:2 − 0.019
(0.0038)

1t≥2008:3 (38)

σ̂ = 0.0043, log-likelihood = 361.397,

χ2
norm[2] = 2.7 (p = 0.25), Far(1−5)[5, 78] = 0.5 (p = 0.79), (39)

maxC2∗ = 8.9 (p = 0.198) {arg max = 2009 : 2}. (40)

The formal asymptotic theory does not cover this situation with dummies. We proceed with these
results nonetheless. The specification tests (39), (40) for the new model (38) are clearly better than the
tests (37), (37) for the original model (35). An asymptotic theory for this type of iterative specification
of a regression model is given in [41].

It is worth noting how the plot Figure 1d is computed. First, C2
1,t is computed using Equation (5) for

t = 11, . . . , 89, so that g(T ) = 10 and T = 89. This can be done easily using standard regression
techniques. For instance, to compute C2

1,11, run a regression including over the sample 1, . . . , 11,
including a dummy for Observation 11. Then, C2

1,11 is the F -statistic for testing the absence of the
dummy variable. Secondly, C2∗

1,11 is computed from C2
1,11 by first transforming using the F (1, t− k − 1)

distribution function, with t = 11 and k = 4 in this case, and then by the inverse of G, the χ2
1 distribution

function. The critical values are computed according to the finite sample approximation (28). For
instance, for p = 0.05, then x = G−1{(1− p)1/[T−g(T )]} = 11.72, so that [G(x)]T−g(T ) = 1− p.

8. Conclusions

We advocate the sup-Chow test as a general misspecification test to be used as part of an iterative
modelling strategy. It is a relatively simple transformation of the existing one-step Chow test (or,
similarly, the EViews one-step forecast test), with a standard and easily calculated null distribution,
which does not vary substantially in the AR(1) parameter space. We anticipate that it would be used
as one of a battery of tests (including the normality of residuals); rejection would draw the modeller’s
attention to the pointwise plot, which would help identify the cause and timing of the failure.

By construction, the test is sensitive to parameter changes and outliers and is somewhat agnostic about
the timing and number of these breaks. This makes it useful against a variety of simple and complex
misspecification types. However, there is a clear trade-off, and as the first columns of Table 3 show, the
test is less powerful against a particular alternative than the [13] sup-F test, which explicitly models a
single break. This motivates the use of multiple different tests, with the failure of any one signalling
misspecification and triggering further investigation. In real datasets, breaks may not be of the single
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mean-shift variety, and the parallel popularity of CUSUM-type and Andrews-type tests suggests that
both approaches have value.

The test is not invariant to the error distribution, even asymptotically; a feature it shares with most
outlier tests and end-sample tests of parameter change. There are two different solutions to this,
depending on the modelling approach being used.

If normality is assumed and tested, there is no problem. As Table 2 shows, the pre-test for normality
affects the size and power of the test, but substantial power remains following the pre-test: that is, the
sup-Chow test has power somewhat orthogonal to a common normality test.

If normality is not maintained, the sup-Chow test as presented cannot be used. The solution to this
problem would involve a subsampling technique to recover the distribution of the errors from the known
good part of the sample. This is the approach taken in [15], but it necessarily complicates the test. An
appealing alternative is offered in [42] in the context of another test applying extreme value theory to
outlier detection. The authors resolve the distribution dependency in three stages. First, extreme value
theory itself means that a wide class of error distributions converge in the maximum to the same extreme
value distribution: the Gumbel, discussed in Equation (20) above. Second, the centring factor required
for extreme value convergence is eliminated by examining differences between order statistics, applying
a convenient theorem of [43]. Third, the scaling factor is implicitly sampled by examining the largest
(1/α) pointwise statistics for a level α test. Preliminary experiments suggest that this approach can be
applied effectively to the sup-Chow test, but as in [42], a further correction is needed to control the size
of the test; hence, this remains future work.
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A. Proofs

A.1. Notation

We use the spectral matrix norm, so ‖M‖ = [λmax(MM ′)]1/2, where λmax(MM ′) indicates
the largest eigenvalue of MM ′. For a symmetric, non-negative definite matrix M , then M1/2

refers to a matrix that is multiplied with its transpose to give M . The choice of the matrix
square root does not matter, due to the choice of the matrix norm and the properties of the
eigenvalues of the products. Define for any as, bs ∈ {xs, Rs−1,Ws−1, ξ2,s, Qs−1, Ũs−1}, the sum
Sab =

∑t−1
s=1 asb

′
s, the correlation Cab = S

−1/2
aa SabS

−1/2
bb and the partial regressions quantities

(a|b)t = at − SabS−1
bb bt and Saa.b = Saa − SabS−1

bb Sba.
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A.2. Three-Way Process Decomposition

We elaborate on the decomposition of the companion form Equation (15) given in Equation (16).
Whereas, there, it was decomposed into non-explosive and explosive components, we now further
decompose the non-explosive components into stationary and unit-root components. As before,
there exists a regular real matrix M3 to block diagonalize S into stationary, unit-root and
explosive components:

M3St = (M3SM3
−1)M3St−1 + M3(ξ′t, 0

′)′, Ũt

Qt

Wt

 =

U 0 0

0 Q 0

0 0 W


 Ũt−1

Qt−1

Wt−1

+

eŨ ,teQ,t

eW,t

 , (41)

where Ũ, Q and W have eigenvalues inside, on and outside the unit circle, respectively. We can now
express the two-way decomposition presented in Equation (16) as follows:

Rt =

(
Ũt

Qt

)
and R =

(
U 0

0 Q

)
. (42)

A.3. Preliminary Asymptotic Results

The ADL model Equation (10) becomes:

Yt = ρZt + θ′St−1 + εt t = 1, . . . , T.

where θ is the vector of coefficients. Then, from Equation (11), we have Zt = ΠSt−1 + ξ2,t, where
ξt has been partitioned conformably with Xt. Then, the residuals from regressing Yt on (Z ′t, S

′
t−1)′

could also be obtained by regressing Yt on (ξ′2,t, S
′
t−1)′ or as a result of the decomposition above in

Equation (16), on xt = (ξ′2,t, R
′
t−1,W

′
t−1)′; so, we can analyse the test statistic Equation (6) as if these

were the actual regressors.

Lemma 12. Suppose Assumptions 1, 2 and 3 hold with α > 4 only. Then, for all β > 1/α and ζ < 1/8,

(i) CRW
a.s.
= o(t−ζ/2),

(ii) CξS
a.s.
= o(tβ−1/2),

(iii) S−1
RR·W

a.s.
= S

−1/2
RR · {1 + o(1)} · S−1/2

RR ,

(iv) S−1
ξ2ξ2·S

a.s.
= S

−1/2
ξ2ξ2
· {1 + o(1)} · S−1/2

ξ2ξ2
,

(v) S−1/2
RR Rt−1

a.s.
= o(t−ζ/2),

(vi) S−1/2
WW Wt−1

a.s.
= O(1),

(vii) S−1/2
RR (R|W )t

a.s.
= o(t−ζ/2), and

(viii) S−1/2
ξ2ξ2

(ξ2|S)t
a.s.
= o(tβ−1/2).
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Proof. Result (i) is proven by decomposing the correlation to apply results from [25], so that:

‖CRW‖ = ‖S−1/2
RR SRWS

−1/2
WW ‖

≤

∥∥∥∥∥∥
(

1 CŨQ
CQŨ 1

)−1/2
∥∥∥∥∥∥
∥∥∥∥∥
(
S
−1/2

ŨŨ
0

0 S
−1/2
QQ

)(
SŨW
SQW

)
S
−1/2
WW

∥∥∥∥∥
a.s.
= O(1)

(
CŨW
CQW

)
,

where the last line follows, because CŨQ is vanishing almost surely by [25], Theorem 9.4. Then the
result follows, since CŨW

a.s.
= o(tβ−1/2) and CQW

a.s.
= o(t−ζ/2) by [25], Theorems 9.1 and 9.2. The latter

term will dominate since α > 16/7 under Assumption 2.
Result (ii) is proven by noting that ‖CξS‖ ≤ ‖S−1/2

ξξ ‖‖SξSS−1/2
SS ‖, with the first normed term O(t−1/2)

by [25], Theorem 2.8, and the second o(tβ) by [25], Theorem 2.4.
Result (iii) follows by writing:

S−1
RR.W = (SRR − SRWS−1

WWSWR)−1

= S
−1/2
RR (I − CRWCWR)−1S

−1/2
RR ,

and applying (i) to show that CRW is vanishing.
Result (iv) is exactly analogous, but substitutes (ii) for (i).
Result (v) follows by again decomposing Rt. Namely,

SRR =

(
S

1/2

ŨŨ
0

0 S
1/2
QQ

)(
1 CŨQ

CQŨ 1

)(
S

1/2

ŨŨ
0

0 S
1/2
QQ

)
,

so that:

‖S−1/2
RR Rt−1‖ ≤

∥∥∥∥∥∥
(

1 CŨQ
CQŨ 1

)−1/2
∥∥∥∥∥∥
∥∥∥∥∥
(
S
−1/2

ŨŨ
0

0 S
−1/2
QQ

)(
Ũt−1

Qt−1

)∥∥∥∥∥ .
Then, the first normed quantity on the right-hand side is bounded, since CŨQ is vanishing by [25],

Theorem 9.4. The second normed quantity comprises S−1/2

ŨŨ
Ũt−1 stacked with S

−1/2
QQ Qt−1. By [25],

Theorem 8.3, we have S−1/2

ŨŨ
= O(t−1/2) and by [44], Theorem 1(i), we have that Ũt−1 = o(tβ),

so S−1/2

ŨŨ
Ũt−1 = o(tβ−1/2).

We cannot bound S
−1/2
QQ independently in the same way, but since Qt contains only the unit-root

components (with eigenvalues on the unit circle), we can apply [25], Theorem 8.4, which states that
for some η, maxtη≤s<tQ

′
s

(∑t
s=1Qs−1Q

′
s−1

)−1
Qs = o(t−ζ) for all ζ < 1/8, and so, a fortiori,

Q′t−1

(∑t
s=1Qs−1Q

′
s−1

)−1
Qt−1 = o(t−ζ). However, then ‖S−1/2

QQ Qt−1‖2 = Q′t−1S
−1
QQQt−1, and we can

then use the matrix identity b′(A + bb′)−1b = b′A−1b(1 + b′A−1b)−1 ([45] p. 151) to write:

Q′t−1S
−1
QQQt−1 =

Q′t−1

(∑t
s=1Qs−1Q

′
s−1

)−1
Qt−1

1−Q′t−1

(∑t
s=1Qs−1Q′s−1

)−1
Qt−1

,

which is o(t−ζ), so that S−1/2
QQ Qt−1 = o(t−ζ/2).
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Considering the maximum of these components, we have again that the latter dominates and
‖S−1/2

RR Rt−1‖ = O(t−ζ/2), since α > 16/7 under Assumption 2.
Result (vi) follows directly from [44], Lemma 4(i).
Result (vii) follows from (i), (v) and (vi). Write:

‖S−1/2
RR (R|W )t‖ = ‖S−1/2

RR Rt−1 − S−1/2
RR SRWS

−1
WWWt−1‖

≤ ‖S−1/2
RR Rt−1‖+ ‖CRW‖‖S−1/2

WW Wt−1‖,

giving three normed quantities to bound. The first is o(t−ζ/2) by (v), as is the second by (i), while the
third is bounded by (vi).

Result (viii) is proven in a similar fashion. Write:

‖S−1/2
ξ2ξ2

(ξ2|S)t‖ = ‖S−1/2
ξ2ξ2

ξ2,t − S−1/2
ξ2ξ2

Sξ2SS
−1
SSSt−1‖

= ‖S−1/2
ξ2ξ2

ξ2,t‖ − ‖Cξ2S‖‖S
−1/2
SS St−1‖.

Then, the first of the normed quantities is o(tβ−1/2) by [25], Theorem 2.8, and the result is
ξt = o(tβ) by [44], Theorem 1; the second is O(tβ−1/2) by (ii); and the third is O(1), since we use
a partial regression transformation to write:

‖S−1/2
SS St−1‖2 = S ′t−1S

−1
SSSt−1

= (R|W )′tS
−1
RR·W (R|W )t +W ′

t−1S
−1
WWWt−1,

and then apply (iii) and (vii) and (vi), respectively.

Lemma 13. Under Assumptions 1, 2 and 3 with α > 4 and with β > 1/α,

(i)
∑t−1

s=1 εsS
′
s−1S

−1/2
SS

a.s.
= o(tβ),

(ii)
∑t−1

s=1 εsR
′
s−1S

−1/2
RR

a.s.
= O[(log t)1/2],

(iii)
∑t−1

s=1 εsW
′
s−1S

−1/2
WW

a.s.
= o(tβ),

(iv)
∑t−1

s=1 εs(R|W )′sS
−1/2
RR

a.s.
= O[(log t)1/2] + o(tβ−1/16).

Proof. For (i), (ii) and (iii), use [25], Theorem 2.4. For (iv), write:
t−1∑
s=1

εs(R|W )′sS
−1/2
RR =

t−1∑
s=1

εsR
′
s−1S

−1/2
RR −

t−1∑
s=1

εsW
′
s−1S

−1/2
WW CWR,

and then apply (ii), (iii) and Lemma 12 (i).

Lemma 14. Under Assumptions 1, 2, 3 and 4,

(i)
∑t−1

s=1 εsξ
′
2,sS

−1/2
ξ2ξ2

a.s.
= O[(log t)1/2],

(ii)
∑t−1

s=1 εs(ξ2|S)′sS
−1/2
ξ2ξ2

a.s.
= o(t2β−1/2) + O[(log t)1/2], the latter term dominating when α > 4.

Proof. For (i), use [46], Lemma 1(iii), and [44], Corollary 1(iii). For (ii), write:
t−1∑
s=1

εs(ξ2|S)′sS
−1/2
ξ2ξ2

=
t−1∑
s=1

εsξ
′
2,sS

−1/2
ξ2ξ2
−

t−1∑
s=1

εsS
′
s−1S

−1/2
SS CSξ,

and then apply (i), Lemma 13 (i) and Lemma 12 (ii).
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A.4. Proof of Theorem 6

We proceed to examine the behaviour of ε̃t, the one-step forecast residuals. From Equation (6),
we can write:

ε̃t =
εt −

∑t−1
s=1 εsx

′
s

(∑t−1
s=1 xsx

′
s

)−1
xt[

1 + x′t
(∑t−1

s=1 xsx
′
s

)−1
xt

]1/2
. (43)

We break the result into two lemmas, one describing the denominator and one the numerator, with
similar reasoning in each case.

Lemma 15. Under Assumptions 1, 2 and 3,

x′tS
−1
xx xt −W ′F−1

W W = o(t−ζ) a.s. (44)

for all ζ < 1/8 with W and FW as in Theorem 6.

Proof. Divide the statistic into two parts using that:

‖x′tS−1
xx xt −W ′F−1

W W‖ ≤ ‖x′tS−1
xx xt −W ′

t−1S
−1
WWWt−1‖+ ‖W ′

t−1S
−1
WWWt−1 −W ′F−1

W W‖.

We use a partial regression transformation to divide the first part into two partial components:

‖x′tS−1
xx xt −W ′

t−1S
−1
WWWt−1‖ ≤ ‖(ξ2|R,W )′tS

−1
ξ2ξ2.RW

(ξ2|R,W )t‖+ ‖(R|W )′tS
−1
RR.W (R|W )t‖.

The first normed term on the right-hand side is o(t2β−1), and the second is o(t−ζ) by Lemma 12,
Parts (iv) and (viii); and (iii) and (vii), respectively. The second term will dominate, since α > 16/7, so
‖x′tS−1

xx xt −W ′
t−1S

−1
WWWt−1‖ = o(t−ζ).

The lemma is then proven by rewriting the second step:

W ′
t−1S

−1
WWWt−1 −W ′F−1

W W =(W−(t−1)Wt−1)′[(Wt−1)′S−1
WWWt−1 − F−1

W ](W−(t−1)Wt−1)

+ (W−(t−1)Wt−1 −W )′F−1
W (W−(t−1)Wt−1)

+W ′F−1
W (W−(t−1)Wt−1 −W ),

and noting that, by [25], Corollary 5.3(i), Wt−1Wt−1−W = O(λmin(W)−t) and, by [25], Corollary 7.2,
(Wt−1)′S−1

WWWt−1 − F−1
W = O(λmin(W)−2t), almost surely, while all of the other terms are bounded

by the same corollaries.

We next state a lemma concerning the main numerator term in Equation (43).

Lemma 16. Under Assumptions 1, 2, 3 and 4:

t−1∑
s=1

εsx
′
sS
−1
xx xt −GtF

−1
W W = o(tβ−1/8) a.s. (45)

for all β > 1/α, where W and FW are defined as in Theorem 6, and:

Gt =
t−1∑
s=1

εt−sW
′(W−s)′ = o(tβ) a.s. . (46)
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Proof. Once again, we take the proof in two steps, using that:∥∥∥∥∥
t−1∑
s=1

εsx
′
sS
−1
xx xt −GtF

−1
W W

∥∥∥∥∥
≤

∥∥∥∥∥
t−1∑
s=1

εsx
′
sS
−1
xx xt −

t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1

∥∥∥∥∥+

∥∥∥∥∥
t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1 −GtF

−1
W W

∥∥∥∥∥ .
For the first step, we again decompose using a partial regression transformation, so that:∥∥∥∥∥

t−1∑
s=1

εsx
′
sS
−1
xx xt −

t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1

∥∥∥∥∥ ≤
∥∥∥∥∥
t−1∑
s=1

εs(ξ2|R,W )′sS
−1
ξ2ξ2·RW (ξ2|R,W )′t

∥∥∥∥∥
+

∥∥∥∥∥
t−1∑
s=1

εs(R|W )′sS
−1
RR·W (R|W )t

∥∥∥∥∥ , (47)

and we consider each term on the right separately. For the first term in Equation (47), use Lemma 12 (iv)
to write: ∥∥∥∥∥

t−1∑
s=1

εs(ξ2|R,W )′sS
−1
ξ2ξ2·RW (ξ2|R,W )′t

∥∥∥∥∥
≤

∥∥∥∥∥
t−1∑
s=1

εs(ξ2|R,W )′sS
−1/2
ξ2ξ2

∥∥∥∥∥O(1)
∥∥∥S−1/2

ξξ (ξ2|R,W )′t

∥∥∥ a.s.,

and then apply Lemma 14 (ii) and Lemma 12 (viii) to arrive at o(t3β−1) + o[tβ−1/2(log t)1/2] almost
surely. For the second term in Equation (47), we use Lemma 12 (iii) to write:∥∥∥∥∥

t−1∑
s=1

εs(R|W )′sS
−1
RR·W (R|W )t

∥∥∥∥∥ ≤
∥∥∥∥∥
t−1∑
s=1

εs(R|W )′sS
−1/2
RR

∥∥∥∥∥O(1)
∥∥∥S−1/2

RR (R|W )t

∥∥∥ a.s.

and then apply Lemma 13 (iv) and Lemma 12 (vii) to arrive at o(tβ−1/8) almost surely. Overall then,
as long as α > 4, the first step is dominated by this second term.

For the second step, we have to show the bounding rate for:
t−1∑
s=1

εsW
′
s−1S

−1
WWWt−1 −GtF

−1
W W

=

[
t−1∑
s=1

εsW
′
s−1(W−(t−1))′

] [
(Wt−1)′S−1

WWWt−1
]
W−(t−1)Wt−1 −GtF

−1
W W

=

[
t−1∑
s=1

εsW
′
s−1(W−(t−1))′ −Gt

] [
(Wt−1)′S−1

WWWt−1
]
W−(t−1)Wt−1

+Gt

[
(Wt−1)′S−1

WWWt−1 − F−1
W

]
W−(t−1)Wt−1

+GtF
−1
W

[
W−(t−1)Wt−1 −W

]
Many of these terms are familiar from the proof of Lemma 15, and the only new terms to bound are∑t−1
s=1 εsW

′
s−1(W−(t−1))′ −Gt and Gt. For the latter, we have:

‖Gt‖ =

∥∥∥∥∥
t−1∑
s=1

εt−sW
′(W−s)′

∥∥∥∥∥ ≤
∥∥∥∥max

1≤s<t
εs

∥∥∥∥ ‖W ′‖

∥∥∥∥∥
t−1∑
s=1

(W−s)′

∥∥∥∥∥ ,
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which is o(tβ), since the latter two terms are bounded, while εs = o(sβ) by [44], Theorem 1. For the
former term, we have:∥∥∥∥∥

t−1∑
s=1

εsW
′
s−1(W−(t−1))′ −Gt

∥∥∥∥∥ =

∥∥∥∥∥
t−1∑
s=1

εs
[
W−(t−1)Ws−1 −W−(t−s)W

]′∥∥∥∥∥
=

∥∥∥∥∥
t−1∑
s=1

εs

[
W(s−t)

∞∑
p=s

W−peW,p

]′∥∥∥∥∥
≤
∥∥∥∥max

1≤s<t
εs

∥∥∥∥∥∥W−t∥∥ t−1∑
s=1

∥∥∥∥∥
∞∑
u=0

W−ueW,u+s

∥∥∥∥∥
= O(tβ)O(λmin(W)−t)o(t1+β) a.s.

= o(t2β+1λmin(W)−t) a.s.,

where at the second to last line, we use that
∑∞

u=0 W
−ueW,u+s = o(sβ) by [28], Corollary 4.3.

Combining these results, we see that this second step vanishes exponentially fast, and the first step
dominates the expression of interest, giving the result.

The order of Gt follows by writing:

Gt =
t−1∑
s=1

εt−sW
′(W−s)′

≤
∥∥∥∥max

1≤s<t
εs

∥∥∥∥ ‖W‖
∥∥∥∥∥
t−1∑
s=1

(W−s)

∥∥∥∥∥ ,
and applying [44], Theorem 1.

Proof of Theorem 6. We aim to show that:

C2
1,t − (qt/σ)2 a.s.

= o(1). (48)

Using Equation (6), we can rewrite this expression as:

ε̃2
t

(t− k − 1)−1RSSt−1

−
(qt
σ

)2

= ε̃2
t

[
(t− k − 1)

RSSt−1

− 1

σ2

]
+
ε̃2
t − q2

t

σ2
. (49)

We first consider the difference ε̃2
t − q2

t . We have from Equation (43),

ε̃2
t − q2

t =
(εt −

∑t−1
s=1 εsx

′
sS
−1
xx xt)

2

1 + x′tS
−1
xx xt

− (εt −GtF
−1
W W )2

1 +W ′F−1
W W

=
(εt − A3)2

1 + A1

− (εt − A4)2

1 + A2

(50)

=
A2 − A1

(1 + A1)(1 + A2)
(εt − A3)2 +

1

1 + A2

(A4 − A3) (2εt − A4 − A3) , (51)

where:

A1 = x′tS
−1
xx xt A2 = W ′F−1

W W A3 =
t−1∑
s=1

εsx
′
sS
−1
xx xt A4 = GtF

−1
W W. (52)

Both denominators are bounded from below by unity, since A1 and A2 are non-negative. In the first
numerator, A1 −A2 is o(t−ζ) by Lemma 15. The factor εt −A3 = εt −A4 +A4 −A3 is o(tβ), since εt
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and A4 are both o(tβ) by [44], Theorem 1, and Lemma 16, respectively, while A4 − A3 is O(tβ−1/8) by
Lemma 16. Therefore, the first term of the sum is o(t2β−1/8) almost surely.

In the second numerator, A4−A3 is O(tβ−1/8) by Lemma 16, while εt andA4 are each o(tβ) as above,
so that the whole second term is also o(t2β−1/8) almost surely.

Thus, the second term in Equation (49) will vanish as long as 2β < 1/8 or α > 16 in Assumption 2,
as required. To show the same for the first term, note that ε̃2

t = q2
t + (ε̃2

t − q2
t ), where the difference

vanishes as just proven, while:

q2
t =

(εt − A4)2

1 + A2

= o(t2β) a.s.,

since, as above, εt andA4 are both o(tβ), whileA2 is nonnegative. Then, [25], Corollary 2.9, implies that:

(t− k − 1)

RSSt−1

− 1

σ2
= o(tγ) a.s.,

for γ < 1/2. Therefore, the first term in Equation (49) vanishes as long as 2β < 1/2, which is satisfied
by Assumption 2.

A.5. Proof of Lemma 7

Proof. Theorem 6 shows that C2
1,t − q2

t vanishes almost surely. Egorov’s theorem ([47], Theorem 18.4)
then shows that C2

1,t − q2
t vanishes uniformly on a set with large probability. That is,

∀ε > 0∃T0 : Pr(sup
t>T0

|C2
1,t − q2

t | < ε) > 1− ε.

This implies that for any sequence g(T ) which increases to infinity, then supg(T )<t≤T |C2
1,t− q2

t | vanishes
in probability as T increases.

A.6. Proof of Lemma 8 (Correction to Lemma 1 of [30])

Proof. The first part of Deo’s lemma, determining the domain of attraction as Λ, is correct.
The second part, determining the norming sequences, is in error. Deo cites ([48] p. 374) for this
calculation. There, Cramér calculates the norming sequences for a sequence of independent standard
normal random variables (with a right tail differing from the density of interest in only a constant factor).
We follow the slightly more direct approach of [49], Theorem 1.5.3.

Since {Xn} are independent standard normal random variables, {|Xn|} are independent random
variables identically distributed with the half-normal density, that is the normal density folded
around zero:

Pr{|X1| < x} = F (x) =
√

2/π

∫ x

0

e−t
2/2 dt = 2Φ(x), x ≥ 0 (53)

We are interested in probabilities of the form Pr{an(Zn − bn) < x}, which may be rewritten
Pr{Zn ≤ un}, where un(x) = x/an + bn. We seek an, bn, such that the sequence un satisfies (1.5.1)
in [49], Theorem 1.5.1, namely:

n(1− F (un))→ e−x as n→∞. (54)
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Apply a modified version of the well-known normal tail relation,

1− F (u) ∼ f(u)/u as u→∞, (55)

so that combining Equations (54) and (55), we have that (1/n)e−xun/f(un) → 1. Taking logs and
substituting the density f , we have:

− log n− x+ log un − 1
2

log(π/2) + u2
n/2→ 0. (56)

Dividing through by log n,

−1− x

log n
+

log un
log n

− log(π/2)

log n
+

u2
n

2 log n
→ 0, (57)

then, for any fixed x, the second and fourth terms vanish trivially. The third term vanishes by substituting
Equation (54) for n and twice applying L’Hôpital’s rule. It then follows that u2n

2 logn
→ 1, or (taking

logarithms again),

2 log un − log 2− log log n→ 0. (58)

Substituting this result into Equation (56), we have that:

− log n− x+ 1
2

log 2 + 1
2

log log n− 1
2

log(π/2) + u2
n/2→ 0. (59)

so that rearranging,

u2
n = 2 log n

{
1 +

x− 1
2

log π − 1
2

log log n

log n
+ o

(
1

log n

)}
,

and, hence, the maximum of n half-normal random variables has the form:

un = (2 log n)1/2

{
1 +

x− 1
2

log π − 1
2

log log n

2 log n
+ o

(
1

log n

)}
.

It then follows from [49], Theorem 1.5.3, that Pr{Zn ≤ un} → exp(−e−x), and rearranging gives
the norming sequences.

A.7. Proof of Lemma 9

Proof. Consider the normalised linear process:

qt/σ = (εt/σ)(1 +W ′F−1
W W )−1/2 −

∞∑
s=1

(εt−s/σ)W ′(W−s)′F−1
W W (1 +W ′F−1

W W )−1/2

In the case without explosive components, this reduces to:

qt/σ = (εt/σ)

so that under Assumption 5, qt/σ is an independent standard normal sequence and q2
t /σ

2 is an
independent χ2

1 sequence. Then, classical extreme value theory gives the lemma with the norming
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sequences at and bt as stated (see, for instance, [50] p. 56), noting that the χ2 distribution is a special
case of the gamma distribution.

When an explosive component is present, qt/σ under Assumption 5 is still marginally standard
normal. However, dependence between members of the sequence means that classical extreme value
theory cannot be applied. In particular, we have:

E(qt/σ) = 0

Var(qt/σ) = 1

Covar(qs/σ, qt/σ) = r(s, t) = r|t−s| = 2E
{
W ′F−1

W W−|t−s|W (1 +W ′F−1
W W )−1

}
The general approach to dealing with dependent sequences is outlined in [51]; as long as the

dependence is not too great, the same limiting results hold.
We take advantage of the relationship between the χ2

1 and normal distributions to use existing results
on dependent normal sequences to analyse the limiting behaviour of q2

t /σ
2. In particular, we have:

max
t
q2
t /σ

2 < ut iff max
t
|qt/σ| <

√
ut (60)

where |qt/σ| has the half-normal distribution. Lemma 1 and Theorem 1 of [30] (and its Corollary)
consider just such processes, under a square-summability condition that holds here:

∑
r2
s = 4 < ∞.

Then, Deo’s result is:

ct(max
1≤s≤t

|qs/σ| − dt)
d→ Λ (61)

with:

ct = (2 log t)1/2

dt = (2 log t)1/2 − (8 log t)−1/2(log log t+ log π).

(Note that the centring sequence (here, dt, originally bn) is incorrect in the original. A correction is
provided as Lemma 8.) Taking

√
ut(z) = ctz + dt and using Equations (60) and (61), we have:

ct
2dt

(
max
1≤s≤t

q2
t /σ

2 − d2
t

)
d→ Λ

giving norming sequences:

a′t =
ct

2dt
(scaling)

b′t = d2
t (centring).

The equivalence between a′t, b
′
t and at, bt is proven by showing that at/a′t → 1 and at(b′t−bt)→ 0.
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A.8. Proof of Theorem 10

Proof. By a property of inequalities, we can establish a lower bound on the supremum statistic,

1

2

[
max

g(T )≤t≤T
(C2

1,t)− dT−g(T )

]
≤ 1

2
max

g(T )≤t≤T

(
C2

1,t − (qt/σ)2
)

+
1

2

[
max

g(T )≤t≤T
(qt/σ)2 − dT−g(T )

]
(62)

where the left term vanishes in probability by Lemma 7 and the right term converges in distribution by
Lemma 9. We can establish a similar upper bound, so that the normalised supremum statistic is bounded
above and below by quantities that converge in distribution, and the theorem is proven.
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