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Abstract: There is near universal agreement that estimates and inferences from spatial
regression models are sensitive to particular specifications used for the spatial weight
structure in these models. We find little theoretical basis for this commonly held belief, if
estimates and inferences are based on the true partial derivatives for a well-specified spatial
regression model. We conclude that this myth may have arisen from past applied work that
incorrectly interpreted the model coefficients as if they were partial derivatives, or from use
of misspecified models.
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1. Introduction

It has become a near universal criticism of spatial regression models that estimates and inferences
are sensitive to the spatial weight matrix used in the model. For concreteness in our discussion we let a
spatial regression (SAR) model take the form:

y = αιn + ρWy +Xβ + ε (1)

ε ∼ N(0, σ2In)
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where y is an n × 1 vector of observations on the dependent variable and X is an n × k matrix of
observations on the explanatory variables. Each of these observations on the dependent and explanatory
variables comes from regions or points in space. Also, β is a k × 1 vector of parameters associated with
the explanatory variables, ιn is a vector of ones, α is the associated intercept parameter, and ρ is the scalar
dependence parameter (commonly in the interval [0, 1]).1 The n disturbances ε are distributed normally
with constant variance σ2 and zero covariance across observations. The matrix W is the spatial weight
matrix that contains non-zero elements wij if observations j and i are neighbors and zero otherwise.
Typically, the matrixW is row-stochastic, so the n× 1 spatial lag vector Wy contains values constructed
from an average of neighboring observations.2 A more elaborate variant of the SAR model, labeled the
spatial Durbin model (SDM) in the literature, replaces the matrix X with

(
X WX

)
.

In their introduction to a special issue of Papers in Regional Science entitled: “New spatial
econometric techniques and applications in regional science,” Arbia and Fingleton [2] summarize the
criticism of spatial regression models as being sensitive to weight matrix specifications stating:

This problem of what the spatial lag actually represents is bound up with the problem of definition
of the spatial weights matrix, which is assumed to be a nonstochastic matrix capturing our
hypothesis about the nature of the spatial interactions we are modelling. The problem is that,
unlike the simple notion of a time series lag, the spatial lag is a very fluid and complex entity
open to multiple definitions within a single study. Critics of spatial econometrics almost always
in our experience home in on the arbitrary nature of the weights matrix, asking “how is it defined
and why is it precisely like that when it could easily have been like this, what does it mean,
and are not the results obtained conditional on somewhat arbitrary decisions taken about its
structure?”. Some future research on the robustness of outcomes to variations in assumptions about
the weight matrix structure would be helpful in allaying such criticisms, although ideally carefully
structured arguments coming from theory and leading precisely to the typical reduced form spatial
econometric model, with a spatial lag and exogenous lags also, are the preferred option.

We view the notion that the explanatory variable effects and inferences are sensitive to use of a
particular weight matrix as perhaps the biggest myth about spatial regression models. For the model
in Equation (1) consider two model specifications based on weight matrices Wa and Wb, with the same
sample data y,X . If Way and Wby are highly correlated, it would seem difficult to reach materially
different conclusions about the partial derivative impact of changes in the explanatory variables in the

1 Theoretical bounds for this parameter are set forth in LeSage and Pace [1], and depend on minimum and maximum
eigenvalues of the spatial weight matrix W .

2 In linear algebra a row-stochastic matrix has non-negative entries and each row sums to 1 while a doubly stochastic
matrix is non-negative and both the rows and columns sum to 1. Symmetric, doubly stochastic weight matrices, although
they have not been used as much in applications, have a number of simple theoretical properties (all real eigenvalues,
eigenvectors, and are constant preserving). Sometimes, as in Arbia and Fingleton [2], weight matrices are said to be
nonstochastic which means the elements are not random variables. So, from a statistical viewpoint a matrix could be
termed nonstochastic while from a linear algebra view the same matrix could be said to be row- or doubly-stochastic.
This is merely a difference in terminology that uses the term stochastic in different contexts. We make the traditional
assumption that the matrix W is fixed in repeated sampling and therefore exogenously determined.
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matrix X on the dependent variable y (which LeSage and Pace [1] label effects estimates) from models
based on Way versus Wby. (See Section 2.3 for the definition of effects estimates.)

For the case of row-stochastic nearest neighbor matrices, we show that the correlation between spatial
lags of a standard independent normal n× 1 vector u, Wau and Wbu is: corr(Wau,Wbu) = (ma/mb)

0.5,
where ma ≤ mb, and ma, mb represent the number of neighbors used in constructing Wa, Wb.3 For
example, if Wa is based on 15 nearest neighbors and Wb 16 nearest neighbors, the correlation between
Wau,Wbu is 0.97.4

A similar statement applies to more exotic spatial weight specifications that involve inverse distance
and a decay parameter γ in conjunction with some number of nearest neighbors m used as a cut-off,
beyond which zero weights are assigned. For example Anselin [5] discusses a weight matrix taking
the form:

W (i, j) = 1/d(i, j)γm (2)

where d(i, j)m denotes the distance between themth nearest neighboring observations j to observation i,
and γ is a decay parameter, say in the interval [0, 2]. Kostov [6] considers this type of specification
based on m = 1, . . . , 50 (distance-based) nearest neighbors, and values of γ the decay parameter in the
interval [0.4, 4]. Using increments of 0.1 for γ, this leads to a discrete set of 1850 alternative weight
matrices. Here again, small changes in the decay parameters γ and m should lead to highly correlated
Way and Wby.

To address the myth, we begin with Section 2 that provides a number of theoretical results that show
why high correlations often exist between the predictions and marginal effects from different weight
matrices. We also undertake a reexamination of past literature that may have contributed to formation
of this myth in Section 3. Specifically, in Section 3.2 we consider work by Bell and Bockstell [7],
and in Section 3.3 we empirically examine more recent work by Kostov [6]. Finally, in Section 4 a
generated data example is used to illustrate some of the issues that arise regarding interaction between
spatial regression model and weight matrix specifications. Specifically, we show how a model based
on a flexible spatial spillover specification makes it possible to recover accurate estimates of the spatial
effects estimates advocated by LeSage and Pace [1], even in a case where both the matrix W and spatial
regression model are misspecified.

2. Measures of Similarity between Weight Matrices

Directly comparing two n × n weight matrices Wa and Wb containing n2 elements seems unlikely
to result in any clear cut measure of similarity. However, it is possible to derive scalar summaries
of similarity between spatial lags that result from use of these two weight matrices. Specifically, in
Section 2.1 we calculate the correlation between Wau and Wbu for row-stochastic W based on nearest
neighbors and an n × 1 vector of independent identically distributed normal deviates u. We show that

3 We assume for simplicity that ma < mb, without loss of generality.
4 The correlation results we present also apply to spatial lag vectors involving nearest neighbor weight matrices that have

been normalized using scalars, such as the spectral radius proposed by Barry and Pace [3], or the maximum of row or
column sums proposed by Kelejian and Prucha [4].
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the correlation takes the very simple form of (ma/mb)
1/2, where ma, mb represents the number of

neighbors used in constructing Wa, Wb and ma < mb.
Section 2.2 describes alternative measures of similarity for predictions from autoregressive models

based on weight matrices Wa and Wb that apply to more general spatial weight structures. This measure
of similarity has a simple form involving traces of the powers of the weight matrices, and does not depend
on the parameter vector β. The measure of predictive similarity allows us to explore sensitivity of the
partial derivative effects estimates proposed by LeSage and Pace [1], a topic taken up in Section 2.3.
Section 2.4 provides a numerical illustration of the alternative measures of similarity between models
based on varying matrices W .

2.1. Correlation between Wau and Wbu for Varying W

Let Wa and Wb represent row-stochastic weight matrices based on ma, mb nearest neighbors where
each element in Wa, Wb has equal weight of m−1a , m−1b , and for simplicity we assume that ma ≤ mb.
Spatial regression models use spatial lag vectors Wau, Wbu, where we assume u is an n × 1 vector
composed of standardized independent normal deviates. If Wau, Wbu act differently, this would support
the myth that spatial regression model specifications are sensitive to the exact specification used for W .
In contrast, if we can show conditions under which Wau, Wbu act similarly in the context of spatial
regression models, this would support our contention that the exact composition of W is not critical.

Before beginning the analysis, we use extensively the relations,

u′Au =
n∑
i=1

n∑
j=1

Aijuiuj, u ∼ N(0, In) (3)

E(u′Au) =
n∑
i=1

E(u2ii)Aii =
n∑
i=1

Aii = tr(A) (4)

tr(A′B) =
n∑
i=1

n∑
j=1

AijBij = ι′n(A�B)ιn = E(A′B) ≈ u′A′Bu for large n (5)

where A, B are n by n matrices, ιn is a n by 1 vector composed of ones, and � represents
element-by-element multiplication. The quadratic form u′Au in Equation (3) has expectation tr(A) in
Equation (4) because E(u2i ) equals 1 for unit normal random variable (χ2 with one degree-of-freedom)
and E(uiuj) = 0 when i 6= j due to the independence assumption (u ∼ N(0, In)). In addition, as
emphasized by Equation (5), tr(A′B) depends on the common elements in A and B.

Using the relations in Equations (3)–(5), simple expressions exist for covariance in Equation (6) and
correlation between Wau, Wbu for the case of row-stochastic nearest neighbor matrices W as shown in
Equation (7). The simplicity stems from the known common elements in Wa and Wb which equal m−1a
and m−1b . Using Equation (5) this means that the elements of Wa �Wb equal m−1a m−1b and that each
row of Wa �Wb contains ma such elements (otherwise zeros). Summing across all rows and averaging
cancels out and so the cov(Wau,Wbu) equals m−1b . Following a similar method leads to the respective
variances and thus the correlation in Equation (7).
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cov(Wau,Wbu) = n−1u′W ′
aWbu = n−1 tr(W ′

aWb) = n−1
n∑
i=1

ma

[
1

ma

1

mb

]
= m−1b (6)

var(Wau) = n−1u′W ′
aWau = n−1 tr(W ′

aWa) = n−1
n∑
i=1

ma

[
1

m2
a

]
= m−1a

var(Wbu) = n−1u′W ′
bWbu = n−1 tr(W ′

bWb) = n−1
n∑
i=1

mb

[
1

m2
b

]
= m−1b

corr(Wau,Wbu) =
m−1b

m
−1/2
a m

−1/2
b

=

(
ma

mb

)1/2

(7)

The result in Equation (7) indicates that when ma = 10 and mb = 20, the correlation between
Wau and Wbu is 0.707. For ma = 10 and mb = 12, the correlation is 0.9129. This suggests that for
the case of nearest neighbor weight matrices, spatial lag vectors used in spatial regression models may
behave similarly in the face of different specifications for W . This result also highlights a source of the
similarity between spatial lags, namely the number of non-zero elements (neighbors) that Wa and Wb

have in common.
This result generalizes beyond nearest neighbor matrices, since other weight matrices almost always

contain at least the contiguous or nearby neighbors. Given our result, this should lead to Wau and Wbu

having at least a moderately high level of correlation. This result also suggests that it would be possible
for very different scalings or sparsity levels (e.g., a sparse contiguity matrix Wa versus a dense inverse
distance matrix Wb) to produce lower correlations.

We show later that estimates and inferences regarding the true partial derivatives (or effects) are
robust in circumstances where Wa and alternative specifications Wb exhibit the same type of scaling,
and therefore result in moderate to high levels of correlation between Wau and Wbu. This means that
spatial regression models produce inferential results that frequently avoid the criticism of sensitivity to
specification of W .

A practical implication of this correlation is that a specification based on say an r nearest neighbor
matrix Wa, is likely to produce estimates and inferences (for the effects) that are robust with respect
to alternative weight matrix specifications Wb based on s nearest neighbors. Similarly, a weight matrix
specification based on inverse distance with decay of influence based on a cut-off (zero weight) beyond
some distance or number of nearest neighbors, is likely to produce effects estimates and inferences that
are robust with respect to weight matrices based on alternative choices of decay or cut-off.

Note, weight matrices with different non-scalar scalings may show a lower correlation with each
other. However, as will be shown later, the use of row-stochastic scalings follows from the long-run
equilibrium of a spatiotemporal process which underlies the motivation behind the SAR cross-sectional
model. Therefore, we will largely focus on the consequences of using a different W for estimation than
used in the DGP within the class of row-stochastic or doubly stochastic scalings.
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Spatial regression models also involve use of vectors involving higher-order spatial lags such asW j
au,

W j
b u for j > 1. The correlation between W j

au , W j
b u for large j for doubly stochastic Wa, Wb has an

even simpler form, shown in Equation (8), where ιn is a n× 1 vector of ones.

lim
j→∞

W j = n−1ιnι
′
n

lim
j→∞

corr(W j
au,W

j
b u) = 1 (8)

Therefore, all doubly stochastic symmetric weight matrices, whether based on nearest neighbors,
inverse distance, contiguity, common border lengths, or any other method of construction result in
identical limiting values of W j

au, W j
b u.

Other types of weight matrices may partly share this trait. As the order of the neighboring relations
(non-zero elements) rise in W j , various forms of weight matrices will place weight on neighbors of
neighbors of neighbors, and so on. To the extent that two matrices W j

a and W l
b place higher weights on

first-order neighbors and lower weights on higher-order neighbors and that they share common elements,
a positive correlation between W j

au and W l
bu will exist.5 Therefore, we would expect that the exact form

of W would become less important for many of the higher order neighboring relations that play an
important role in determining effects estimates for spatial regression models.

2.2. Measures of Correlation between Predictions from Varying W

We begin the analysis of the relation between Wa and Wb with separate examples of the SAR data
generating processes (DGP) in Equations (9) and (10).

ya = (In − ρaWa)
−1Xβa + (In − ρaWa)

−1εa (9)

yb = (In − ρbWb)
−1Xβb + (In − ρbWb)

−1εb (10)

These DGPs have the following expectations for the dependent variable which are predictions for
the SAR model. Note, the expectation operation in this case removes the randomness from the error
term. However, the resulting E(ya) and E(yb) still exhibit variation.

E(ya) = (In − ρaWa)
−1Xβa (11)

E(yb) = (In − ρbWb)
−1Xβb (12)

For simplicity, assume that E(Xj) = 0 for j = 1 . . . k so E(ya), E(yb) equal 0. In this case, the
covariance (cross-products) between the predictions (expected values of the dependent variables) have
the form in Equation (13).

E(ya)
′E(yb) = β′aX

′(In − ρaW ′
a)
−1(In − ρbWb)

−1Xβb (13)

Also, the own products in Equations (14) and (15) have a similar form.

E(ya)
′E(ya) = β′aX

′(In − ρaW ′
a)
−1(In − ρaWa)

−1Xβa (14)

E(yb)
′E(yb) = β′bX

′(In − ρbW ′
b)
−1(In − ρbWb)

−1Xβb (15)

5 If Wa is much sparser than Wb, the maximum positive correlation between W j
au and W l

bu might occur for powers j > l.
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Given the cross product E(ya)
′E(yb) and own products E(ya)

′E(ya), E(yb)
′E(yb), we can form

the correlation between the expected values of the dependent variables from the two models a and
b (denoted by corr(E(ya), E(yb))). Note, E(ya) and E(yb) still exhibit variation and the correlation
measures their association.

corr(E(ya), E(yb)) =
E(ya)

′E(yb)

[E(ya)′E(ya)]0.5[E(yb)′E(yb)]0.5
(16)

If βa, βb are scalars, these would cancel out of corr(E(ya), E(yb)) and result in further simplicity.
We also note that given Equations (14) and (15), spatial dependence in the explanatory variables

X could potentially increase corr(E(ya), E(yb)). Pace, LeSage and Zhu [8] provide evidence that
explanatory variables used in spatial regression models often exhibit very high levels of spatial
dependence. Specifically, they show that county, census tract and block group variables measuring
age, race, income, employment, educational attainment, etc. exhibit spatial dependence such that the
first-order spatial autoregressive dependence parameter φ from the model: x = αιn + φWx + u,
exceeds 0.9.

For a univariate explanatory variable x = (In − φW )−1u where u ∼ N(0, In), we can arrive at a
simple expression for the covariance between predictions by substituting this relation into Equation (13)
which yields Equation (17).

E(ya)
′E(yb) = tr[(In − φW ′)−1(In − ρaW ′

a)
−1(In − ρbWb)

−1(In − φW )−1] (17)

which shows that the covariance between ya and yb may be influenced even more by higher order spatial
relations than Equation (13). Since we have already shown that higher order spatial relations depend
less on the specific form of the matrix W , this implies that predictions are less sensitive to alternative
specifications for W .

2.3. Measures of Correlation for Effects Estimates Based on Varying W

As shown in the previous section, we can examine the correlation between spatial regression model
predictions. However, the dependence of this correlation on spatial dependence in the explanatory
variables X might lead to very high correlations in the face of high levels of dependence in X . High
levels of correlation would mean that this measure would not provide a useful basis for discriminating
between alternative weight matrices.

One way around this is to consider the cumulative scalar summary measures proposed by LeSage and
Pace [1] that measure the impacts or partial derivative responses of the dependent variable to changes in
the explanatory variables in spatial lag regression models. These effects estimates are not a function of
X for the SAR or SDM models. For the case of the SAR model DGPs in Equations (9) and (10), the
partial derivatives take the form of n × n matrices shown in Equations (18) and (19) for k = 2, . . . , K

(assuming the first explanatory variable is a constant ιn).

Dak = (In − ρaWa)
−1βak (18)

Dbk = (In − ρbWb)
−1βbk (19)

A direct comparison of the n2 elements in Dak and Dbk for similarities would of course be difficult.
We can reduce the dimension of the problem to that of comparing two n × 1 vectors using the
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total differential for each observation. The total differential shown in Equation (20) is a weighted
combination of individual partial derivatives, where the weights are changes or perturbations in the
underlying variables.

df =
n∑
i=1

∂f

∂zi
dzi (20)

In a spatial context, this equates to perturbing each observation or region. In other words, we examine
the total change in the expectation of the dependent variable for each observation or region that arises
from simultaneously changing the independent variable in all regions. Similarly, we can form a total
differential for each observation for a given perturbation vector u, which we assume is composed of
independent standard normal deviates.

tak = D(a)u = (In − ρaWa)
−1βaku (21)

tbk = D(b)u = (In − ρbWb)
−1βbku (22)

Each row of tak, tbk is the total differential for observation i given the perturbation vector u.
Since u has an expectation of 0, the total differential vectors also have an expectation of zero
(E(tak) = E(tbk) = 0). Consider the expectation of the cross-product of the total derivatives:

E(t′aktbk) = βakβbkE(u′(In − ρaW ′
a)
−1(In − ρbWb)

−1u) (23)

E(t′aktbk) = βakβbktr((In − ρaW ′
a)
−1(In − ρbWb)

−1) (24)

and we note that the own products take a similar form:

E(t′aktak) = β2
atr([(In − ρaWa)

′(In − ρaWa)]
−1) (25)

E(t′bktbk) = β2
b tr([(In − ρbWb)

′(In − ρbWb)]
−1) (26)

Given the cross product E(t′aktbk), the own products E(t′aktak) and E(t′bktbk), we can form the
correlation between the total differentials from the two models a and b, denoted by corr(tak, tbk) in
Equation (27).

corr(tak, tbk) =
tr[(In − ρaW ′

a)
−1(In − ρbWb)

−1]

tr([(In − ρaWa)′(In − ρaWa)]−1)]0.5tr[(In − ρbWb)′(In − ρbWb)]−1]0.5
(27)

Note, for the autoregressive model the regression model parameters cancel and so the result does
not depend on their magnitude. Also, if ρ = 0, so there is no spatial dependence or weight matrix in
our model, then corr(tak, tbk) = 1. This implies that models where spatial dependence is weak should
exhibit less sensitivity to the weight matrix specification, an intuitively plausible result.

In the next section, we provide a numerical application of the correlation measure in Equation (27) as
well as the other measures developed in Sections 2.1 and 2.2.
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2.4. Applied Illustrations of Similarity Measures between Varying W

To provide an illustration of these measures of correlation between varying W matrix specifications,
we use a 1000 observation sample of generated data. We examined the correlation betweenWau andWbu

using an n× 1 vector u containing independent, identically distributed, standard normal deviates. Wa is
a (row-stochastic) contiguity-based weight matrix, and Wb is a symmetricized (row-stochastic) nearest
neighbor weight matrix, where the number of neighbors (m) varied between 5 and 30. The second
column of Table 1 shows correlations between Wau and Wbu. These correlations range between 0.7157

in the case of 5 neighbors and decline to 0.3735 for the case of 30 nearest neighbors. Since a typical
contiguity weight matrix will have an average of approximately six neighbors for each observation for
spatially random data on a plane, the decline in correlation with a larger number of neighbors should not
be surprising.

Table 1. Correlations across nearest neighbor W relative to contiguity W .

Neighbors 1st Order 10th Order Effects
Predictions

m corr(Wau,Wbu) corr(W 10
a u,W 10

b u) Estimates

5 0.7157 0.7642 0.9331 0.9817

6 0.6980 0.7930 0.9392 0.9829

7 0.6860 0.8287 0.9478 0.9836

8 0.6748 0.8491 0.9533 0.9848

9 0.6596 0.8676 0.9568 0.9848

10 0.6469 0.8787 0.9590 0.9851

11 0.6267 0.8825 0.9598 0.9851

12 0.6133 0.8801 0.9586 0.9839

13 0.5862 0.8689 0.9563 0.9827

14 0.5702 0.8653 0.9542 0.9816

15 0.5566 0.8593 0.9523 0.9798

16 0.5415 0.8486 0.9498 0.9786

17 0.5172 0.8377 0.9469 0.9775

18 0.4993 0.8246 0.9443 0.9763

19 0.4810 0.8114 0.9419 0.9751

20 0.4688 0.8012 0.9399 0.9738

21 0.4623 0.7854 0.9375 0.9721

22 0.4460 0.7772 0.9350 0.9709

23 0.4405 0.7706 0.9337 0.9703

24 0.4343 0.7643 0.9320 0.9696

25 0.4208 0.7551 0.9300 0.9687

26 0.4066 0.7464 0.9281 0.9681

27 0.3913 0.7368 0.9263 0.9671

28 0.3854 0.7255 0.9244 0.9663

29 0.3760 0.7135 0.9224 0.9651

30 0.3735 0.7056 0.9209 0.9644
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The third column of the table show that correlations increased for higher order relations in all
weight matrices. Specifically, the third column shows correlations between W 10

a and W 10
b . For the

case of 10th order weight matrices, the correlations ranged from 0.7056 for 5 neighbors to 0.8825 for
11 nearest neighbors.

The correlations between the effects estimates shown in the fourth column of the table exhibit a high
level of correlation. These high correlations exist across the entire range of varying W matrices. For
values of ρa, ρb = 0.8 in both DGPs, the correlations range from 0.9209 for 30 nearest neighbors to
0.9598 for 11 nearest neighbors. We will have more to say about this result in the next section where we
discuss possible origins of the myth.

The last column of the table shows correlations between predictions based on the assumption
that the univariate x used to generate the sample data followed a first-order spatial autoregressive
process, with a dependence parameter equal to 0.95. The predictions exhibit even higher levels of
correlation than the effects estimates, ranging from 0.9644 for 30 nearest neighbors to 0.9851 for 10
and 11 nearest neighbors.

3. Origins of the Myth

The theoretical developments and numerical illustrations from Section 2 suggests that practitioners
should not encounter situations where estimates and inferences exhibit sensitivity to particular weight
matrix specifications. An interesting question is—how did the myth regarding sensitivity to weight
matrices arise? Of course, it is trivially obvious from Equation (1) that the matrix W plays a role in
spatial regression models. Dramatically different choices for W could lead to very different estimates
and inferences. But the myth we focus on is something quite different. The myth perpetrates the idea
of the need to fine-tune weight matrix specifications, because estimates and inferences are sensitive
to small changes in these specifications. If this were true, then spatial regression models could be
considered ill-conditioned and would represent an unreasonable method for analyzing relationships
involving spatially dependent data.

3.1. Past Literature

Many authors cite Anselin [5], perhaps because there is a great deal of discussion regarding alternative
approaches that can be used to construct spatial weight structures. However, Anselin [5] makes no
explicit statement that estimates and inferences (from a well-specified model) can be very sensitive
to the choice of weight matrix. Rather his emphasis is on the flexibility these models provide in
alternative choices of weight matrices, and the need to appropriately specify this aspect of the model
in any particular application. For example, when modeling cross-border shopping by smokers to avoid
high levels of taxes on cigarettes, an intuitively appealing weight matrix might be constructed based on
miles of border in common between each state and its neighbors.

Even if misspecification of the weight matrix leads to incorrect estimates of β and ρ in spatial
regression models, the impact of this on inferences regarding the partial derivative response of the
dependent variable to changes in the explanatory variables is unclear. Both ρ and β appear in the
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(non-linear) partial derivative expressions, meaning that upward bias in ρ could be offset by downward
bias in β in such a way as to produce effects estimates that remain quite stable.

There are numerous cases where applied spatial econometric work includes statements that sensitivity
of the estimates for β and ρ were checked with respect to choice of the weight matrix.6 However, this is
not the appropriate basis for inference about sensitivity of estimates and inferences from these models,
since these should rely on the partial derivatives (or effects estimates).

In Section 3.2 we examine an article that is widely cited as a justification for sensitivity of spatial
regression estimates to small changes in the weight matrix specification. Section 3.3 turns attention
to a more recent work by Kostov [6] who sets forth a methodology for fine-tuning the weight matrix
specification. In Section 3.4 we provide an illustration of how one might diagnose sensitivity of estimates
and inferences in applied practice, using a publicly available county-level data set, and public domain
software algorithms.

3.2. A Re-Examination of Bell and Bockstael (2000)

An article often cited to justify the myth is Bell and Bockstell [7], who explicitly argue that estimates
and inference are sensitive to small changes in the weight matrix. They use this line of argument to
further contend that the generalized moments method of estimation from Kelejian and Prucha [9] allow
flexible weight structures to be more easily implemented than maximum likelihood estimation methods.
In an application involving land parcels, they explore three (row-normalized) contiguity-based weight
matrices that assign values of 0 or 1 to neighboring observations that are within 200, 400 and 600 m
distances of each observation. These three matrices are compared to a fourth (row-normalized) matrix
where inverse distance-based weights were assigned to each neighboring observation within 600 m.
They rely on a spatial error model (SEM) shown in equation Equation (28) and compare estimates
from least-squares, maximum likelihood and generalized moments, with the latter two sets of estimates
constructed using the four different types of spatial weight matrices.

y = Xβ + u (28)

u = ρWu+ ε (29)

They conclude:

What emerges from the example is that our results are more sensitive to the specification of the
spatial weight matrix than to estimation technique. Compared to the variation across estimation
methods, the results across spatial weight matrices are much less stable.

Where qualitative results change, they are almost universally associated with changes in the
spatial weight matrix and not with changes in the estimation method. For three of the estimated
coefficients, one spatial weight matrix produces results qualitatively different from the others,
and, for three more of the estimated coefficients, two spatial weight matrices produce results

6 It is not surprising there are few reports of cases where estimates were found to be sensitive to the choice used by
the practitioner.
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qualitatively different from the other two. There is no particular pattern to these reversals, nor
is there a pattern when comparing the spatial correlation-corrected results to the OLS results.

To put the work of Bell and Bockstell [7] into perspective, consider that for a correctly specified
SEM model, the only difference between least-squares (OLS) and SEM model estimates should be in
the measures of dispersion, not the coefficient estimates for β. This is because coefficient estimates for
β from OLS are unbiased under the null hypothesis of an SEM specification (Anselin [10], p. 59). This
follows because spatial dependence in the disturbances leads to an efficiency problem for OLS, but no
bias in the estimates for β. Changes in the weight matrix should lead to changes in the t−statistics that
we observe from OLS versus SEM model estimates, but not in the coefficient estimates for β. Pace and
LeSage [11] use this idea to develop a Hausman specification test for significant differences between
OLS and SEM estimates for β. Intuitively, significant differences in OLS and SEM estimates for β point
to model misspecification that should lead us to reject the SEM model as an appropriate choice.

In Bell and Bockstell [7] the sample size used was 1000 observations, so we would expect no small
sample issues that would lead to differences between OLS and SEM estimates for the parameters β.
As noted above, this should be true irrespective of the spatial weight matrix employed. Changes in the
spatial weight specification could lead to changes in measures of dispersion (e.g., t−statistics), but not
significant differences in the coefficients β. The discussion (quoted above) by Bell and Bockstell [7]
appropriately focused on differences in significance or inference that arise in response to the four
alternative weight matrices used to estimate their model. However, they neglect to note that five of
the ten coefficients β from OLS estimation versus maximum likelihood estimation of the SEM model
differ by more than 1.67 standard deviations, suggesting model misspecification.7 Table 2 presents their
OLS and maximum likelihood SEM estimates, along with standard errors and a t−test for significant
differences between these.8

There is one coefficient where the SEM estimate is 2.8 standard deviations away from the OLS,
two cases where the two estimates are 1.99 standard deviations apart and two more that are different
using the 90% level of significance. Of the ten coefficients five are likely to be significantly different,
suggesting the SEM model represents a misspecification.

The sensitivity of estimates and inferences to changes in the weight matrix noted in Bell and Bockstell [7]
was likely due to misspecification in their SEM model. For example, following the argument of LeSage
and Pace [1], if their SEM model omitted variables that were correlated with included variables, this
would lead to biased and inconsistent estimates for the parameters β. This meshes with their observation
that “There is no particular pattern to these reversals, nor is there a pattern when comparing the spatial
correlation-corrected results to the OLS results.” In general, sensitivity to changes in the weight matrix
may be indicative of model misspecification.

7 We focus our discussion on their maximum likelihood estimates constructed using an inverse distance weight matrix based
on a 600 m cut-off, but similar statements apply to maximum likelihood and GMM estimates based on the other three
weight matrices.

8 The standard errors from maximum likelihood SEM estimates were used to construct the t−test, since these are not
adversely impacted by spatial dependence in the disturbances. However, this is not a multivariate test for the difference
between the two vectors, but is a way of describing the differences between estimates.
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Table 2. Bell and Bockstell(2000) OLS and maximum likelihood SEM estimates.

OLS ML t–Statistic (t–Probability)
β̂o (σ̂βo) β̂ml (σ̂βml) Ho : β̂o = β̂ml

Intercept 4.7332 (0.2047) 5.1725 (0.2204) 1.9932 (0.0465)
LIV 0.6926 (0.0124) 0.6537 (0.0135) 2.8815 (0.0040)
LLT 0.0079 (0.0052) 0.0002 (0.0052) 1.4808 (0.1390)
LDC −0.1494 (0.0195) −0.1774 (0.0245) 1.1429 (0.2534)
LBA −0.0453 (0.0114) −0.0169 (0.0156) 1.8205 (0.0690)

POPN −0.0493 (0.0408) −0.0149 (0.0414) 0.8309 (0.4062)
PNAT 0.0799 (0.0177) 0.0586 (0.0212) 1.0047 (0.3153)
PDEV 0.0677 (0.0180) 0.0253 (0.0253) 1.6759 (0.0941)
PLOW −0.0166 (0.0194) −0.0374 (0.0224) 0.9286 (0.3533)
PSEW −0.1187 (0.0173) −0.0828 (0.0180) 1.9944 (0.0464)

3.3. A Re-Examination of Kostov (2010)

Another factor contributing to the myth arises in the case of models that include spatial lags of the
dependent variable. There are different types of spatial regression specifications that include spatial lags
of the dependent variable, but LeSage and Pace [1] argue that one specification, the spatial Durbin model
(SDM) stands out as superior in a wide number of applied situations. The SDM shown in Equation (30)
includes a spatial lag of the dependent variable (Wy) as well as explanatory variables (WX):

y = αιn + ρWy +Xβ +WXθ + ε (30)

ε ∼ N(0, σ2)

In the case of OLS where observations are independent, changes in Xi can only influence yi, so we
use the coefficient estimates for the rth explanatory variable (βr) to summarize the average (across the
sample) impact of changing the rth explanatory variable on the dependent variable vector y. LeSage and
Pace [1] point out that this is not the case when the dependent variable observation yi exhibits dependence
on other observations. They rewrite the model in Equation (30) as in Equation (31), which is useful for
examining the partial derivatives of y with respect to a change in the rth variable xr from X , which is
shown in Equation (32).

y = (In − ρW )−1[αιn +Xβ +WXθ + ε] (31)

∂y/∂x′r = (In − ρW )−1(Inβr +Wθr) (32)

The partial derivatives are an n × n matrix rather than the typical scalar expression βr from OLS.
The matrix arises because a change in a single observation xir can influence all observations of the vector
yj, j = 1, . . . , n. Considering changes in each of the xir, i = 1, . . . , n observations and the associated
n × 1 vectors of y−responses gives rise to the n × n matrix of partial derivatives. The own-region or
direct response is captured by the own-partial derivative ∂yi/∂xir which are elements on the diagonal
of the matrix in Equation (32). The cross-partial derivatives ∂yj/∂xir, j 6= i reflect indirect or spillover
responses, and these are located on the off-diagonal elements of the matrix in Equation (32).
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Changes in coefficient estimates for β and ρ observed by practitioners who try alternative weight
matrix specifications may have contributed to formulation of the myth. This is because practitioners
who incorrectly believe that coefficient estimates β measure partial derivative responses in the dependent
variable to changes in the independent variables would infer sensitivity of estimates and inferences
arising from changes in W . As noted earlier, this focus on how changes in the matrix W impact
coefficient estimates for ρ and β, is misplaced, since the focus should be on changes in the true partial
derivatives, the direct and indirect effects estimates described above. In fact, changes in estimates for
ρ and β may arise systematically as a response to changes in the matrix W , because these are required
to maintain relatively stable partial derivatives in the face of changing W . Past misinterpretation of
estimates from spatial regression models containing lags of the dependent variable may have contributed
to the myth that estimates and inferences are sensitive to the choice ofW . Ironically, these changes might
be occurring in an effort to ensure a well-conditioned model where the true partial derivative responses
remain relatively constant in the face of changing W .

We re-examine the model from Kostov [6], who used the data set from Harrison and Rubinfeld [12].
This data set containing 506 Boston census tract observations was augmented to have latitude-longitude
coordinates from Gilley and Pace [13]. The 10 explanatory variables used in the model are shown in
Table 3.

Table 3. Variables and definitions.

Variable Description

CRIME per capita crime rate by town
CHARLES Charles River dummy variable (=1 if tract bounds river; 0 otherwise)

NOX nitric oxides concentration (parts per 10 million)
ROOMS average number of rooms per dwelling

DISTANCE weighted distances to five Boston employment centers
RADIAL index of accessibility to radial highways

TAX full-value property-tax rate per $10,000
PTRATIO pupil-teacher ratio by town

B 1000(Bk - 0.63)2 where Bk is the proportion of blacks by town
LSTATUS % lower status of the population

The parameterized weight structure used by Kostov [6] takes the form:

W (i, j) = 1/d(i, j)γm (33)

where d(i, j)m denotes the distance between the m nearest neighboring observations j to observation
i and γ > 0 is a decay parameter. Other values for W (i, j) for neighbors m + 1,m + 2, . . . are set to
zero. The model used is the SAR: y = ρWy +Xβ + ε.

Rather than estimate the parameter γ, Kostov [6] considers a “boosting” type of model
search/comparison procedure that is applied to a discrete set of models based on a 0.1 grid of values
for γ in the interval [0.4, 4] and a range of m = 1, . . . , 50. His approach identifies models based on γ
values in the range 0.4 to 1, and m = 6 as representing the “best” weight structure for the SAR model
and sample data.
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Bayesian model comparison methods can be used to compare this discrete set of models. Specifically
Hepple [14] shows that the log-marginal likelihood for the SAR model takes the form in Equation (34):9

p(y|Mi) =
1

D
Γ

(
n− k

2

)
· (2π)−

n−k
2 · |X ′X|−1/2

∫
|In − ρWi|(e′e)−

n−k
2 dρ (34)

e = y − ρWy −Xβ

where we use Mi to denote model i based on spatial weight matrix Wi, and D to denote the interval
defined by the minimum and maximum eigenvalues of the matrix Wi.10

Table 4 presents posterior model probabilities for a discrete set of models based on a grid of values for
the parameter γ in the interval [0, 2] based on increments of 0.1, and three values m = 5, 6, 7 of nearest
neighbors that we considered. Of course, we chose these values based on the results from Kostov [6].

Table 4. Posterior model probabilities .

γ m = 5 m = 6 m = 7

0 0.0001 0.0095 0.0007
0.1 0.0004 0.0288 0.0025
0.2 0.0013 0.0726 0.0083
0.3 0.0028 0.1381 0.0207
0.4 0.0041 0.1835 0.0368
0.5 0.0041 0.1672 0.0445
0.6 0.0029 0.1080 0.0376
0.7 0.0015 0.0525 0.0234
0.8 0.0007 0.0203 0.0114
0.9 0.0002 0.0065 0.0045
1 0.0001 0.0018 0.0015

1.1 0.0000 0.0004 0.0004
1.2 0.0000 0.0001 0.0001
1.3 0.0000 0.0000 0.0000
1.4 0.0000 0.0000 0.0000
1.5 0.0000 0.0000 0.0000
1.6 0.0000 0.0000 0.0000
1.7 0.0000 0.0000 0.0000
1.8 0.0000 0.0000 0.0000
1.9 0.0000 0.0000 0.0000
2 0.0000 0.0000 0.0000

9 This result is based on assigning no prior distributions for the parameters β, σ2, and a uniform prior for ρ, over the interval
D defined by the minimum and maximum eigenvalues of the matrix Wi (Hepple 2004, p. 111).

10 LeSage and Pace (2009, p. 175–178) provide theoretical details regarding Bayesian comparison of models based on
alternative weight matrices, as well as applied examples. One can also use J−tests proposed by Kelejian and Piras [15]
as illustrated in Gerkman and Ahlgren [16].
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From the table we see the highest posterior model probability associated with γ = 0.4,m = 6,
a result consistent with those reported by Kostov [6] based on his alternative “boosting” type of model
search/comparison procedure.

An interesting question is—do these fine-tuning adjustments of the spatial weight matrix make a
difference in terms of the estimates and inferences?

To explore this issue we produce estimates for models based on values of γ ranging from 0.2 to 1,
in 0.2 increments and for m = 5 and m = 6.11 We note that Table 4 indicates there is virtually no
posterior probability support for models based on m = 5, so one might expect estimates based on m = 5

to differ greatly from those based on m = 6. The lack of posterior probability support is also evident
in the table for models with weight matrices based on values of γ equal to 0, 0.9 and 1.0, when m = 6.
One would typically not want to use weight structures having such low support from the sample data, but
we use these here to make the point that estimates and inferences will not differ greatly even for these
weight matrices.

Tables 5 and 6 show (posterior median) direct effects estimates for the ten variables constructed
using a set of 2000 retained draws from Bayesian Markov Chain Monte Carlo estimation of the model
(see LeSage and Pace [1], Chapter 6).12 These are equivalent to median direct effects values constructed
using simulated draws based on the maximum likelihood estimates and variance-covariance matrix.
Estimates for bothm = 5 andm = 6 are presented along with lower and upper 95% confidence intervals
based on plus or minus two standard deviations. (The standard deviations are from the m = 6 model.)

From the tables, we see very little change in the (median) direct effects as values of the decay
parameter vary from 0 to 1, despite the fact that there is little posterior probability support for models
based on values of γ = 0 and γ = 1 (see Table 4). The direct effects estimates for models based on
m = 5 and m = 6 are also remarkably similar, given there is virtually no support for models based on
m = 5 (see Table 4). The estimates are within the lower and upper 95% confidence intervals for the
model based on γ = 0.4,m = 6, which has the highest posterior model probability. This suggests no
substantive changes in inference would arise from use of any of these weight matrix structures.

In the case of the Charles River dummy variable which is not significantly different from zero, we see
a relatively dramatic change in the direct effects as we change weight matrices from γ = 0 to γ = 1.
However, none of these effects magnitudes are different from zero given the lower and upper limits
reported in the table.

11 Decay values of γ = 0 were also calculated, but to save space and make the tables smaller this value was excluded from
the tables.

12 Pace, LeSage and Zhu [8] suggest using median effects estimates since the total effects can have a non-symmetric
distribution. In our case with 506 observations the means and medians produced nearly identical results.
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Table 5. Direct effects estimates, varying γ and m.

Direct Effects CRIME

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0100 −0.0079 −0.0079 −0.0058
0.4 −0.0101 −0.0079 −0.0080 −0.0058
0.6 −0.0102 −0.0080 −0.0080 −0.0059
0.8 −0.0102 −0.0081 −0.0082 −0.0060
1 −0.0104 −0.0082 −0.0083 −0.0061

Direct Effects CHARLES

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0374 0.0189 0.0263 0.0753
0.4 −0.0358 0.0198 0.0279 0.0754
0.6 −0.0336 0.0228 0.0286 0.0792
0.8 −0.0308 0.0263 0.0308 0.0835
1 −0.0271 0.0299 0.0342 0.0869

Direct Effects NOX2

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.4767 −0.2889 −0.2879 −0.1010
0.4 −0.4908 −0.2966 −0.2927 −0.1023
0.6 −0.4951 −0.3085 −0.3147 −0.1219
0.8 −0.5136 −0.3190 −0.3252 −0.1245
1 −0.5184 −0.3267 −0.3365 −0.1350

Direct Effects ROOMS2

Decay −2σ m = 6 m = 5 +2σ

0.2 0.0051 0.0073 0.0074 0.0095
0.4 0.0052 0.0073 0.0074 0.0093
0.6 0.0052 0.0073 0.0074 0.0094
0.8 0.0052 0.0073 0.0074 0.0095
1 0.0053 0.0074 0.0074 0.0095

Direct Effects DISTANCE

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.1976 −0.1521 −0.1481 −0.1066
0.4 −0.1949 −0.1506 −0.1468 −0.1062
0.6 −0.1922 −0.1486 −0.1461 −0.1050
0.8 −0.1920 −0.1468 −0.1448 −0.1016
1 −0.1924 −0.1466 −0.1443 −0.1007
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Table 6. Direct effects estimates, varying γ and m (continued).

Direct Effects RAD

Decay −2σ m = 6 m = 5 +2σ

0.2 0.0467 0.0766 0.0760 0.1065
0.4 0.0460 0.0769 0.0769 0.1078
0.6 0.0468 0.0776 0.0773 0.1083
0.8 0.0478 0.0783 0.0781 0.1088
1 0.0473 0.0791 0.0777 0.1109

Direct Effects TAX

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0005 −0.0003 −0.0003 −0.0001
0.4 −0.0005 −0.0003 −0.0003 −0.0001
0.6 −0.0005 −0.0003 −0.0003 −0.0001
0.8 −0.0005 −0.0003 −0.0003 −0.0001
1 −0.0005 −0.0003 −0.0003 −0.0002

Direct Effects PTRATIO

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0203 −0.0120 −0.0117 −0.0038
0.4 −0.0209 −0.0125 −0.0123 −0.0040
0.6 −0.0215 −0.0133 −0.0130 −0.0050
0.8 −0.0223 −0.0137 −0.0139 −0.0052
1 −0.0229 −0.0145 −0.0148 −0.0061

Direct Effects B

Decay −2σ m = 6 m = 5 +2σ

0.2 0.0001 0.0003 0.0003 0.0005
0.4 0.0001 0.0003 0.0003 0.0005
0.6 0.0001 0.0003 0.0003 0.0005
0.8 0.0001 0.0003 0.0003 0.0005
1 0.0001 0.0003 0.0003 0.0005

Direct Effects LSTATUS

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.3059 −0.2641 −0.2619 −0.2223
0.4 −0.3019 −0.2603 −0.2592 −0.2186
0.6 −0.3015 −0.2594 −0.2578 −0.2173
0.8 −0.3000 −0.2581 −0.2571 −0.2161
1 −0.3002 −0.2574 −0.2584 −0.2146

Indirect effects are presented in Tables 7 and 8 in the same format used for the direct effects. We might
expect to see indirect effects estimates that are slightly smaller (in absolute value terms) for models
based on m = 5 neighbors weight matrices. This is because the scalar summary measures of the indirect
effects reflect an average of spatial spillovers cumulated over all neighbors. Since m = 5 results in fewer
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neighbors, this should have some impact on the cumulative indirect effects estimates. From the table,
we see this is the case, but the differences are quite small.

Table 7. Indirect effects estimates, varying γ and m.

Indirect Effects CRIME

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0094 −0.0073 −0.0068 −0.0052
0.4 −0.0094 −0.0073 −0.0067 −0.0052
0.6 −0.0091 −0.0069 −0.0065 −0.0048
0.8 −0.0088 −0.0067 −0.0063 −0.0046
1 −0.0086 −0.0064 −0.0060 −0.0042

Indirect Effects CHARLES

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0393 0.0171 0.0226 0.0734
0.4 −0.0375 0.0181 0.0239 0.0737
0.6 −0.0369 0.0195 0.0230 0.0759
0.8 −0.0359 0.0212 0.0233 0.0784
1 −0.0341 0.0229 0.0245 0.0799

Indirect Effects NOX2

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.4553 −0.2675 −0.2481 −0.0796
0.4 −0.4652 −0.2710 −0.2481 −0.0768
0.6 −0.4537 −0.2672 −0.2532 −0.0806
0.8 −0.4575 −0.2630 −0.2456 −0.0684
1 −0.4462 −0.2545 −0.2428 −0.0629

Indirect Effects ROOMS2

Decay −2σ m = 6 m = 5 +2σ

0.2 0.0046 0.0067 0.0064 0.0087
0.4 0.0046 0.0067 0.0063 0.0088
0.6 0.0042 0.0063 0.0060 0.0085
0.8 0.0040 0.0061 0.0057 0.0082
1 0.0036 0.0057 0.0054 0.0079

Indirect Effects DISTANCE

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.1855 −0.1406 −0.1275 −0.0957
0.4 −0.1823 −0.1366 −0.1249 −0.0909
0.6 −0.1745 −0.1290 −0.1182 −0.0834
0.8 −0.1664 −0.1209 −0.1111 −0.0754
1 −0.1582 −0.1130 −0.1036 −0.0679
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Table 8. Indirect effects estimates, varying γ and m (continued).

Indirect Effects RAD

Decay −2σ m = 6 m = 5 +2σ

0.2 0.0401 0.0708 0.0651 0.1016
0.4 0.0395 0.0701 0.0650 0.1007
0.6 0.0366 0.0674 0.0621 0.0983
0.8 0.0318 0.0636 0.0597 0.0955
1 0.0298 0.0612 0.0567 0.0926

Indirect Effects TAX

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0005 −0.0003 −0.0003 −0.0001
0.4 −0.0005 −0.0003 −0.0003 −0.0001
0.6 −0.0005 −0.0003 −0.0003 −0.0001
0.8 −0.0004 −0.0003 −0.0003 −0.0001
1 −0.0004 −0.0003 −0.0002 −0.0001

Indirect Effects PTRATIO

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.0193 −0.0111 −0.0100 −0.0029
0.4 −0.0198 −0.0113 −0.0103 −0.0029
0.6 −0.0197 −0.0115 −0.0106 −0.0033
0.8 −0.0198 −0.0112 −0.0106 −0.0027
1 −0.0197 −0.0113 −0.0107 −0.0029

Indirect Effects B

Decay −2σ m = 6 m = 5 +2σ

0.2 0.0001 0.0003 0.0003 0.0004
0.4 0.0001 0.0003 0.0003 0.0004
0.6 0.0001 0.0002 0.0002 0.0004
0.8 0.0001 0.0002 0.0002 0.0004
1 0.0000 0.0002 0.0002 0.0004

Indirect Effects LSTATUS

Decay −2σ m = 6 m = 5 +2σ

0.2 −0.2876 −0.2458 −0.2283 −0.2039
0.4 −0.2804 −0.2388 −0.2215 −0.1971
0.6 −0.2668 −0.2247 −0.2097 −0.1827
0.8 −0.2545 −0.2126 −0.1976 −0.1706
1 −0.2416 −0.1988 −0.1870 −0.1560

As noted, the parameters β and ρ change in response to changes in the spatial weight matrix in an
effort to produce consistent effects estimates (partial derivatives). To illustrate this point, we present a
plot of the posterior median values for ρ for the 22 models based on m equal to 5 and 6 and γ ranging
from 0 to 1 in Figure 1, where one should note the scale of the vertical axis ranges between 0.4 and 0.6
making the (small) changes appear large.
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Figure 1. Variation in estimates for ρ over γ and m values.
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From the figure, we see fairly large variation in values for the spatial dependence parameter ρ in
response to changes in the decay parameter γ and in the number of neighbors m used. The effects
estimates remain relatively more stable as a result of changes in the coefficients β that offset the changes
shown for the parameter ρ in the figure. This of course has lead practitioners to perceive sensitivity
of estimates and inferences to the choice of weight matrix. However, as already noted this reflects an
incorrect interpretation of the model estimates. For purposes of inference regarding response of the
dependent variable to changes in the independent variables, the effects estimates are what is relevant, not
the coefficients β and ρ.

In conclusion, our answer to the question—do the fine-tuning adjustments of the spatial weight matrix
advocated by Kostov [6] make a difference in terms of the estimates and inferences?—is no. In the
context of the research question addressed by Harrison and Rubinfeld [12] who constructed the data set,
a much better question to ask is whether the spatial spillovers from NOX2 pollution represent a situation
that is more appropriately modeled using a global or local spillover specification. LeSage and Pace [17]
motivate that distinguishing between these two types of situations that arise in applied modeling
situations has a great deal of influence on how one interprets estimates and inferences.

In the case of NOX2 pollution, it seems likely that the appropriate specification is a local spillover
model which implies contextual effects rather than endogenous interaction between economic agents.
The SAR specification represents a global spillover scenario and is likely inappropriate here.

3.4. A Diagnostic Example

For an illustration of how one might proceed in applied practice to explore the issue of sensitivity
of estimates and inferences to the weight matrix specification, we use the voter turnout data set from
Gilley and Pace [13]. The data set contains observations on 3107 US counties for the 1980 presidential
election, where the dependent variable is votes cast as a proportion of population over age 19 eligible to
vote. The explanatory variables are: educ, population with college degrees as proportion of population
over age 19 eligible to vote, homeownership, homeownership as proportion of population over age 19
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eligible to vote, and income, income per capita of population over age 19 eligible to vote. All variables
were transformed using logs, so the effects estimates can be interpreted as approximate elasticities.

Table 9 shows posterior model probabilities for a number of alternative spatial weight matrices,
including a contiguity-based matrix and (equally weighted) nearest neighbors ranging from 3 to 20.13

Both SAR and SDM models were examined and they both produced probabilities that provide very
strong evidence in favor of models based on 15 nearest neighbors.

Table 9. Posterior model probabilities

Model
SAR Model SDM Model

Posterior Probability Posterior Probability

W-contiguity 0.0000 0.0000
neighbors = 3 0.0000 0.0000
neighbors = 4 0.0000 0.0000
neighbors = 5 0.0000 0.0000
neighbors = 6 0.0000 0.0000
neighbors = 7 0.0000 0.0000
neighbors = 8 0.0000 0.0000
neighbors = 9 0.0000 0.0000

neighbors = 10 0.0000 0.0000
neighbors = 11 0.0000 0.0000
neighbors = 12 0.0000 0.0000
neighbors = 13 0.0000 0.0000
neighbors = 14 0.0093 0.0030
neighbors = 15 0.9905 0.9940
neighbors = 16 0.0003 0.0030
neighbors = 17 0.0000 0.0000
neighbors = 18 0.0000 0.0000
neighbors = 19 0.0000 0.0000
neighbors = 20 0.0000 0.0000

One might suppose that given such strong data evidence in favor of a 15 nearest neighbor weight
matrix, estimates and inferences would be sensitive to an incorrect choice of neighbors. Figure 2 shows
a plot of the direct effects estimates for both SAR and SDM models for models based on 10 to 20 nearest
neighbors. In addition to the direct effects for the three explanatory variables educ, homeowners, income,
a lower and upper three standard deviation confidence interval is shown in the figure. Figure 3 shows a
similarly formatted plot for the indirect effects estimates.

13 These can be produced using the lmarginal_cross_section function from the Spatial Econometrics Toolbox available at:
www.spatial-econometrics.com.
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Figure 2. Direct effects.
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Figure 3. Indirect effects.
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From the plots, we see that despite the very strong preference of the sample data for models based
on 15 nearest neighbors, the direct effects estimates are relatively constant across the different models.
In addition, the direct effects magnitudes for both the SAR and SDM models are similar. It appears that
the SDM model consistently produces effects that are more stable as the number of neighbors used to
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construct W vary. LeSage and Pace [1] provide an extensive development documenting the robustness
and desirable statistical properties of the SDM model in applied modeling situations.

The indirect effects estimates in Figure 3 are also relatively constant across models with varying
numbers of nearest neighbors, but we see some increase in the indirect effects for models based on 19 and
20 neighbors. Elhorst [18] provides a detailed discussion and simple illustration of important differences
in the relative flexibility and sophistication of indirect effects for the SAR versus SDM models.

An interesting point is that differences between indirect effects arising from varying the number of
neighbors is much smaller than the difference between the SAR and SDM indirect effects magnitudes.
For example, the elasticity of voter turnout with respect to educ is around twice as large for the SDM
as the SAR model. The homeowner variable has a large positive indirect effect (near unity) in the SAR
model, but is not different from zero in the SDM model (based on the three standard deviation intervals).
Finally, the (negative) SDM indirect effects for the income variable are around three times those of the
SAR model.

4. Interaction between Specification of the Model andW Matrix

There are some issues pertaining to trade-offs between model versus weight matrix specifications. For
example, model specifications such as the SARor popular SARAR (labeled SAC by LeSage and Pace [1])
that are not very flexible in accommodating spatial spillover effects might require more fine-tuning of
the weight matrix specification. In contrast, a model specification that accounts for spatial spillovers in a
flexible way might reduce the need to construct a weight matrix that closely replicates that from the data
generating process.14 In this section we provide a generated data example that illustrates these issues.

We begin with an example where we simulated 1000 random planar points and formed Wa based on
the inverse distance between the points, with an absolute cutoff magnitude of 0.0025. By construction,
Wa is symmetric. On average there were 49 neighbors per row (column) with a minimum of 16 neighbors
per row (column) and a maximum of 82 neighbors per row (column). The resulting matrix was scaled to
be doubly stochastic.

We used the SAR model DGP shown in Equation (35):

y = (In − 0.5Wa)
−1Xβ + ε (35)

X ∼ N(0, σ2
xIn), σx = 1

ε ∼ N(0, σ2
εIn), σε = 0.1

The small value for the disturbance variance (σ2
ε = 0.01) was used to allow a focus on spatial

spillovers arising in the model rather than noise in the disturbances. Given the autoregressive parameter
value of 0.5, the total impacts equal (1− 0.5)−1 = 2.

We produced model estimates using the sample data vectors y,X in conjunction with a misspecified
extended variant of the SLX model in Equation (36):

y = αιn +Xβ1 +WbXβ2 +W 2
bXβ3 +W 3

bXβ4 + ε (36)

14 See Pace and Zhu [19] for a detailed discussion of this type of model specification.
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where Wb is based on nearest neighbors and is symmetricized and scaled to be doubly stochastic. In this
simple variant of the SLX model the total impacts correspond to the sum of the coefficients β, (

∑4
i=1 βi).

This example represents a case where both the weight matrix and spatial regression model are
misspecified. Despite this two-fold misspecification, the model produced estimated total impacts shown
in Table 10 that reasonably reflect the true values. The highest likelihood function value was associated
with a model based on 18 nearest neighbors, which produced an estimated total impact magnitude of
1.94, very close to the true total impact of 2. Any choice of nearest neighbors in the range from 15 to 30
would have resulted in a total impact estimate between 1.9 and the true value 2.0.

Table 10. Estimation of Total Impacts Across W with Differing Number of Neighbors.

Neighbors Total Impact Likelihood

4 1.547 −1480.282
5 1.629 −1436.294
6 1.685 −1418.920
7 1.728 −1404.318
8 1.754 −1401.690
9 1.781 −1393.235
10 1.807 −1379.055
11 1.831 −1369.690
12 1.853 −1359.639
13 1.872 −1352.425
14 1.890 −1352.786
15 1.903 −1356.933
16 1.916 −1359.539
17 1.928 −1358.922
18 1.940 −1354.247
19 1.941 −1360.217
20 1.951 −1364.012
21 1.947 −1366.057
22 1.946 −1374.467
23 1.945 −1376.323
24 1.946 −1376.508
25 1.940 −1379.946
26 1.940 −1381.173
27 1.948 −1381.586
28 1.955 −1379.777
29 1.958 −1383.759
30 1.961 −1382.689

This simple example points to some more general issues regarding interaction between model and
weight matrix specifications. To explore these, consider a situation where the data is generated by
some unknown DGP as in Equation (37), but fitted with the model such as that in Equation (38) that
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we label DFM (data fitted model). In Equations (37) and (38), F (·), G(·), R(·), and S(·) are distinct
matrix functions (that could take the forms involving varying specifications of W such as (In − ρW )−1

(autoregressive), eαW (matrix exponential), or (In + γW )(In − ρW )−1 (ARMA(1,1)) where α, λ and ρ
are scalar real parameters.

y = F (Wa)Xβ +R(Wa)ε (37)

y = G(Wb)Xθ + S(Wb)ε (38)

If the specification of the matrix function G(Wb) is flexible enough, there may be some estimated
parameter values where F (Wa)Xβ equals G(Wb)Xθ on average, as shown in Equation (39).

E [F (Wa)Xβ −G(Wb)Xθ] = 0n×1 (39)

We can think of Equation (39) as the need to have a high correlation between the expected values
based on Wa in the context of the DGP and expected values based on Wb in the context of the fitted
model. In addition, the fitted model could show similar scalar summary effects (estimates of average or
median partial derivative measures of the impacts arising from changes in the K explanatory variables
indexed by k = 1, . . . , K) when using the correct specification, if the following were true:

E [F (Wa)βt −G(Wb)θt] ιn = 0n×1 (40)

tr[E (F (Wa)βt −G(Wb)θt)] = 0n×1 (41)

Condition Equation (40) indicates that there is a need for high levels of correlation between the
average total impact in the DGP using Wa and the DFM using Wb. In addition, condition Equation (41)
indicates that there is a need for high levels of correlation between the average direct impact in the DGP
using Wa and the DFM using Wb.

The ability of a model to match the magnitude of the levels and the effects estimates that form
the basis for inference in spatial regression models in the face of misspecification of W would be
enhanced by a more flexible matrix function of the estimated spillovers G(Wb). Specifically, our applied
model specification might rely on a more flexible matrix function for the spatial spillover component
of the model than that which actually generated the data. In other words, if a spatial autoregressive
process (In − ρWa)

−1Xβ is thought to have generated the data it might be wise to use a spatial
ARMA specification (In + γ1Wb)(In − γ2Wb)

−1Xθ for the spillovers. Inflexible specifications for the
spillovers in these models allow little leeway for the models to adjust to misspecification in W . Failure
to appropriately model the spatial spillover component of the model can result in bias (violation of
Equations (39)–(41)) in the estimates and inferences from these models.

This should not be construed as indicating that more flexible modeling of the disturbances would lead
to improvements in these situations. Flexible modeling of the disturbances may improve the model fit,
but does not necessarily help in estimating the spillover part of the model. In fact, since spillovers appear
to play the most important role in producing estimates and inferences that are robust to both model
and weight matrix misspecification, our conclusion is that one should endeavor for more flexibility
in this aspect of the model rather than the disturbance part of the model. In other words, suppose
the researcher must choose between fitting DFM A represented by y = (In − γ1Wb)

−1Xθ + (In −
γ2Wb)(In − γ3Wb)

−1ε which fits AR(1) spillovers and ARMA(1,1) disturbances or DFM B represented
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by y = (In − γ1Wb)
−1(In − γ2Wb)Xθ + (In − γ3Wb)

−1ε which fits ARMA(1,1) spillovers and AR(1)
disturbances. Both DFM A and DFM B involve fitting three spatial parameters γ1,γ2, and γ3 and so
have more or less equal complexity. However, the DFM A devotes its efforts (two parameters) to fitting
the disturbances and only one parameter to fitting the spillovers. In contrast, the DFM B devotes its
efforts (two parameters) to fitting the spillovers and only one parameter to fitting the disturbances.
Because incorrectly fitting the spillovers leads to such large subject matter consequences in terms of
misintrepreting the spillovers, we claim that ex-ante it would be better to employ DFM B than DFM A,
even if DFM A showed a better fit (which includes some consideration given to both spillovers and
disturbances). Put in another way, suppose DFM A fits better than DFM B. A statistician would prefer
DFM A on the basis of goodness-of-fit which, especially in the case with low signal-to-noise gives more
weight to fitting the disturbances. However, an economist should prefer DFM B because it potentially
provides a more valid estimate of the spillovers, even if it does not fit as well as DFM A. Essentially,
statisticians and economists have different loss functions. These choices become clearer as n becomes
large because the problems of inefficiency resulting from a poor fit of the disturbances become less
important than the problems of bias resulting from a poor fit of the signal.

Although flexible models may allow recovery of the impacts, it is possible to construct
counterexamples. For example, if the scaling of Wa is quite different from that of Wb, the approximation
in Equations (39)–(41) may break down. Any matrix function composed of row or doubly stochastic
matrices has fixed row sums. If the row sums for some other scaling of Wa differ dramatically by rows,
most likely Equations (39)–(41) will break down.

A number of points can be made regarding scaling choices used in applied practice. First, there is
an economic argument in favor of scalings where Wy reflects an average of neighboring observations.
LeSage and Pace [1] provide an economic motivation for the existence of observed cross-sectional spatial
dependence based on diffusion over time and space, beginning with Equation (42).

yt = Xβ + ρWyt−1 + εt (42)

In this example, one may value a house based on explanatory variables such as size, age, or quality
(captured by Xβ), as well some function of recent past prices in the neighborhood (captured by Wyt−1).
The parameter ρ can be viewed as governing the relative importance of previous price information versus
explanatory variables.

The spatiotemporal specification in Equation (42) leads to an expected long-term steady state
equilibrium for the cross-sectional specification shown in Equation (43) to Equation (45). Specifically,
Equation (43) represents a first stage substitution of Equation (42), Equation (44) shows the expected
value of the dependent variable based on an evolution of the dependent variable over q periods, and
Equation (45) shows the expected value of the long-term cross-section of the dependent variable
in period t.

yt = Xβ + ρW (Xβ + ρWyt−2 + εt−1) + εt (43)

E(yt) = (In + ρW + ρ2W 2 + . . .+ ρqW q)Xβ + ρqW qE(yt−q) (44)

lim
q→∞

E(yt) = (In − ρW )−1Xβ (45)
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The expected long-run equilibrium expressed in Equation (45) is the same as the DGP of the SAR model
and provides an economic motivation for the SAR model.

Given such an economic motivation for the SAR model, can the original spatiotemporal relation in
Equation (42) help in specification of W for the SAR model? The economic motivation in our example
reflects the fact that an individual estimates the price of their house using local prices, so the question
becomes—what is the best specification for local prices? The most straightforward approach would be
to take an average of local prices. If individuals use the average of neighboring house prices, this would
dictate use of a row-stochastic or doubly-stochastic matrix W . Therefore, stochastic scaling of W does
not arise ex nihilo, but comes from an assumption regarding the economic behavior of individuals.

This development is different than the statistical motivation used by Kelejian and Prucha [4],
who begin by examining the variance-covariance or inverse variance-covariance matrices. From this
perspective, many scalings produce row and column sums of the variance-covariance (VC) matrix of the
disturbances (and y) that are uniformly bounded in absolute value. They note that uniform bounds on row
and column sums has the virtue of limiting the degree of correlation between elements of the disturbance
vector and y, which ensures decay of influence with higher order neighbors analogous to fading memory
in time series. Of course, Kelejian and Prucha [4] note that this correlation exists in small samples,
but is limited in large sample analysis. They argue against use of row-normalization unless “theoretical
issues suggest a row-normalized weights matrix.” The drawback of row-normalization in their view
is that use of a different factor for the elements of each row means “there exists no corresponding
re-scaling factor for the autoregressive parameter that would lead to a specification that is equivalent to
that corresponding to the un-normalized weights matrix.” Our view is that this purely statistical approach
neglects behavioral assumptions used in the economic justification (based on behavioral assumptions)
of the SAR DGP set forth in LeSage and Pace [1]. This view seems consistent with the point made by
Arbia and Fingleton [2] in the introduction that: “ideally carefully structured arguments coming from
theory and leading precisely to the typical reduced form spatial econometric model, with a spatial lag
and exogenous lags also, are the preferred option.” It is comforting that row-stochastic scaling emerges
as the most frequently used approach in applied practice, since stochastic scaling has support from both
theoretical and econometric standpoints.

A related point is that many specifications rely on a spatial parameter that appears in both the spillover
and disturbance terms. Consequently, any misspecification in one term contaminates the other term.
LeSage and Pace [1] in Chapter 7 provide examples of this. Pace and Zhu [19] provide a more detailed
discussion of this point, and argue that in the presence of misspecification it seems more prudent to
separately fit spillovers and disturbances.

In one sense the critics pointing to sensitivity of estimates and inferences to varying specifications
for W are correct. If the desire is to produce estimates for each of the n2k partial derivatives of E(y)

with respect to X (observation-level effects estimates) that are correct, spatial regression models could
be viewed as sensitive to specification of individual elements of W . It does not seem realistic that one
could produce estimates and inferences at the observation-level that are robust with respect to changes in
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W matrix specification.15 LeSage and Pace [1] argue against an observation-level approach to drawing
inferences from spatial regression models. They argue that scalar summary measures of the impacts that
average over all observations are more consistent with typical regression model uses and interpretation.
If a goal of using spatial regression models is to have approximately correct scalar summary measures
of the average direct, indirect and total effects on the dependent variable that arise from changes in the
explanatory variables, this seems quite realizable. In fact, we argue there are a number of reasons to
believe this will be the case in applied practice.

5. Conclusions

We conclude that a myth may have arisen in the spatial econometrics discipline. Sources of the
myth are likely twofold. First, even in cases where W does not theoretically make a difference (such
as in correctly specified spatial error models with large n), practitioners have observed sensitivity of
the results to specification of W . In this setting, practitioners have incorrectly flagged W as the culprit
rather than misspecification of the model. Second, practitioners have frequently misinterpreted spatial
regression estimates in the case of models containing spatial lags of the dependent variable. In these
models, the parameters β are often interpreted as if they are partial derivatives reflecting the ceteris
paribus impact of changes in explanatory variables on the dependent variable. As discussed here and in
LeSage and Pace [1], this is not the case. In fact, two models differing only inW that have similar ceteris
paribus impacts from changing explanatory variables (partial derivatives), must have different values of
ρ and β.

Another strand of the literature recognizes the role W plays in estimated partial derivatives from
spatial regression models, but sets an impossible goal. If the requirement is that estimating k + 1

parameters will yield correct estimates for each of the n2k partial derivatives of E(y) with respect
to X (observation-level effects estimates), spatial regression models are sensitive to specification of
individual elements of W . It does not seem realistic that one could produce estimates and inferences
at the observation-level that are robust with respect to changes in W matrix specification. To address
this issue LeSage and Pace [1] argue against an observation-level approach to drawing inferences from
spatial regression models. They argue that scalar summary measures of the impacts that average over all
observations are more consistent with typical regression model uses and interpretation. If a goal of using
spatial regression models is to have approximately correct scalar summary measures of the average
direct, indirect and total effects on the dependent variable that arise from changes in the explanatory
variables, this seems quite feasible. Using the empirical examples and the theoretical developments in
this manuscript, we argue there are a number of reasons to believe this will be the case in applied practice.

Yet another strand of the literature would like to see more economic motivation for W . For example,
Arbia and Fingleton [2] suggest that “ . . . ideally carefully structured arguments coming from theory and
leading precisely to the typical reduced form spatial econometric model, with a spatial lag and exogenous
lags also, are the preferred option.” However, there are two problems with this desired linkage between

15 See Kelejian and Mukerji [20], Kelejian, Tavlas and Hondronyiannis [21] for examples of this type of observation-level
inference.
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W and economic theory. First, most variants of W would likely share common elements and, as shown
here, this often makes the results from the various W more similar than different. If the estimates and
inferences are not all that sensitive to the specific weight matrix used, it is difficult to see how current
economic theory can shed light on a specific “ideal” weight matrix. Second, basing W on economic
variables may lead to some forms of interaction between W and X that are difficult to detect. Moreover,
interpretation of such W could prove difficult as elements of W may change with the explanatory
variables. Weight matrices based on location have the great advantage of exogeneity. In addition, we
reiterate an economic motivation from LeSage and Pace [1] for row-normalized weight specifications that
produce averages of neighboring observations. LeSage and Pace [17] and LeSage [22] argue that theory
can provide guidance regarding whether a local or global spatial regression specification is appropriate
in many applied modeling situations. This type of distinction has frequently been ignored in applied
work.

We do not mean to imply that any weight matrix will perform equally. Bayesian model comparison
methods can easily be used to produce posterior model probabilities for any discrete set of weight
matrices. As illustrated here, these are easy to interpret. Additionally, unlike AIC and other model
fit criterion such as model R−squared statistics, posterior model probabilities are unconditional on the
model parameters β and ρ which have been integrated out of the log-marginal likelihood. We do mean
to imply that far too much effort has gone into “fine-tuning” spatial weight matrices that depend on
highly parameterized functions of distance, lengths of common borders, and so forth. However, due to
the number of common elements in these weight matrices and selection of parameters that give the best
fit for each W , good fitting models using these different forms of W are not likely to produce estimates
and inferences that materially differ.

Arbia and Fingleton [2] point to the need for “research on the robustness of outcomes to variations
in assumptions about the weight matrix structure,” indicating that this would overcome some of the
criticisms of spatial regression models. The considerations in this manuscript provide a step in this
direction. However, more needs to be done to characterize the notion of equivalence among W .
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