
Econometrics 2014, 2, 92-97; doi:10.3390/econometrics2020092 

 

econometrics 
ISSN 2225-1146 

www.mdpi.com/journal/econometrics 

Article 

A One Line Derivation of EGARCH 

Michael McAleer 1,2,3,4,* and Christian M. Hafner 5 

1 Department of Quantitative Finance, National Tsing Hua University, Taichung 402, Taiwan 
2 Econometric Institute, Erasmus School of Economics, Erasmus University Rotterdam,  

Rotterdam 3000, The Netherlands 
3 Tinbergen Institute, Rotterdam 3000, The Netherlands 
4 Department of Quantitative Economics, Complutense University of Madrid, Madrid 28040, Spain 
5 Institute of Statistics, Biostatistics and Actuarial Sciences, Université Catholique de Louvain, 

Louvain-la-Neuve 1348, Belgium; E-Mail: christian.hafner@uclouvain.be 

* Author to whom correspondence should be addressed; E-Mail: michael.mcaleer@gmail.com;  

Tel.: +886-3-571-5131 (ext. 62534); Fax: +886-3-562-1823. 

Received: 16 June 2014; in revised form: 19 June 2014 / Accepted: 20 June 2014 /  

Published: 23 June 2014 

 

Abstract: One of the most popular univariate asymmetric conditional volatility models is 

the exponential GARCH (or EGARCH) specification. In addition to asymmetry, which 

captures the different effects on conditional volatility of positive and negative effects of 

equal magnitude, EGARCH can also accommodate leverage, which is the negative 

correlation between returns shocks and subsequent shocks to volatility. However, the 

statistical properties of the (quasi-) maximum likelihood estimator of the EGARCH 

parameters are not available under general conditions, but rather only for special cases 

under highly restrictive and unverifiable conditions. It is often argued heuristically that the 

reason for the lack of general statistical properties arises from the presence in the model of 

an absolute value of a function of the parameters, which does not permit analytical 

derivatives, and hence does not permit (quasi-) maximum likelihood estimation. It is 

shown in this paper for the non-leverage case that: (1) the EGARCH model can be derived 

from a random coefficient complex nonlinear moving average (RCCNMA) process; and 

(2) the reason for the lack of statistical properties of the estimators of EGARCH under 

general conditions is that the stationarity and invertibility conditions for the RCCNMA 

process are not known. 
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1. Introduction 

In the world of univariate conditional volatility models, the ARCH model of Engle [1] and the 

generalization to the GARCH model by Bollerslev [2] are the two most widely estimated symmetric 

models of time-varying conditional volatility, where symmetry refers to the identical effects on 

volatility of positive and negative shocks of equal magnitude. 

The asymmetric effects on conditional volatility of positive and negative shocks of equal magnitude 

can be captured in different ways by the exponential GARCH (or EGARCH) model of Nelson [3,4], 

and the GJR (alternatively, asymmetric or threshold) model of Glosten, Jagannathan and Runkle [5]. 

These are the two most widely estimated asymmetric univariate models of conditional volatility. 

A special case of asymmetry is that of leverage. As defined by Black [6] in terms of the  

debt-to-equity ratio, leverage is associated with increases in volatility for negative shocks to returns 

and decreases in volatility for positive shocks to returns. In short, leverage captures the negative 

correlation between returns shocks and subsequent shocks to volatility. The EGARCH model is 

capable of capturing leverage, depending on appropriate restrictions on the parameters of the model.  

Although the GJR model can capture asymmetry, leverage is not possible, unless the short run 

persistence effect (that is, the ARCH parameter) is negative. Such a restriction is not consistent with 

the standard sufficient condition for conditional volatility to be positive. 

The univariate GARCH model has been extended to its multivariate counterpart in, for example, the 

BEKK model of Baba et al. [7] and Engle and Kroner [8], and the VARMA-GARCH model of Ling 

and McAleer [8]. The GJR model has a multivariate counterpart in the VARMA-AGARCH model of 

McAleer, Hoti and Chan [10].  

However, the EGARCH model has not yet been developed formally for multivariate processes, with 

appropriate regularity conditions. Kawakatsu [11] examined a matrix exponential GARCH model and 

its estimation under alternative multivariate distributions, but did not provide any asymptotic theory. 

Although it is not essential, leverage is an attractive feature of the EGARCH model. Since 

EGARCH is derived as a discrete-time approximation to a continuous-time stochastic volatility 

process, and is expressed in logarithms, the exponential operator is required to obtain conditional 

volatility, which is guaranteed to be positive. Therefore, no restrictions are required for conditional 

volatility to be positive. 

However, the statistical properties for the (quasi-) maximum likelihood estimator of the EGARCH 

parameters are not available under general conditions, but rather only for special cases under highly 

restrictive and unverifiable conditions. It is often argued heuristically that the reason for the lack of 

general statistical properties arises from the presence in the model of an absolute value of a function of 
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the parameters, which does not permit analytical derivatives, and hence does not permit (quasi-) 

maximum likelihood estimation.  

Some specific statistical results are available under highly restrictive assumptions that cannot 

readily be verified. For example, Straumann and Mikosch [12] assume that conditional volatility 

models are solutions to stochastic recurrence equations which satisfy a contraction property, and derive 

some asymptotic results for the EGARCH(1,0), or EARCH(1) model. However, their regularity 

conditions are difficult to interpret or verify.  

Wintenberger [13] proves consistency using continuous invertibility, which is assumed to hold for 

the EGARCH(1,1) model, and shows asymptotic normality for the quasi-maximum likelihood 

estimator of EGARCH(1,1) under “non-verifiable” conditions, and asymptotic normality for the stable 

quasi-maximum likelihood estimator of an invertible EGARCH(1,1) model. However, the sufficient 

conditions for invertibility seem to be restrictive on the admissible parameter space, and cannot be verified. 

Demos and Kyriakopoulou [14] present sufficient conditions under which the EGARCH(1,1) 

processes have bounded first- and second-order variance derivatives, and the expectation of the 

supremum norm of the second order log-likelihood derivative is finite. These sufficient conditions for 

asymptotic normality also restrict the admissible parameter space, and are difficult to verify. 

It is shown in this paper for the non-leverage case that the EGARCH model can be derived from a 

random coefficient complex nonlinear moving average (RCCNMA) process, and that the reason for 

the lack of statistical properties of the estimators of EGARCH under general conditions is that the 

stationarity and invertibility conditions for the RCCNMA process are not known. 

The remainder of the paper is organized as follows. In Section 2, the EGARCH model is discussed. 

Section 3 presents a RCCNMA process, from which EGARCH is derived in Section 4. Some 

concluding comments are given in Section 5. 

2. EGARCH 

Let the conditional mean of financial returns be given as: 

1E( | )t t t ty y I ε   (1) 

where ty  = tPlog  represents the log-difference in stock prices ( tP ), 1tI  is the information set at 

time t−1, and tε  is conditionally heteroskedastic.  

The EGARCH specification of Nelson [3,4] is given as: 

1 1 1log | | logt t t th ω α η γη β h      , | | 1β   (2) 

where the standardized shocks, tη , are given by /t t tη ε h , tη ~  iid ),0(  , and | | 1β   is the 

stability condition when 1log th  is included in the model. Asymmetry exists if 0γ  , while leverage 

exists if 0γ   and γ α γ   . The specification in Equation (2) is EGARCH(1,1), but this can easily 

be extended to EGARCH(p,q). 

As 1tη   is a function of both t  and th , each of which is a function of the parameters through 

Equations (1) and (2), it is clear that quasi-maximum likelihood estimation of EGARCH is problematic 
as t 1| |η   is not differentiable with respect to the parameters. Moreover, invertibility of EGARCH is 
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also problematic because of the presence of the logarithmic transformation as well as the absolute 

value function. 

3. Random Coefficient Complex Nonlinear Moving Average Process 

Consider a random coefficient complex nonlinear moving average (RCCNMA) process given by: 

1 t 1 tτ τ t tε φ |η | ψ η η     (3) 

where 1tη   is a complex-valued function of 1tη  , tφ ~  iid (0, )α , and tψ ~  iid γ  .  

If tη  is a standard normal variable, then E | | ctη  , which is a known constant. Moreover: 

E E I( 0) E I( 0) c / 2 c / 2 (1 )c / 2t t t t tη η η η η i i           

where 1i    and E[I( 0)] E[I( 0)] 0.5t tη η     are the expectations of two indicator functions. 

As the mean of the complex-valued function is a finite constant, it follows that both the unconditional 

and conditional means of t  in Equation (3) are zero. 

As the RCCNMA process given in Equation (3) is not in the class of random coefficient linear 

moving average models examined in Marek [15], the sufficient conditions for stationarity and 

invertibility of the RCCNMA process are not known. 

4. One Line Derivation of EGARCH 

It follows from Equation (3) that: 

2
1 1 1E( | I ) | |t t t t th ε ω α η γη       (4) 

The use of an infinite lag for the RCCNMA process in Equation (3) would yield the EGARCH 

model in Equation (2). 
It is worth noting that the transformation of th  in Equation (4) is not logarithmic, but the 

approximation given by: 
log log(1 ( 1)) 1t t th h h      

can be used to replace th  in Equation (4) with 1 + log th . 

The interpretation of leverage, whereby 0γ   and γ α γ   , is lost in the above derivation 

because both α  and γ  are required to be positive.  

More importantly, in terms of interpreting the model, the derivation of EGARCH, albeit without the 

logarithmic transformation, in Equation (4) shows that the statistical properties of the (quasi-) 

maximum likelihood estimator of the EGARCH parameters do not exist under general conditions 

because the model is based on a RCCNMA process, for which the stationarity and invertibility 

conditions are not known. 
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5. Conclusion 

The paper was concerned with one of the most popular univariate asymmetric conditional volatility 

models, namely the exponential GARCH (or EGARCH) specification. The EGARCH model is 

popular, among other reasons, because it can capture both asymmetry, namely the different effects on 

conditional volatility of positive and negative effects of equal magnitude, and leverage, which is the 

negative correlation between returns shocks and subsequent shocks to volatility.  

The statistical properties for the (quasi-) maximum likelihood estimator of the EGARCH 

parameters are not available under general conditions, but rather only for special cases under highly 

restrictive and unverifiable conditions. It is often argued heuristically that the reason for the lack of 

general statistical properties arises from the presence in the model of an absolute value of a function of 

the parameters, which does not permit analytical derivatives, and hence does not permit (quasi-) 

maximum likelihood estimation.  

It was shown in the paper for the non-leverage case that the EGARCH model could be derived from 

a random coefficient complex nonlinear moving average (RCCNMA) process, and that the reason for 

the lack of statistical properties of the estimators of EGARCH under general conditions is that the 

stationarity and invertibility conditions for the RCCNMA process are not known. 
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