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Abstract

This paper considers the problem of constructing confidence intervals (CIs) for nonlinear
functions of parameters, particularly ratios of parameters a common issue in econometrics
and statistics. Classical CIs (such as the Delta method and the Fieller method) often
fail in small samples due to biased parameter estimators and skewed distributions. We
extended the Delta method using the Edgeworth expansion to correct for skewness due to
estimated parameters having non-normal and asymmetric distributions. The resulting bias-
corrected confidence intervals are easy to compute and have a good coverage probability
that converges to the nominal level at a rate of O(n−1/2) where n is the sample size. We
also propose bias-corrected estimators based on second-order Taylor expansions, aligning
with the “almost unbiased ratio estimator” . We then correct the CIs according to the Delta
method and the Edgeworth expansion. Thus, our new methods for constructing confidence
intervals account for both the bias and the skewness of the distribution of the nonlinear
functions of parameters. We conduct a simulation study to compare the confidence intervals
of our new methods with the two classical methods. The methods evaluated include
Fieller’s interval, Delta with and without the bias correction interval, and Edgeworth
expansion with and without the bias correction interval. The results show that our new
methods with bias correction generally have good performance in terms of controlling the
coverage probabilities and average length intervals. They should be recommended for
constructing confidence intervals for nonlinear functions of estimated parameters.

Keywords: ratio parameters; confidence intervals; bias; almost unbiased ratio estimator;
edgeworth expansion; Cornish–Fisher expansion; Delta method; Fieller method;
coverage probability

JEL Classification: C12; C13

1. Introduction
Many econometric and statistical applications are interested in tests of the nonlinear

functions of the parameters, which can be expressed as the ratio of two unknown parame-
ters including the ratio of regression coefficients, the ratio of the two linear functions such
as the ratio of affine transformations of random variables and generally the ratio of the two
nonlinear functions.

A non-exhaustive list of examples of econometric models where inferences for the
ratio of parameters are used as follows: the long-run elasticities and flexibilities in dynamic
models (Li & Maddala, 1999; Dorfman et al., 1990; Bernard et al., 2007; J. G. Hirschberg
et al., 2008); the willingness to pay value, i.e., the maximum price an agent would pay
to obtain an improvement in a particular attribute of a desired good or service (Lye &
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Hirschberg, 2018); the turning point in a quadratic specification model where the estimated
relationship is either a U-shaped or an inverted U-shaped curve, for example, Kuznet
and Beveridge curves, in applications to dynamic panel data (Bernard et al., 2019; Lye &
Hirschberg, 2018); the determination of the non-accelerating inflation rate of unemployment
(NAIRU); for example, a Phillips curve (Staiger et al., 1997; J. Hirschberg & Lye, 2010c; Lye
& Hirschberg, 2018); the structural parameter in an exactly identified system of equations
as estimated by the two-stage least squares method (J. Hirschberg & Lye, 2017; Lye &
Hirschberg, 2018; Andrews et al., 2019); the notion of weak instruments in econometric
models (Woglom, 2001); inequality indices (Dufour et al., 2018, 2024); structural impulse
responses (Olea et al., 2021). Lye and Hirschberg (2018) give some other examples of
econometric models.

Other examples of statistical applications, include cost-effectiveness analysis (Briggs
& Fenn, 1998); and the comparison of health outcomes across spatial domains (Beyene &
Moineddin, 2005); bioequivalence assessment, dose–response analysis (Sitter & Wu, 1993;
Faraggi et al., 2003; Y. Wang et al., 2015); the estimation of willingness to pay (Leitner, 2024)
And other statistical applications, P. Wang et al. (2021); Raghav et al. (2025).

However, the statistical properties of the ratio of parameters can be problematic
because the analytical expressions of the moments are generally not available, e.g., the
ratio of asymptotically normally distributed random variables is a non-central Cauchy
distribution. Moreover, if the denominator of the ratio is not significantly different from
zero, the probability distribution of the ratio shows unusual behavior, and the confidence
intervals are unbounded. Another problem worth highlighting is the bias of the estimator
in a finite sample when studying a nonlinear function of parameters.

To test the null hypothesis of the nonlinear functions of parameters, which can be
expressed as the ratio of two unknown parameters, we use confidence intervals (CIs). The
two widely used approaches for constructing CIs are the Fieller method and the Delta
method. The advantage of these methods is that they can be implemented in any context
and are easy to compute, they do not require the use of intensive calculation and sampling
strategies as would be needed when using a Bootstrap or Bayesian method (J. Hirschberg
& Lye, 2010c; J. Hirschberg & Lye, 2017; Lye & Hirschberg, 2018).

Fieller (1954) proposed a method to derive the confidence interval (CI) of the ratio
of two random variables. In Fieller’s method, it assumes that both the numerator and
the denominator of the ratio follow normal distribution. The method is based on the
inversion of the pivotal t-statistic, which gives an exact CI for achieving the required
coverage probability. The Fieller’s CI is asymmetric around the ratio estimate, which is
a good property, as it can be reflected in the skewness of the small sample distribution
of the ratio. However, if the denominator of the ratio is not significantly different from
zero, Fieller’s CI will be unbounded, being either the entire real line or the union of two
disconnected infinite intervals. It has a positive probability of producing CI with infinite
length. Furthermore, Fieller’s interval requires finding roots of a quadratic equation and
these can be imaginary. In addition, if this quadratic equation has one root, the confidence
interval will be half-open.

The Delta method is based on the first-order Taylor expansion by considering non-
linear functions of parameters. By assuming asymptotic normality in large samples, this
method produces a symmetric and bounded CI, unlike the Fieller method. However, the
Delta method often has an inaccurate coverage probability (Dufour, 1997) and unbalanced
tail errors even at moderate sample sizes (J. Hirschberg & Lye, 2010c). A geometric inter-
pretation of the Fieller and Delta methods can be found in von Luxburg and Franz (2009);
J. Hirschberg and Lye (2010a, 2010b). According to J. Hirschberg and Lye (2010c), if the true
value of the ratio has the same sign as the correlation coefficient between the numerator
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and the denominator then the Delta and Fieller intervals may be very similar even if the
denominator has a high variance. However, if the signs are opposite and the precision of
the denominator is low, then the Delta method has poorer performance.

Moreover, there are two potential problems with these Fieller and Delta methods;
first, the parameter estimator is biased for nonlinear parameter functions. Second, the
estimated parameters have non-normal and asymmetric distribution. Thus, the variance of
the estimated parameters is not useful in constructing confidence intervals, Dorfman et al.
(1990); Li and Maddala (1999).

In order to overcome the limitations of the previous methods, some numerical proce-
dures have been proposed in the literature such as the parametric bootstrap method and the
nonparametric bootstrap method (bootstrap standard, bootstrap t-statistic; bootstrap per-
centile, bootstrap bias-corrected, bootstrap bias-corrected and accelerated) see Krinsky and
Robb (1986); Dorfman et al. (1990); Li and Maddala (1999), among others. The CIs obtained
from these iterative procedures are bounded and are more computationally intensive.

Dorfman et al. (1990) compared the Delta and Fieller methods and three types of the
single bootstrap and found that the bootstrap did not achieve nominal coverage and that
all methods performed reasonably well.

The bootstrap percentile-t and the Delta methods confidence intervals are very
close to each other in many cases in terms of the length of the confidence intervals,
Li and Maddala (1999).

It should be noted that all the previous methods do not take into account the bias of
the estimator, which should be a prerequisite for constructing a reliable confidence interval.

In this regard, the paper has five main contributions. First, we propose a novel
analytical approach that modifies the Delta method to reduce the effect of skewness. This
method is based on the Edgeworth expansion (Hall, 1992b). We then propose an easy to
compute confidence interval for the ratio of parameters and the interval has the coverage
probability converging to the nominal level at a rate of O(n−1/2) where n is the sample
size. Second, the source of potential bias is due to the nonlinearity of the ratio θ̂ = θ̂1/ θ̂2

in terms of θ̂1 and θ̂2. It is well known that even when exact unbiased estimators of θ̂1

and θ̂2 are available, the ratio estimator θ̂ could still be badly biased in finite samples.
We consider a second-order term in the Taylor series expansion to bias estimation that
evaluates the nonlinearity of the ratio estimator θ̂ and we propose a bias-corrected estimator,
which is identical to the almost unbiased ratio estimator proposed by Tin (1965). Third, we
investigate the problem of approximating the variance of a nonlinear function of parameters
based on a second-degree Taylor series expansion. Unfortunately, when calculating the
variance of the second-degree Taylor expansion, most authors (Parr, 1983; Hayya et al.,
1975; Y. Wang et al., 2015) did not take into account the possible covariances between the
random variables, which is indispensable because it provides a better approximation. This
variance is none other than the variance of the bias-corrected estimator (or the variance of
the almost unbiased ratio estimator of Tin (1965)). Fourth, we define a modified version
of the Delta method, correct the estimator of the bias, and calculate the corresponding
variance. This can be helpful in terms of more accurate coverage probabilities for the CIs.
Fifth, we propose a novel analytical approach to construct the CI for the ratio estimate.
Our method, Edgeworth expansion with bias-corrected estimator uses the Edgeworth
expansion but adopts an estimator corrected for the bias and its variance. The method
always produces a bounded CI. Simulation results show that it generally outperforms the
Edgeworth expansion in terms of controlling the coverage probabilities and the average
width and is particularly useful when the data are skewed.

The rest of this paper is organized as follows: Section 2 presents some highlights.
Section 3 studies the different methods for constructing CIs, the Fieller and Delta methods
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and we will develop the Edgeworth expansions for the Delta method. Section 4 provides an
analytical form of the bias that can be used to construct the bias-corrected estimator and to
calculate the variance of the bias-corrected estimator. Section 5 presents the confidence in-
tervals with the bias-corrected estimator. Section 6 presents some econometric applications.
The simulation study and the results are presented in Sections 7 and 8 conclude the paper.

2. Some Highlights
2.1. Definitions, Notation

Let X and Y be two random variables, we assume that the first and second moments
exist, then the expected value of X is denoted by E(X) = x, the variance of X by V(X), the
square of the coefficient of variation of X is defined by CV(X)2 = V(X)

x2 and the coefficient of

variation of X by CV(X) =

√
V(X)
x . A similar notation will be used for the random variable

Y. We assume that E(X) = x and E(Y) = y are non-zero. The covariance of X and Y is
defined by Cov(X, Y) = E(XY)− E(X)E(Y), the correlation coefficient between X and Y is
defined by ρ = Cov(X,Y)(√

V(X)
)(√

V(Y)
) so it satisfies |ρ| ≤ 1 and Cov(X, Y) = ρ

√
V(X)

√
V(Y) .

The coefficient of co-variation of X and Y is defined by CV(X, Y) = Cov(X,Y)
xy , which can be

expressed as the product of the correlation coefficient and the coefficients of variation of X

and Y, respectively: CV(X, Y) = ρ

√
V(X)
x

√
V(Y)
y = ρCV(X)CV(Y). We use the notation

[a ± b] for the interval [a − b, a + b] (b ≻ 0).

2.2. The Ratio Estimator Is Biased

Let θ̂1 and θ̂2 be consistent estimators of θ1 and θ2, respectively, E(θ̂1) = θ1 and
E(θ̂2) = θ2 and the ratio estimator θ̂ = θ̂1/θ̂2 is a consistent estimator of the ratio θ = θ1/θ2.
It is well known that the ratio of two unbiased estimators is not, in general, itself an
unbiased estimator, i.e., E(θ̂1/θ̂2) ̸= E(θ̂1)/E(θ̂2) = θ1/θ2.

The expected value of the ratio between θ̂1 and θ̂2, provided that the appropriate
moments exist, is given by

E(θ̂1/θ̂2) = E(θ̂1 × 1/θ̂2)

= E(θ̂1)× E(1/θ̂2) + Cov(θ̂1, 1/θ̂2)

If θ̂1 and θ̂2 are independent or if θ̂1 and 1/θ̂2 are uncorrelated, then

E(θ̂1 × 1/θ̂2) = E(θ̂1)× E(1/θ̂2).

It is well known that E(1/θ̂2) ̸= 1/E( θ̂2), Jensen’s inequality implies that E(1/θ̂2) ≥
1/E(θ̂2) because the function 1/z is convex for z > 0 or z < 0, then we have

E(θ̂1/θ̂2) = E(θ̂1)× E(1/θ̂2) ≥ E(θ̂1)/E(θ̂2)

and using that E(θ̂1) = θ1 and E(θ̂2) = θ2 we have

E(θ̂1/θ̂2) ≥ θ1/θ2

E(θ̂) ≥ θ

This result shows that the estimator of the ratio of two unbiased estimators is, in
general, biased.

We will now consider a more general framework that can be precisely define the bias of
the ratio estimator θ̂.
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Note that the covariance of θ̂2 and the ratio θ̂1/θ̂2 is

Cov(θ̂2, θ̂1/θ̂2) = E(θ̂2 × θ̂1/θ̂2)− E(θ̂2)× E(θ̂1/θ̂2)

= E(θ̂1)− E(θ̂2)× E(θ̂1/θ̂2)

Then, by rearranging these terms, provided that E(θ̂2) ̸= 0, we obtain the expected
value of the ratio between θ̂1 and θ̂2

E(θ̂1/θ̂2) = E(θ̂1)/E(θ̂2)− 1/E(θ̂2)× Cov(θ̂2, θ̂1/θ̂2)

This result shows that the expected value of a ratio of two random variables is not the
ratio of the expected values and using that E(θ̂1) = θ1 and E(θ̂2) = θ2, we get

E(θ̂1/θ̂2) = θ1/θ2 − 1/θ2 × Cov(θ̂2, θ̂1/θ̂2)

E(θ̂) = θ − 1/θ2 × Cov(θ̂2, θ̂)

Then the bias of the ratio estimator θ̂ is

Bias(θ̂) = E(θ̂)− θ = −1/θ2 × Cov(θ̂2, θ̂)

The ratio estimator θ̂ is thus generally a biased estimator of the true value of the ratio
θ even if its components θ̂1 and θ̂2 are themselves unbiased with the size of the bias of θ̂

depending on both θ2 and the covariance between θ̂2 and the ratio θ̂1/θ̂2.
The bias of θ̂ can be written as

Bias(θ̂) = −
ρ∗
√

V(θ̂2)
√

V(θ̂)

θ2

where ρ∗ = Cov(θ̂2,θ̂)(√
V(θ̂2)

)(√
V(θ̂)

) is the correlation coefficient between θ̂2 and the ratio estima-

tor θ̂ and
√

V(θ̂2)and
√

V(θ̂) are their standard errors, respectively.
Consequently, the absolute value of the bias is

∣∣∣Bias(θ̂)
∣∣∣ = |−ρ∗|

√
V(θ̂2)

√
V(θ̂)

θ2
≤

√
V(θ̂2)

√
V(θ̂)

θ2

assuming θ2 > 0 and the correlation coefficient between θ̂2 and the ratio estimator θ̂ satisfies
|ρ∗| ≤ 1.

Thus, an upper bound to the ratio of the absolute value of the bias to its standard error
is given by ∣∣∣∣∣∣Bias(θ̂)√

V(θ̂)

∣∣∣∣∣∣ ≤
√

V(θ̂2)

θ2
= CV(θ̂2)

where CV(θ̂2) is the coefficient of variation of θ̂2.
The bias in the ratio estimator θ̂ is negligible in relation to its standard error if the

coefficient of variation of θ̂2 is small, which is likely to be the case when the sample size
is sufficiently large. It is well known that the variance of estimator V(θ̂2) is order O(n−1)

then also the bias of θ̂ is also order O(n−1). Cochran (1977) has shown that if the coefficient
of variation of θ̂2 is less than 0.1, then the bias in ratio estimator θ̂ is small relative to
its standard error. However, in econometrics and statistics models, in which the bias
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may be considerable and bias correction can often improve the finite sample performace
of estimators.

Furthermore, the main difficulty in estimating the bias of θ̂ in order to obtain unbiased
estimates of θ is to estimate the covariance between θ̂2 and the ratio θ̂1/θ̂2. Thus, it is
difficult to obtain an analytical expression of the bias, as we will see later in Section 4 that
using an approximation of the ratio of the parameters gives an analytical form of the bias
and leads to a reduction in the bias from order O(n−1) to order O(n−2).

3. Methods
3.1. The Delta Method (or the Taylor’s Series Expansion)

The Delta method often referred to as the Taylor’s series expansion (Dorfman et al.,
1990; Briggs & Fenn, 1998; Li & Maddala, 1999, among others) estimates the variance of a
nonlinear function of two or more random variables is given by taking a first-order Taylor
expansion around the mean value of the variables and calculating the variance for this
expression. In the case of the ratio of parameters θ̂ = g(θ̂1, θ̂2) = θ̂1/θ̂2, the variance of θ̂ is
(Full derivation details can be see in Appendix A).

V(θ̂) =
1
θ̂2

2

[
V(θ̂1)− 2

(
θ̂1

θ̂2

)
Cov(θ̂1, θ̂2) +

(
θ̂2

1

θ̂2
2

)
V(θ̂2)

]
,

which can also be written as

V(θ̂) =
θ̂2

1

θ̂2
2

[
CV(θ̂1)

2 − 2CV(θ̂1, θ̂2) + CV(θ̂2)
2
]

where CV(θ̂i)
2 is the square of the coefficient of variation for a random variable θ̂i for

i = 1, 2 and CV(θ̂1, θ̂2) = ρCV(θ̂1)CV(θ̂2) is the coefficient of co-variation of θ̂1 and θ̂2 and

ρ = Cov(θ̂1,θ̂2)(√
V(θ̂1)

)(√
V(θ̂2)

) is the correlation coefficient between θ̂1 and θ̂2.

To construct a confidence interval for the ratio θ = θ1/θ2, we assume that n1/2(θ̂ − θ)

is asymptotically normal distributed with zero mean and variance V(θ̂).
Let V̂(θ̂) be a consistent estimator of V(θ̂), the Delta method 100(1 − α)% confidence

limits for the ratio θ1/θ2 is given as follows:

CID :
θ̂1

θ̂2
± zα/2QD

where θ̂1
θ̂2

is namely the classical estimator and QD =
√

V̂(θ̂) = θ̂1
θ̂2[

ĈV(θ̂1)
2 − 2ĈV(θ̂1, θ̂2) + ĈV(θ̂2)

2
]1/2

, the estimated standard error of the classical es-
timator and zα/2 is the (α/2) th quantile for standard normal distribution.

This method assumes that θ̂ is normally distributed and thus symmetrical around its
mean. However, the assumption of normality is clearly strong as there is no guarantee that
θ̂ is normally distributed.

However, for large sample sizes (or rather small coefficients of variation) the distribu-
tion of a ratio may be close to normal.

The assumption of a normal distribution may be justified in the case of large samples,
but it is unlikely that the distribution of a ratio will generally follow a well-behaved
distribution. Furthermore, the assumption of a normal distribution may be quite inaccurate
if the data have a skewed distribution.
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3.2. The Fieller Method

Fieller (1954) proposed a general procedure for constructing confidence limits for the
ratio of the means of two normal distributions. In Fieller’s method, the ratio variable is
transformed into a linear function. The confidence interval of the ratio variable can be
obtained by solving out the quadratic roots of the linear function.

For testing the null hypothesis H0 : θ1
θ2

= γ equivalently it is written as on a linear

combination of the parameters H′
0: θ1 −γθ2 = 0, the method assumes that θ̂1 and θ̂2 follow

a joint normal distribution function such that θ̂1 − γθ̂2 is normally distributed. Hence, the
pivotal statistic for this test is

T =
θ̂1 − γθ̂2√

V̂(θ̂1)− 2γĈov(θ̂1θ̂2) + γ2V̂(θ̂2)

which is t-distribution with d f degrees of freedom under the null hypothesis.
Let tα/2,d f denotes the 100(1 − α/2)th percentile of the t- distribution with d f degrees

of freedom, we have
P
[

T2 ≤ t2
α/2,d f

]
= 1 − α

By replacing the expression of square T and rearranging gives a quadratic equation in γ.

aγ2 + bγ + c ⪯ 0

where a = θ̂2
2 − t2

α/2,d f V̂(θ̂2), b = −2
(

θ̂1θ̂2 − t2
α/2,d f Ĉov(θ̂1θ̂2)

)
, and c =

(
θ̂2

1 − t2
α/2,d f V̂(θ̂1)

)
.

Finding an explicit form for the confidence intervals for γ requires solving the
quadratic equation. The solution of this inequality depends on the sign of a and
d = b2 − 4ac, the discriminant of the quadratic equation. Through simple calculation,
we can expressed d as follows:

d = 4

(
θ̂1

θ̂2

)2

t2
α/2,d f

{[
ĈV(θ̂2)− ρ̂ĈV(θ̂1)

]2
+ aĈV(θ̂1)

2(1 − ρ̂2)

}

where ρ̂ is the estimate of the correlation coefficient between θ̂1 and θ̂2. Hence, a > 0 also
implies d > 0.

If d > 0, let γL and γU (γL < γU) be the two real-valued solutions to the quadratic
equation in γ by changing the inequality into an equality. This gives the bounds of the
Fieller interval in the case a > 0. These two roots are the lower and upper limits of the
(1 − α) confidence interval. The bounds of the interval are given by

CIF : [γL, γU ] =

(
θ̂1

θ̂2

)
F

± tα/2,d f QF

where
(

θ̂1
θ̂2

)
F

= θ̂1
θ̂2

[
1

1−h

(
1 − hρ̂

ĈV(θ̂1)

ĈV(θ̂2)

)]
is the Fieller estimator and QF = θ̂1

θ̂2

1
1−h[

ĈV(θ̂1)
2 − 2ĈV(θ̂1, θ̂2) + ĈV(θ̂2)

2 − hĈV(θ̂1)
2(1 − ρ̂2)

]1/2
the estimated standard error

of the Fieller estimator and h = t2
α/2,d f ĈV(θ̂2)

2.
However, if a < 0 the Fieller CI will be unbounded. Hence, if d > 0 the Fieller CI will

be the complement of a finite interval (−∞, γU)∪ (γL, ∞) and if d < 0 the Fieller CI will be
the whole real line (−∞,+∞).

Other intervals may be considered when a = 0 , the Fieller CI will be
]
−∞, −c

b
]

if
b > 0 otherwise, it will be

[−c
b , ∞

[
if b < 0.
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Remark 1.

(1) Following the Fieller estimator, the term 1
1−h

(
1 − hρ̂

ĈV(θ̂1)

ĈV(θ̂2)

)
can be considered as a correction

factor to the estimated ratio estimator.

(2) If ρ̂
ĈV(θ̂1)

ĈV(θ̂2)
= 1 then the Fieller estimator

(
θ̂1
θ̂2

)
F

is equal to the classical estimator θ̂1
θ̂2

.

(3) In the case of finite interval, the condition a > 0 is equivalent to
∣∣∣∣ θ̂2√

V̂(θ̂2)

∣∣∣∣ > tα/2,d f which

means rejecting the null hypothesis H0 : θ2 = 0, i.e., θ2 is significantly different from zero.
The test of this null hypothesis is the first step of Scheffé’s procedure (Scheffé, 1970).

(4) The t−statistic
∣∣∣∣ θ̂2√

V̂(θ̂2)

∣∣∣∣ is equal to
∣∣∣∣ 1

ĈV(θ̂2)

∣∣∣∣ the absolute inverse of the coefficient of variation

for θ̂2, so the null hypothesis is rejected if the coefficient of variation for θ̂2 is negligible. (A high
coefficient of variation for θ̂2 means a low statistical value).

(5) If h is close to zero the Fieller CI becomes the Delta CI.

It should be noted that the null hypothesis H′
0: θ1 −γθ2 = 0, was obtained from the

nonlinear relationship θ1
θ2

= γ only when θ2 ̸= 0. However, Fieller’s method does not take
this information into account.Therefore, the Fieller CI has the potential to overestimate the
confidence length.

Furthermore, Fieller’s estimator is a linear combination of the ratio estimator (or
classical estimator). As we mentioned in Section 1, the ratio estimator is generally biased,
so Fieller’s estimator is also generally biased.

The advantage of Fieller’s method over the Delta method is that it takes into account
the potential skewness of the sampling distribution of the ratio estimator and therefore may
not be symmetric around the point estimate. Fieller’s method provides an exact solution
subject to the joint normality assumption. However, it has been argued that the assumption
of joint normality may be difficult to justify, particularly when sample sizes are small. In
particular, the random variable follows a skewed distribution, which may cause problems
for the normality assumption.

The normal approximation is a rather rough approximation, especially when sample
sizes are not large; it does not take into account the skewness of the underlying distribution,
which is often the main source of error of the normal approximation. To remove the effect
of the skewness, we develop the Edgeworth expansion.

3.3. Edgeworth Expansion

The Delta method-based confidence interval is not very robust and can be quite
inaccurate in practice for non-normal data. It produces intervals that are symmetric around
the point estimate, so it does not take skewness into account. The correction for skewness
used in our confidence intervals is based on the Edgeworth expansion.

We propose a method based on the Edgeworth expansion to modify the Delta intervals
to remove the effect of skewness. The expansion provides a way to correct for the skewness
in the data and to derive new confidence intervals for the ratio parameters. Thus, we
consider two aspects: first an Edgeworth expansion is derived for the Delta method for
a ratio of parameters on a normal random variable and second by using the inverse of
the Edgeworth expansions, which are the quantiles of the distribution that is the Cornish–
Fisher expansion, we construct an approximate confidence interval, which contains a n−1/2

order correction for the effect of skewness.
The Delta method can be easily extended for a better approximation by using Edge-

worth expansion.
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Let U = V̂(θ̂)−1/2√n(θ̂ − θ) where θ̂ = θ̂1
θ̂2

, θ = θ1
θ2

and V̂(θ̂) the estimate of V(θ̂) in
Delta method, we assume that the distriubtion of a random variable U has the Edgeworth
expansion (Hwang, 2019; Hall, 1992a).

F(x) = P(U ≤ x) = Φ(x)− n−1/2κ
1
6
(x2 − 1)ϕ(x) + O(n−1/2)

where Φ(x) and ϕ(x) are the standard normal distribution and density functions, respec-
tively, κ is the skewness, and n is the sample size. This expansion can be interpreted as
the sum of the normal distribution Φ(x), and an error due to the skewness of the distribu-
tion. When the error (the n−1/2 skewness correction) in absolute value is small, U can be
accurately approximated by a normal distribution. Conversely, when the error in absolute
value is large, the second term in the formulation cannot be ignored, and therefore, the
normal approximation would not be as accurate. The n−1/2 skewness correction is an even
function of x, which means that it changes the distribution function symmetrically about
zero. Thus, the skewness of the distribution F has a significant effect, especially when the
sample size n is small.

To construct asymptotic confidence intervals, we should invert the Edgeworth ex-
pansions to obtain expansions of distribution quantiles. Such expansions are known as
Cornish–Fisher expansions.

For any 0 < α < 1, let ξα be the α − th quantile of distribution F(.), which is the
solution to F(ξα) = α. This quantile of distribution ξα = F−1(α) admits a Cornish–Fisher
expansion of the form (Hall, 1992b; Hwang, 2019).

ξα = zα + n−1/2κ̂
1
6
(z2

α − 1) + O(n−1/2)

where κ̂ is the estimate of κ and zα is the α-th quantile of the standard normal distribution.
The 100(1 − α)% Edgeworth expansion confidence interval for the ratio θ1

θ2
is given by

CIE :

[
θ̂1

θ̂2
− ξ1−α/2QD,

θ̂1

θ̂2
− ξα/2QD

]

where QD = θ̂1
θ̂2

[
ĈV(θ̂1)

2 − 2ĈV(θ̂1, θ̂2) + ĈV(θ̂2)
2
]1/2

, and ξα/2 and ξ1−α/2 are the

(α/2)th and (1 − α/2)th quantiles of distribution F(.).
For positively skewed data, the true 1 − α/2 quantile ξ1−α/2 is larger than the associ-

ated standard normal quantiles zα/2 and similarly the true lower quantile ξα/2 is larger
than −zα/2.

From the Cornish–Fisher expansion, we can state the asymptotic coverage probability
of the proposed intervals.

The coverage probability of confidence intervals is given by

P(
θ1

θ2
∈ CIE) = 1 − α + O(n−1/2).

4. Bias-Correction Analysis
4.1. Bias of Estimator

In Section 1, we showed that the ratio estimator θ̂ = θ̂1/ θ̂2 is a biased estimator of
the ratio parameters. It is essential to determine the expected direction and magnitude of
this bias.

The Fieller estimator and the classical estimator are strongly consistent (converge to
the ratio θ1/ θ2 with probability one), and generally are biased.
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In the following, we propose to correct the bias of the classic estimator. It is well
known in the literature that the ratio of the parameters uses only first-order expansions
to approximate asymptotic sampling distributions. However, calculating higher-order
expansions can also be useful given that they can be used to estimate the bias of the ratio of
the parameters and the analytical form of the bias obtained can be used to construct the
bias-corrected estimator. (Furthermore, higher-order expansions are also useful because
they can be used to estimate the bias of the ratio parameters and the analytical form of the
bias obtained can be used to construct the bias-corrected estimator.)

We consider a second-order term in the Taylor series expansion to bias estimation that
evaluates the nonlinearity of the ratio of the parameters. This additional second-order term
can be helpful, in the sense of more accurate coverage probabilities for the CIs.

Let θ is g(θ1, θ2) = θ1/θ2 then from a second-order Taylor’s series expansion

g(θ̂1, θ̂2) = g(θ1, θ2) + G′
(

θ̂1 − θ1

θ̂2 − θ2

)
+

1
2

(
θ̂1 − θ1

θ̂2 − θ2

)′

H

(
θ̂1 − θ1

θ̂2 − θ2

)
+ Rn

where G is a Jacobian vector containing all the first-order partial derivatives and H is a
Hessian matrix containing all the second partial derivatives for the nonlinear function

g(θ̂1, θ̂2) evaluated at θ1 and θ2, and the remainder Rn is of order O

∥∥∥∥∥ θ̂1 − θ1

θ̂2 − θ2

∥∥∥∥∥
2
 i.e.,

Rn∥∥∥∥∥∥ θ̂1 − θ1

θ̂2 − θ2

∥∥∥∥∥∥
2 −→ 0 as θ̂i −→ θi for i = 1, 2.as n −→ ∞.

We define the bias and variance of ratio estimator using the first and second moments
of the terms in this second-order Taylor’s series expansion. Taking the expectation of this
expansion and under the conditions E(θ̂i − θi) = 0 for i = 1, 2 we obtain the bias of ratio
estimator given in the following proposition.

Proposition 1. Let θ = θ1
θ2

be a ratio of parameters, a second-order Taylor’s series expansion gives
the approximation of bias

Bias(θ̂) = E(θ̂)− θ =
1
2
(vecH)′vec(Σ) + O(n−2)

where Σ is the variance-covariance matrix of θ̂1 and θ̂2 and H is the Hessian matrix of the second
partial derivatives.

The estimate of bias is given by

B̂ias(θ̂) =
1
2
(vecĤ)′vecΣ̂ + O(n−2)

where Ĥ and Σ̂ are the estimates of H and Σ respectively.
This yields

B̂ias(θ̂) = − 1
θ̂2

2

Ĉov(θ̂1, θ̂2) +
θ̂1

θ̂3
2

V̂(θ̂2) + O(n−2),

which can also be written as

B̂ias(θ̂) =
θ̂1

θ̂2

[
V̂(θ̂2)

θ̂2
2

− Ĉov(θ̂1, θ̂2)

θ̂2θ̂1

]
+ O(n−2)

where V̂(θ̂2)

θ̂2
2

− Ĉov(θ̂1,θ̂2)

θ̂2 θ̂1
can be considered as a correction factor to the estimated ratio estimator.
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Proof. (see Appendix A).

This bias is identical to Tin’s bias, as described by Tin in 1965. It uses the same

information as the correction factor formed by subtracting V̂(θ̂2)

θ̂2
2

from Ĉov(θ̂2,θ̂1)

θ̂2 θ̂1
. This bias

is order to O(n−2) Tin (1965). Our bias is derived by a different method. Tin (1965) and
David and Sukhatme (1974) used an asymptotic series expansion of the ratio estimator
under certain conditions. The high-order of Tin’s bias formulation was given by David and
Sukhatme (1974).

To obtain the sign of the bias, we express the bias as a function of the coefficient of
variation and the coefficient of co-variation

B̂ias(θ̂) =
θ̂1

θ̂2

(
ĈV(θ̂1)ĈV(θ̂2)

[
ĈV((θ̂2)

ĈV(θ̂1)
− ρ̂

])
+ O(n−2)

where ρ̂ is the estimate of the correlation coefficient between θ̂1 and θ̂2.
Following this latter formula, if the coefficient of variation of θ̂2 is close to zero, then

the bias may be negligible relative to the variation in θ̂. Furthermore, if the coefficient of
variation of θ̂2 is greater than the coefficient of variation of θ̂1 the absolute value of the
bias increases if the correlation between θ̂1 and θ̂2 becomes zero or negative. Similarly, if
the coefficient of variation of θ̂1 is greater than the coefficient of variation of θ̂2 the bias

is negative for a high positive correlation coefficient. Moreover, if ĈV((θ̂2)

ĈV(θ̂1)
> ρ̂ then the

absolute value of the bias is positive, if ĈV((θ̂2)

ĈV(θ̂1)
< ρ̂ then the absolute value of the bias is

negative, and if ĈV((θ̂2)

ĈV(θ̂1)
= ρ̂ then the ratio estimator is unbiased.

4.2. The Bias-Corrected Estimator

We have obtained an analytic form of the bias and the estimate bias of the ratio
parameters can be used to correct the estimator, the bias-corrected estimator is given by

θ̂BC = θ̂ − B̂ias(θ̂) =
θ̂1

θ̂2
− 1

2
(vecĤ)′vecΣ̂ + O(n−2)

This yields (
θ̂1

θ̂2

)
BC

=
θ̂1

θ̂2
+

1
θ̂2

2

Ĉov(θ̂1, θ̂2)−
θ̂1

θ̂3
2

V̂(θ̂2) + O(n−2)

Following this result, the bias-corrected estimator is obtained by adjusting the classical
estimator by the term that is capable of reducing it from order O(n−1) to order O(n−2).

The bias-corrected estimator can also be written as(
θ̂1

θ̂2

)
BC

=
θ̂1

θ̂2

{
1 +

[
Ĉov(θ̂1, θ̂2)

θ̂1θ̂2
− V̂(θ̂2)

θ̂2
2

]}
+ O(n−2)

where 1 +

[
Ĉov(θ̂1,θ̂2)

θ̂1 θ̂2
− V̂(θ̂2)

θ̂2
2

]
can be considered as a correction factor to the estimated

ratio estimator.
This bias-corrected estimator θ̂BC has the same structure as Tin’s (1965) almost unbi-

ased ratio estimator in the sense that its bias is of O(n−2), i.e., the bias of
(

θ̂1
θ̂2

)
BC

converges

to zero at a fast rate than that of θ̂1
θ̂2

. Tin called it a modified ratio estimator”. He showed
that his estimator is better than other competing estimators of population mean, up to
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the second order of approximation and it is equivalent to the Beale (1962) estimator up
to the first order of approximation. Tin’s estimator has been studied theoretically and via
simulation by, Dalabehera and Sahoo (1995), Swain and Dash (2020) and they found Tin’s
estimator generally to be less biased and more efficient compared with other proposed
ratio estimators.

The bias-corrected estimator θ̂BC in terms of coefficient of variation and the coefficient
of co-variation of θ̂1 and θ̂2 is(

θ̂1

θ̂2

)
BC

=
θ̂1

θ̂2

{
1 + ĈV(θ̂1)ĈV(θ̂2)

[
ρ̂ − ĈV(θ̂2)

ĈV(θ̂1)

]}
+ O(n−2)

where 1 + ĈV(θ̂1)ĈV(θ̂2)

[
ρ̂ − ĈV(θ̂2)

ĈV(θ̂1)

]
can be considered as a correction factor to the esti-

mated ratio estimator.
In the next, we examine the case where the numerator and denominator of a ratio are

independent. In this case, we will specify the bias and the bias-corrected estimator in the
following proposition:

Proposition 2. If θ̂1 and θ̂2 are independent, we have the following

(i) The estimate of the bias is B̂ias(θ̂) = θ̂1
θ̂2

ĈV(θ̂2)
2 = θ̂1

θ̂2

1
t(θ̂2)2

where t(θ̂2)
2 denotes the square of the t−statistic (or F1 statistic) for θ̂2 and 1

t(θ̂2)2 can be considered

as a correction factor to the estimated ratio estimator.
The estimate of the bias of the ratio parameters is an estimator of the ratio weighted by the

square of the coefficient of variation of θ̂2 (the inverse of the square of the t−statistic for θ̂2 or
the inverse of the F1 statistic).

(ii) The bias-corrected estimator is
(

θ̂1
θ̂2

)
BC

= θ̂1
θ̂2

[
1 − ĈV(θ̂2)

2
]
= θ̂1

θ̂2

[
1 − 1

t(θ̂2)2

]
.

The bias-corrected estimator of the ratio parameters is an estimator of the ratio weighted by the
simple statistic

[
1 − 1

t(θ̂2)2

]
, this weight is less than one because ĈV(θ̂2)

2 or 1
t(θ̂2)2 is positive.

4.3. The Variance of the Bias-Corrected Estimator

As we have shown, the bias-corrected estimator θ̂BC corresponds to the Tin (1965)
almost unbiased ratio estimator, also known as the modified ratio estimator. The approxi-
mation of the variance of θ̂ with a second-order term expressed in terms of the coefficient
of variation and the coefficient of co-variation of θ̂1 and θ̂2 is identical to the variance of
the almost unbiased ratio estimator. We therefore use this variance as the variance of the
bias-corrected estimator.

The estimate of the variance of the bias-corrected estimator θ̂BC is as follows
(full derivation details can be see in Appendix A):

V̂
[
(θ̂BC)

]
= Ĝ′Σ̂Ĝ︸ ︷︷ ︸

first-order part

+
1
2
(vecĤ)

′
(Σ̂ ⊗ Σ̂)vecĤ︸ ︷︷ ︸

second-oder part

where the first order part Ĝ′Σ̂Ĝ is the estimate of the variance of θ̂ corresponding to a first
order approximation and the second order part corresponding to an additional part from
second-order approximation, which permit to take into account the correlation between
the random variables.
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This yields

V̂
[
(θ̂BC)

]
=

1
θ̂2

2

[
V̂(θ̂1)− 2

(
θ̂1

θ̂2

)
Ĉov(θ̂1, θ̂2) +

(
θ̂2

1

θ̂2
2

)
V̂(θ̂2)

]
︸ ︷︷ ︸

first-order approximation

+
1
θ̂4

2

V̂(θ̂2)

[
V̂(θ̂1)− 4

(
θ̂1

θ̂2

)
Ĉov(θ̂1, θ̂2) + 2

(
θ̂2

1

θ̂2
2

)
V̂(θ̂2)

]
+

1
θ̂4

2

Ĉov(θ̂1, θ̂2)
2

︸ ︷︷ ︸
additional part from second-order approximation

which can also be written as

V̂
[
(θ̂BC)

]
=

θ̂2
1

θ̂2
2



[
V̂(θ̂1)

θ̂2
1

− 2
Ĉov(θ̂1, θ̂2)

θ̂1θ̂2
+

V̂(θ̂2)

θ̂2
2

]
︸ ︷︷ ︸

first-order approximation

+
V̂(θ̂2)

θ̂2
2

[
V̂(θ̂1)

θ̂2
1

− 4
Ĉov(θ̂1, θ̂2)

θ̂1θ̂2
+ 2

V̂(θ̂2)

θ̂2
2

]
+

Ĉov(θ̂1, θ̂2)
2

θ̂2
1 θ̂2

2︸ ︷︷ ︸
additional part from second-order approximation


Thus, this variance can be express in terms of coefficient variation of θ̂1 and θ̂2 by

V̂
[
(θ̂BC)

]
=

θ̂2
1

θ̂2
2



[
ĈV(θ̂1)

2 − 2ρ̂ĈV(θ̂1)ĈV(θ̂2) + ĈV(θ̂2)
2
]

︸ ︷︷ ︸
first-order approximation

+ĈV(θ̂2)
2
[
ĈV(θ̂1)

2 − 4ρ̂ĈV(θ̂1)ĈV(θ̂2) + ρ̂2ĈV(θ̂1)
2 + 2ĈV(θ̂2)

2
]

︸ ︷︷ ︸
additional part from second-order approximation


where ρ̂ is the estimate of the correlation coefficient between θ̂1 and θ̂2.

This variance is identical to the variance of the “almost unbiased ratio estimator” (or the
variance of the modified ratio estimator) of Tin (1965), see also David and Sukhatme (1974).

If θ̂1 and θ̂2 are independent, we have:

(i) The estimate of the variance of the bias-corrected estimator θ̂BC is given by

V̂
[
(θ̂BC)

]
=

1
θ̂2

2

[
V̂(θ̂1) +

(
θ̂2

1

θ̂2
2

)
V̂(θ̂2)

]
︸ ︷︷ ︸

first-order approximation

+
1
θ̂4

2

V̂(θ̂2)

[
V̂(θ̂1) + 2

(
θ̂2

1

θ̂2
2

)
V̂(θ̂2)

]
︸ ︷︷ ︸

additional part from second-order approximation

which can also be written as

V̂
[
(θ̂BC)

]
=

θ̂2
1

θ̂2
2


[

V̂(θ̂1)

θ̂2
1

+
V̂(θ̂2)

θ̂2
2

]
︸ ︷︷ ︸

first-order approximation

+
V̂(θ̂2)

θ̂2
2

[
V̂(θ̂1)

θ̂2
1

+ 2
V̂(θ̂2)

θ̂2
2

]
︸ ︷︷ ︸

additional part from second-order approximation


(ii) The variance V̂

[
(θ̂BC)

]
can be express in terms of coefficient variation of θ̂1 and θ̂2

V̂
[
(θ̂BC)

]
=

θ̂2
1

θ̂2
2


[
ĈV(θ̂1)

2 + ĈV(θ̂2)
2
]

︸ ︷︷ ︸
first-order approximation

+ ĈV(θ̂2)
2
[
ĈV(θ̂1)

2 + 2ĈV(θ̂2)
2
]

︸ ︷︷ ︸
additional part from second-order approximation


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5. Confidence Intervals with Bias-Corrected Estimator
In this section, we construct new confidence intervals that take into account the bias of

the estimator for the Delta method, and both the bias of the estimator and the asymmetry
of the distribution for the Edgeworth expansion method.

5.1. Delta Method Based Confidence Interval with Bias-Corrected Estimator

Let us define the estimated standard error of the bias-corrrected estimator θ̂BC by

QBC =

√
V̂
[
(θ̂BC)

]
And the bias-corrrected estimator is(

θ̂1

θ̂2

)
BC

=
θ̂1

θ̂2

{
1 +

[
Ĉov(θ̂1, θ̂2)

θ̂1θ̂2
− V̂(θ̂2)

θ̂2
2

]}

or in terms of coeffficient of variation and coeffficient of co-variation(
θ̂1

θ̂2

)
BC

=
θ̂1

θ̂2

{
1 + ĈV(θ̂1)ĈV(θ̂2)

[
ρ̂ − ĈV(θ̂2)

ĈV(θ̂1)

]}
.

The 100(1 − α)% confidence limits of the Delta method bias-corrrected for the ratio
θ1/θ2 is given as follows:

CIDbc :

(
θ̂1

θ̂2

)
BC

± zα/2QBC

where zα/2 is the (α/2) th quantile for standard normal distribution.

5.2. Edgeworth Expansion Based Confidence Interval with Bias-Corrected Estimator

For the Edgeworth expansion based confidence interval, we use the same correct term
for the estimator of the ratio parameters, then the 100(1 − α)% confidence interval for the
ratio θ1/θ2 based Edgeworth expansion becomes

CIEbc :

[(
θ̂1

θ̂2

)
BC

− ξ1−α/2QBC,

(
θ̂1

θ̂2

)
BC

− ξα/2QBC

]

where ξα/2 and ξ1−α/2 are the (α/2)th and (1 − α/2)th quantiles of distribution with

ξα = zα + n−1/2κ̂
1
6
(z2

α − 1)

where κ̂ is the estimate of the skewness κ and zα is the α − th quantile of the standard
normal distribution.

6. Some Econometric Applications
6.1. The Ratio of Two Linear Combinations of Parameters

Many of the nonlinear functions studied in economic applications are expressed in
the functional form of a ratio of two linear combinations of parameters. In this section, we
consider the test of one such nonlinear function.

We will specify the bias of the estimator, the bias-corrected estimator, and its variance.
Note that the formulations of the confidence intervals are given in the previous section. We
will see that the calculations are quite simple and do not require intensive computation.
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Consider the general linear model

Y = Xβ + ε

where Y is an n × 1 vector of observations, X is a n × k full-rank design matrix, β is a k × 1
vector of unknown parameters, and ε is an n × 1 vector of normal random errors with zero
mean and variance σ2 I: ε ∼ N(0, σ2 I). The OLS estimators of unknown parameters are
β̂ = (X′X)−1X′Y and σ̂2 = ε̂′ ε̂/n − k where ε̂ are the OLS residuals.

Consider a null hypothesis for the ratio of two linear combinations of parameters

H0 θ =
K′β

L′β

where K and L are k × 1 vectors of known constants.
We have the following different terms:
θ1 = K′β, θ2

1 = (K′β)2, V̂(θ̂1) = K′V̂(β̂)K = σ̂2K′(X′X)−1K
θ2 = L′β, θ2

2 = (L′β)2 , θ3
2 = (L′β)3, V̂(θ̂2) = L′V̂(β̂)L = σ̂2L′(X′X)−1L

θ1θ2 = (K′β)(L′β), θ2
1θ2

2 = (K′β)2(L′β)2, Ĉov(θ̂1, θ̂2) = Ĉov(K′β̂, L′β̂) = σ̂2K′(X′X)−1L
By replacing all these terms in the formulation of the bias for θ̂, the bias-corrected

estimator θ̂BC , and the variance of the bias-corrected estimator V̂(θ̂BC), we have the
following proposition.

Proposition 3.

(i) The bias for θ̂ is

B̂ias(θ̂) = − 1
(L′β)2 σ̂2K′(X′X)−1L +

K′ β̂

(L′ β̂)3
σ̂2L′(X′X)−1L,

which can also be written as

B̂ias(θ̂) =
K′ β̂

L′ β̂

[
σ̂2L′(X′X)−1L

(L′ β̂)2
− σ̂2K′(X′X)−1L

(K′ β̂)(L′ β̂)

]

where
[

σ̂2L′(X′X)−1L
(L′ β̂)2 − σ̂2K′(X′X)−1L

(K′ β̂)(L′ β̂)

]
can be considered as a correction factor to the estimated

ratio estimator.
(ii) The bias-corrected estimator θ̂BC is given by(

θ̂1

θ̂2

)
BC

=
K′ β̂

L′ β̂
+

1
(L′β)2 σ̂2K′(X′X)−1L − K′ β̂

(L′ β̂)3
σ̂2L′(X′X)−1L,

which can be written as

(
θ̂1

θ̂2

)
BC

=
K′ β̂

L′ β̂

{
1 + σ̂2

[
K′(X′X)−1L
(K′ β̂)(L′ β̂)

− L′(X′X)−1L
(L′ β̂)2

]}

where 1 + σ̂2
[

K′(X′X)−1L
(K′ β̂)(L′ β̂)

− L′(X′X)−1L
(L′ β̂)2

]
can be considered as a correction factor for the esti-

mated ratio estimator.
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(iii) The estimate of the variance of the bias-corrected estimator

V̂
[
(θ̂BC)

]
=

(K′ β̂)2

(L′ β̂)2
(A1 + A2)

where A1 is the first-order approximation

A1 = σ̂2

[
K′(X′X)−1K

(K′ β̂)2
− 2

K′(X′X)−1L
(K′β)(L′β)

+
L′(X′X)−1L

(L′ β̂)2

]

and A2 is the additional part from second-order approximation

A2 =
σ̂2L′(X′X)−1L

(L′ β̂)2
σ̂4

[
K′(X′X)−1K

(K′ β̂)2
− 4

K′(X′X)−1L
(K′β)(L′β)

+ 2
L′(X′X)−1L

(L′ β̂)2

]

+
σ̂4(K′(X′X)−1L)2

(K′ β̂)2(L′ β̂)2

Next, we consider the case where the numerator and the denominator of the ratio
are independent.

Proposition 4.

(i) If θ̂1 and θ̂2 are independent, then the bias for θ̂ becomes

B̂ias(θ̂) =
K′ β̂

(L′ β̂)3
σ̂2L′(X′X)−1L,

which can be written as

B̂ias(θ̂) =
K′ β̂

L′ β̂

[
σ̂2L′(X′X)−1L

(L′ β̂)2

]

where
[

σ̂2L′(X′X)−1L
(L′ β̂)2

]
can be considered as a correction factor for the estimated ratio estimator.

(ii) The bias-corrected estimator θ̂BC is given by(
θ̂1

θ̂2

)
BC

=
K′ β̂

L′ β̂
− K′ β̂

(L′ β̂)3
σ̂2L′(X′X)−1L

which can be written as

(
θ̂1

θ̂2

)
BC

=
K′ β̂

L′ β̂

[
1 − σ̂2L′(X′X)−1L

(L′ β̂)2

]

where 1− σ̂2L′(X′X)−1L
(L′ β̂)2 can be considered as a correction factor for the estimated ratio estimator.
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(iii) The variance of the bias-corrected estimator

V̂
[
(θ̂BC)

]
=

(K′ β̂)2

(L′ β̂)2
σ̂2



[
K′(X′X)−1K

(K′ β̂)2
+

L′(X′X)−1L
(L′ β̂)2

]
︸ ︷︷ ︸

first-order approximation

+
L′(X′X)−1L

(L′ β̂)2
σ̂2

[
K′(X′X)−1K

(K′ β̂)2
+ 2

L′(X′X)−1L
(L′ β̂)2

]
︸ ︷︷ ︸

additional part from second-order approximation


We will illustrate this result with an econometric application to show the simplicity of

calculation for our method. Let us take the case of the turning point, which has been the
subject of numerous economic applications.

6.2. The Turning Point

Consider a classical linear model described by the quadratic regression model

y = β0 + β1x + β2x2 + ε

where y is the dependent variable and x the independent variable and ε is an unobserved
random error term with expected value E(ε) = 0 and variance V(ε) = σ2. A common
example of such model is the Kuznets (1955) curve that proposes the relationship between
income inequality and income, can be represented by an inverted U shaped curve. Follow-
ing the Kuznets hypothesis the relation between a country’s income equality and economic
development is concave, with income equality first increasing and then decreasing as the
country s economy is developing. See Bernard et al. (2019), J. Hirschberg and Lye (2005),
and Lye and Hirschberg (2018), among others, for the applications and the extensions of
this “Kuznets curve”. The turning point (or extremum value) is given by

θ = − β1

2β2

assuming β2 ̸= 0, the extremum value θ is a minimum value if β2 ≻ 0 and a maximum
value if β2 ≺ 0.

In this case, K′ = (0,−1, 0) and L′ = (0, 0, 2) and we have
θ1 = −β1, θ2

1 = β2
1, V̂(θ̂1) = V̂(β̂1) = σ̂2

β1

θ2 = 2β2, θ̂2
2 = 4β2

2 , θ̂3
2 = 8β3

2 , V̂(θ̂2) = 4V̂(β̂2) = 4σ̂2
β2

θ1θ2 = −2β1β2, θ2
1θ2

2 = 4β2
1β2

2 , Ĉov(θ̂1, θ̂2) = 2Ĉov(β̂1, β̂2) = −2σ̂
β̂1 β̂2

In the formulation of the bias for θ̂ , the bias-corrected estimator θ̂BC and its variance,
by replacing all these terms, we have the following results:

(i) The bias for θ̂ is

B̂ias(θ̂) =
1
2

[
1
β̂2

2

σ̂
β̂1 β̂2

− β̂1

β̂3
2

σ̂2
β̂2

]
which can be written as

B̂ias(θ̂) = −1
2

β̂1

β̂2

 σ̂2
β̂2

β̂2
2

−
σ̂

β̂1 β̂2

β̂1 β̂2



where

(
σ̂2

β̂2
β̂2

2
−

σ̂
β̂1 β̂2

β̂1 β̂2

)
can be considered as a correction factor to the estimated ratio estimator.
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(ii) The bias can be express in terms of the coefficients of variation and the coefficient of co-variation
of β̂1 and β̂2

B̂ias(θ̂) = −1
2

β̂1

β̂2

( 1
t(β̂2)

)2

− ρ̂

(
1

t(β̂1)

)(
1

t(β̂2)

)
where t(β̂i) denotes the t − statistic for β̂i for i = 1, 2, and ρ̂ is the estimate of the correlation

coefficient between β̂1 and β̂2 and the term
(

1
t(β̂2)

)2
− ρ̂

(
1

t(β̂1)

)(
1

t(β̂2)

)
can be considered

as a correction factor to the estimated ratio estimator.
An another alternative form of the bias is

B̂ias(θ̂) = −1
2

β̂1

β̂2

{(
1

t(β̂1)

)(
1

t(β̂2)

)[
t(β̂1)

t(β̂2)
− ρ̂

]}

where
(

1
t(β̂1)

)(
1

t(β̂2)

)[
t(β̂1)

t(β̂2)
− ρ̂

]
can be considered as a correction factor to the estimated

ratio estimator.
(iii) The bias-corrected estimator θ̂BC

θ̂BC = −1
2

β̂1

β̂2
− 1

2

[
1
β̂2

2

σ̂
β̂1 β̂2

− β̂1

β̂3
2

σ̂2
β̂2

]

which can be written as

θ̂BC = −1
2

β̂1

β̂2

1 +

 σ̂
β̂1 β̂2

β̂1 β̂2
−

σ̂2
β̂2

β̂2
2



where 1 +

(
σ̂

β̂1 β̂2
β̂1 β̂2

−
σ̂2

β̂2
β̂2

2

)
can be considered as a correction factor to the estimated ratio esti-

mator.
(iv) The bias-corrected estimator θ̂BC in terms of the coefficient of variation and the coefficient of

co-variation of β̂1 and β̂2 is

θ̂BC = −1
2

β̂1

β̂2

[
1 +

(
ρ̂

(
1

t(β̂1)

)(
1

t(β̂2)

)
− 1

t(β̂2)2

)]

where 1 +

(
ρ̂

(
1

t(β̂1)

)(
1

t(β̂2)

)
− 1

t(β̂2)2

)
can be considered as a correction factor to the

estimated ratio estimator.
An another alternative form is

θ̂BC = −1
2

β̂1

β̂2

[
1 +

(
1

t(β̂1)

)(
1

t(β̂2)

)(
ρ̂ − t(β̂1)

t(β̂2)

)]

where 1 +

(
1

t(β̂1)

)(
1

t(β̂2)

)(
ρ̂ − t(β̂1)

t(β̂2)

)
can be considered as a correction factor to the esti-

mated ratio estimator.
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(v) The estimate of the variance of the bias-corrected estimator θ̂BC

V̂
[
(θ̂BC)

]
=

1
4

β̂2
1

β̂2
2



 σ̂2
β̂1

β̂2
1

− 2
σ̂

β̂1 β̂2

β̂1 β̂2
+

σ̂2
β̂2

β̂2
2


︸ ︷︷ ︸

first-order approximation

+
σ̂2

β̂2

β̂2
2

 σ̂2
β̂1

β̂2
1

− 4
σ̂

β̂1 β̂2

β̂1 β̂2
+ 2

σ̂2
β̂2

β̂2
2

+
(σ̂

β̂1 β̂2
)2

β̂2
1 β̂2

2︸ ︷︷ ︸
additional part from second-order approximation


(vi) Thus, this variance V̂

[
(θ̂BC)

]
can be express in terms of coefficient variation of β̂1 and β̂2 by

V̂
[
(θ̂BC)

]
=

1
4

β̂2
1

β̂2
2



[
ĈV(β̂1)

2 − 2ρ̂ĈV(β̂1)ĈV(β̂2) + ĈV(β̂2)
2
]

︸ ︷︷ ︸
first-order approximation

+ĈV(β̂2)
2

[
ĈV(β̂1)

2 − 4ρ̂ĈV(β̂1)ĈV(β̂2) + ρ̂2ĈV(β̂1)
2

+2ĈV(β̂2)
2

]
︸ ︷︷ ︸

additional part from second-order approximation


This variance is easily calculated using the t-statistics for β̂i for i = 1, 2

V̂
[
(θ̂BC)

]
=

1
4

β̂2
1

β̂2
2



[
1

t(β̂1)2
− 2ρ̂

(
1

t(β̂1)

)(
1

t(β̂2)

)
+

1
t(β̂2)2

]
︸ ︷︷ ︸

first-order approximation

+
1

t(β̂2)2

 1
t(β̂1)2 − 4ρ̂

(
1

t(β̂1)

)(
1

t(β̂2)

)
+ ρ̂2 1

t(β̂1)2

+2 1
t(β̂2)2


︸ ︷︷ ︸

additional part from second-order approximation


We have developed a new method for deriving analytical formulae for the bias of the

estimator ratios θ̂, the bias-corrected estimator θ̂BC, and the variance of the bias-corrected
estimator V̂(θ̂BC). The advantage of this method is that the calculations are quite simple
and do not require intensive computations like the bootstrap methods.

7. Simulation Study
7.1. Overview

In this section, we carry out a simulation study to assess the coverage probabilities
of the methods presented in the previous section. We also examine, the average length
of the confidence intervals. We evaluate the performance of the Fieller interval, the Delta
method interval without and with bias correction and the Edgeworth interval without
and with bias correction. Let X1, . . . , Xn be i.i.d. observations from some distributions F
with mean µX and variance σ2

X , Y1, . . . , Yn be i.i.d. observations from some distributions G
with mean µY and variance σ2

Y and ρσXσY the covariance between X′
i s and Y′

j s where ρ is

the correlation coefficient. Let X = 1
n ∑n

i=1 Xi and Y = 1
n ∑n

i=1 Yi and their ratio θ̂ = X
Y

is a
consistent estimator of θ = µX

µY
.

We generate data from three bivariate distributions: a bivariate normal distribution,
and two positively skewed family of distributions. The two families that we consider are
the bivariate lognormal distribution and the bivariate mixture (X′

i s are lognormal and Y′
j s

are normal) distribution. We choose three correlation coefficients between Xi and Yj (−0.8,
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0.1, 0.8) and four sample sizes (25, 50, 100, 1000). We use 10,000 data sets. The data are
generated as follows:

(a) Bivariate Normal Distribution(
Xi

Yi

)
∼i.i.d N2

((
µX = 7
µY = 5

)
,

(
σ2

X = 2 ρσXσY

ρσXσY σ2
Y = 1

))
(b) Bivariate Mixture Distribution

(Xi) = eX̃i(
X̃i

Yi

)
∼i.i.d N2

((
µX̃ = 5
µY = 4

)
,

(
σ2

X̃
= 0, 2 ρσX̃σY

ρσX̃σY σ2
Y = 0, 5

))
(c) Bivariate Lognormal Distribution(

Xi

Yi

)
∼i.i.d exp

{
N2

((
µX = 5
µY = 4

)
,

(
σ2

X = 0, 2 ρσXσY

ρσXσY σ2
Y = 0, 5

))}

7.2. Results

The results of our simulation are presented in Table 1. The values presented in the table
are confidence intervals based on the Fieller method, the Delta method, the Delta method
with the bias correction (denoted by Dbc), the Edgeworth method, and the Edgeworth
method with the bias correction (denoted by Ebc). The values of the average width (denoted
by Width) are the average lengths of the corresponding intervals. For data generated from
normal distribution, all intervals give good performance. That is, all coverage probabilities
are closer to the nominal level. Average interval lengths (Width) are also comparable
for all methods. The Fieller and the Delta confidence intervals are in many cases very
close to each other in terms of the coverage probabilities and we can also observe that the
average interval lengths for Delta method with the bias correction (Dbc) are less wide than
for the Delta method without the bias correction which means that the estimator is more
accurate. We also observe that the average interval lengths for the Edgeworth method with
the bias correction (Ebc) are narrower than for the Edgeworth method without the bias
correction. However, for data generated from the bivariate mixture and bivariate lognormal
distributions, Delta methods confidence intervals are obviously inadequate, the coverage
probabilities are lower than the nominal level. Fieller’s intervals are also insufficient in
terms of coverage probabilities. All the other methods give coverage probabilities lower
than the nominal level. The Dbc intervals outperform Delta intervals. The Dbc intervals
give better coverage probabilities than Delta intervals. They are comparable and sometimes
better than the Fieller intervals. Note that the Delta interval has the longest average width
whereas the Dbc interval has the shortest average width. The same applies to the Ebc
compared to the Edgeworth expansion. We also observe that the Ebc interval performs
much better than the Edgeworth interval. This can be explained by the fact that the
estimated ratio is biased. Overall, the Edgeworth and the Edgeworth bias corrected appear
to be best in terms of coverage probabilities and average width (width). To explore how
the correlation coefficients affect the coverage probabilities we performed simulations
for different values (−0.8, 0.1, 0.8) from Table 1. The simulation results showed that the
correlation coefficients have an impact on the coverage probabilities. The sample sizes
have a substantial impact on the coverage probabilities for almost all methods. Among
all the methods, the Edgeworth bias-corrected (Ebc) method seems to give a narrower
average than the others. The important conclusion from our simulation is that one should
use the Edgeworth bias corrected, rather than the Edgeworth expansion. We also consider
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other sample sizes and other correlation structures. The results are similar and are not
reported here.

In summary, the Edgeworth without and with the bias correction have good perfor-
mance in terms of coverage probability and average width and should be recommended
for constructing confidence intervals when data are from skewed distributions.

Table 1. Coverage probability and average width (Width) of 95% confidence intervals.

ρ Fieller Width Delta Width Dbc Width Edgeworth Width Ebc Width

(a) Bivariate Normal Distribution

n = 25
0.8 0.9505 1.9625 0.9491 1.9455 0.9495 1.9364 0.9531 2.0523 0.9532 1.1935
0.1 0.9463 2.0572 0.9452 2.0443 0.9458 2.0115 0.9512 2.0365 0.9511 2.0136
−0.8 0.9485 2.4198 0.9482 2.4041 0.9473 2.1464 0.9528 2.0523 0.9529 2.0310

n = 50
0.8 0.9505 1.9625 0.9506 1.9485 0.9504 1.9275 0.9526 2.0497 0.9522 1.9210
0.1 0.9489 2.0577 0.9480 2.0443 0.9464 2.0324 0.9510 2.0342 0.9515 2.0387
−0.8 0.9476 2.4187 0.9469 2.4036 0.9478 2.1685 0.9521 2.0415 0.9519 2.0450

n = 100
0.8 0.9504 1.9753 0.9501 1.9753 0.9503 1.9212 0.9524 2.0520 0.9521 1.9215
0.1 0.9477 2.0678 0.9489 2.0621 0.9463 2.0218 0.9503 2.0365 0.9506 2.0240
−0.8 0.9504 2.3953 0.9468 2.3975 0.9475 2.2358 0.9506 2.0522 0.9505 2.0486

n = 1000
0.8 0.9501 1.9780 0.9501 1.9658 0.9500 1.9245 0.9520 2.0568 0.9520 1.9146
0.1 0.9476 2.0749 0.9469 2.0581 0.9460 2.0510 0.9504 2.0412 0.9500 2.0168
−0.8 0.9500 2.3763 0.9470 2.3860 0.9477 2.2045 0.9515 2.0495 0.9514 2.0475

(b) Bivariate Mixture Distribution

n = 25
0.8 0.8286 90.13 0.8214 86.48 0.8297 86.42 0.8674 85.86 0.8815 84.53
0.1 0.8713 107.30 0.8474 103.57 0.8512 103.45 0.8671 102.93 0.8705 102.49
−0.8 0.8970 139.34 0.8570 133.28 0.8980 132.51 0.9013 131.14 0.9051 130.57

n = 50
0.8 0.8485 91.70 0.8329 88.26 0.8496 87.57 0.8816 87.51 0.8898 86.76
0.1 0.8707 107.18 0.8430 103.78 0.8514 102.12 0.8904 101.45 0.9009 101.14
−0.8 0.8945 138.37 0.8553 132.36 0.8598 132.17 0.9002 130.78 0.9121 129.41

n = 100
0.8 0.8623 90.87 0.8610 89.24 0.8726 85.21 0.9002 86.45 0.9132 87.10
0.1 0.8798 106.87 0.8725 102.53 0.8798 101.21 0.9045 101.24 0.9187 102.25
−0.8 0.9015 137.21 0.9104 130.87 0.8805 130.54 0.9068 130.36 0.9208 129.21

n = 1000
0.8 0.8674 91.10 0.8735 90.13 0.8765 84.25 0.9165 88.12 0.9218 84.59
0.1 0.8723 105.34 0.8806 102.14 0.8725 102.22 0.9046 101.14 0.9284 101.21
−0.8 0.9001 136.21 0.9312 131.51 0.9422 130.57 0.9185 130.03 0.9298 129.25

(c) Bivariate Lognormal Distribution

n = 25
0.8 0.8119 1.5936 0.8076 1.4075 0.8121 1.2761 0.8618 1.4063 0.8715 1.2326
0.1 0.9027 2.6677 08546 2.4743 0.9037 2.4106 0.8934 2.4530 0.8963 2.2078
−0.8 0.9232 3.4301 0.8688 3.1422 0.8721 3.1256 0.9066 3.1047 0.9158 3.0985

n = 50
0.8 0.8472 2.8002 0.8351 1.4512 0.8486 1.4150 0.8845 1.4526 0.9005 1.4328
0.1 0.9055 2.6200 0.8610 2.4462 0.9065 2.3812 0.8981 2.4175 0.9002 2.4076
−0.8 0.9169 3.0737 0.8688 3.1422 0.8765 3.1027 0.9058 3.1107 0.9084 2.9615

n = 100
0.8 0.8417 1.1407 0.8427 1.0821 0.8612 1.1835 0.8766 1.0665 0.9106 1.1078
0.1 0.9130 1.8217 0.8819 1.7727 0.9139 1.6941 0.9078 1.7516 0.9178 1.6851
−0.8 0.9244 2.2228 0.8869 2.1603 0.8981 2.2844 0.9134 2.1281 0.9223 2.0675

n = 1000
0.8 0.8626 1.1691 0.8573 1.1126 0.8621 1.1076 0.8938 1.1010 0.9115 1.0981
0.1 0.9088 1.8157 0.8823 1.7375 0.9054 1.6975 0.9057 1.7434 0.9182 1.6896
−0.8 0.9248 2.2106 0.8965 2.2186 0.9045 2.2081 0.9146 2.1126 0.9268 2.0198

Note: Dbc: Delta method with the bias correction; Ebc: Edgeworth method with the bias correction; Width:
average confidence interval lenghts; ρ: correlation coefficients.
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8. Conclusions
We have developed new methods for constructing confidence intervals for the non-

linear functions of parameters In many practical applications, the distribution of the data
are not symmetric, in particular when the sample size is small. We propose that the Edge-
worth expansion to the statistics makes it possible to remedy this inconvenience. The Delta
method can then be extended using the Edgeworth expansion to obtain a better approximation.
Furthermore, we have shown that the nonlinear functions of the parameters are biased
and we have given an analytical expression of the bias of the ratio of the parameters. This
has allowed us to define bias-corrected estimators and, more particularly, to calculate the
variance associated with these bias-corrected estimators. We have therefore proposed two
other new methods: the Delta method with bias correction and the Edgeworth expansion
with bias correction. The new methods we propose are straightforward to calculate and do
not require intensive calculations such as bootstrapping.

The results of the simulation study showed that our methods generally have better
coverage probabilities and confidence width and are narrower than the Delta method
and Fieller’s method. In the case of bivariate normality, the Delta with bias correction
intervals gives better coverage probabilities than the Delta intervals. They are comparable
and sometimes better than Fieller’s intervals. When the data have been generated from
a skewed distribution, the Edgeworth without and with the bias correction have good
performance in terms of controlling the coverage probabilities and average length intervals.
Thus, we recommend using our new methods with bias correction to construct a reliable
confidence interval for nonlinear functions of the estimated parameters.

Finally, it should be noted that the method outlined in this paper for deriving analytical
formulae for the bias of ratio estimators, the bias-corrected estimator, and the variance of
the bias-corrected estimator can be useful in several econometric and statistical applications,
such as, e.g., the long-run elasticities and flexibilities in dynamic models, the willingness to
pay value, structural impulse responses, etc.
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Appendix A
The Delta method is useful to approximate the moments of the nonlinear functions of

parameters by using Taylor’s series expansion. In the literature, only first-order expansions
are used to approximate asymptotic sampling distributions. The Delta method provides a
compromise to approximate the asymptotic sampling distribution of the ratio parameters
θ = θ1/θ2 where θ1 and θ2 are unknwon parameters. However, higher-order expansions
are also useful because they can be used to estimate the bias of the ratio parameters
and the analytical form of the bias obtained can be used to construct the bias-corrected
estimator. We begin with how the variance of the ratio of the parameters in the main text
can be approximated with the Delta method. We then extend this approach to obtain the
higher-order terms necessary to estimate the bias and derive a bias-corrected estimator.

The variance of a first order Taylor’s series expansion,
Let θ is g(θ1, θ2) = θ1/θ2. On the basis of Taylor’s series expansion, the Delta method

approximates the variance of a function of estimators of parameters θ̂ = g(θ̂1, θ̂2) which
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estimates g(θ1, θ2). Since θ̂1 and θ̂2 are unbiased estimators of θ1 and θ2, respectively, i.e.,
E(θ̂i) = θi for i = 1, 2, the variance of θ̂ is

V(θ̂) = V(g(θ̂1, θ̂2) = G′ΣG (A1)

where G is a Jacobian vector containing all the first-order partial derivatives of g(θ̂1, θ̂2)

evaluated at θi for i = 1, 2.

G′ =

[
∂g(θ̂1, θ̂2)

∂θ̂1
,

∂g(θ̂1, θ̂2)

∂θ̂2

]
=

[
1
θ2

,
−θ1

θ2
2

]

and Σ is the variance-covariance matrix of θ̂1 and θ̂2 defined as follows

Σ =

[
V(θ̂1) Cov(θ̂1θ̂2)

Cov(θ̂2θ̂1) V(θ̂2)

]

Solving Equation (A1) and using the estimators θ̂1 and θ̂2 to replace for unknown
parameters θ1 and θ2, respectively, we get the variance of θ̂

V(θ̂) =
1
θ̂2

2

[
V(θ̂1)− 2

(
θ̂1

θ̂2

)
Cov(θ̂1, θ̂2) +

(
θ̂2

1

θ̂2
2

)
V(θ̂2)

]

which can be written by

V(θ̂) =
θ̂2

1

θ̂2
2

[
V(θ̂1)

θ̂2
1

− 2
Cov(θ̂1, θ̂2)

θ̂1θ̂2
+

V(θ̂2)

θ̂2
2

]

Thus, the variance V(θ̂) can be express in terms of the coefficient of variation and the
coefficient of co-variation of θ̂1 and θ̂2

V(θ̂) =
θ̂2

1

θ̂2
2

[
CV(θ̂1)

2 − 2CV(θ̂1, θ̂2) + CV(θ̂2)
2
]

=
θ̂2

1

θ̂2
2

[
CV(θ̂1)

2 − 2ρCV(θ̂1)CV(θ̂2) + CV(θ̂2)
2
]

where CV(θ̂i)
2 is the square of the coefficient of variation of θ̂i for i = 1, 2 and CV(θ̂1, θ̂2)

is the coefficient of co-variation of θ̂1 and θ̂2 and ρ = Cov(θ̂1,θ̂2)(√
V(θ̂1)

)(√
V(θ̂2)

) is the correlation

coefficient between θ̂1 and θ̂2.
Bias of estimator
The first-order Taylor’s series approximations may not be accurate in some applica-

tions because of bias from truncation of the Taylor’s series or small-sample bias in the
asymptotic regression parameter variances used in the Taylor’s series formulas. A second
order Taylor’s series expansios of g(θ̂1, θ̂2) is

g(θ̂1, θ̂2) = g(θ1, θ2) + G′
(

θ̂1 − θ1

θ̂2 − θ2

)
+

1
2

(
θ̂1 − θ1

θ̂2 − θ2

)′

H

(
θ̂1 − θ1

θ̂2 − θ2

)
+ Rn (A2)

where H is a Hessian matrix containing all the second partial derivatives of g(θ̂1, θ̂2)

evaluated at θi i = 1, 2.
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H =

 ∂2g(θ̂1,θ̂2)

∂θ̂2
1

, ∂2g(θ̂1,θ̂2)

∂θ̂1∂θ̂2
∂2g(θ̂1,θ̂2)

∂θ̂2∂θ̂1
, ∂2g(θ̂1,θ̂1)

∂θ̂2
2

 =

 0,− 1
θ2

2

− 1
θ2

2
, 2θ1

θ3
2



and the remainder Rn is of order O

∥∥∥∥∥ θ̂1 − θ1

θ̂2 − θ2

∥∥∥∥∥
2
, i.e., Rn∥∥∥∥∥∥ θ̂1 − θ1

θ̂2 − θ2

∥∥∥∥∥∥
2 −→ 0 as θ̂i −→ θi

for i = 1, 2 as n −→ ∞.
By taking expectation of Equation (A2) and since E(θ̂i − θi) = 0 for i = 1, 2, and

E(Rn) = O(n−2) we obtain

E(g(θ̂1, θ̂2)) = g(θ1, θ2) +
1
2

tr{HΣ}+ O(n−2)

E(θ̂) = θ +
1
2

tr{HΣ}+ O(n−2)

where tr(.) denotes the trace of matrix, then the bias for θ̂ is defined by

Bias(θ̂) = E(θ̂)− θ =
1
2

tr{HΣ}+ O(n−2) =
1
2
(vecH)′vecΣ + O(n−2)

where vec(.) denotes the vectorisation operator which stacks the columns of the matrix and
the matrix H is symmetric so that vecH′ = vecH.

Since H and Σ are unknown, we estimate bias as

B̂ias(θ̂) =
1
2

tr
(

ĤΣ̂
)
+ O(n−2 =

1
2
(vecĤ)′vecΣ̂ + O(n−2)

where Ĥ is the estimate of the Hessian matrix of the second-order partial derivatives and Σ̂
is the estimate of the variance–covariance matrix of θ̂1 and θ̂2.

This yields

B̂ias(θ̂) = − 1
θ̂2

2

Ĉov(θ̂1, θ̂2) +
θ̂1

θ̂3
2

V̂(θ̂2) + O(n−2)

which can be written as

B̂ias(θ̂) =
θ̂1

θ̂2

[
V̂(θ̂2)

θ̂2
2

− Ĉov(θ̂1, θ̂2)

θ̂1θ̂2

]
+ O(n−2)

The approximation of the variance of θ̂ with a second-order term
The calculation of the variance of the second order Taylor series reveals the covariances

between the random variables and gives a better approximation.

To facilitate notation, let us define the random vector z =
(

θ̂1 − θ1 , θ̂2 − θ2

)′
with

E(z) = 0 , E(zz′) = Σ and z is a normal random variable z ∼ N(0, Σ).
We can rewrite the second order of Taylor’s expansion as follows

g(θ̂1, θ̂2) = g(θ1, θ2) + G′z +
1
2

z′Hz + Rn

and its variance is

V( g(θ̂1, θ̂2)) = V(G′z) +
1
4

V
(
z′Hz

)
+ Cov

(
G′z, z′Hz

)
To obtain the variance V( g(θ̂1, θ̂2)) we need to calculate the three terms

(i) V(G′z) = G′ΣG;
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(ii) 1
4 V(z′Hz) = 1

4

{
E[z′Hz]2 − [E(z′Hz)]2

}
= 1

4

{
[tr(HΣ)]2 + 2tr(HΣ)2 − [tr(HΣ)]2

}
= 1

2 tr(HΣ)2 ;
(iii) Cov(G′z, z′Hz) = G′E[zz′Hz]

= G′E[z ⊗ zz′]′vecH
= 0.

Since odd moments of z are zero. Thus, the linear form G′z and the quadratic form
z′Hz are uncorrelated.

By combining these three results, we obtain the following result

V
[

g(θ̂1, θ̂2)
]
= G′ΣG︸ ︷︷ ︸

first-order part

+
1
2

tr
[
(HΣ)2

]
︸ ︷︷ ︸

second-order part

= G′ΣG︸ ︷︷ ︸
first-order part

+
1
2
(vecH)

′
(Σ ⊗ Σ)vecH︸ ︷︷ ︸

second-oder part

where the first order part G′ΣG is the variance of θ̂ corresponding to a first order approximation
and the second order part corresponding to an additional part from second-order approximation
which permit to take into account the correlation between the random variables.

Let V̂
[

g(θ̂1, θ̂2)
]

be the estimate of the variance V
[

g(θ̂1, θ̂2)
]

defined by

V̂
[

g(θ̂1, θ̂2)
]
= Ĝ′Σ̂Ĝ︸ ︷︷ ︸

first-order part

+
1
2
(vecĤ)

′
(Σ̂ ⊗ Σ̂)vecĤ︸ ︷︷ ︸

second-oder part

This yields

V̂
[

g(θ̂1, θ̂2)
]
=

1
θ̂2

2

[
V̂(θ̂1)− 2

(
θ̂1

θ̂2

)
Ĉov(θ̂1, θ̂2) +

(
θ̂2

1

θ̂2
2

)
V̂(θ̂2)

]
︸ ︷︷ ︸

first-order approximation

+
1
θ̂4

2
V̂(θ̂2)

[
V̂(θ̂1)− 4

(
θ̂1
θ̂2

)
Ĉov(θ̂1, θ̂2) + 2

(
θ̂2

1
θ̂2

2

)
V̂(θ̂2)

]
+ 1

θ̂4
2

Ĉov(θ̂1, θ̂2)
2︸ ︷︷ ︸

additional part from second-order approximation

which can be written as

V̂
[

g(θ̂1, θ̂2)
]
=

θ̂2
1

θ̂2
2

[
V̂(θ̂1)

θ̂2
1

− 2
Ĉov(θ̂1, θ̂2)

θ̂1θ̂2
+

V̂(θ̂2)

θ̂2
2

]
︸ ︷︷ ︸

first-order approximation

+
θ̂2

1

θ̂2
2


V̂(θ̂2)

θ̂2
2

[
V̂(θ̂1)

θ̂2
1

− 4 Ĉov(θ̂1,θ̂2)

θ̂1 θ̂2
+ 2 V̂(θ̂2)

θ̂2
2

]
+ Ĉov(θ̂1,θ̂2)

2

θ̂2
1 θ̂2

2

︸ ︷︷ ︸
additional part from second-order approximation

Thus, this variance can be express in terms of the coefficient of variation and the
coefficient of co-variation of θ̂1 and θ̂2.
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V̂
[

g(θ̂1, θ̂2)
]
=

θ̂2
1

θ̂2
2

[
ĈV(θ̂1)

2 − 2ĈV(θ̂1, θ̂2) + ĈV(θ̂2)
2
]

︸ ︷︷ ︸
first-order approximation

+
θ̂2

1

θ̂2
2

{
ĈV(θ̂2)

2
[
ĈV(θ̂1)

2 − 4ĈV(θ̂1, θ̂2) + 2ĈV(θ̂2)
2
]

+ĈV(θ̂1, θ̂2)
2

}
︸ ︷︷ ︸

additional part from second-order approximation

=
θ̂2

1

θ̂2
2

[
ĈV(θ̂1)

2 − 2ρ̂ĈV(θ̂1)ĈV(θ̂2) + ĈV(θ̂2)
2
]

︸ ︷︷ ︸
first-order approximation

+
θ̂2

1

θ̂2
2

{
ĈV(θ̂2)

2

[
ĈV(θ̂1)

2 − 4ρ̂ĈV(θ̂1)ĈV(θ̂2) + ρ̂2ĈV(θ̂1)
2

+2ĈV(θ̂2)
2

]}
︸ ︷︷ ︸

additional part from second-order approximation
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